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Detection of diffusion anisotropy from an individual short particle trajectory
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In parallel with advances in microscale imaging techniques, the fields of biology and materials science have
focused on precisely extracting particle properties based on their diffusion behavior. Although the majority of
real-world particles exhibit anisotropy, their behavior has been studied less than that of isotropic particles. In
this study, we introduce a method for estimating the diffusion coefficients of individual anisotropic particles
using short-trajectory data on the basis of a maximum likelihood framework. Traditional estimation techniques
often use mean-squared displacement (MSD) values or other statistical measures that inherently remove angular
information. Instead, we treated the angle as a latent variable and used belief propagation to estimate it while
maximizing the likelihood using the expectation-maximization algorithm. Compared to conventional methods,
this approach facilitates better estimation of shorter trajectories and faster rotations, as confirmed by numerical
simulations and experimental data involving bacteria and quantum rods. Additionally, we performed an analytical
investigation of the limits of detectability of anisotropy and provided guidelines for the experimental design. In
addition to serving as a powerful tool for analyzing complex systems, the proposed method will pave the way
for applying maximum likelihood methods to more complex diffusion phenomena.

DOI: 10.1103/PhysRevResearch.6.033272

I. INTRODUCTION

Advances in imaging techniques have made it possible to
visualize the spatiotemporal dynamics of various materials in
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microscale. This has sparked the development of theoretical
methods for quantitatively extracting the physical properties
of materials from experimental data. Among these methods,
analyzing the mobility of a single tracer particle immersed in
viscoelastic material has emerged as a powerful technique to
reveal the microenvironment of the materials [1]. To date, this
technique has been widely applied to elucidate the dynamics
and structure of cell membranes [2–4], DNA synthesis [5,6],
principles of protein transport [7–9], and even the processes
and infection mechanisms of viruses [10,11].

Conventionally, this technique often assumes the use of
spherical tracer particles [12] or nonrotational tracer parti-
cles [13] for ease of statistical analysis. In other words, the
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difficulty of statistical analysis has prevented the applica-
tion of this method to complex materials such as biological
samples, where tracer particles generally have nonspherical
shapes. However, recent biological studies have revealed the
numerous characteristics and roles of anisotropic particles
[14–18]. For example, their unique shapes and properties have
been shown to be useful in drug delivery [19–21] and in the
control of critical phenomena in active matter [22]. This had
led to a growing interest in the potential and versatility of
anisotropic particles in biological research.

Although the physics on anisotropic diffusion has been
intensively explored since some pioneering studies [23–25],
to date, only a few data-analysis methods have been proposed
to address the trajectories of nonspherical tracer particles
[26–30]. These methods often require an unrealistically large
number of time points in a single trajectory or the averaging
of a large number of multiple trajectories. Moreover, some
studies have assumed that the orientation of anisotropic parti-
cles can be observed [31]. However, this assumption is often
invalid, especially when the particles are very small.

Taking these circumstances into consideration, this study
addresses the practical problem of estimating the diffusion
coefficients of a two-dimensional anisotropic particle from
single-particle tracking (SPT) data. To this end, we employed
the stochastic model of anisotropic diffusion introduced in
Ref. [26].

It is important to note that this two-dimensional model is
a simplification of three-dimensional reality. In a full three-
dimensional treatment, one would need to consider movement
along the z axis and introduce a second angle to completely
describe the particle’s orientation. However, for many practi-
cal applications this two-dimensional approximation provides
valuable insights while maintaining computational tractabil-
ity. For example, we consider the tracer movement in shallow
chambers in vitro, around cell periphery (lamellipodia), and
with the regions beneath nuclei, which are not unusual cases in
microscopy observations. In these situations, the depth of field
is often on the order of submicron scales, and translational
and rotational movements in the z direction are constrained,
allowing the system to be effectively treated as quasi two-
dimensional. This consistency with real-world conditions
forms a significant part of our motivation for employing this
model.

Consider a two-dimensional particle with different transla-
tional diffusion coefficients Da > Db, which correspond to the
major and minor axis directions, respectively. In addition, let
Dθ be the rotational diffusion coefficient of the particle. The
dynamics of the center-of-mass position coordinates x, y and
angles θ of a single particle are described by the following
Langevin equation:

∂x

∂t
= ξ1(t )

∂y

∂t
= ξ2(t )

∂θ

∂t
= ξ3(t ). (1)

Here, ξ1(t ), ξ2(t ), and ξ3(t ) are Gaussian white noise charac-
terized by 〈ξ1(t )〉 = 〈ξ2(t )〉 = 〈ξ3(t )〉 = 0 and

〈ξi(t )ξ j (t
′)〉 = �i jδ(t − t ′) (i, j = 1, 2)

〈ξ3(t )ξ3(t ′)〉 = 2Dθ δ(t − t ′),

where � denotes

�(θ ) =
(

(2D̄ + �D cos 2θ �D sin 2θ

�D sin 2θ 2D̄ − �D cos 2θ )

)

with D̄ = (Da + Db)/2 and �D = Da − Db. Brackets rep-
resent the average with respect to ξ1(t ), ξ2(t ), and ξ3(t ).
Furthermore, when Gaussian observation noise is added to
each coordinate, the observed coordinates X,Y are given by
X (t ) = x(t ) + εξ4(t ) and Y (t ) = y(t ) + εξ5(t ), where ε is the
standard deviation of the noise magnitude, and ξ4(t ) and ξ5(t )
represent independent standard Gaussian white noise. Using
these notations, we aim to precisely estimate the diffusion
coefficients Da, Db, and Dθ from a pair of observed time
series, X, Y = {X(ti), Y(ti)}1�i�N, with a time interval �t .
Note that we consider a general situation in which the orienta-
tion of the particles cannot be observed and must be inferred.
Mean-squared displacement is a classical approach that is
still the most commonly used technique to estimate diffusion
coefficients (MSD) [32–36]. Two well-known methods are
used for applying MSD fitting to particle trajectories obtained
by SPT [35]: one is a trajectory-segmentation method that
allows overlap, and the other is a method that extracts tra-
jectories independently without allowing overlap. However,
in two-dimensional anisotropic diffusion, anisotropy does not
appear in the MSD; therefore, the statistical nature of diffusion
must be examined using the fourth-order cumulant to detect
anisotropy [26]. As shown by Ref. [26], when the particle
orientation is hidden with no measurement noise, the MSD
and fourth-order cumulant are given by

Dxx(t ) = Dyy(t ) = D̄ (2)

C4(t ) = 3�D2

4Dθ

(
t − 1 − exp(−4Dθ t )

4Dθ

)
. (3)

When the three diffusion coefficients are estimated using
a fourth-order cumulant, two parameters must be estimated
from a single equation, because Dθ and �D are coupled in
Eq. (3). In addition, in the Dθ → ∞ limit, the fourth-order
cumulant vanishes regardless of time, and estimating �D and
Dθ from the fourth-order cumulant is, in principle, impossible
regardless of the length of each particle trajectory. Another
drawback is that it does not use the full microscopic diffusion
information contained in the time series.

To address these limitations, we developed a method based
on maximum likelihood estimation (MLE) for analyzing the
mobility of anisotropic particles from the data of only sin-
gle and short trajectories (Fig. 1). Traditional fitting methods
tend to lose information at higher moments. However, the
MLE method efficiently exploits the information, including
those with higher moments, from the data by maximizing the
likelihood of the entire trajectory. The maximization is imple-
mented using the expectation-maximization (EM) algorithm
[37] to incorporate latent variables. In the current system,
belief propagation (BP) [38] enables the algorithm to operate
linearly with respect to the number of data points. However,
in practice, BP is not feasible to perform analytically because
it is expressed as a set of functional recurrence formulas.
As a practical solution to this problem, we use particle-filter
(sequential Monte Carlo) methods [39,40].
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FIG. 1. Illustration of the traditional fitting approach and the
proposed MLE approach. In the fitting approach, a single trajectory
is segmented to multiple paths of varying lengths, from which the
MSD and relevant cumulants are computed. In the MLE approach, on
the other hand, given the initial values, the diffusion coefficients are
recursively updated by the EM algorithm based on relevant moments
of latent variables with respect to the posterior distribution defined
by the diffusion coefficients at the time. The moment assessment is
efficiently performed by BP, which is implemented by particle filters.

The usefulness of our approach was validated by per-
forming numerical studies and laboratory experiments using
bacteria, quantum rods, and fluorescent spheres. We found
that compared to conventional statistical methods widely
used for estimating diffusion coefficients, our method can
detect anisotropy more sensitively and estimate the diffu-
sion coefficients of nonspherical tracer particles using shorter
trajectories.

Additionally, we analytically explored the detection limit
of anisotropy. Similarly to the discussion in Ref. [41], which
addressed the reliability of the MLE in the isotropic model, we
quantitatively evaluated the distribution of maximum likeli-
hood values in cases where anisotropy is present. Our method
employs fixed-point analysis of the EM algorithm, examining
instances where the finiteness of paths could potentially lead
to erroneous detection of isotropy. This analysis reveals that,
due to the finite nature of the length of trajectories, the limita-
tions of the MLE method can result in false conclusions with
a certain probability. These findings contribute to enhancing
the robustness of experimental designs and data interpretation
in this challenging area of research, providing experimental
guidelines concerning the required length of trajectories and
the acceptable magnitude of measurement noise.

II. RESULTS

A. Numerical studies

Figure 2 presents the diffusion coefficients estimated from
trajectories generated by numerical simulations with known
diffusion coefficients. The simulations were conducted using
four different parameter sets. The experimental procedure was
as follows: First, we set the true diffusion coefficients and
generated trajectories using numerical simulations according
to Eq. (1). We then masked the angles and true position

coordinates, treating them as unknown, and performed esti-
mations using only the noise-added coordinates. For the MSD
method, we calculated the MSD and fourth-order cumulants
from the trajectories. Taking noise into account, we estimated
the diffusion coefficients by fitting using Eqs. (2) and (3). For
the MLE method, we employed the EM algorithm, which will
be described in detail later.

As a result, in all cases, the MLE method outperformed
conventional cumulant-based fitting. The fitting method
achieved some degree of success in estimating Da and Db

only when the rotational diffusion coefficient was small, that
is,

√
2Dθ�t < 1 [Figs. 2(a) and 2(b)]. However, the MLE

method succeeded in estimating both Da and Db with higher
precision, even for shorter trajectories. Moreover, the MLE
method could accurately estimate the correct order of magni-
tude for Dθ even for trajectories as short as N = 100, which is
impossible to achieve using the fitting method.

In more challenging scenarios where
√

2Dθ�t > 1
[Figs. 2(c) and 2(d)], the fitting method completely failed to
estimate Da and Db. In particular, Fig. 2(c) shows an erroneous
estimation of Db = 0, and Fig. 2(d) represents an incorrect
conclusion of Da = Db. This failure is attributable to the fact
that the fourth-order cumulant Eq. (3) vanishes asymptotically
as Dθ increases, thereby making the fitting process highly
challenging. In particular, in Fig. 2(d), distinguishing between
isotropic and anisotropic diffusion becomes exceedingly diffi-
cult. Nonetheless, the MLE method successfully estimates Da

and Db with high accuracy in both cases, and also successfully
detects anisotropy.

We found that the fourth-order cumulant is not useful for
determining �D and Dθ because it exhibits significant statisti-
cal errors (Fig. 3 in the large t regimes). This leads to practical
difficulties in accurately estimating �D and Dθ . In particular,
when Dθ is large, C4(t ) does not respond to variations in �D,
which results in complete failure of the estimation, as shown
in Fig. 3(a). Moreover, as Dθ decreases, the cumulant method
fails to predict even the correct order of Dθ , as shown in
Fig. 3(b).

As verified in Figs. 2(a) and 2(b), our method can estimate
not only the translational diffusion coefficients Da and Db but
also the rotational diffusion coefficient Dθ , even though the
angle θ is hidden. However, Figs. 2(c) and 2(d) also show
that if

√
2Dθ�t > 1, the estimation error of Dθ increases,

because the angles are determined almost independently at
each time step. To clarify this phenomenon further, Fig. 4
shows the landscape of the likelihood function for the true
value of Dθ . When the rotational diffusion coefficient is too
small (

√
2Dθ�t � 1), the likelihood function lacks extrema,

making it impossible to estimate its order [Fig. 4(a)]. This
can be attributed to the effect of measurement noise, which
becomes significant owing to the absence of angular observa-
tions. Conversely, when the rotational diffusion coefficient is
large (

√
2Dθ�t > 1), the ±π periodicity of the angles causes

the likelihood function to lack extrema [Figs. 4(e) and 4(f)].
Therefore, as for the angular diffusion, our method may be
effective only when the true Dθ has a moderate value. Nev-
ertheless, even when accurate estimation of the order of the
rotational diffusion coefficient is not possible, the translational
diffusion coefficients can still be accurately estimated. Finally,
one point that requires consideration is that this is not a
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(a) (b)

(c) (d)

FIG. 2. Results of simulations performed using the MLE method compared to those performed using the fitting method. Experiments
were conducted with four different parameter sets. The results of the fitting method for N = 100 are omitted because the error bars are too
large and the estimation accuracy is obviously bad. Plots of Dθ are shown in log scale. The error bars represent the ±1σ range obtained by
Gaussian approximation of the likelihood function on either side of the maximum likelihood estimate. (a) Da = 3.0 µm2/s, Db = 1.0 µm2/s,
Dθ = 0.1 rad2 s−1. (b) Da = 2.5 µm2/s, Db = 1.5 µm2/s, Dθ = 0.1 rad2 s−1. (c) Da = 3.0 µm2/s, Db = 1.0 µm2/s, Dθ = 100 rad2 s−1.
(d) Da = 2.5 µm2/s, Db = 1.5 µm2/s, Dθ = 100 rad2 s−1 (a)–(d) �t = 0.01 s, ε = 0.02 µm.
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(a)

(b)

FIG. 3. MSD and the fourth-cumulant estimated by fitting to
simulation data. (a) and (b) Da = 3.0 µm2 s−1, Db = 1.0 µm2 s−1,
�t = 0.01 s, ε = 0.02 µm, N = 3000. (A) Dθ = 100.0 rad2 s−1. Er-
ror bars represent 〈�x(t )2 + �y(t )2〉/√2n. (b) Dθ = 0.1 rad2 s−1.
Error bars stand for

√
6〈[�x(t )2 + �y(t )2]2〉/√4n. For both cases,

n is the number of simulations (see Supplemental Material [42]).

(a) (b)

(c) (d)

(e) (f)

FIG. 4. Log likelihood vs Dθ when Da and Db are fixed to their
true values. (a) When the true value of Dθ is too small, distinguishing
the influence of measurement noise from that of the rotational diffu-
sion is difficult, making the true value indistinguishable from smaller
values of Dθ . (b and c) The correct order of Dθ can be estimated only
when the true value of Dθ is moderate. (d)–(f) Conversely, when
the true Dθ is too large, due to the ±π periodicity of the angle
variables, distinguishing it from larger values is difficult. (a)–(f)
Da = 2.0 µm2/s, Db = 1.0 µm2/s, �t = 0.01 s, and ε = 0.02 µm.

discussion of the practical performance of the estimation al-
gorithm, but instead concerns the general estimability with
respect to the likelihood function.

B. Application to biological systems

The numerical results in the previous section confirm that
our MLE-based method significantly outperforms conven-
tional cumulant-based methods for a wide range of diffusion
coefficients. To verify the utility of this method for real bi-
ological samples, we estimated the diffusion coefficients of
micron-sized bacterial cells in quasi-two-dimensional suspen-
sions confined between two parallel glass walls [Fig. 5(a)].
First, we extracted trajectory segments of N = 3000 length
from four independent datasets, partitioned them into six
N = 500 subsets, and estimated the diffusion coefficients for
each. The results were compared with the estimates using
the full N = 3000 dataset. Interestingly, for Data2 and Data3,
the estimated diffusion coefficients did not vary significantly
across the subsets. In contrast, for Data1 and Data4, the trans-
lational diffusion coefficients appeared to particularly differ
across subsets. While this may be attributed to fluctuations
in the distance between the bacteria and chamber walls [43],
the salient point is that the MLE method can detect such
time-dependent variations in the diffusion coefficients even
over short intervals. This indicates the potential of the method
to identify nonstationary particle behaviors during diffusion
from short-length trajectories.

Micron-sized bacteria clearly show nonzero asphericity
[44] ∼0.72 in their trajectories [Fig. 5(b) left column], an
evidence that the bacteria are spherically asymmetric. Fur-
thermore, micron-sized bacteria allow for angle observations,
which enable the verification of agreement between the es-
timated angles and actual observations. Figure 5(b) right
column compares the estimated angular distributions p(θ |
X, Y, D∗) with the actual observations, where D∗ represents
the estimated diffusion coefficients. Although we did not
utilize any angular observation information to derive p(θ |
X, Y, D∗), Fig. 5(b) shows a good agreement between the
estimated and observed bacterial angles. Thus, even when
the particles are too small for directional detection, the direc-
tional behavior can still be estimated with high precision from
noise-added trajectories alone as a simultaneous outcome of
diffusion coefficient estimation.

C. Application to nanosized anisotropic particles

Owing to the slow rotational diffusion and pronounced
anisotropy of micron-sized bacteria [Fig. 5(b)], detecting
diffusion anisotropy in these bacteria is relatively easy. To fur-
ther validate the effectiveness of our approach, we examined
more challenging nanosized systems, namely, the diffusion
of quantum rods and fluorescent spheres, which exhibit
lesser anisotropy and faster rotational diffusion. Figure 6(a)
shows the estimated translational diffusion coefficients for
19 independent trajectories of the quantum rods. The con-
ventional fitting approach tended to either incorrectly infer
isotropic behavior (Da = Db) or produce extreme parame-
ters, such as Db = 0. This can be attributed to a failure in
fitting the fourth-order cumulant, which yielded erroneous
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(a)

(b)

FIG. 5. Results obtained by the MLE method for four diffusion trajectories of bacteria. (a) The results obtained by dividing the N = 3000
trajectory into six subsets and estimating the diffusion coefficients in each N = 500 block are compared to the result obtained from the whole
N = 3000 data. The error bars represent the ±1σ range obtained by Gaussian approximation of the log-likelihood function on either side of
the maximum likelihood estimate. (b) Actual trajectories (left column) and estimated angles (right column). The inset in each trajectory data
shows a snapshot of a bacterium with a yellow scale bar (1 µm). The angles at each time point are color coded. The blue bands indicate the
90% confidence intervals of the estimated angles. (a) and (b) �t = 0.33 ms and ε = 0.00395 µm. The measurement error ε was estimated as
the positional standard deviation of the bacteria immobilized on the glass wall.
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(a) (b)

FIG. 6. Results obtained by the MLE method for the diffusion
trajectories of (a) quantum rods and (b) fluorescent spheres. The
nominal major and minor axis lengths of the quantum rod are
28.4 ± 3.0 and 4.6 ± 0.7 nm, respectively. The nominal diameter of
the fluorescent spheres is 200 nm. (a) and (b) N = 1000, �t = 0.01 s
and ε = 0.02 µm. The measurement error ε was estimated as the
positional standard deviation of the immobilized tracers.

estimations that fall into the extremities of the parameter
space, such as �D = 0 or �D = Da. Conversely, the esti-
mates obtained using our method eliminate extreme solutions
such as Db = 0 and reduce the fraction of trajectories clas-
sified as isotropic. This suggests that our method can detect
anisotropy with high accuracy even in trajectories exhibiting
very low non-Gaussianity, where the fourth-order cumulant
approaches zero. However, some data were still classified
incorrectly as isotropic.

D. Application to nanosized isotropic particles

Our method was originally formulated to detect diffusion
anisotropy, but can also handle isotropic diffusion in the limit
case of Da = Db. To confirm the detection performance for
isotropic diffusion, we used the trajectories of fluorescent
spheres to estimate the diffusion coefficients [Fig. 6(b)]. Al-
most half of the 28 trajectories were classified as isotropic,
which is consistent with the theoretical probability of detect-
ing diffusion isotropy, the details of which are discussed in the
next section [Fig. 7(a)].

E. Stability analysis of the EM algorithm

The results in Fig. 6(a) [6(b)] suggest that several
trajectories can lead to incorrect isotropic (anisotropic) es-
timation outcomes, even using our MLE method when Dθ

is sufficiently large. To investigate the reason for this, we
theoretically analyzed the dynamic behavior of the EM al-
gorithm. Because of the symmetry between Da and Db, an
isotropic fixed point always exists in the EM algorithm. To
examine whether an isotropic fixed point is preferable, we
linearized the EM algorithm around this point and examined
the resulting stability matrix. This yielded the eigenvalue q
corresponding to the eigenvector that breaks the isotropy as
follows:

q = 1 +
(

Da − Db

Da + Db

)2( 1

e4Dθ �t − 1
+ 1

2

)
(4)

in the N → ∞ limit and ε = 0. The derivation is provided
in the Supplemental Material [42]. This result implies that it

always exceeds 1 as long as Da �= Db; that is, if the particle
is anisotropic, the isotropic fixed point is unstable. Therefore,
anisotropic particle properties can always be detected if an
infinitely long trajectory is observable without measurement
noise even if Dθ → ∞. The reason for this counterintuitive
conclusion is that in Eq. (3), Dθ and �D are completely
coupled, such that the fourth-order cumulant converges to
zero when Dθ is infinite, whereas in Eq. (4), there exists a
term in which �D and Dθ are decoupled by the term +1/2.
This decoupling term remains even if Dθ → ∞, enabling the
detection of diffusion anisotropy.

Nevertheless, in realistic situations, the length of the
observable trajectory is finite and measurement noise is in-
evitable. Under these conditions, the results described by
Eq. (4) no longer hold, and the eigenvalues may dip below
unity, depending on the statistical fluctuations of the sampled
trajectory. In other words, even if the particle is nonspherical,
the observed trajectory may display isotropic characteristics
by chance, making the isotropic solution locally optimal.
(Note that this is actually globally optimal in most cases;
see Supplemental Material [42]). Figure 7(a) illustrates the
probability of observing a trajectory with an eigenvalue q
greater than 1 and summarizes the dependency of this prob-
ability on N , ε, Da, and Db. As expected, this figure shows
that the larger the difference in the diffusion coefficient
�D, the higher the probability of successful anisotropy
detection.

We also introduced �D∗ as the minimum �D value with
a 75% probability of an eigenvalue exceeding 1 on the line
of Da�t + Db�t = 10.0 µm2, which serves as the detection
threshold for anisotropy. Using �D∗, we first revealed that the
probability of the eigenvalues exceeding 1 asymptotically ap-
proaches 100% within the limit of an infinitely large number
of observations (Fig. 7). This result indicates that our method
reliably detects anisotropy even in the presence of observation
noise within the limit of N → ∞. Second, we found that the
threshold �D∗ decreased with O(N−1/4) with respect to the
trajectory length N and that the order is almost independent of
noise [Fig. 7(b)]. This result demonstrates that the estimation
accuracy depends moderately on the trajectory length. Finally,
we verified that the amplitude of the measurement noise has
little effect on the probability of detecting anisotropy when
ε < ε∗, where ε∗ corresponds to a diffusion signal-to-noise
ratio of 1, that is, ε∗ =

√
2D̄�t . In contrast, we found that the

amplitude of the measurement noise has a substantial effect
on the probability of detecting anisotropy when the magnitude
of noise exceeds the typical magnitude of diffusion (ε > ε∗)
[Fig. 7(c)].

These results can be used to assess the number of obser-
vations and noise level required to reliably detect anisotropy.
Specifically, by performing the numerical simulations used to
create Fig. 7, we can evaluate N and ε required to achieve
an acceptable level of success probability of anisotropy de-
tection for each estimation result. Furthermore, Fig. 7 also
offers qualitative guidance for improving the performance of
anisotropy detection: Increasing the number of observations
is more effective than reducing the measurement noise when
the noise is smaller than ε∗. We remark that this result is not
specific to the EM algorithm because it relates to the land-
scape of the likelihood function and is algorithm independent
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(a)

(b) (c)

FIG. 7. Influence of trajectory length N and magnitude of measurement noise ε on the success rate of anisotropy detection. (a) Heat map
of the success rate on the Da − Db plane. (b) We define �D∗ as the width of the interval on Da�t + Db�t = 10.0 µm2 on which the success
rate is smaller than 75%. The plots indicate that �D∗ vanishes as O(N−1/4) as N tends to infinity. (c) When the noise magnitude ε is smaller
than the dashed line (corresponding to ε where the signal-to-noise ratio is 1), the measurement noise has little impact on the success rate.
However, for ε larger than the dashed line, the noise magnitude significantly influences the success rate. (b) and (c) Plots are obtained for
D̄ = 10.0 µm2/s and �t = 0.01 s.

as long as any type of stochastic approach is used for the
estimation. Details of the theoretical analysis of the probabil-
ity of detecting anisotropy are described in the Supplemental
Material [42].

From Fig. 6, we can see that even if the particles are
isotropic, anisotropy is falsely detected with a certain prob-
ability and vice versa. This is consistent with theoretical
analysis shown in Fig. 7, which poses significant challenges
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FIG. 8. Typical profiles of the log-likelihood functions in three
cases: when a particle is isotropic but is incorrectly estimated to be
anisotropic, when it is correctly estimated to be isotropic, and when a
particle is anisotropic and correctly estimated to be anisotropic. The
vertical lines represent the maximum likelihood estimates in each
case. N = 1000, �t = 0.01 s, and ε = 0.1 µm. In the isotropic case
Da = Db = 5.0 µm2/s, Dθ = 100 rad2/s and in the anisotropic case
Da = 7.0 µm2/s, Db = 3.0 µm2/s, Dθ = 100 rad2/s.

regarding the reliability of the analytical results of experimen-
tal data. One possible solution is to use Bayesian inference,
which enhances estimation accuracy by introducing a prior
distribution to the estimated parameters when prior knowl-
edge is available. Another approach is to examine the profile
of the likelihood function. Figure 8 illustrates typical profiles
of the likelihood function for three scenarios. One scenario
depicts an isotropic particle being mistakenly estimated as
anisotropic. The other two scenarios refer to cases where
isotropic and anisotropic particles are correctly estimated to
be isotropic and anisotropic, respectively. This figure shows
that when an isotropic particle is incorrectly estimated to be
anisotropic, the likelihood function is much flatter than in
the other two correctly estimated cases. This means that the
estimation result is much less reliable and one should be very
careful when accepting it.

III. DISCUSSION

The main subject of our research is the estimation of dif-
fusion coefficients and the detection of diffusion anisotropy
based on an anisotropic diffusion model that does not pre-
suppose angular observations. To this end, we propose an
MLE method that uses an EM algorithm. We successfully
addressed a complicated system containing unobservables,
that is, angles, by employing BP within the EM framework
and evaluating the posterior distribution using particle filter-
ing. To the best of our knowledge, our method is the first
attempt to utilize BP within the MLE for diffusion estimation
problems.

It is noteworthy that our method allows for estimating
the unobserved variables based on a single short trajectory.
This ability can be leveraged in broad applications: revealing
the diffusion modes of molecules interconverting latent states
[45,46], and estimating the diffusion parameters of an eco-
nomical system where it is difficult to prepare homogeneous
statistical ensembles.

Modifying some prerequisites of our model expands the
scope of our method in more complex diffusive systems. For
example, the effect of heterogeneous medium viscosities can
be incorporated by replacing the Gaussian distribution of a
tracer step Eq. (5) with an exponential-like one [47], which is
relevant in a highly heterogeneous intracellular environment.
Biological activities around tracers require adding nonthermal
fluctuations to Eqs. (5) and (6), or coupling the diffusion equa-
tions of a tracer with active background dynamics [48,49].
Extending our method to the system with non-Markov dif-
fusion [50], confined geometries [51], and external fields
[52] is also of practical importance and expected in future
works.

Using numerical studies and experimental tests, we demon-
strated that the MLE method outperforms conventional
methods based on MSD and fourth-order cumulants in vari-
ous parameter regimes. Conventional methods often failed to
estimate diffusion coefficients, even with N > 3000, whereas
our MLE method was successful with as few as N = 100
observations. This ensured that our method is applicable to
realistic situations in which the macroscopic non-Gaussianity
is almost entirely masked owing to high rotational diffusion
coefficients.

Moreover, our theoretical analysis revealed that the prob-
ability of anisotropy detectability depends on the trajectory
length N and measurement noise ε. First, we showed that the
success of the MLE method lies in its ability to decouple the
dependencies between �D and Dθ , which are strongly cou-
pled in the fourth-order cumulants. Second, we found that in
the limit where Dθ approaches infinity, anisotropy is theoreti-
cally always detectable for infinite trajectory lengths, whereas
the finiteness of the lengths can sometimes lead to an isotropic
solution as the optimal solution. This indicates a theoretical
limit for anisotropy detection, quantitatively demonstrating
how the lack of observations or the presence of observation
noise adversely affects estimation, thereby highlighting the
need for improvements to the measurement precision rather
than algorithmic enhancements. Thus, this study provides
both qualitative and quantitative guidelines for increasing the
measurement accuracy.

Finally, a comparison of our outcome with that of recent
research [53] on binary classification between anisotropic
and isotropic diffusion is of interest. Because the previous
study employed deep learning and focused solely on binary
classification, the underlying estimation principle was largely
a black box, and quantitative estimation of the anisotropic
diffusion coefficients remained impossible. In contrast, our
results provide a theoretical basis for the limitations of the
success probability of estimation, in addition to quantitative
and reliable detection.

IV. METHOD

Overview of estimation algorithm

To estimate the diffusion coefficients and detect their
anisotropy, instead of the conventional cumulant-based meth-
ods, we employed MLE, which has been shown to be useful
for estimating diffusion coefficients in much simpler models
[12,13,41,54,55] or some specific cases [56,57].
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First, Eq. (1) was discretized using Ito’s method to convert
the diffusion process into a set of stochastic equations as
follows:

(xi+1 − xi, yi+1 − yi ) ∼ Norm(0,�i�t), (5)

θi+1 − θi ∼ Norm(0, 2Dθ�t ), (6)

Xi ∼ Norm(xi, ε
2), (7)

Yi ∼ Norm(yi, ε
2), (8)

where �i = �(θi ). From these equations, we derived the fol-
lowing expression for the likelihood function:

p(X, Y | D) ∝
∫

dxdydθ

× exp

(
−

∑
i

{
1

4�t

(
u2

i

Da
+ v2

i

Db
+ �θ2

i

Dθ

)})

× exp

(
−

∑
i

(xi − Xi )2 + (yi − Yi )

2ε2

)
, (9)

where D = (Da, Db, Dθ ) and

ui = cos θi�xi + sin θi�yi (10)

vi = sin θi�xi − cos θi�yi. (11)

Our objective was to estimate D using Eq. (9). This
could be performed using the Markov chain Monte Carlo
method. However, this approach is not feasible because the
transition probabilities of the Markov chain that converge
to p(D | X, Y) ∝ p(X, Y | D) generally scale exponentially
with respect to N . This yields huge statistical fluctuations in
sampling, which prevents accurate estimation of D. Therefore,
we used the MLE method instead, which is free from the large
statistical fluctuations and can be performed using the EM
algorithm with O(N ) computational cost per update, as shown
below.

The EM algorithm that iterates

Dk+1
a = 1

2T

〈
N−1∑
i=1

(cos θi�xi + sin θi�yi )
2

〉
Dk

(12)

Dk+1
b = 1

2T

〈
N−1∑
i=1

(sin θi�xi − cos θi�yi )
2

〉
Dk

(13)

Dk+1
θ = 1

2T

〈
N−1∑
i=1

�θ2
i

〉
Dk

(14)

with the appropriate initial conditions is guaranteed to con-
verge to a local maximum of Eq. (9), where k counts
the number of iterations, Dk = (Dk

a , Dk
b, Dk

θ ), T = N�t ,
and �xi = xi+1 − xi,�yi = xi+1 − yi,�θi = θi+1 − θi. The
expectation 〈· · · 〉Dk is considered under the posterior distri-
bution p(x, y, θ | X, Y, Dk ).

The subsequent step involves computing the expectations
on the right-hand side of Eqs. (12)–(14). We perform this us-
ing BP [38], which is an efficient algorithm that is applicable
to probabilistic models defined over cycle-free graphs. In the

current system, BP propagates auxiliary distributions, termed
“messages,” as

νi(zi ) ∝
∫

dzi−1 νi−1(zi−1)p(zi | zi−1)p(xi, yi | Xi,Yi ) (15)

μi(zi ) ∝
∫

dzi+1 μi+1(zi+1)p(zi | zi+1)p(xi, yi | Xi,Yi ) (16)

along a chain that corresponds to a sequence of latent variables
zi = (xi, yi, θi ) (i = 1, . . . , N) in the forward and backward
directions. Once messages νi(zi ) and μi(zi ) have been com-
puted for i = 1, . . . , N , the joint posterior distribution can be
assessed as

p(zi, zi+1 | X, Y, D) ∝ νi(zi)p(zi+1 | zi)μi+1(zi+1), (17)

which makes it possible to efficiently compute the right side
of Eqs. (12)–(14).

The cost for computing Eqs. (15) and (16) for i = 1, . . . , N
scales only linearly with respect to N . However, analytically
performing the functional update of the BP remains challeng-
ing. To overcome this problem, we used sampling methods
known as particle filters or sequential Monte Carlo methods
[39,40]. This approach uses a Monte Carlo approximation
of the distribution, preserving it as a population of “parti-
cles.” Although this induces some Monte Carlo errors and
compromises exactness, augmenting the number of particles
can lead to improved approximations. Particle degeneracy is
an inherent issue in particle filters; however, in our model,
adept interweaving of the diffusion-propagation step with the
observation-resampling step effectively minimized the prob-
lems resulting from degeneracy. The detailed algorithm for
preventing degeneration is described in the Supplemental
Material [42].

Calculating the joint distribution Eq. (17) is inherently
more challenging than calculating its marginalized coun-
terpart p(zi | X, Y, D). This occurs because the absence of
measured data meant that θi and θi+1 sampled from νi(zi)
and μi+1(zi+1) are almost uncorrelated, yielding large statis-
tical fluctuations when assessing Eq. (17) using naive particle
filters. We have addressed the techniques to mitigate this
challenge in the Supplemental Material [42]. In particular, Dθ

empirically showed extremely slow convergence in the EM
algorithm, with convergent solutions often not reaching sat-
isfactory approximations. Thus, by leveraging the efficiency
of the particle filter in the likelihood function computation,
we exclusively employed surrogate-based optimization [58]
to determine the likelihood function when calculating the
maximum likelihood value for Dθ . This algorithm allowed
for approximate optimization with high precision, even when
the objective function exhibited Monte Carlo fluctuations.
Finally, an efficient method for computing the likelihood func-
tion using a particle filter is described in the Supplemental
Material [42].

V. EXPERIMENTS

A. Sample preparation

1. Fluorescent spheres

The fluorescent spheres solution (F-8764, Invitrogen; 2%
solids, nominal diameter 200 nm) was diluted 104 times
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with Milli-Q water. Then, 10 µL of the diluted solution was
mounted on a cover glass (No. 1 22 × 22 mm, Matsunami)
and sealed by placing another cover glass on it with a double-
sided PET tape of 5 µm thickness (No. 5600, Nitto) as a spacer
between the two cover glasses.

2. Quantum rods

The CdSe/CdS core-shell-type quantum rods (900514-
1ML, Sigma-Aldrich) were diluted in toluene (204-17915,
Wako) at a density of 0.5 µg/mL and sonicated for 30 min
(M1800-J, Branson) to disperse uniformly in suspension.
Next, 10 µL of the diluted sample was mounted on a cover
glass (No. 1 22 × 22 mm, Matsunami) and sealed by placing
another cover glass on it with a double-sided polyimide tape
of 130 µm thickness (Kincsem110-02, HCP) as a spacer. The
nominal major and minor axis length of the quantum rod was
28.4 ± 3.0 and 4.6 ± 0.7 nm, respectively.

3. Bacteria

E .coli strain RA1 suspended in buffer (50 mM HEPES,
pH 7.0) was first sterilized by heating at 60◦C for 45 min
to terminate its swimming motion and observe only its pure
diffusion. Then, it was mounted on a cover glass (No. 1
24 × 60 mm, Matsunami). To observe quasi-two-dimensional
diffusion of the bacteria, the resulting sample was sealed by
placing another cover glass on it, with a double-sided PET
tape of 5 µm thickness (No. 5600, Nitto) as the spacer.

B. Microscopy

1. Fluorescent spheres

Imaging of fluorescent microspheres was performed us-
ing an inverted microscope (IX83, Olympus) equipped with
a 100× oil-immersion objective (UPlanSAPO, Olympus), a
mercury light source system (U-HGLGPS, Olympus), and
a fluorescence filter unit (U-FBNA, Olympus). The images
were detected using a sCMOS camera (ORCA Flash4.0,
Hamamatsu) at 100 fps with 1152 × 1152 pixels in 16-bit
depth. The image acquisition process was controlled using
cellSens (Olympus).

2. Quantum rods

The fluorescent images of quantum rods were captured
using an inverted microscope (IX83, Olympus) equipped with
a 100× oil-immersion objective (UPlanSAPO, Olympus), a
mercury light source system (U-HGLGPS, Olympus), and
a fluorescence filter unit (U-FGNA, Olympus). The images

were detected using a sCMOS camera (ORCA Flash4.0,
Hamamatsu) at 100 fps with 1152 × 1152 pixels in 16-bit
depth. The image acquisition process was controlled using
cellSens (Olympus). To track the quantum rods moving in
quasi-two dimensions wherever possible, fluorescent spots
that were in focus during observation were selected to analyze
their trajectories.

3. Bacteria

The transmitted images of bacteria were acquired using
an inverted microscope (IX73, Olympus) equipped with a
100× oil-immersion objective (UAPON100XOTIRF, Olym-
pus) and transmitted illumination (M660L4, Thorlab). The
images were detected using a high-speed camera (FASTCAM
NovaS, Photron) at 3000 fps with 1024 × 1024 pixels in 8-bit
depth.

C. Image analysis

For each pixel, a temporal median was first calculated to
obtain a background image which only contained tracers im-
mobilized on the cover glass. The background image was then
subtracted from each frame of the original image sequences,
resulting in an image that only contained mobile tracers. The
centroid of each fluorescent sphere and quantum rod at every
time point was determined by fitting an isotropic Gaussian
profile onto the respective spot image. The centroid and angle
of each bacterium were calculated using an anisotropic Gaus-
sian profile instead. The measurement error ε was estimated
as the positional standard deviation of the tracers immobilized
on the glass wall.

The code used in this paper is available from Ref. [59].
All data reported in this paper will be deposited in the
public database, Systems Science of Biological Dynamics
repository [60].
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