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Signatures of criticality in turning avalanches of schooling fish
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Moving animal groups transmit information through propagating waves or behavioral cascades, exhibiting
characteristics akin to systems near a critical point from statistical physics. Using data from freely swimming
schooling fish in an experimental tank, we investigate spontaneous behavioral cascades involving turning
avalanches, where large directional shifts propagate across the group. We analyze several avalanche metrics
and provide a detailed picture of the dynamics associated with turning avalanches, employing tools from
avalanche behavior in condensed-matter physics and seismology. Our results identify power-law distributions
and robust scale-free behavior through data collapses and scaling relationships, confirming a necessary condition
for criticality in fish schools. We explore the biological function of turning avalanches and link them to collective
decision-making processes in selecting a new movement direction for the school. We report relevant boundary
effects arising from interactions with the tank walls and influential roles of boundary individuals. Finally, spatial
and temporal correlations in avalanches are explored using the concept of aftershocks from seismology, revealing
clustering of avalanche events below a designated timescale and an Omori law with a faster decay rate than
observed in earthquakes.
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I. INTRODUCTION

A fascinating and controversial hypothesis in biology is
that some systems may operate close to a critical point from
statistical physics, separating an ordered state of the system
from a disordered one [1–3]. Biological systems at a critical
point are believed to possess functional advantages such as
optimality in signal detection, storing, and processing; large
correlations in coordinated behavior; and a wide spectrum
of possible responses [4–6]. Criticality is often associated
with scale invariance, exemplified by power-law distributions
lacking relevant characteristic scales besides natural cutoffs
[1,2,7]. In particular, this is observed for systems exhibiting
spatiotemporal activity in the form of cascades or avalanches
with variable duration and size, which at the critical point are
distributed as power laws with anomalously large variance.
There has been evidence of criticality signatures in many dif-
ferent biological systems, including neural activity and brain
networks, gene regulatory networks, collective behavior of
cells, or collective motion [4,5,8].

The field of collective motion, in particular, studies the
group movement patterns exhibited by social organisms, such
as flocks of birds, fish schools, insect swarms, herds of
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mammals, and human crowds [9,10]. In this context, ana-
lytical and experimental studies of moving animal groups
suggest the existence of phase transitions between phases of
coherent and incoherent motion [11–14]. Moreover, groups
of animals can transmit information across the group in the
form of propagating waves or avalanches of behavior, as
occurs in fish schools [15–20], honeybees [21], bird flocks
[22–24], sheep herds [25], or macaque monkeys [26]. Models
of collective motion have also reproduced features of these
phenomena [27–30]. These behavioral cascades are typically
represented by behavioral shifts in the speed, acceleration, or
heading of individuals and can arise either spontaneously or
from responses to environmental cues, such as the presence
of predators, food sources, or obstacles. From a biological
point of view, they can occur when individuals follow the
behavior of others without regarding their own information
[31]. From a physical perspective, behavioral cascades can
show signatures typical from systems located near a critical
point. Mainly, these signatures include large susceptibility
or sensitivity to perturbations [20,26,30,32,33], scale-free
correlations [33,34], and possible indications of power-law
behavior in the avalanche size distribution [16,19,20,25]. In
addition, there is some evidence that the state of criticality
can be regulated by moving animal groups depending on their
needs [26,30,35], where the avalanche dynamics may transi-
tion from being supercritical with local changes propagating
through the entire group to critical with changes propagating
at all possible scales of the system or to subcritical with
changes remaining local [36].

In this study we focus on analyzing the properties
of turning avalanches in freely moving fish [19]. These
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behavioral cascades involve the propagation of large changes
in the heading direction of individuals within a group, often
resulting in a reorientation of the group’s global trajectory.
Specifically, we examine spontaneous turning avalanches of
schooling fish freely swimming in a tank. Our investigation
unveils scale-free properties in the statistical distributions of
different avalanche metrics and their dependence on the num-
ber of individuals in the school. Additionally, we investigate
the origins of these avalanches, analyzing their triggering with
respect to space, time, and individual initiators. Our findings
reveal the relevance of interactions with tank walls and a
larger influence of boundary individuals. We also explore
the dynamical evolution of avalanches and its relation with
the state of the school, as well as their spatial and temporal
correlations. Within the limits of our experimental setup, our
results strongly suggest the presence of a scale-free avalanche
dynamics, which could be compatible with the school operat-
ing in the vicinity of a critical point.

II. AVALANCHE DEFINITION AND BASIC OBSERVABLES

Behavioral cascades in fish have been defined measuring
changes of different quantities. Here we focus on avalanches
defined in terms of large changes in the heading of individu-
als, given by their velocity vector [19]. As an experimental
subject, we consider the motion of N = 8, 16, 32, and 50
individuals of the species of black neon tetra Hyphessobrycon
herbertaxelrodi, a social fish that tends to form polarized,
compact, and planar schools, freely swimming in an approxi-
mately two-dimensional experimental tank. We recorded and
digitized individual fish trajectories and calculated the corre-
sponding velocities and accelerations (refer to Appendix A
for experimental and data acquisition details). In order to
remove the dependence on the experimental frame rate of the
recordings, we measure the changes in time of the heading in
terms of the turning rate ω, defined as the absolute value of
the angular velocity, i.e.,

ω = |�v × �a|
v2

, (1)

where �v and �a are the instantaneous velocity and acceleration
of an individual, respectively, and v is the modulus of the in-
stantaneous velocity. (See Appendix B for a derivation of this
expression.) We consider the absolute value due to symmetry
in the turning direction.

In Fig. 1(a) we show the probability density function (PDF)
of the turning rate P(ω) for schools of different numbers of
individuals N . Here and in the following, we work in natural
units of pixels and frames for distance and time, respectively.
In addition, error bands in the PDF plots are calculated from
the standard deviation of a Bernoulli distribution with the
probability given by the fraction of counts in each bin of
the numerical PDF [37]. As we can see, schools of different
numbers of individuals show essentially the same behavior in
their turning rate distributions. Most of the time, the turning
rate is very small and uniformly distributed, corresponding
to fish swimming locally in a straight trajectory. In some
instances, however, large turning rates can be observed, in
which individuals swiftly rearrange their headings and thus
reorient their direction of motion.
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FIG. 1. (a) PDF of the turning rate ω and (b) activity rate r
of turning avalanches as a function of the turning threshold ωth.
The different curves correspond to experimental data from schools
with different numbers of individuals N . Quantities are expressed in
natural units of frames and pixels.

Inspired by avalanche behavior in condensed-matter
physics [38], we define avalanches by introducing a turning
threshold ωth separating small turns from large ones [19].
Considering an active fish as one with a turning rate ω > ωth,
we introduce the dynamical variable nt defined as the number
of active fish observed at frame t . Then sequences of consec-
utive frames in which nt > 0 (i.e., in which there is at least
one active fish) define a turning avalanche. In video S1 of the
Supplemental Material [39] we show some examples of large
turning avalanches for a school of N = 50 fish.

The most basic characterization of turning avalanches is
given by the duration T and size S of avalanches and by
their interevent time ti. An avalanche starting at frame t0 has
duration T if the sequence of dynamic variables nt fulfills
nt0−1 = 0, nt > 0 for t = t0, . . . , t0 + T − 1, and nt0+T = 0.
The size S of an avalanche is given by the total number of
active fish in the whole duration of the avalanche, i.e., S =∑t0+T −1

t=t0
nt . The interevent time ti between two consecutive

avalanches is given by the number of frames between the end
of one avalanche and the start of the next one, that is, by a
sequence fulfilling nt f > 0, nt = 0 for t = t f + 1, . . . , t f + ti,
and nt f +ti+1 > 0, where t f indicates the last frame of the first
avalanche [40].

The effects of the turning threshold in avalanches can be
assessed with the activity rate r, defined as the probability
that a randomly chosen frame belongs to an avalanche. We
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FIG. 2. (a) PDF of the duration T , (b) PDF of the size S, (c) av-
erage size 〈S〉T as a function of the duration T , and (d) PDF of
the interevent time ti for ωth = 0.1. The different curves correspond
to schools of different numbers of individuals N . The exponents
from the green dashed power laws are (a) α = 2.4 ± 0.2, (b) τ =
1.97 ± 0.14, (c) m = 1.41 ± 0.06, and (d) γ = 1.62 ± 0.08.

compute it as the ratio between the number of frames with
activity nt > 0 and the total number of frames in the experi-
mental series. As we can see from Fig. 1(b), for fixed N the
activity rate decreases with the turning threshold ωth, since
by increasing ωth we are decreasing the turning rates that we
consider large and we find fewer frames with nt > 0. On the
other hand, increasing the number of individuals N at fixed ωth

results in an increase of the activity rate. We can interpret this
as a school with a larger number of individuals has a higher
probability for any of them to display a large turning rate.

Realistic values of ωth used to compute avalanches are
estimated to lie within the range ωth ∈ [0.01, 0.3]. Smaller
values result in infinite avalanches that span the entire duration
of the experiment, whereas larger values produce very few
avalanches.

III. STATISTICAL DISTRIBUTIONS

In Figs. 2(a) and 2(b) we show the distributions of the
duration T and size S, respectively, obtained for a fixed turn-
ing threshold ωth = 0.1 and for schools of different numbers
of individuals N . We find that both PDFs show a power-law
scaling region of the form

P(T ) ∼ T −α, P(S) ∼ S−τ , (2)

limited by a peak for low values and a shoulder or bump with
a fast decaying (exponential) tail for high values. The charac-
teristic exponents α and τ , obtained from a linear regression
in double-logarithmic scale in the scaling region, take the
values α = 2.4 ± 0.2 and τ = 1.97 ± 0.14, where the error
bars represent 95% confidence intervals. Different values of
ωth lead to similar average exponents, e.g., α = 2.9 ± 0.8 and
τ = 2.4 ± 0.4 for ωth = 0.15 (see Fig. S1 in the Supplemental

Material [39]). These exponents align with previous estimates
derived from smaller statistics and using a different definition
of turning fish [19]. Interestingly, distributions for schools
of different numbers of individuals collapse onto the same
functional form with the exception of the tail, which can be
interpreted in terms of finite-size effects, as larger schools tend
to create avalanches of larger duration and size.

The duration and size of individual avalanches are not
independent, as we can check by plotting the average size
〈S〉T of avalanches of duration T [see Fig. 2(c)]. From this
figure we can observe a superlinear behavior

〈S〉T ∼ T m, (3)

with m = 1.41 ± 0.06. The value of m can be related to the
exponents of the duration and size distributions as [19,36]

m = α − 1

τ − 1
.

Our experimental value m is fully compatible with the theo-
retical prediction m = 1.4 ± 0.3 for ωth = 0.1 [experimental
m = 1.35 ± 0.16 and theoretical prediction m = 1.4 ± 0.7 for
ωth = 0.15 (see Fig. S1c in [39])].

In Fig. 2(d) we show the PDF of the interevent time ti for
ωth = 0.1 and for schools of different numbers of individuals
N . We find again an intermediate scale-free region, limited
between the small-time behavior and a shoulder with an expo-
nentially decreasing tail. Here also plots for different numbers
of individuals N collapse on the same functional form, with
the exception of the tail. A fit to the form

P(ti ) ∼ t−γ

i

in the scaling region leads to an average exponent γ = 1.62 ±
0.08 [γ = 1.63 ± 0.04 for ωth = 0.15 (see Fig. S1d in [39])].
It is noteworthy that the behavior of the decaying tails with N
is reversed with respect to the duration and size PDFs, with
a larger number of individuals leading to smaller interevent
times. This observation is consistent with the behavior of the
activity rate r, as schools with a larger number of individuals
have a higher probability to be in an avalanche.

IV. DATA COLLAPSE

The dependence of the tails on the duration and size dis-
tributions with the school size N observed above and with the
turning threshold ωth reported in [19] suggests the possibility
of a relationship between ωth and N resulting in avalanches
with collapsing distributions. In order to test for this hy-
pothesis, we select the threshold ωth that, for each value of
N , leads to a fixed activity rate r = r0. From Fig. 1(b) we
estimate, for r0 = 0.4, ωth = 0.055, 0.076, 0.11, 0.13 for N =
8, 16, 32, 50, respectively. We plot the resulting distributions
in Figs. 3(a), 3(b), and 3(c) for the duration T , size S, and
interevent time ti, respectively. In a system with no temporal
correlations in the activity of individuals, a fixed activity rate
results in duration and interevent time distributions collapsing
onto the same functional exponential forms (see Appendix C).
Surprisingly, even if this is not the case for empirical turning
avalanches in schooling fish, both the duration and interevent
time distributions achieve a data collapse at fixed r. On the
other hand, the size distributions do not collapse perfectly,
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FIG. 3. Data collapse for the PDFs of (a) the duration T , (b) the
size S, and (c) the interevent time ti for schools of different num-
bers of individuals N considering avalanches with a fixed activity
rate r = 0.4 (corresponding to ωth = 0.055, 0.076, 0.11, 0.13 for
N = 8, 16, 32, 50, respectively). (d) Data collapse of the interevent
time given by Eq. (4) for ωth = 0.1.

possibly because of correlations in the turning rates of individ-
uals at a given frame, which results in more active individuals
in an avalanche frame for schools of larger numbers of indi-
viduals. Interestingly, also in the uncorrelated case, the size
distributions are not expected to collapse (see Appendix C).

On a similar note, for avalanches of self-organized critical
phenomena across different contexts, it has been found that
the interevent time distributions can be collapsed into the
scaling form [41,42]

P(ti ) = 1

〈ti〉�
(

ti
〈ti〉

)
, (4)

where �(x) is a universal scaling function and the only char-
acteristic scale is the average interevent time 〈ti〉. In Fig. 3(d)
we show this sort of collapse for a turning threshold ωth =
0.1; as we can see, it also applies to turning avalanches in
schooling fish. This reveals self-similar behavior, with the
interevent time distributions only differing in their average
value for schools of different numbers of individuals. In the
uncorrelated case, this collapse is also recovered, but now
only in the limit of a large average interevent time (see
Appendix C).

As a final check of the scale-free nature of turning
avalanches, we consider the scaling of the avalanche shape
nt , defined by the number of active individuals of a turning
avalanche at the frame t of its duration [43]. Many scale-free
avalanche systems exhibit a collapse behavior in the avalanche
shape given by the scaling relation

nt = T m−1�(t/T ),

where m = (α − 1)/(τ − 1) is the exponent relating the aver-
age avalanche size 〈S〉T with the duration T [Eq. (3)] and �(z)
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FIG. 4. Rescaled avalanche shape T 1−mnt as a function of the
normalized time t/T . Avalanche shapes are averaged over similar
sizes S within the power-law scaling region of the size distribution.

is a universal scaling function [6,43–45]. In the case of turning
avalanches, this scaling behavior is recovered in avalanches
within the power-law scaling regime of the size distribution, as
shown in Fig. 4. In this plot the avalanche shape is computed
by normalizing the avalanche time frame t by its duration T
and averaging over avalanches in a given size range. We use
the value m = 1.41 obtained in the numerical analysis of the
duration and size distributions.

V. AVALANCHE TRIGGERING

In this section we explore whether avalanches are triggered
in some preferential points in space or time, as well as by
particular individuals in the group. Here and in the following
sections we show results for avalanches in a school of N = 50
individuals, which have the longest recording time, and a
turning threshold ωth = 0.1.

A plausible hypothesis is that avalanches are more fre-
quently triggered near the tank walls due to boundary effects.
These could arise when fish are approaching a wall and need
to perform a large turn in order to avoid colliding with it. To
check this hypothesis we consider the position for the center
of mass (cm) �xc.m. of the school, defined as

�xc.m. ≡ 1

N

∑
i

�xi,

where �xi are the positions of the fish at a given instant of
time. We define the triggering location of an avalanche as the
position of the c.m. at the first frame t0 of the avalanche. We
study the distribution of triggering locations on the surface
of the tank. Because fish do not swim uniformly all around
the tank, in order to extract a statistically significant density
of triggering locations, we normalize their counts against the
counts of all observed positions of the cm along the time
evolution of the school. We show this in Fig. 5(a), where
the axis orientations correspond to the tank walls. The gray
region in the colormap, separating the low-density (red) and
high-density (blue) values, corresponds to the expected den-
sity in the absence of correlations, which we calculate from
the total counts of triggering locations divided by the total
counts of positions of the cm As we can see in this plot, the
distribution of avalanches in the tank is quite homogeneous,
although there is a slight tendency for avalanches to occur
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FIG. 5. Avalanche triggering in space, in time, and within the
group. (a) Density for the position of the center of mass �xcm at the
start t0 of an avalanche (the triggering location) normalized against
all trajectories of the center of mass, (b) average size S for triggering
locations of avalanches, (c) blue line showing the temporal evolu-
tion for the center of mass speed vcm and dots showing avalanches
triggered at the given speed vcm and time t0 and colored by their
size S, (d) and (e) density for the position of initiators normalized
against the positions of all individuals at the start t0 of an avalanche
for (d) the laboratory reference frame and (e) the center-of-mass
reference frame and only for centered individuals. In (a), (d), and (e)
the gray color in the colormap corresponds to the expected density
in the absence of correlations, given by the total counts of the quan-
tity considered divided by the total counts of the normalization. In
(c) we only plot avalanches that propagated to individuals other than
the ones active in the first frame of the avalanche. In (e) the y
coordinate is oriented in the direction of motion of the group given
by the center-of-mass velocity.

away from the walls. However, if we display the average size
S of avalanches generated at the different triggering locations,
we obtain a different picture [Fig. 5(b)], in which avalanches
of larger sizes tend to occur more frequently near the tank
corners. This observation suggests that interactions with the
tank walls indeed promote the emergence of large turning
avalanches, resulting in important orientation rearrangements
of the school.

Since large avalanches seem to be originating from
interactions with the walls, we investigate whether these
interactions are responsible for the shoulder or bump observed
in the the tails of the duration and size distributions. They
are particularly noticeable in groups with larger numbers of

individuals (N = 32 and 50), which are expected to have more
frequent interactions with the tank walls. This feature, known
as dragon kings, breaks the power-law paradigm by displaying
overrepresented extreme events [46–48]. Dragon kings are
typically generated by mechanisms different from those of
smaller events, which, in this case, may be wall interactions.
To explore this, we analyze the statistical distributions of
avalanches with triggering locations away from the walls,
which we restrict to occur inside the square positioned at the
center of the tank with side L/3, where L is the side of the
tank (refer to Fig. S2 in [39]). We expect these avalanches to
arise spontaneously and not be promoted by interactions with
the tank walls. Despite limited statistics, dragon kings are no
longer observed, and the distributions now showcase extended
power-law regions with the same characteristic exponents
as previously measured. We quantify the presence of dragon
kings in the size distribution for N = 50 with a statistical
dragon king detection test [48,49] (see Appendix D). Em-
ploying a significance level α = 0.05 for the null hypothesis
that there are no dragon kings, the test confirms dragon kings
(p value p < 10−15) for the total size distribution [Fig. 2(b)]
and rejects their presence (p = 0.1) for the size distribution
restricted to the central region of the tank (Fig. S2 in [39]).

To understand temporal triggering of avalanches, we study
how the avalanche starting time t0 relates to the group dy-
namics represented by the center-of-mass speed vc.m., which
is defined as

vc.m. ≡
∣∣∣∣∣ 1

N

∑
i

�vi

∣∣∣∣∣. (5)

The center-of-mass speed is characterized by having oscilla-
tions due to a burst-and-coast mechanism of the individuals
[50–52], with increases associated with an active phase pow-
ered by the fish muscles and decreases coming from a passive
gliding phase. In Fig. 5(c) we plot, for a time window of
5 min from a single recording, the temporal evolution of the
center-of-mass speed as the blue line. We mark with dots
avalanches triggered at the corresponding time t0 and speed
vc.m., color coded by their size S. We only consider avalanches
that propagated to individuals other than the ones active in
the first frame of the avalanche. As we can observe, while
small-size avalanches tend to be randomly distributed over
different values of vc.m., large avalanches are more often lo-
cated near the minima of the speed, even when the minimum
changes across time. We notice that this behavior does not
originate from small speeds being related to large turning
rates, because we find the turning rate is inversely related
to the speed only for vcm < 4 and appears to be independent
for larger speeds (see Fig. S3 in [39]). Instead, this suggests
that large avalanches may emerge from turnings related to
decision-making processes occurring at the onset of the active
phase of the burst-and-coast mechanism [51,53,54].

Apart from the spatiotemporal triggering of avalanches, we
can study how avalanches are triggered at the individual level
within the school considering avalanche initiators, defined
as the individuals that are active in the first frame of the
avalanche. Previously, it was observed that some individuals
have a probability larger than random fluctuations to be the
initiators of behavioral cascades [19]. Here instead we focus
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over the whole experiment.

on the location of individual initiators within the experimental
tank and inside the school. Again, we have to keep in mind
that individuals are not located uniformly around the tank
at the start of an avalanche. Therefore, in order to extract a
statistically significant density of initiator locations within the
group, we normalize their counts against the counts of the po-
sitions of all individuals at the onset time t0 of the avalanche.
We show the resulting plot in Fig. 5(d). We find that initiators
tend to accumulate near the tank walls and particularly at the
corners. This is compatible with the idea that large turning
avalanches are promoted by interactions with the tank walls.

In order to explore the natural relative position of avalanche
initiators within the school, we select individuals that do not
have relevant interactions with the tank walls. We define cen-
tered individuals as those that are positioned in the central
square of the tank with side L/3, where L is the side of
the tank. If we plot the density of the positions of centered
initiators within the tank normalized by the positions of all
centered individuals at the onset time t0 of an avalanche (see
Fig. S4 in [39]), indeed we see a uniform pattern that confirms
the idea that centered initiators do not experience significant
interactions with the tank walls. We study the relative position
of centered initiators within the school in Fig. 5(e), where we
plot the density of the positions of centered initiators normal-
ized against all centered individuals at the triggering time t0
of the avalanche in the center-of-mass reference frame. In this
plot the y coordinate is directed in the direction of motion of
the center of mass. As we can see, initiators of avalanches
away from the tank walls accumulate on the boundary of the
school and without any preferred direction along the move-
ment of the group.

VI. DYNAMICAL EVOLUTION OF AVALANCHES

In this section we examine how an avalanche can affect
the behavior of the whole group by measuring several group
properties along the evolution of the avalanche. In order to
compare avalanches with different sizes S, as in the case of
the avalanche shape discussed above, we first normalize the
temporal evolution of the avalanche by its duration T and then
average the dynamics over groups of avalanches with similar
sizes.

First, we investigate the speed of the group given by the
center-of-mass speed vcm, defined in Eq. (5). We show how

it evolves during a turning avalanche, averaged for different
sizes S, in Fig. 6(a). For comparison, we plot the average value
over the whole experiment as the green dashed horizontal line.
We observe that avalanches tend to start below the average vcm

and that avalanches of small size do not alter the school speed
noticeably. On the other hand, larger-size avalanches tend to
originate at lower values of vcm and increase the school speed
during their evolution.

As a second characteristic of the school we consider the
global order measured in terms of the polarization φ [12],

φ ≡
∣∣∣∣∣ 1

N

∑
i

�vi

vi

∣∣∣∣∣,
which tends to 1 if the school is ordered and all individuals
move in the same direction and takes a value close to zero
if the school is disordered and fish move in random and
independent directions [12]. We show its evolution within an
avalanche in Fig. 6(b). Small-size avalanches tend to start
in highly polarized configurations and do not change signif-
icantly the level of order. Contrarily, large avalanches tend
to start with less-ordered configurations than the average and
further reduce the order as the avalanche spreads. However,
at later stages this trend is reversed and the school recovers a
highly ordered state.

To gain further information about the possible role of the
walls, we study the dynamical evolution of avalanches with
respect to the distance to the tank walls. We define the directed
wall distance d �v

w as the distance from the center of mass of the
school to the tank walls in the direction of the velocity of the
center of mass. For a square tank, this distance is defined as

d �v
w ≡ min

[√
1 +

(
vy

vx

)2

[�(vx )(L − x) + �(−vx )x],

×
√

1 +
(

vx

vy

)2

[�(vy)(L − y) + �(−vy)y]

]
,

where the positions �x and velocities �v refer to the center of
mass; �(x) is the Heaviside step function, which discrimi-
nates the forward and backward motion; L is the side of the
tank; and the two terms in the min function refer to the walls
on the x and y coordinates, respectively. We plot the evolution
of this quantity during turning avalanches in Fig. 6(c). As we
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can observe, small-size avalanches do not alter the directed
wall distance. On the other hand, large avalanches tend to
start closer to the wall and end at higher directed distances.
This indicates that large turning avalanches typically produce
a large change of the group orientation from facing a nearby
wall to facing a farther away wall. We have also studied the
evolution of the distance to the nearest wall, which we refer
as the minimum wall distance dw,

dw ≡ min(x, L − x, y, L − y).

We observe (see Fig. S5 in [39]) that this quantity decreases
and has a minimum for large avalanche sizes, indicating that
during the avalanche evolution the school tends to approach
the closest wall, to later move away from it.

VII. AVALANCHE CORRELATIONS

Another important aspect in avalanche behavior is the pres-
ence of correlations, namely, whether the occurrence of an
avalanche induces the occurrence of other avalanches such
that they appear clustered in space and/or time [42]. The idea
of correlations and clustering in avalanches is closely linked
to the concept of main events and aftershocks in seismology
[55]. In this context, aftershocks are typically smaller events
that occur after a main event in nearby locations and stand
out from the background noise. A relevant result here is the
observation of the Omori law, which states that the probability
to observe an aftershock at a given time t after a main event
follows the distribution

P(t ) = K

(t + c)p
, (6)

where K , c, and p are constants, with p ∼ 1 [56].
In seismology, earthquakes are quantified by their mag-

nitude, which is a measure related to the logarithm of the
energy released. Analogously, for turning avalanches we can
introduce the magnitude m as

m ≡ ln S,

where S is the size of the avalanche. Considering the ob-
served size distribution from Eq. (2), magnitudes for turning
avalanches follow the distribution

P(m) ∼ e−bm, (7)

with b = τ − 1, which is analogous to the well-known
Gutenberg-Richter law for earthquakes [57].

In order to classify events (either earthquakes or
avalanches) into main events and aftershocks, we consider
the method proposed by Baiesi and Paczuski [58,59]. This
method is based on the definition of the proximity ηi j in the
space-time-magnitude domain from an event j to a previous
(in time) event i [58,60,61]. Assuming that events are ordered
in time t1 < t2 < t3 < · · · , the proximity is defined as

ηi j ≡
{

ti jrd
i jP(mi ) if i < j

∞ otherwise,

where ti j is the time interval between events i and j, ri j is
the spatial distance between the events locations, d is the
fractal dimension of the set of events positions, and P(mi ) is
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FIG. 7. Correlation measures of aftershocks: (a) number of af-
tershocks a per parent depending on the triggering location of the
parent, (b) counts for the joint distribution of the rescaled space Rj

and time Tj (the contour plot corresponds to randomized avalanches,
in which avalanche positions, interevent times, and magnitudes have
been shuffled), and (c) PDF for the time interval t j between parents
and aftershocks for t j < 250. We only considered avalanches with
magnitudes m � 1.6. In (c) the red dashed line corresponds to a fit to
the Omori law (6) with c = 4.3 ± 0.4 and p = 2.2 ± 0.1.

the Gutenberg-Richter law for event i, which in our case is
given by Eq. (7). In the context of turning avalanches, we have
to consider two facts. (i) Avalanches have a finite duration
that is comparable to the interevent time between consecutive
avalanches. We therefore consider ti j , i < j, as the number
of frames between the end of avalanche i and the start of
avalanche j. (ii) During an avalanche, the school moves. We
thus consider the distance ri j , i < j, as the distance between
the center of mass of the school at the end of avalanche i and
the center of mass of the school at the beginning of avalanche
j. Additionally, the distribution of the positions of the center
of mass at the start of avalanches does not seem to show a
fractal structure, so we use here d = 2.

The proximity ηi j is a measure of the expected number of
events of magnitude mi to occur, looking backward in time
from event j within a time interval ti j and distance ri j , in the
absence of correlations, in such a way that the time and po-
sition of previous avalanches behave as independent Poisson
processes [58]. Therefore, smaller values of the proximity are
associated with a larger probability that the events i and j are
actually correlated.

Using the proximity ηi j , every event j can be associated
with a nearest neighbor or parent p j , defined as the event
in the past (p j < j) that minimizes the proximity with j,
namely, ηp j j � ηi j ∀ i < j. This proximity is referred to as
the nearest-neighbor proximity η j , its time interval t j , and the
spatial distance r j . The set of events with the same parent
is considered the aftershocks of that parent. In Fig. 7(a) we
examine the distribution of the triggering locations of parents,
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color coded by their number of aftershocks a. We find a
possible influence of the tank walls, as parents with a larger
number of aftershocks tend to be located closer to the corners.

In addition, we consider the measure of clustering pro-
posed within this framework in Ref. [60]. This formalism is
based in the rescaled time Tj and rescaled space Rj [60,61],
defined as

Tj ≡ t j

√
P(mpj ),

Rj ≡ (r j )
d
√

P(mpj )

such that

η j = TjR j .

In real earthquakes, it is observed that the joint distribution of
Tj and Rj is bimodal. One mode corresponds to background
events and is compatible with a random (Poisson) distribution
of times and positions of events. The other mode, on the other
hand, corresponds to clustered events, correlated in space and
time [61].

In Fig. 7(b) we show the joint distribution of Tj and Rj

for turning avalanches in terms of a color density plot. In
the same figure, we display in terms of a contour plot the
joint distribution obtained for randomized data, in which
avalanche positions, interevent times, and magnitudes have
been shuffled. We find that the experimental data show clearly
two modes in the distribution. In one mode, for large values
of Tj , increasing the rescaled time Tj results in a decrease
of the rescaled space Rj . This is almost identical to the
distribution obtained for the shuffled data, indicating that it
corresponds essentially to background, uncorrelated noise.
The other mode occurs for smaller values of Tj and displays
the opposite behavior, increasing the rescaled time Tj results
in a higher rescaled space Rj . This behavior is different from
the background noise and corresponds to clustered (corre-
lated) avalanches.

We can understand the timescale separation between the
modes taking into account that turning avalanches take place
inside a school that is moving around the tank. The school
typically performs a recurrent movement on the tank, visit-
ing a given point in the tank with some average period. We
can quantitatively analyze this behavior looking at the mean-
square displacement of the position of the center of mass,
which measures the average displaced distance of the group
in time starting from any point in the trajectory (see Fig. S6 in
[39]). The first maximum occurs around tc = 250 frames and
corresponds to the average time the school needs to perform
a half-turn around the tank and becomes maximally separated
from its initial position. Aftershocks with a lower time interval
tend to increase their spatial distance as the school moves
away from the parent location. After this time and up to very
large time intervals, the school may return towards the parent
position and we can find aftershocks occurring at lower spatial
distances. However, these tend to occur rather randomly and
cannot be distinguished from random events. This highlights a
major difference with earthquakes, where significant correla-
tions can occur in the same location at widely separated time
intervals.

Finally, we examine the Omori law displaying the distribu-
tion for the time interval t j between parents and aftershocks
in Fig. 7(c). The distribution is computed considering the se-
quences of aftershocks for each parent, shifting the sequences
to set each parent at a common time zero, and stacking
all sequences in a single common sequence [62]. From the
above reasons, we only consider time intervals below tc =
250 that correspond to significant correlated aftershocks. A
least-squares fitting of the empirical data to the Omori law
given by Eq. (6) (green dashed line) yields the parame-
ters c = 4.3 ± 0.4 and p = 2.2 ± 0.1. This indicates a value
p > 1, implying a faster decay rate of aftershocks than in
earthquakes.

VIII. CONCLUSION

In this paper we have presented an empirical analysis of
spontaneous behavioral cascades in schooling fish considering
turning avalanches, where large turns in the direction of mo-
tion of individuals are propagated across the group. This was
achieved by collecting extensive state-of-the-art tracking data
for schooling fish, comprising up to 1.8 × 105 time samplings
at a resolution of 50 frames/s, for experiments involving
varying numbers of fish, up to groups of 50 individuals. This
data set yielded over 104 avalanche events, representing a
significant advancement compared to previous studies on be-
havioral cascades (for reference, in [30] the authors reported
102 avalanche events). We have analyzed different avalanche
metrics and provided a highly detailed picture of the dy-
namics associated with behavioral cascades, employing tools
from avalanche behavior in condensed-matter physics and
seismology.

We have uncovered evidence of scale-free behavior across
various aspects of turning avalanches in schooling fish. Anal-
ysis of probability distributions for fundamental observables,
such as the avalanche duration, size, and interevent times,
revealed long tails compatible with power-law forms. Ad-
justing for dragon king events, which are disproportionately
represented by extreme events induced by interactions with
tank walls, we found the power-law region for avalanche size
extended up to two decades. We also established a scaling
relationship between the characteristic exponents of the du-
ration and size distributions. Furthermore, a data collapse in
the distributions of the duration and interevent times at a fixed
activity rate indicates a connection in avalanche dynamics
across schools with varying numbers of individuals and the
turning threshold defining the avalanche. We also confirmed
two previously observed data collapses in critical avalanche
systems: in the interevent times distribution normalized by the
mean and in the avalanche shape or mean temporal profile via
a scaling relationship with the duration.

While power laws are often attributed to critical phenom-
ena related to phase transitions, alternative mechanisms can
also produce such distributions [4,63]. A tighter prediction of
criticality is manifested through data collapses and relations
between scaling exponents [4,44,45], indicating quantitative
universal avalanche dynamics across scales. Ultimately, these
findings are insufficient to demonstrate criticality, but they
constitute necessary conditions and embody a crucial theo-
retical aspect that has received limited attention in behavioral
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cascades of moving animal groups. In our work, we addressed
this gap and complemented existing studies, providing ev-
idence that fish schools could operate in the vicinity of a
critical point. In particular, given the apparent lack of exter-
nally tuned parameters in the system, they would represent an
instance of self-organized criticality [8,64]. While our exper-
imental settings are currently limited to studying small group
sizes of up to 50 individuals, future work should aim to test
for criticality effects in larger groups, involving hundreds or
thousands of individuals, to draw adequate comparisons with
statistical physics systems.

Being near a critical point can offer advantages such as
efficient collective decision-making and information transfer
across the group [4,5,8,20]. In this context, turning avalanches
may arise from self-organized critical processes that facilitate
information exchange among members of a social system,
comparable to avalanches seen in the social interactions of
collective knowledge creation [65,66]. Specifically, turning
avalanches allow fish to decide collectively on their direc-
tion of movement. For this reason, it is not surprising that
we observe large avalanches occurring at the onset of the
active phase of the burst-and-coast mechanism in fish locomo-
tion, where decision-making processes to change individual
directions are believed to occur [51,53,54]. During the pro-
cess of deciding a new collective direction, coordination
and group order decrease. However, once a new direction is
chosen, speed increases and coordination reemerges. A sim-
ilar behavior was observed in the phenomenon of collective
U-turns, involving directional switches for fish swimming
in a ring-shaped tank [18,67]. We argue that collective U-
turns can be understood as a specific example of turning
avalanches.

Boundary effects, arising from interactions with tank walls
or distinct behaviors of individuals at the group’s border, are
frequently overlooked in the study of animal collective mo-
tion. This work highlighted significant effects of tank walls on
avalanche behavior. While walls do not increase the number
of avalanches, those in their proximity often exhibit larger
sizes and manifest in correlated clusters, resulting in a higher
occurrence of aftershocks. Moreover, individuals that are ini-
tiators of avalanches are more frequently found near walls.
This phenomenon can be attributed to the tank walls acting
as obstacles, disrupting the group’s movement and prompting
collective decisions for a subsequent direction away from
the walls [68,69]. Notably, large avalanches induced by tank
walls primarily impact the tail of duration, size, and in-
terevent time distributions, manifesting as shoulders or dragon
kings. The intermediate scale-free behavior in these distribu-
tions appears to be intrinsic to spontaneous turning avalanche
mechanisms, rather than being promoted by the walls. Ad-
ditionally, boundary effects from individuals at the group’s
border play a role, as they are often initiators of avalanches.
This aligns with previous findings associating these positions
with higher social influence [16,70]. An alternative explana-
tion is that individuals at the group’s border may be more
exposed to risks [71], maintaining a heightened alert state
and making them more prone to initiating a large change of
direction.

We have examined the spatial and temporal correlations in
turning avalanches through the concept of aftershocks [42].

We observed that turning avalanches of schooling fish re-
veal significant clustered and correlated events below a time
interval corresponding to a half-turn of the school around
the tank. This observation points to a fundamental prop-
erty linked to the absence of collective memory for larger
timescales [13]. Furthermore, we found that the probabil-
ity rate of observing correlated aftershocks after a main
event in turning avalanches follows an Omori law with
a decay rate exponent p ∼ 2, significantly faster than in
seismology (p ∼ 1).

We believe this work makes a contribution to the ongo-
ing inquiry into criticality, particularly within the realm of
animal collective motion and, more broadly, in biological
systems. The limited number of analyses conducted on large
data sets with experimental evidence of self-similar behavior,
a hallmark of critical systems, highlights the need for further
exploration and clarification in this area. Future experiments
should aim to study larger systems over longer periods of time
to deepen our understanding of these phenomena.
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APPENDIX A: EXPERIMENTAL DATA

We employ schooling fish of the species black neon tetra
(Hyphessobrycon herbertaxelrodi), a small freshwater fish
with an average body length of 2.5 cm that has a strong
tendency to form cohesive, highly polarized, and planar
schools [72]. The experiments, performed at the Scientific and
Technological Centers UB, University of Barcelona (Spain),
were reviewed and approved by the Ethics Committee of
the University of Barcelona (Project No. 119/18). They in-
volved schools of N = 8, 16, 32, and 50 individuals freely
swimming in a square tank of side L = 100 cm with a
water column 5 cm deep, resulting in an approximately two-
dimensional movement. Videos of the fish movement were
recorded with a digital camera at 50 frames/s, with a res-
olution of 5312 × 2988 pixels per frame, the side of the
tank measuring L = 2730 pixels. Digitized individual tra-
jectories were obtained from the video recordings using the
open source software idtracker.ai [73]. Invalid values returned
by the program caused by occlusions were corrected in a
supervised way, semiautomatically interpolating with spline
functions (now incorporated in the Validator tool from ver-
sion 5 of idtracker.ai). For better accuracy, we projected the
trajectories in the plane of the fish movement, warping the
tank walls of the image into a proper square (for details see
Ref. [74]). We smoothed the trajectories with a Gaussian
filter [75] with σ = 2 and truncating the filter at 5σ , em-
ploying the scipy.ndimage.gaussian_filter1d function
from the SCIPY PYTHON scientific library [76]. Individual ve-
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locities and accelerations were obtained from the Gaussian
filter using first and second derivatives of the Gaussian kernel,
respectively.

We discarded recordings where fish stop for prolonged
periods. We implement this quantitatively by applying a
Gaussian filter with σ = 200 to the mean speed of individ-
uals 〈v〉 and discarding sequences that go below a given
threshold 〈v〉th = 1.5. The remaining experiments we analyze
consist in six independent recordings (performed on different
days and with different individuals) of N = 8 fish during
30 min (90 000 frames), three recordings of N = 16 fish dur-
ing 30 min, three recordings of N = 32 fish during 30 min,
and three recordings of N = 50 fish during 60 min (180 000
frames). The data with N = 8 fish were previously used in
Ref. [74].

APPENDIX B: TURNING RATE FORMULA

The turning rate ω is defined as the absolute value of
the rate of change of the orientation θ of the velocity of an
individual with time, i.e.,

ω ≡
∣∣∣∣dθ

dt

∣∣∣∣.
Consider the velocity vector in two instants of time t and t +
�t . The change of orientation �θ from �v(t ) to �v(t + �t ) is
given by

sin(�θ ) = �v(t ) × �v(t + �t )

v(t + �t )v(t )
.

In the limits �t → 0 and �θ → 0, we have

sin(�θ ) � 1

v(t + �t )v(t )
{�v(t ) × [�a(t )�t + �v(t )]}

= �v(t ) × �a(t )

v(t + �t )v(t )
�t � �θ,

where �a(t ) is the fish acceleration. Then we can write

dθ

dt
= lim

�t→0

�θ

�t
= lim

�t→0

�v(t ) × �a(t )

v(t + �t )v(t )
= �v(t ) × �a(t )

v(t )2
,

recovering the expression for the turning rate in Eq. (1).

APPENDIX C: NULL MODEL OF AVALANCHES
WITHOUT TEMPORAL CORRELATIONS

Following Ref. [19], we can consider a null model of
avalanche behavior in schooling fish in which individuals
perform random uncorrelated turning rates, extracted from
the empirical distribution P(ω). In this case, the proba-
bility q that, at a given frame, a fish performs a turning
rate larger than a threshold ωth (i.e., a fish is active) is
given by

q =
∫ ∞

ωth

P(ω)dω,

while the probability that, at a given frame, at least one fish in
a school of N individuals performs a turning rate larger than
ωth (i.e., there is at least one active fish) is

Q = 1 − (1 − q)N .

In this null model, an avalanche of duration T implies T
consecutive frames with at least an active fish, followed by
a frame with no active fish. Thus the duration distribution has
the normalized form

P0(T ) = 1 − Q

Q
QT , T ∈ [1,∞). (C1)

An interevent time ti consists, analogously, of ti consecutive
frames with no active fish, followed by a frame with at least
one active fish. Therefore, the interevent time distribution has
the form

P0(ti ) = Q

1 − Q
(1 − Q)ti , ti ∈ [1,∞). (C2)

Finally, the size distribution can be estimated as follows [19].
At each frame during an avalanche, the average number of ac-
tive fish is Nq/Q, where the normalization factor Q accounts
for the fact that at least one fish was active in the frame con-
sidered. Thus, an avalanche of duration T has an average size
S = T Nq/Q. Transforming the duration distribution (C1), we
then have [19]

P0(S) = 1 − Q

Nq
QQS/Nq.

In all cases, we recover distributions with an exponentially
decaying form.

Now the activity rate r, defined as the probability that
a randomly chosen frame belongs to an avalanche, is equal
to the probability that in a randomly chosen frame there is
at least one active fish. This trivially implies r = Q, that is,
the duration and interevent time distributions depend only
on the activity rate and can be made to collapse for dif-
ferent values of N and ωth leading to the same value of r.
On the other hand, the size distribution depends addition-
ally on N and q and thus cannot be made to collapse by
fixing r.

For the interevent time distribution (C2), we can write, in
the limit of small Q,

P0(ti ) � Q(1 − Q)ti = Qeti ln(1−Q) � Qe−Qti .

From Eq. (C2), 〈ti〉 = ∑∞
ti=1 tiP0(ti ) = 1/Q. Thus, we have

P0(ti) � 1

〈ti〉e−ti/〈ti〉,

recovering the scaling relation (4) with �(x) = e−x, in the
limit of large 〈ti〉.

Interestingly, the activity rate r in this null model follows
the empirical behavior shown in Fig. 1(b), as Q is a growing
function of N and a decreasing function of ωth.

APPENDIX D: STATISTICAL DRAGON
KING DETECTION TEST

The statistical dragon king detection test developed in
[49] and also employed in [48] uses a p value to quantify the
presence of a dragon king peak in the tail of a heavy-tailed
distributed variable x. First, the complementary cumulative
distribution function 1 − F (x) ≡ P(X � x) is constructed
and the most overrepresented data point in the tail, denoting
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potential dragon king events, is identified. Next a power law
axb is fitted to the appropriate scale-free region of 1 − F (x).
Confidence intervals γ of the power law fit are calculated
from [49]

(
1

N
q1−γ /2(N, axb),

1

N
qγ /2(N, axb)

]
,

where qα (n, z) is the α quantile of the binomial distribution
B(n, z) and N is the number of elements x. Finally, the tightest
confidence interval γ ∗ of the power-law fit accommodating
for the most overrepresented data point in the tail is obtained
by visual inspection. The p value of the null hypothesis that
there are no dragon kings in the distribution corresponds to
p ≡ 1 − γ ∗.
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