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Aging transitions of multimodal oscillators in multilayer networks
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When individual oscillators age and become inactive, the collective dynamics of coupled oscillators is
often affected as well. Depending on the fraction of inactive oscillators or cascading failures that percolate
from crucial information exchange points, the critical shift toward macroscopic inactivity in coupled oscillator
networks is known as the aging transition. Here, we study this phenomenon in two overlayed square lattices
that together constitute a multilayer network, whereby one layer is populated with slow Poincaré oscillators
and the other with fast Rulkov neurons. Moreover, in this multimodal setup, the excitability of fast oscillators
is influenced by the phase of slow oscillators that are gradually inactivated toward the aging transition in the
fast layer. Through extensive numerical simulations, we find that the progressive inactivation of oscillators in
the slow layer nontrivially affects the collective oscillatory activity and the aging transitions in the fast layer.
Most counterintuitively, we show that it is possible for the intensity of oscillatory activity in the fast layer to
progressively increase to up to 100%, even when up to 60% of units in the slow oscillatory layer are inactivated.
We explain our results with a numerical analysis of collective behavior in individual layers, and we discuss their
implications for biological systems.
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I. INTRODUCTION

In real-life systems, macroscopic functionality arises from
intricate interactions among microscopic components. These
systems, ranging from biological networks to technological
infrastructures, are vulnerable to both internal failures and
external disturbances [1,2]. Coupled systems exhibit diverse
responses to various perturbations, notably cascading fail-
ures triggered by disruptions in critical information exchange
points [3]. Remarkably, the breakdown of such systems
presents an array of intriguing behaviors, characterized by dis-
tinct phase transitions contingent upon structural or dynamical
properties of individual units [4–7]. Within this realm, a
specialized subfield investigates the critical shift toward
macroscopic inactivity in coupled oscillator networks—the
aging transition [8]. The phenomenon, described by Daido
and Nakanishi [9,10], explores how the global activity of
coupled oscillators deteriorates with an increasing fraction of
inactivated elements.

Investigating the dynamical robustness has become highly
pertinent to several natural and real-world processes.

*Contact author: marko.gosak@um.si

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

Consequently, the aging transition phenomenon has been
studied in a variety of contexts [11–13], and in the last
decade, efforts have been made to interpret how intricate
connectivity patterns influence the dynamical robustness of
networked systems [14,15]. It has been identified that the
addition of asymmetry [16,17], time delays [18,19], weighted
edges [20,21], and repulsive interactions [22] can enhance
the dynamical robustness in an aging network. Furthermore,
in heavy-tailed networks, it has also been found that the
aging transition significantly depends on the order in which
nodes become inactive. Despite the established fragility of
heterogeneous networks to hub removal [20], it has been ob-
served that, under certain conditions, oscillatory networks can
demonstrate pronounced fragility to the deliberate inactivation
of low-degree nodes [23–26]. Furthermore, in tandem with
the progress in network science, the exploration of aging tran-
sitions has expanded to encompass multilayered interactions
[27–29]. It has been shown that, while interlayer coupling po-
tentially enhances dynamic survivability, the aging behavior
exhibits a nontrivial relationship with regard to both coupling
and the strategy of node inactivation [27,28,30,31].

A significant portion of prior studies has focused on
paradigmatic Stuart-Landau limit-cycle oscillators. However,
research endeavors have also shifted toward coupled excitable
units, particularly to study the aging transition in popula-
tions of interconnected neurons [21,32–34]. Due to the more
complex dynamics of individual units, such systems may ex-
hibit nonintuitive dynamical phenomena, such as enhanced
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macroscopic activity due to the inactivation of individual
units [35] and, under certain conditions, abrupt transitions
to the globally inactive state [36]. Factors like heterogene-
ity [13,21] and the presence of both mixed attractive and
repulsive coupling [37] have been shown by further investi-
gations to influence the dynamical robustness of macroscopic
neuronal activity. Moreover, as neurons are known to commu-
nicate by different means of communication, such as chemical
and electrical synapses [38], the use of multilayer network for-
malism has become a popular tool to study different aspects of
neuronal dynamics [39–42], including their dynamical robust-
ness. Specifically, it has been demonstrated that the presence
of additional chemical synaptic coupling [43] or the inter-
layer ephaptic coupling can enhance dynamical robustness of
the multilayered neuronal network [44], while the interlayer
memristive synapse coupling has a deteriorating effect [44].

It is imperative to recognize that the oscillatory dynamics
of individual units within real-world systems often exhibits
a complexity that surpasses the predictions of simple limit-
cycle or excitable oscillator models. Namely, many systems
demonstrate multimodal activity, characterized by interde-
pendent oscillations occurring on diverse time scales. Such
rhythmic activity is usually generated by a complex interplay
of different oscillatory subsystems that are driven by different
mechanisms but are intertwined with each other. For example,
in muscle cells, endocrine cells, and neurons, certain pro-
cesses occurring on time scales of several minutes—such as
rhythmic fluctuations in hormones, metabolites, or specific
second messengers—govern the activity of oscillatory pro-
cesses occurring on shorter time scales, such as calcium or
membrane potential oscillations, which have periods on the
order of milliseconds to seconds [45–47]. Importantly, in all
these cases, coupling between individual cells is required, as
it facilitates the synchronous behavior that is essential for
normal function [48–51]. Amid the process of pathogenesis,
wherein individual cells experience dysfunction, it is possible
that only specific subsystems, e.g., the slow ones, are affected
by the disease which, however, affects the overall rhythmic
activity and function. This served as the main motivation for
this paper, in which we aimed to investigate the aging tran-
sition in a context of multimodal oscillatory activity. To this
end, we constructed a two-layered network model, with each
layer representing its own oscillatory subsystem, one slow
and the other fast. Within individual layers, oscillators interact
with each other, while the interlayer interactions are encom-
passed by the modulation of the activity of the fast oscillatory
layer by the slow oscillators. Employing this multiplex and
multimodal model, we proceeded to methodically simulate
and examine the impact of oscillator inactivation within the
slow oscillatory layer on the macroscopic activity of the fast
oscillatory layer. Our numerical analyses unveil intriguing be-
haviors intricately reliant on the interplay between the fraction
of inactivated units and the coupling strengths among both
types of oscillators.

II. COMPUTATIONAL MODEL

In our computational model, we construct a two-
dimensional square lattice network with dimensions N = L ×
L nodes, where L is set to 15, resulting in a grid with 225

nodes in which each node is connected to its four nearest
neighbors. This lattice, representing a simplified abstraction
of a cellular network, incorporates periodic boundary condi-
tions. Each node can be regarded as a biological cell with
inherent oscillatory properties, modeled by two distinct yet
interconnected oscillators, one oscillating on a slow time scale
and the other on a fast time scale. In this regard, our model
is formally presented as a multiplex network, where each
layer represents an individual oscillatory component, and the
interlayer links signify the modulation of the fast component
by the slow oscillatory activity, as indicated in Fig. 1(a). The
Poincaré oscillator represents the slow oscillatory rhythms of
the cell, such as rhythmic variations in hormone or metabolite
concentrations [45–47], while the iterated Rulkov map [52]
is used to capture rapid oscillatory activity, such as electrical
excitations like those observed in neural, muscle, or endocrine
tissue [47,53,54]. The Poincaré oscillator at each node is
described by a set of Cartesian differential equations for the
variables xi, yi as follows:

ẋi = −yiωi − γ xi
(√

xi
2 + yi

2 − Ai
) + KP

∑

j∈Si

(x j − xi ), (1a)

ẏi = xiωi − γ yi
(√

xi
2 + yi

2 − Ai
) + KP

∑

j∈Si

(y j − yi ), (1b)

where γ = 1.0 is the relaxation rate, Ai = 1.0 is the amplitude
(for an active set), KP the coupling strength between Poincaré
oscillators, Si denotes the von Neumann neighborhood of
node i, and parameter ωi denotes the intrinsic frequency of the
ith oscillator. To introduce heterogeneity, values of ωi were
randomly and uniformly distributed among the oscillators
within the range ωmean ± 0.15ωmean, so that the frequencies
of the slow oscillatory component varied by ±15%.

We use the discrete iterative Rulkov map to describe the
fast oscillatory activity, as it effectively captures the essence
of spiking behavior characteristic of excitable cells [52–54].
The equations are

ui(n + 1) = αi(n)

1 + ui(n)2 + vi(n) + Dξi(n)

+ KR

∑

j∈Si

[u j (n) − ui(n)], (2a)

vi(n + 1) = vi(n) − σui(n) − χ, (2b)

where n is a discrete time step, and ui and vi are dimen-
sionless variables that resemble the membrane potential and
the gating variable, respectively. Here, KR is the coupling
strength between Rulkov oscillators, and D = 0.005 indicates
the strength of Gaussian noise ξ with mean 0 and variance 1
that accounts for stochasticity in cellular activity. Parameters
σ and χ were uniform for all oscillators and assigned standard
values σ, χ = 0.001.

Importantly, the parameter αi(n) defines the excitability
level of the cell, and we introduce interconnectivity be-
tween the slow and fast dynamics through modulations of
this parameter by the slow oscillatory component. Specifi-
cally, we link the amplitude xi of the Poincaré oscillator with
the excitability level of the Rulkov oscillator αi(n) via an
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FIG. 1. (a) Schematic representation of two overlayed square lattices indicating the slow (blue nodes) and fast (red nodes) oscillatory
components, i.e., a multiplex oscillatory network in which intralayer connections denote coupling between individual oscillators and interlayer
connections (represented with gray arrows) indicate the modulation of the fast activity by the slow oscillatory component. (b) Simulated
interdependent time traces of a slow component (blue) and a fast component (red). The gray dotted line represents the absolute value of the
slow signal which is used to modulate the excitability parameter determining the fast oscillations. (c) The relationship between the absolute
amplitude of the Poincaré oscillator and the parameter α modulating the excitability level of the Rulkov neuron. The shaded area indicates the
interindividual variability of the Rulkov oscillator, while the dotted lines indicate the activation threshold of an individual Rulkov neuron.

exponential function as follows:

αi(n) = α0,iexp[b(|xi| − 1)] + αMIN, (3)

where the parameter values were set to b = 3.5 and αMIN =
1.88. This mechanism ensures that slow oscillatory dynam-
ics can influence the fast activity, a key feature in many
physiological processes [45–47]. The resulting interdependent
oscillatory behavior is illustrated in Fig. 1(b). Furthermore,
to account for heterogeneity in the excitability responses, the
parameter α was randomly distributed so that each α0,i was
selected randomly from a uniform distribution within the in-
terval [0.08, 0.16]. The relationship between the excitability
parameter α and the absolute amplitude of the slow oscillator
|x| is presented in Fig. 1(c). The modulation of fast oscilla-
tions is ensured by the fact that the activation threshold is only
exceeded for sufficiently large values of |x|. The robustness
of this effect is further reinforced using a superlinear rela-
tionship between α and |x|, as in this case, oscillators under
normal conditions effectively become inactive and cannot be
reactivated at lower values of |x| even by interactions with
potentially active neighbors.

The Poincaré oscillator was numerically solved with
Runge-Kutta second-order method and a time step dt = 0.05,
and since the Rulkov model is an iterative map, we set dt
equal to one discrete time step n in the Rulkov model. The
ωmean was then set to 0.003, so that in the time of one Poincaré
cycle, the corresponding Rulkov oscillator exhibits ∼15–20
spikes.

To model deactivation of individual oscillators or cellular
aging, we introduce a subset of inactive oscillators into the
lattice. By varying the ratio of these inactive elements, the
system can be studied across different stages of functional-
ity, from fully active to significantly impaired. The Poincaré
oscillators were arranged into two subsets, active and inactive,
with their sizes being pN and (p−1)N , respectively, where p
is the ratio of inactive oscillators. With increasing the ratio of
inactive oscillators, by setting the amplitude Ai to a negative
value, the system then undergoes an aging transition, where
the amplitude of the individual Poincaré oscillator decreases

or falls to 0, thereby lowering the maximum excitability and
subsequently the oscillation frequency of the corresponding
Rulkov oscillator. An individual oscillator is considered inac-
tive if its parameters are changed so that its solution, if the
oscillator was uncoupled, becomes a fixed point. We define
Ai = −1 if the ith oscillator is in the inactive set and Ai = 1
if it is in the active set. To quantify the global oscillatory
activity of the Poincaré network layer, we compute the av-
erage global complex amplitude Q = 〈|∑N

i=1 zi/N |〉, where
zi = xi + yii. For the Rulkov network, we calculate the root
mean square (RMS) amplitude M =

√
〈(U−〈U 〉)2〉 on the

variable ui, where U = ∑N
i=1 ui/N is the mean signal. The

sums are calculated over all oscillators at a given time t , and
the angle brackets signify a long time average. Additionally,
we calculate the average activity of the mean Rulkov oscilla-
tions TA, which we simply define as the ratio of the time when
the average signal U exceeds a certain threshold value th =
−0.75. To minimize the effect of any transient phenomena,
we ensure that our analysis reflects the steady-state operation
of the model, we discard the initial 10 cycles of the Poincaré
system.

III. RESULTS

In Fig. 2, we start by showing the traces of the average
signal for both types of oscillators, examining the impacts
of varying ratios of inactive oscillators and different cou-
pling strengths on the global amplitude. At low coupling
values [Fig. 2(a); KP = 0.0001 and KR = 0.004], both the
fast Rulkov and slow Poincaré layers exhibit desynchronized
activity characterized by a low amplitude of the global sig-
nal. Here, the system uniformly fails to reach the defined
threshold value indicative of active collective dynamics, and
the oscillator network remains in a disordered state, with
each oscillator effectively acting rather independently from
the others. By increasing the coupling in the fast Rulkov layer
[Fig. 2(b); KR = 0.007], the global amplitude of Rulkov oscil-
lators increases, while the phase synchronization of Poincaré
oscillations remains low. Thus, local synchronization occurs
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FIG. 2. Traces of the mean signal of the fast Rulkov components U (red) as a function of time t for different pairs of coupling strengths
KP and KR and different ratios of inactive oscillators p: (a) weak coupling in both components, (b) weak coupling in the slow component
and intermediate coupling in the fast component, (c) intermediate coupling in both components, and (d) strong coupling in the slow and
intermediate coupling in the fast component. Additionally, the trace of the absolute value of the mean signal of the slow Poincare components
X is plotted over the Rulkov trace (blue). The green dashed line indicates the threshold value th = 0.75 used for calculating the activity of the
average signal of the Rulkov component.

within Rulkov oscillators, but there is no cross-type phase
locking between the fast and slow layers, which would result
in modulated activity of the fast component. If, however,
the coupling among the slow oscillators is increased as well
[Fig. 2(c); KP = 0.0008 and KR = 0.010], we observe distinct
narrow phases of fast oscillatory activity characterized by
high amplitude, which are in phase with the Poincaré period.
Stronger coupling not only induces synchronization within
a given oscillator type but also facilitates phase alignment
across the different oscillator models, leading to moments of
network-wide coherence. Interestingly, as the ratio of inactive
oscillators increases, the observed phases of high activity in
the Rulkov layer broaden, while the global oscillation am-
plitude decreases [see Fig. 2(c), second and third panels at
p = 0.2 and 0.4]. The widening of active phases suggests

that the presence of inactive elements within the network
can extend the duration of collective activity, albeit with a
diminished intensity of the global signal. If the coupling in
the Poincaré layer is further increased [Fig. 2(d); KP = 0.0032
and KR = 0.007], while the effects are less pronounced, the
same general trend persists. The Rulkov oscillators display a
lower level of distinctiveness in their active phases, with the
activity spanning over a slightly wider interval, along with an
amplitude reduction as the ratio p increases [see Fig. 2(d) at
p = 0.2].

Expanding upon the initial observations presented in Fig. 2,
Fig. 3 offers a more comprehensive analysis of the collec-
tive dynamics within a network of coupled oscillators. The
upper six panels [Fig. 3(a)] provide a color-coded visual-
ization representing the RMS amplitude and activity of the
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FIG. 3. Color-coded values of the root mean square (RMS) amplitude M and the activity TA of the mean signal of the Rulkov component
as a function of the ratio of inactive oscillators p and either (a) the coupling strength among Poincaré oscillators KR where the value of the
coupling strength among Poincaré oscillators KP is fixed or (b) as a function of KP where the coupling among Rulkov oscillators KR is fixed.
Note that the color scales for the RMS amplitude and the activity are not the same.

Rulkov mean signal as functions of p and KR, with KP held
constant. Conversely, the lower six panels [Fig. 3(b)] illus-
trate these dependencies with p and KP varied and KR held
constant. Evidently, the RMS amplitude gradually decreases
with increasing p, indicating that higher coupling between

the fast oscillators (i.e., increasing values of KR) requires a
higher number of inactivated elements to diminish macro-
scopic activity, except for very high values [KR > 0.01; see
upper row in Fig. 3(a)]. In contrast, the relationship be-
tween RMS amplitude and the coupling between the slow
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FIG. 4. Color-coded values of the critical value pc at which the root mean square (RMS) amplitude of the mean signal of the Rulkov
components M falls below (a) 90%, (b) 50%, and (c) 10% of the starting value [M(p = 0)], as a function of the coupling strengths between
Poincaré oscillators KP and Rulkov oscillators KR. Notice that each plot has its own color scale.

oscillators is less intuitive and is significantly influenced by
the coupling strength between the fast Rulkov oscillators [see
upper row in Fig. 3(b)]. Furthermore, analyzing the activity
of the oscillators reveals even more interesting dynamical
behavior arising from the interplay between the fraction of
inactive oscillators and coupling strengths. The second rows
in Figs. 3(a) and 3(b) display color-coded values of relative
active time TA as a function of inactivated elements p and
coupling strengths. In principle, the activity is higher and
persists for higher values of inactivated elements when the
coupling in the fast layer is stronger. Conversely, stronger
coupling in the slow layers has the opposite effect, leading to
lower activity. Notably, for intermediate to high values of both
KP and KR, we observe a significant increase in the activity
of oscillators with higher values of inactivated elements [see
the second and third columns in Figs. 3(a) and 3(b)]. Maxima
in activity can occur with up to 60% inactivated elements,
resulting in a relative increase of up to 100% compared with
the initial activity without inactivated elements. The non-
monotonic response suggests a resonantlike behavior in the
oscillatory network, where a specific proportion of inactivity
within the coupled system may enhance conditions for col-
lective excitation, which is further addressed in continuation.
Notably, in our analysis, we used the relative active time of
the global signal TA as an indicator of activity. This metric
is frequently used in cellular physiology because it represents
the proportion of time cells spend in the active phase (i.e., the
relative proportion of time they are depolarized). Given that
the length of individual global oscillations changes minimally,
the frequency of oscillations could, in principle, also serve
as a measure of activity and would yield qualitatively similar
results.

In Fig. 4, we visualize the robustness of the oscillator
network in further detail by analyzing how the interplay be-
tween the coupling strengths in both network layers affect
the critical value of the inactivity ratio p (pc) at which the
RMS amplitude of the mean signal M of the Rulkov com-
ponent drops below certain percentages of its initial value
[i.e., compared with M(p = 0), without inactivated elements].
Figure 4(a) provides a heat map indicating the critical value
pc where M falls below 90% of its initial value. For interme-

diate values of KR and for high values of KP, this threshold
is reached by the highest fraction of inactivated elements
(pc ≈ 0.45), suggesting a stronger robustness against inac-
tivity in this parameter regime. Figure 4(b) reveals that the
RMS amplitude remains above half of its initial value, where
principally, again, intermediate coupling in the fast layer and
strong coupling in the slow layer represent the most resilient
setup. In this regime, a less distinct peak is observed at ∼ 75%
of inactivated oscillators. Finally, Fig. 4(c) visualizes when in
the coupling parameter space the macroscopic activity falls
below 10% of the initial value. We can observe that, in the
case of weak coupling among Poincaré oscillators, the activity
remains above this threshold for large fractions of inactive
elements. This is because weak interactions of macroscopic
oscillations prevent them from being completely suppressed,
even with a fraction of p > 90%. On the other hand, strong
coupling in the slow layer also requires a large fraction of
inactive oscillators to almost completely suppress activity, i.e.,
to cause a drop below 10% of the initial value. However,
the system loses global oscillatory activity most rapidly at
intermediate coupling values in the slow component. These
observations are relatively independent of the strength of cou-
pling among Rulkov oscillators.

To examine in more detail how the phase of slow oscil-
lations modulates the fast ones and how this reflects on the
overall activity, we show in Fig. 5 a polar representation that
illustrates the relationship between the faster Rulkov com-
ponent and the slower Poincaré component under various
network conditions. This polar graph demonstrates the aver-
age activity of the Rulkov signal, categorized by segmented
phases of the period of the Poincaré signal. Each phase of
the slow Poincaré signal is divided into 12 equal segments
represented by the angle, while the radial distance from the
origin correlates to the average activity of the Rulkov sig-
nal within each phase segment. The diagram incorporates
various colored lines to depict the system under different
proportions of inactive oscillators p, paralleling the conditions
investigated in Figs. 2 and 5. The close-to-zero values for
low KP and KR values [Fig. 5(a)] indicate a lack of well-
defined global activity due to the absence of interactions and
synchronous behavior. When the coupling within the fast
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FIG. 5. Polar representation of average activity of the mean fast Rulkov signal over segmented phases of the period of the mean slow
Poincaré signal, for different ratios of inactive oscillators p and distinct coupling strengths between Poincaré and Rulkov oscillators KP and
KR (note that the values are the same as in Fig. 2): (a) weak coupling in both components, (b) weak coupling in the slow component and
intermediate coupling in the fast component, (c) intermediate coupling in both components, and (d) strong coupling in the slow and intermediate
coupling in the fast component. In all panels, the angle denotes the phase of the slow period divided into 12 equal segments. Radial distance
from the origin indicates the average activity within each phase segment. The various colored lines represent different proportions of inactive
oscillators in the system (p = 0.0, 0.2, 0.4, and 0.6).

network layer is increased while the interactions within the
slow layer remain small [Fig. 5(b)], the activity becomes well
pronounced. However, it is completely independent of the
phase of the Poincaré oscillator and diminishes completely
even for p = 0.4. If the coupling constant KP is increased

as well [Fig. 5(c)], the frequency variation of Rulkov os-
cillations shows a significant dependence on the Poincaré
phase. Importantly, an increase in the fraction of inactivated
elements results in a loss of this modulation, leading to
the Rulkov oscillations becoming rather independent of the
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slowly modulating phase. If, however, we move to the very
strong coupling regime [Fig. 5(d)], the distribution of activity
in the fast layer is highly dependent on the slow component
as well, but in this case, the dependence holds even as the
proportion of inactive elements increases. These results help
to understand the before-mentioned nontrivial dependence of
activity on the proportion of inactive elements, which was
rather unintuitively found to increase for moderate coupling
values between both oscillatory components. Thus, from the
results in Fig. 5, we can see that this is due to the loss of
modulation capability of the fast component by the slow one
as p > 0, leading to activity spreading across the entire phase
and resulting in an increase in activity at the global level.

To gain deeper insights into the nontrivial behavior de-
scribed earlier, we further examine the dynamics of individual
oscillatory units. Figure 6 presents the spatial distribution of
individual Rulkov oscillators within a square lattice and a
color-coded representation of their activity. This visualization
highlights the effects of varying ratios of inactive oscillators
and the coupling strengths between Poincaré and Rulkov os-
cillators. The intensity of color in each element represents the
activity of the individual Rulkov oscillator, with the shapes
denoting the activity status of the corresponding Poincaré
oscillator: circles for active and crosses for inactive. Each
lattice configuration is accompanied by the calculated aver-
age correlation 〈corr〉 between all active Poincaré oscillators.
These results allow for an intuitive grasp of the interplay
between oscillator activity, coupling strength, and fraction of
inactivated oscillators.

First, it is evident that a reduced correlation among the
Poincaré oscillators does not necessarily result in diminished
activity of the Rulkov oscillators. Instead, for p > 0 and for
high enough values of KP and KR, Rulkov oscillators (even the
ones in the inactive set) exhibit higher activity compared with
scenarios where all oscillators are active [see Fig. 6(c) for p >

0 and Fig. 6(d) for p = 0.2 and 0.4]. This counterintuitive out-
come is reminiscent of the findings presented in Figs. 5(c) and
5(d), and it can be attributed to the loss of radial dependence of
the activity of the fast component on the slow phase. Secondly,
we can also observe that the activity of inactive elements
does not diminish, even though the amplitude of the Poincaré
oscillations is zero, and therefore, a solitary Rulkov oscil-
lator would not be able to surpass the activation threshold.
However, coupling within the lattice enables the propagation
of excitation waves, which can spread from active oscillators
to areas of inactivity. As shown in Fig. 6, this is most pro-
nounced when the cluster of inactive elements is small and
surrounded by a larger number of active ones. Additional
insight into the wave dynamics within the fast oscillatory
layer is provided by Videos S1–S3 in the Supplemental Ma-
terial [55], illustrating the propagation of waves in various
scenarios. In Videos S1 and S2 in the Supplemental Material
[55], using parameter settings of KP = 0.0008 and KR = 0.01
(i.e., intermediate coupling degree), wave propagation is ob-
served for p = 0 as well as for p = 0.4. In the former case,
fast-moving waves characterize the spatiotemporal activity,
leading to synchronous participation of the entire network
in wave propagation. This reflects a high level of collective
behavior that is also strongly influenced by the phase of slow
oscillations. In contrast, the latter case shows slower waves

that transverse inactive elements, with their abundance weakly
dependent on slow activity. This behavior corresponds to the
increased activity observed at p > 0 in Figs. 3 and 6(c), no-
table only with high enough coupling strengths. On the other
hand, Video S3 in the Supplemental Material [55] showcases
spatiotemporal activity for lower coupling strengths (KP =
0.0001, KR = 0.007) and p = 0.4. Here, waves are slower and
more localized, with their abundance weakly dependent of
slow oscillatory dynamics. Notably, excitation waves rarely
propagate across inactivated elements, acting as barriers to
signal propagation.

IV. DISCUSSION

The aging transition represents an intriguing dynami-
cal phenomenon observed in networked oscillatory systems,
marked by the cessation of macroscopic oscillations resulting
from the malfunction of individual units. The investigation
of aging within coupled dynamical networks holds not only
theoretical appeal but also significant practical relevance, of-
fering valuable insights into the properties and functions of
real complex systems as well as their robustness and fragility.
In this paper, our aim was to broaden the understanding of
the aging transition phenomenon to encompass a network
of multimodal oscillators. To this end, we devised a model
structured as a two-layered multiplex network. Each layer
represents a distinct oscillatory subsystem: one characterized
by slow oscillations and the other by fast oscillations. Most
importantly, the interactions between oscillators are not con-
fined solely to within the same layer but also encompass
interlayer interactions, so that the activity of fast oscillators
is influenced by the phase of slow oscillators. In the context
of aging transition, we then progressively inactivated only the
oscillators in the slow layer and examined the impact this had
on the fast oscillatory dynamics.

Such an arrangement can be applied to describe various
biological systems, particularly those where rhythmic activity
is characterized by oscillations on different time scales and
results from interactions among many units. For example, in
pancreatic islets of Langerhans, insulin-secreting β cells are
coupled via different communication pathways to work in
synchrony, and the activity of each β cell is characterized by
tightly coupled membrane potential and intracellular calcium
concentration dynamics that are intertwined with oscillations
in metabolism that occur on an order of magnitude lower
time scale [56]. The resulting dynamics is multimodal and
originates from networked feedback interactions of various
oscillatory subsystems [57]. Most importantly, the oscilla-
tory activities are interdependent, so that the fast oscillations
are governed by the phase of slow oscillations [47,53,58].
Likewise, neural population activity arises from intricate net-
worked interactions and exhibits a spectrum of frequencies.
For instance, it has been shown that, in spinal neurons, rhyth-
mic variations of cyclic adenosine monophosphate occurring
on time scales of minutes modulate the spiking activity oc-
curring on a shorter time scale [45]. Along similar lines,
phase-locked neuronal firing driven by slow-scale oscillations
has also been reported in pyramidal neurons [46], neurons in
the subcortical visual system [59], and for the hippocampal
neural network whose activity is guided by slow modulatory
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FIG. 6. Spatial and color-coded representation of oscillator activity and position within a square lattice of individual Rulkov oscillators
for varying inactive oscillator ratios p and coupling strengths between Poincaré and Rulkov oscillators KP and KR: (a) weak coupling in both
components, (b) weak coupling in the slow component and intermediate coupling in the fast component, (c) intermediate coupling in both
components, and (d) strong coupling in the slow and intermediate coupling in the fast component. Note that the values are the same as in
Figs. 2 and 5. Color intensity indicates the activity of individual Rulkov oscillators. The shapes denote whether the corresponding Poincaré
oscillator is in the active (circles) or inactive set (crosses). The calculated average correlation 〈corr〉 between Poincaré oscillators is displayed
for each scenario where only the oscillators in the active subset were considered, as the inactive oscillators do not exhibit any oscillations.

astrocytic signaling [60]. In this regard, the collective neural
activity can also be understood as a multilayered network of
multimodal oscillatory units, consisting of intertwined oscil-
latory subsystems [61]. The fact that, in this paper, we targeted
only the slow oscillators reflects a scenario where pathogen-
esis targets specific intracellular processes regulating slow
oscillations, which in turn also affects the collective rhythmic

activity of the fast component responsible for ensuring physi-
ological functions.

In this paper, we have shown that the progressive inacti-
vation of oscillators in the slow layer nontrivially affects the
oscillatory activity in the fast layer and that the nature of the
aging transition is nontrivially dependent on the strength of
coupling between oscillators within individual layers. Perhaps
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the most striking observation pertains to the finding that, for
moderate coupling strengths, the intensity of oscillatory ac-
tivity progressively increases with the increase in inactivated
oscillators, even to up to 60% of inactivated units. We have
found that this is due to the loss of synchrony among oscilla-
tors in the slow layer, leading to the loss of modulation of fast
oscillations by the underlying slow oscillatory component as
well as due to the propagation of excitation waves that can,
under certain conditions, encompass inactivated elements as
well. This manifests as both increased overall activity and
the presence of oscillations during periods when they should
not be present. In other words, under specific conditions, the
distribution of activity patterns broadens [see Fig. 5(c)], as
the oscillations of the fast component become more numerous
on the global level. These conditions refer to an intermediate
coupling strength in both the slow and fast layers, which
leads to partial synchronization and the propagation of exci-
tation waves as well as a codependent influence on the global
spatiotemporal oscillatory activity. These conditions can, in
principle, also be satisfied with a slightly modified model.
In this paper, we conducted the numerical investigation on
a square lattice, but we obtain qualitatively similar results
if we use a triangular lattice or a random geometric net-
work as the basic coupling scheme (see Videos S4–S7 in the
Supplemental Material [55]). Notably, in all these coupling
schemes, interactions are limited to neighboring oscillators
which, combined with heterogeneity, prevent the emergence
of a globally synchronized state. However, all these networks
support the propagation of excitation waves and can thus serve
as models for biological tissues and, most importantly, exhibit
an increased activity profile for intermediate coupling strength
as the number of inactivated elements increases. Moreover, to
make our model more realistic in describing neuronal activity,
we incorporated a noise term, reflecting the stochastic na-
ture of realistic neural systems. This also ensures a relatively
broad range of the excitability parameter α [Fig. 1(c)], within
which wave propagation occurs, with the frequency of these
waves also depending on the specific value of this parameter
(see Ref. [54] for further insight). It is worth noting that the

presence of a stochastic term is not a necessary condition for
obtaining the results, as excitation waves can be produced in a
similar manner even in the absence of noise. However, in this
case, the relationship between excitability parameter α and the
amplitude of the slow component [Eq. (3)] must be adjusted,
specifically by increasing αMIN from 1.88 to 1.90 due to the
higher activation threshold resulting from the absence of the
stochastic component. Videos S8 and S9 in the Supplemental
Material [55] demonstrate animations in the noise-free sce-
nario, where again a broadening of activity is observed at
p > 0, like in the original model.

Notably, behavior described above can also be understood
in the context of various pathological conditions. For ex-
ample, in the early stages of diabetes, pancreatic β cells
often exhibit increased sensitivity and activity, which results
from impaired cellular metabolism that can be linked to the
loss of slow metabolic oscillatory activity [62]. Furthermore,
increased activity can be noted in the early phases of sev-
eral types of neurodegenerative diseases, where the increased
neuronal firing is associated with compensatory mechanisms
which, however, can also contribute to disease progression
and symptoms [63–65]. As such abnormalities in biological
network dynamics could cause instability and contribute to
disease progression, it is important to understand the underly-
ing mechanisms for developing targeted treatments, especially
because suppressing abnormal oscillatory patterns might ef-
fectively mitigate or prevent the onset of irreversible damage
[66]. Hopefully, our findings, albeit solely on the theoretical
level, shed light on the complex interplay between specific
oscillatory components, the collective activity within biologi-
cal networks, and how these rhythms can be perturbed during
pathogenesis.
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