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Flexible quantum data bus for quantum networks
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We consider multipath generation of Bell states in quantum networks, where a preprepared multipartite
entangled two-dimensional cluster state serves as a resource to perform different tasks on demand. We show
how to achieve parallel connections between multiple, freely chosen groups of parties by performing appropriate
local measurements along a diagonal, staircase-shaped path on a two-dimensional cluster state. Remarkably, our
measurement scheme preserves the entanglement structure of the cluster state such that the remaining state is
again a two-dimensional cluster state. We demonstrate strategies for generating crossing, turning, and merging
of multiple measurement lines along the two-dimensional cluster state. The results apply to local area as well as
to long-distance networks.
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I. INTRODUCTION

Connecting devices constitutes the foundation of modern
society. All devices operate in some form of network, with
the goal of either increasing computational power, to per-
form distributed tasks or to simply exchange messages of
some kind. The structure and implementations of such net-
works often depend on the sizes of devices. For example,
for embedded devices such a network corresponds to con-
nected, hard-wired microcontrollers. In contrast, computers
connect through local-area-networks over Wi-Fi. With the ad-
vent of quantum computers approaching, researchers believe
that connecting quantum devices via quantum networks is a
crucial step to unlock new applications which do not have a
classical counterpart [1,2]. Such applications include quan-
tum key distribution [3], secret sharing [4,5], sensor networks
[6,7], but also distributed quantum computing [8–10].

At the lowest level, quantum devices, in any quantum
network [11–15], at any scale, are connected via physical
channels. A Bell state between nodes is equivalent to a chan-
nel due to the teleportation protocol [16], paving the way for
sharing and manipulating entanglement [17] as an alternative
to channels. In recent years, the vast majority of research on
quantum networks has focused on the generation of Bell states
between two nodes in a network of Bell states [18–21], the
routing of quantum information carriers [22–27] in quantum
networks. The generation of Bell states involves finding an op-
timal path [23] (in terms of some metrics) within the network
and connecting the states along that path. Here, we introduce a
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flexible quantum data bus by establishing multiple Bell states
simultaneously in a network of any scale by utilizing pre-
established two-dimensional (2D) cluster states as a resource,
referred to as cluster states [28,29] in the following, instead of
a network of Bell states as a resource for routing [30,31].

In our setting, we assume that each network node stores
only a single qubit. The nodes share a two-dimensional cluster
state, which has a grid structure, and interconnects the nodes
and devices, respectively. This grid-state serves as a flexible
network state to fulfill different tasks on demand and can
be established even prior to network requests. The manip-
ulation of network states takes place solely by single-qubit
measurements and single-qubit unitaries. This falls within the
general spirit of entanglement-based quantum networks with
preshared entanglement [30,31]. Such an approach offers not
only high flexibility [32], but also avoids latencies.

In this work we report the following two main results:
(i) A zipper scheme to establish a connection between two

nodes within a two-dimensional cluster state, which restores
the structure of the remaining two-dimensional cluster state.

(ii) A quantum data bus that allows the generation of mul-
tiple Bell states simultaneously by measuring along parallel
measurement lines along the two-dimensional cluster state.

At the heart of our proposal is the zipper scheme (i), a
measurement pattern among diagonal lines to establish a Bell
state within the grid of the two-dimensional cluster state. We
remark that the zipper scheme is based on the X protocol in-
troduced in Ref. [33]. Other works also study staircase-shaped
measurement patterns on 2D cluster states, even demonstrat-
ing optimality with regards to the number of measurements
[34,35]. As we demonstrate, the zipper scheme preserves the
entanglement structure of the remaining cluster state when
generating a Bell state. Keeping the grid structure intact and
usable turns out to be pivotal to extract further Bell states
from the cluster state. We utilize this remarkable property
to establish multiple Bell states between arbitrary nodes in
a cluster state, including crossings and turns of the measure-
ment paths. We note, however, that there exist some prohibited
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areas around the turning and endpoints, where Pauli Z mea-
surements are necessary to cut out the Bell state from its
direct neighborhood. However, this is still in stark contrast to
standard methods [29,36,37], where the connection between
nodes is established by cutting a hole among the entire path.
This method not only wastes resources, but also hinders the
generation of further Bell states. Our scheme enables to si-
multaneously create Bell states along adjacent measurements
paths, effectively constructing a quantum data bus (ii) in anal-
ogy to classical buses found for instance in mainboards. We
compose a quantum data bus architecture in a modular fashion
by combining elementary building blocks such as crossings,
turns, and merging or splitting of multiqubit measurement
lines in a cluster state. Our results have a multitude of appli-
cations from which we discuss its applicability ranging from
large-scale networks such as entanglement-based quantum
networks [30,31,38,39] to local networks relying on a central
unit [40,41]. Furthermore, we believe that also small and
integrated networks of quantum devices, similar to devices
running in embedded environments like cars, benefit from
a dynamic way of creating Bell states on demand, as this
removes the necessity to multiplex multiple connections over
a single transmission channel like in classical, hardwired con-
troller networks. Diagonal routing also naturally extend to the
multiparty case, like for example establishing Greenberger-
Horne-Zeilinger (GHZ) states between multiple nodes within
the cluster.

This work is organized as follows: In Sec. II we introduce
our network setting based on entangled network states. In
particular, we utilize graph states and their local manipula-
tions to obtain the network requests, as we explain in Sec. III.
Subsequently, we present our main finding, the zipper scheme
in Sec. IV, and show how we can use these result to build a
modular quantum data bus in Sec. V. In Sec. VI we focus on
three applications of quantum networks which profit from our
findings. Finally, we conclude our work and point out future
research directions in Sec. VII.

II. SETTING

We consider quantum networks at different scales with the
goal of establishing entanglement between multiple pairs of
nodes in parallel. Rather than generating Bell pairs directly,
we consider an entanglement-based network [30,31] where
nodes share a preprepared multipartite entangled network
state, which is generated during idle times of the network.
In this work we suggest a flat hierarchy among the nodes.
In particular, we assume that each node holds one qubit of
the cluster state, and thus all nodes have the same function-
ality and privileges. The nodes manipulate the network state
solely by local unitaries and single-qubit measurements to
establish the desired target state in a flexible way on de-
mand. This approach does not require to send any quantum
information carriers when the network request arrives and
consequently reduces the latency to serve requests. More-
over, the network state can be optimized with respect to
the connectivity demands of the network [32,42], such as
adjusting to local connectivity demands of client groups.
On the contrary entanglement-based networks require a long
time memory for storage. Here we consider a 2D cluster

state as a resource, where each node holds a single qubit of
the cluster state. Such 2D cluster states serve as universal re-
source in measurement-based quantum computation (MBQC)
[29,36,43], where information is processed by means of
single-qubit measurements only and arbitrary target states can
be generated in this way. Here, in contrast, our sole goal is
to establish multiple Bell pairs, which implies that consid-
erations such as information flow [44,45] do not apply, and
additional methods and techniques are available. In particular,
we are interested in establishing (multiple) Bell pairs between
arbitrary nodes, independent of their location within the clus-
ter state.

III. PRELIMINARIES

Graph states [46,47] are pure, multipartite entangled quan-
tum states described by a classical graph G = (V, E ), where
the vertex set V and edge set E correspond to qubits and
binary Ising-type interaction between those, respectively. For-
mally, a graph state |G〉 is uniquely defined as the eigenvector
with +1 eigenvalues of the set of stabilizers

Ka = σ a
x σ Na

z = σ a
x

∏

b∈Na

σ b
z (1)

for each vertex a ∈ V with its corresponding neighbors Na ⊆
V , and note that σi denotes the ith Pauli matrix. The dynamic
picture is an alternative means to define graph states, where
all qubits are initially prepared in the |+〉 state and according
to the edge set controlled-phase gates are applied between two
vertices.

In this work we frequently use local complementation
(LC), a specific local Clifford unitary, to transform a graph
state. This unitary inverts the subgraph induced by the neigh-
bors of a qubit. Local Pauli Z measurements translate to vertex
and edge erasure of the measured qubit. A Pauli Y measure-
ment corresponds to a LC followed by a Pauli Z measurement
on the qubit to measure. Local Pauli X measurements are a
combination of LC on a specific neighbor qubit, a Pauli Y
measurement on the qubit itself and again LC on the specific
neighbor, see Ref. [47].

IV. ZIPPER SCHEME

The zipper scheme tackles the problem of connecting two
nodes in a 2D cluster state via two diagonal lines, thereby
generating a Bell state. The scheme accomplishes this by
performing Pauli X measurements along a staircase-shaped
measurement path (as introduced in Ref. [33] as the X proto-
col), where two such paths are combined to connect any two
points on the grid. For a direct diagonal connection, one of
the Bell-state qubits is used as neighbor for LC, and Pauli Z
measurements in the neighborhood of the endpoints isolate
the final Bell state. The inset in Fig. 1 illustrates the result of
the zipper scheme after the orange qubits have been measured
in the X basis along a diagonal, whereas the purple qubit
is one of the Bell-state constituents and has been used as
reference qubit for LC. We observe that measuring the orange
qubits along the diagonal, purple path introduces the red edges
between the red qubits on each side of the measurement path,
these edges restore the underlying 2D cluster state structure.
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Pauli X measurement Pauli Z measurement
Qubit measured in Pauli X basis

FIG. 1. Zipper scheme (inset): The orange qubits are measured
in the Pauli X basis such that the purple qubit is routed along
the diagonal measurement path while the obtained edges between
the red qubits restore the underlying cluster state. The qubits in the
neighborhood of the purple qubit need to be removed by Pauli Z mea-
surements leading to holes. Simultaneous Bell-state routing (main
figure): We extract three Bell states, purple, blue, and turquoise, by
applying the zipper scheme along diagonals of orange qubits. Merely
on turning and endpoints holes appear due to the yellow Pauli Z
measurements to disconnect the Bell-state qubits from the remaining
cluster state. The zipper scheme enables crossing of paths except in
the vicinity of end and turning points, and note that the paths are
adjusted such that the measurement sequence is taken into account
(first purple, then turquoise and blue).

However, some holes are caused by Pauli Z measurements in
the direct neighborhood of end- and turning points, which are
necessary to fully isolate the Bell state, the yellow qubits in
Fig. 1 correspond to this measurements.

The zipper scheme allows us to generate a Bell state on a
diagonal line within the cluster state. However, we observe, as
explained in more details in the Appendix (note that routing
a single Bell state is a special case of routing parallel Bell
states), that it is also possible to use the very same scheme to
route a Bell state around corners (“L” turn), upside down (‘’V”
turn), diagonal to straight, or over a crossing with another Bell
state. These ingredients enable us to route measurement lines
for Bell states of arbitrary topology on the cluster state. In
Fig. 1 we demonstrate an example in which three Bell states
among arbitrary nodes are generated. We emphasize that two
points on a 2D lattice can be always connected by two (or
more) diagonals as shown in the Fig. 1. Importantly, the zipper
scheme allows us to establish crossings of Bell states on the
cluster state provided that the crossings do not involve on

qubits that are direct neighbors (yellow qubits to be measured
in the Z basis) of the end or turning points.

Note that we do not sketch the additional edges after
applying the zipper scheme to simplify readability and, fur-
thermore, we have adjusted the measurement paths assuming
that the purple path is measured first followed by the turquoise
and blue one. The ability to support crossings has two advan-
tages. First, it prevents potentially long measurement paths
around obstacles in a cluster state and, second, it allows us to
have simultaneous request also in cases that require crossings
due to resource constraints, impossible to achieve without
them. Using a 2D cluster state of size n × n allows one to
obtain O(n) parallel Bell pairs. This can be seen by observing
that any two points in a 2D cluster are connected by diagonal
paths of length at most 2n, which also corresponds (up to few
additional measurements around end and turning points) to the
number of qubits that need to be measured to establish a Bell
pair. Since the underlying entanglement structure is still intact,
in total O(n) Bell pairs can be generated generically. Notice
that some configurations may not be possible, as small holes
appear in the two-dimensional cluster state from Z measure-
ments of qubits that directly neighbor end and turning point
qubits on the measurement path.

V. QUANTUM DATA BUS

The next step is to extend the results of the zipper scheme
and building blocks to generate multiple Bell states along
parallel lines, which we refer to as a quantum data bus. We
note that a quantum data bus is conceptually closely related
to data buses in conventional computers used for connecting
individual microchips with each other. First, our scheme gen-
erates multiple, spatially separated Bell pairs along parallel
measurement lines, which is analogously found in classical
data buses. The second main feature of a classical data bus is
that it is bidirectional, which means that information can be
sent in both directions, and our measurement scheme allows
for that. A quantum data bus uses the entanglement of a cluster
state in an efficient way to achieve that goal. In Fig. 2 we
illustrate the main idea.

Similar when generating a single Bell state along a
measurement line, we identify multiple building blocks for
generating Bell states in parallel. We point out that the
building blocks we discussed in the previous section extend
naturally to parallel building blocks. Foremost, is the diagonal
crossing of Bell states, which follows trivially from the state
restoring properties of the zipper scheme, and we represent
it by the red structure in Fig. 2. For instance, from a cluster
state of size n × n, it is possible to generate O(n) parallel
Bell states as part of a crossing. The entanglement structure
remains when one applies the zipper scheme, and this key
feature gives rise for further building blocks such as the “L”-
turn (blue blocks) and “V”-turn (purple blocks) as well as
the straight line measurement lines (black blocks), which we
discuss partly here and in the Appendix E.

Here we begin with the “L”-turn building block for the
quantum data bus, which can be used to change the direction
of the measurement lines from vertical to horizontal (and vice
versa), which illustrate step-by-step in Fig. 3. We apply the
zipper scheme (in inward direction) to the outermost data line
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FIG. 2. Quantum data bus and its building blocks: The red lines
represent parallel transport along diagonal lines, including crossings
orthogonal to the diagonals. The black lines show a parallel transport,
both vertical and horizontal. The blue and pink lines depict parallel
“L”-turn and “V”-turn, whereas the green lines demonstrate a merg-
ing or splitting of data lines. Finally, the yellow qubits depict qubits
on which we need to perform Pauli Z measurements.

until we diagonally reach the inner most data line, resulting
in a perpendicular turn as illustrated by the leftmost blue line
of Fig. 3. The cluster state preservation property of this first
step enables us to apply the zipper scheme to turn the second
most left qubit as shown in the third step of Fig. 3. Repeatedly
applying this pattern results in a full turn of all data lines, as
illustrated in the last step of Fig. 3. Note that the required

Pauli X measurement
Pauli Z measurement

FIG. 3. The figure shows a step-by-step guide for the mea-
surement pattern to perform a perpendicular turn from vertical to
horizontal in a 2D cluster state with four parallel data lines. The
zipper scheme is applied from the left- to rightmost qubits, where
each application of the zipper scheme enables the next measurement.
Note that the red arrows are only visual elements to better see the
turn of data lines, and the arrows can be also reversed.

number of qubits to turn n data lines in an “L”-turn around
the corner is n × n.

A new building block corresponds to parallel transport
among a straight line. We achieve this kind of transport by
applying the zipper scheme repeatedly. We point out that one
can understand this building block simply from the previous
one, if we extend the zipper scheme in Fig. 3 to the yellow left
most qubits by X measuring the top qubits (indicated by the
arrows). Specifically, first one applies the zipper scheme from
the first Bell-state line towards the last line. This effectively
routes the first Bell state diagonally to the last line. Next, one
applies the same scheme to the second Bell state, moving it to
the second last line. Repeatedly applying this pattern results in
a total permutation of all lines. Performing the same scheme
another time inverts the permutation, resulting in straight lines
again. However, it should be noted that additional Pauli Z
measurements are necessary to isolate the established data
bus as shown by yellow dots and in Figs. 2 and 3. A single
vertical qubit line is necessary to separate the two permutation
measurements, because the zipper scheme requires be applied
on a complete a cluster state. In total it requires a block of
length 2n qubits to transport n data lines in parallel, which
induces a fixed, minimal block size. Notice, although that
there is no distance between the data lines within the data
bus, in stark contrast to standard data transport schemes in
MBQC [29,36,37] which requires isolating a path, resulting in
a distance of one between two data lines, i.e., half the capacity
of our scheme.

Another new building block allows us to merge or split data
lines to or from the data bus. In Fig. 2 the green structure
represents a splitting of data lines, and it uses Pauli Z (yellow
dots) and X measurements (green dots) to separate and merge
the data lines, respectively. For adding a single data line we
require one Pauli Z and one Pauli X measurement to cut and
merge the line into the data bus.

Similar approaches as presented apply for other building
blocks as well, we refer to the Appendixes C, E, and F for
details. For “V”-turn and the building block that turns di-
agonal Bell states into a parallel Bell states, the number of
data lines n of the building block determines the minimum,
necessary length of the zipper scheme on the first data line
as 2n. Therefore, it requires in total n × n measurements. We
also point out that diagonal routing straightforwardly extends
to GHZ states, as described in Appendix G. Essentially, one
can connect several qubits to some central one via different
(diagonal) paths, thereby establishing a GHZ state.

The size of the individual building blocks allows one to
estimate the size of the required cluster state depending on the
desired information transport.

VI. APPLICATIONS

We have laid the theoretical foundation for routing Bell
states on a 2D cluster state. In the following we discuss three
potential use-cases of the parallel zipper scheme, highlighting
its applicability and importance.

The first application corresponds to a long-distance quan-
tum network in which the nodes, which hold a single qubit
each, connect via a two-dimensional cluster state. Note
that we allow these nodes to be simple clients as well
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as sophisticated quantum local area network (LAN) nodes
with internal structure. This setting was studied, e.g., in
Refs. [48,49], in which the authors presented ways how to
create a long-distance cluster state by purifying and merging
small buildings blocks. Once the cluster state is established,
the goal of the network is to generate Bell states between any
of the nodes in the cluster state on demand, maybe even in
parallel. Using the results of this work we find that it is pos-
sible to connect any, sufficiently far, sets of communication
partners via Bell states by using the parallel zipper scheme.

But also centralized communication scenarios with a pow-
erful central unit as studied in Refs. [40,41] benefit from our
results. For that purpose, suppose that the nodes of a small
scale network, similar to a LAN, connect to a central unit
via (potentially multiple) Bell states. In case the central unit
uses internally a local cluster state, and the parties connect
via a Bell state to the border of the cluster state, the central
unit is able to establish arbitrary, even parallel, connections
among the nodes by using our quantum data bus proposal.
In other words, the central unit uses the internal cluster to
permute connections among the (outside) nodes. This allows
for a flexible way to operate the central unit, as this unit is
capable of connecting any of the connected nodes as necessary
and on demand. The advantage of having a pre-established
cluster state over distributing Bell pairs is that each node only
needs a single quantum memory at each node. Moreover, this
method required less latency compared with distributing the
Bell state on demand.

The last application we highlight corresponds to integrated
quantum devices. In this vision, small quantum devices like
sensors connect within the integrated quantum device via
a Bell state to the border of a 2D cluster state, similar in
spirit to the previous application. This scenario is inspired by
classical computing architectures in which microcontrollers
connect through buses in a fixed manner. Our results imply
that for quantum computing architectures such a fixed wiring
is not necessary, but can be established on-demand in terms
of quantum data buses by consuming a cluster state. This
introduces flexibility, but also extendability to integrated
quantum device design.

VII. CONCLUSION

In this paper we have considered pre-established 2D cluster
states as resource for quantum networks. We identified the
main ingredient to route Bell states in a cluster state, namely,
the zipper scheme. The scheme preserves the cluster state
entanglement structure, vital for establishing crossings of Bell
states on a cluster. It further turns out that the zipper scheme
lies at the heart of many building blocks to route Bell states
in a cluster state, such as, for example, “V”-turn or “L”-turn.
We also demonstrated how to further optimize these building
blocks by showing how to utilize them for parallel transport of
Bell states. These building blocks play a key role for routing
multiple Bell states in a long-distance network, but also for
small-scale networks and the design of integrated quantum
processing devices. We also discussed an extension of the
diagonal routing to multiparty states, such as, for example,
GHZ states, and we leave the extension of the other building
blocks for future work. As an outlook, it remains an open

FIG. 4. In the center is a graph state depicted, whereas vertices
correspond to qubits, which are initialized in the |+〉 state and
edges represent maximally entanglement between two qubits. In the
corners the resulting graph states are shown, which are caused by
local single-qubit Pauli measurements or local complementation as
indicated by the labeled arrows.

question how noise in the network state and the apparatus
influences the fidelity of the routed Bell states. The first results
for a single target Bell pair [34] indicate robustness against
imperfections.
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APPENDIX A: GRAPH STATES

Graph states [28,46,47] are a specific class of pure,
multipartite entangled quantum states whose correlations cor-
respond to a classical graph G = (V, E ). The vertex set V
and the edge set E correspond to qubits and binary Ising-type
interaction between qubits, respectively. Figure 4 depicts an
example graph state in the center. The figure demonstrates
how the graph state transforms under certain local operations,
such as, for example, local complementations or Pauli basis
measurements. Formally, a graph state |G〉 with respect to the
graph G is constructed from the set of qubits in the |+〉 state
through the interaction

|G〉 =
∏

{a,b}∈E

CZab|+〉⊗|V |, (A1)

where a controlled-Z gate defined as diag(1, 1, 1,−1) is ap-
plied if the edge between the qubits a and b exists in the
graph G. For example, the central graph in Fig. 4 comprises
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four qubits, labeled from one to four. One generates the corre-
sponding graph state by applying controlled-Z gates between
the qubits one and two, one and four, one and three, two and
three, and two and four, respectively.

Alternatively, a graph state |G〉 is defined as the common,
unique eigenstate with eigenvalue +1 of the set of stabilizers

Ka = σ a
x σ Na

z = σ a
x

∏

b∈Na

σ b
z (A2)

for each vertex a with its corresponding neighbors Na. Conse-
quently, we describe the central graph in Fig. 4 uniquely via
the stabilizers K1 = σ 1

x σ 2
z σ 3

z σ 4
z and K2 = σ 2

x σ 1
z σ 3

z σ 4
z , K3 =

σ 3
x σ 1

z σ 3
z and K4 = σ 4

x σ 1
z σ 2

z .

1. Local Clifford unitaries and Pauli measurements

Local transformations of graph states play a crucial role
in distributed settings. Many of them correspond to graphical
manipulations rules on the classical graph G, including local,
single-qubit Clifford operations and Pauli measurements. For
example, local complementation corresponds to applying the
unitary operator

√
Ka to the graph state |G〉. Graphically, a

local complementation on vertex a inverts the subgraph on the
neighbors of a. The lower-left corner of Fig. 4 demonstrates
a local complementation at qubit one, inverting the subgraph
consisting of the qubits two, three and four. A σz measurement
on qubit a is equivalent to deleting all edges incident to qubit
a, and a σy measurement on qubit a corresponds to a local
complementation followed by a σz measurement on qubit
a. Finally, a σx measurement on qubit a is implemented by
performing a local complementation on a neighbor b ∈ Na,
measuring a in σy basis and performing again a local com-
plementation on b. In Fig. 4 possible local Pauli basis mea-
surements on a graph state and their results are summarized.

2. State-extraction methods

It was shown in Ref. [50] that it is in general NP-complete
to decide if a graph state can be extracted from a given graph
state by local Clifford operations, local Pauli measurements
and classical communication. Several methods have however
been discussed to extract specific target states from resource
states in the past. We review two approaches to extract single
Bell states from a given resource state, where we refer to the
first one as the isolation strategy and the second one as the X
protocol [33].

a. Isolation strategy

The idea of the isolation strategy boils down to the isolation
of the shortest path between the Bell-state constituents by
performing Pauli Z basis measurements on the neighbors. To
establish the Bell state between the end vertices one mea-
sures all intermediate qubits along the isolated path using
Pauli Y or Pauli X measurements. This strategy has been
proposed by Raussendorf et al. [36] to isolate (circuit) wires
in a measurement-based quantum computer. This approach
comes with several disadvantages. First, it necessitates nu-
merous measurements in the Pauli Z basis to isolate the path,
introducing noise to the cluster state. Second, it fails to
preserve connectivity (in terms of entanglement) within the
cluster, as Pauli Z measurements essentially cut holes into

the cluster state. The latter might be problematic, especially if
the goal of a protocol corresponds to having multiple, parallel
Bell states.

b. X protocol

An alternative protocol to extract Bell states from a cluster
state has been proposed by Hahn et al. [33], referred to as
the X protocol. It first measures all qubits along the shortest
path in the Pauli X basis and then removes all qubits still
adjacent to the Bell state by Pauli Z measurements. Reference
[33] shows that the X protocol requires in the worst case
the same number of measurements as the isolation strategy.
Note that the butterfly network [51] is the smallest example
for the X protocol. Other works [34,35] have shown that a
staircase-formed measurement path should be preferred over
a straight path in a 2D cluster state, because it reduces the
remaining Pauli Z basis measurements to the initial neighbors
attached to the Bell pair. In the following section we report
the potential of the X protocol for establishing multiplexed
communication in a two-dimensional cluster state.

APPENDIX B: PROOF OF ZIPPER SCHEME

In this section we show that the zipper scheme restores the
structure of the remaining cluster state while creating a Bell
state between the two end qubits. We use the graphical and
set theoretical rules for Pauli measurements and local Clifford
operations from Refs. [46,47]. We consider a 2D cluster state
where we apply the zipper scheme along a diagonal path of
qubits, labeled from v1 to vn, to generate a Bell state between
the two end qubits b1 and b2 of the path, see also Fig. 5.
The measurements on the diagonal impact the neighborhood
along the path. We distinguish two kinds of qubits in the
vicinity of the measured qubits, namely, exclusive neighbor
qubits that are in the neighborhood of only one measured or
the Bell-state qubit, labeled with ei variables, and qubits that
are neighbors of at least two measured qubits on the diagonal,
labeled with ri variables. The leftmost subfigure in Fig. 5
sketches the situation for a diagonal consisting of six qubits.
In the following we explain the zipper scheme step by step by
starting with the Pauli X measurement of v1.

We recall from Appendix A 1 that a Pauli X measurement
on the qubit v1 corresponds to a local complementation on a
special neighbor (which we choose to be b1 ∈ Nv1 ), followed
by a Pauli Y measurement on the qubit v1 and another local
complementation on the special neighbor.

When measuring v1 the first step corresponds to a local
complementation on the selected, special neighbor, namely,
on qubit b1. This extends the edge set of the subgraph induced
by the neighbors of b1 to a fully connected subgraph on the
vertex set {e1, e2, r1, v1}, see the second subfigure in Fig. 5.
Note that this also extends the neighborhood of the measure-
ment qubit v1, which we virtually measure in the Pauli Y basis
next. We note that this virtual measurement corresponds to a
local complementation on v1 followed by a Pauli Z measure-
ment. The virtual Pauli Y measurement induces many changes
to the edge set of the graph, as one can see in the third subfig-
ure in Fig. 5. For example, the qubit r1 which was a neighbor
of two qubits along the measurement path gets detached from
both qubits b1 and v2 on the path. This implies that r1 is not a
direct neighbor neither to the qubits on the diagonal path nor
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Pauli X measurement

FIG. 5. Core of zipper scheme: The aim is to establish the Bell pair (b1, b2) with the zipper scheme on the diagonal v1 to v6, the initial
setting is shown in first step. The second step shows the result of a local complementation on the qubit b1, which enlarges the neighborhood
of v1. The next step shows the Pauli Y measurement on v1, which establishes the edge (b1, v2), necessary for the next measurement, as well
as the edge (r1, r2), necessary for restoring the cluster state, and it removes the qubit r1 from the measurement collective, which removes the
necessity to measure it in Pauli Z basis. The last step shows the final local complementation on b1, which restores a similar configuration as in
the initial step, merely r1 is replaced by r2 and the exclusive neighbors switch from b1 to v2 and from v1 to b1.

the Bell-state qubits. Furthermore, this circumstance removes
the necessity to measure it in the Pauli Z basis. Also, the
virtual Pauli Y measurement creates edges between the qubits
r1 and r2 as well as between b1 and v2, where the latter is the
key ingredient to continue with the X protocol. Finally, note
that exclusive neighbors hop from b1 to v2 and from v1 to b1.
The final step is another local complementation on the special
neighbor b1, which removes the fully connected graph of the
vertices {v2, r2, e3} from the graph state, see the last subfigure
in Fig. 5. This last step removes the edge between the next
qubit to measure v2 and r2, and thus, it restores a similar
setting as for measuring qubit v1. In this setting we find that r2

is a neighbor of the Bell-state qubit b1 and v3 in a similar man-
ner as r1 was for b1 and v2 in the previous step. Specifically,
since r2 is now in a similar situation as r1 was initially the
same observations outlined above apply when measuring v2.
In summary, when we measure the qubits v1 to vn, b1 connects
step-by step to the next qubit until it ends up connecting to b2.
The exclusive neighbors ei toggle between b1 and the qubit
to be measured v j in each measurement step j. Importantly,
all qubits ri detach from the measurement path and connect
with each other in such a way that they restore the underlying
cluster state structure. The exclusive neighbors ei accompany
the Bell states and measurement path until the very end which
results in the necessity to remove them in the end.

APPENDIX C: HORIZONTAL AND VERTICAL
TRANSPORT OF MULTIPLE DATA LINES

IN A 2D CLUSTER STATE

In this section we show how to transport n parallel Bell
states (A1, B1), . . . , (An, Bn) on a straight horizontal or ver-
tical line in a 2D cluster state. To implement such a parallel
transport, we first apply the zipper scheme to diagonally trans-
port the first data line (A1) to the last line (An). By using
the cluster state restoring property of the zipper scheme, we
transport in a second step the second data line (A2) to the
second last position (An−1) again via the zipper scheme. We
repeat this until we reversed the order of all lines, namely,
to (An, An−1, . . . , A1). Next, we apply the same measurement
strategy again. We observe that we recover the original order

of the lines through that. However, we note that we must keep
one qubit on each permuted line, resulting in n qubits between
the two measurement strategies, to have cluster states before
starting the second application of the zipper scheme. The final
step is to apply Pauli Y measurements to merge these interme-
diate qubits on each line in between to the create the final Bell
states. If we have a distance of N qubits between a Bell pair,
we can retrieve from a 2D cluster state at most O(N/2) Bell
states, and note that a fixed number of measurements, scaling
with the number of parallel lines, is required to transport
parallel lines. In Fig. 6 we show the measurement strategy
to transport four Bell states in parallel step by step. Notice
that in contrast with using the isolation strategy, there are no
disconnected lines between data lines. This implies (roughly)
a factor of two improvement in required resources to transport
multiple data lines in parallel.

APPENDIX D: STRAIGHT TO DIAGONAL ROUTING
OF MULTIPLE DATA LINES IN A 2D CLUSTER STATE

In this section we present the measurement pattern to
change from parallel to diagonal data lines of a quantum
data bus in a 2D cluster state. Applying the zipper scheme
to the last data line in a parallel transport together with the
restoration property of the zipper scheme enables to transport
the next qubit along the seam closed by the zipper scheme.
The top part of Fig. 7 depicts the result after switching the
direction of the last qubit of a horizontal quantum data bus
to diagonal (blue) using the zipper scheme. We transport the
second-last qubit now by measuring along the seam (red line)
produced by the zipper scheme of the last qubit in the first
step. The figure at the bottom of Fig. 7 shows the result after
the both qubits of the quantum data bus switched the direction
from horizontal to diagonal. Note that the length of the initial
path for the zipper scheme determines the number of qubits
for the transfer, where a length of 2n enables to transfer n
qubits. Furthermore, we note that this approach inverts the
order of data lines in the quantum data bus, similar to parallel
transport (see also Appendix C for more information).
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Pauli X measurement
Pauli Z measurement

repeat measurement pattern on right-hand side

Pauli Y measurement

FIG. 6. Measurement pattern for a four qubit parallel transport
in horizontal direction. The first three subfigures show the mea-
surement pattern used to achieve an inversion of order of the input
data. The fourth subfigure repeats the measurement strategy a sec-
ond time to revert this inversion. The last figure shows the final
result after performing the Pauli Y measurements on the intermediate
qubits.

APPENDIX E: “V”-TURN OF MULTIPLE DATA LINES
IN A 2D CLUSTER STATE

In this section we demonstrate the measurement pattern to
perform a “V”-turn of parallel data lines. It basically boils
down to applying the same measurement strategy as in the
previous section of Appendix D, i.e., to change from straight
to diagonal transport, just twice. In the top part of Fig. 8

Pauli X measurement
Pauli Z measurement

FIG. 7. Measurement pattern to change between parallel and di-
agonal information transport is shown. The qubit in the bottom of
the parallel line stack has been transported first by with the zipper
scheme. The next qubit in the stack is transported by applying the
zipper scheme along the seam, produced by the first application of
the zipper scheme.

Pauli X measurement
Pauli Z measurement

FIG. 8. Measurement strategy to perform a “V”-turn on two par-
allel data lines. Top sketch illustrates the application of the zipper
scheme along the blue, dashed path to propagate the bottom data line
to the top, and the next data line will be propagated to the top by
applying the zipper scheme along the red seam created the zipper
scheme. The bottom part sketches the “V”-turn after both data lines
have been brought up and the bottom line has been brought down. As
a final step the two qubits in the middle have to be merged by Pauli
X measurements.
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Pauli X measurement
Pauli Z measurement

FIG. 9. Pauli Z measurements are depicted by the yellow badges,
and those cut out the measurement path. By measuring the qubits
along the orange lines in the Pauli X basis, we achieve the splitting
of the three data lines.

we applied the zipper scheme along the blue, dashed paths
in order to propagate the bottom data line to the top. We
use the closed seam (red) of the zipper scheme, like for
straight-to-diagonal transport, to propagate the next data line
to the top. To propagate the qubits now from top to bottom
again, we apply the previous measurement pattern for all
data lines again, but now downwards in such a way that the
resulting paths correspond to a “V”. We note that we require
one intermediate qubit per line at the turning point to enable
the full functionality of the zipper scheme. In the bottom
part of Fig. 8 the intermediate result for a “V”-turn of two
parallel data lines to the top and one to the bottom is shown.
To turn around n data lines, a total number of 2(n × n) is
required.

APPENDIX F: MERGING AND SPLITTING OF DATA
LINES OF THE DATA BUS

We achieve a merging and splitting of the data lines that
constitute the quantum data bus by placing Pauli Z measure-
ments at appropriate positions. In Fig. 9 we show a splitting of
a three qubit data line bundle where the yellow measurements
correspond to Pauli Z measurements for cutting out the data
lines, which are merged subsequently by the orange Pauli X
measurements.

APPENDIX G: ZIPPER SCHEME
FOR ONE-DIMENSIONAL CLUSTER STATE

AND GHZ STATE EXTRACTION

In this section, we show how to apply the zipper scheme
to extract one-dimensional cluster states and GHZ states from
a two-dimensional cluster state. We point out that by using
insights from Ref. [52] together with our strategy we generate
GHZ states. The simplest way to extract a linear cluster state
from a two-dimensional cluster state is by applying the zipper
scheme and not measuring qubits on the path. In the first part
from the left part of Fig. 10 we show how to extract a GHZ
state or a three qubit linear cluster state from a 2D cluster state
by applying the zipper scheme along the purple measurement
path. However, we note that this comes with an increased
number of qubits we have to measure in the Pauli Z basis
(yellow qubit along the seam), because (green) edges to the
target state remain in addition to the (red) edges due to the zip-
per scheme. Overall, the additional Pauli Z measurements of
qubits reduce the connectivity in the remaining resource state.

1. Crossing of 1D cluster states and GHZ states

Choosing the locations of the qubits in a clever way enables
us to extract multiple linear cluster states by measuring along
a staircase path, similarly as discovered for Bell states. In par-
ticular, we split the staircase into two substaircase segments
such that the beginning and the ending of each stair segment

Pauli X measurement
Pauli Z measurement

FIG. 10. Linear cluster or GHZ extraction: In the first subfigure we apply the zipper scheme along a (purple, dashed) staircase-shaped path
to extract a one-dimensional cluster or GHZ state (purple qubits) from the 2D cluster state by keeping intermediate qubits unmeasured, and
measuring additional qubits (yellow) within the Pauli Z basis. In the middle we demonstrate that the remaining cluster state, due to the zipper
scheme, enables to extract two one-dimensional cluster or GHZ state adjacent to each other. In the right part an additional one-dimensional
cluster or GHZ state (turquoise) is extracted orthogonal to two established states.
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look in the opposite direction. From that condition follows
directly that half of the staircase qubits cannot be chosen
if we want to measure parallel staircases directly adjacent.
Furthermore, if we choose the remaining qubits at the same
position for all parallel staircase paths, we only have to re-
move a single exclusive neighbor for each qubit we keep in the
linear cluster state. In the middle part of Fig. 10 two parallel
linear cluster or GHZ states of size three are extracted by
two substaircase measurement paths from a two-dimensional
cluster state, whereas the yellow qubits need to removed from
the target states by Pauli Z measurements.

Moreover, we can still extract further linear cluster or GHZ
states orthogonal to first ones from the resulting resource state,

but the total number of crossing linear cluster states reduces
by the number qubits unmeasured on the path. In the right
part of Fig. 10 we show a single linear cluster or GHZ state
(turquoise) crossing the two already established ones. Another
(yellow) qubits needs to be removed, when we extract the
orthogonal linear cluster states.

In summary, using the zipper scheme to distill a lin-
ear cluster or GHZ state from the 2D cluster works, but
demands a measurement for each additional qubit we add
to the linear cluster state. Additionally, the generation of
GHZ states [52] with more than three qubits from the lin-
ear cluster state requires approximately half of the qubits to
measured.
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