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Correlating light fields through disordered media across multiple degrees of freedom
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Speckle patterns are inherent features of coherent light propagation through complex media. As a result of
interference, they are sensitive to multiple experimental parameters such as the configuration of disorder or the
propagating wavelength. Recent developments in wavefront shaping have made it possible to control speckle
pattern statistics and correlations, for example using the concept of the transmission matrix. In this article, we
address the problem of correlating scattered fields across multiple degrees of freedom. We highlight the common
points between the specific techniques already demonstrated, and we propose a general framework based on the
singular value decomposition of a linear combination of multiple transmission matrices. Following analytical
predictions, we experimentally illustrate the technique on spectral and temporal correlations, and we show that
both the amplitude and the phase of the field correlations can be tuned. Our work opens up new perspectives in
speckle correlation manipulation, with potential applications in coherent control.
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I. INTRODUCTION

The propagation of coherent light through a scattering
medium results in a complex interference pattern generally
called “speckle” [1]. Speckle patterns are very difficult to
predict and are affected by many experimental parameters: the
medium itself, the wavelength or angle of illumination, and,
in the case of pulsed light, the propagation time [2,3]. Be-
cause of their complexity and apparent randomness, speckle
patterns are often perceived as an inconvenience. Scattering
is a major limitation for imaging both through weakly and
strongly diffusive media. Examples of the former are ubiq-
uitous in astronomy [4], and those of the latter in biomedical
imaging [5].

To overcome difficulties due to scattering, present-day
techniques frequently take advantage of correlations such as in
the so-called “optical memory effect” (ME), which facilitates
image reconstruction [6–9] such as in speckle scanning mi-
croscopy [10,11]. Resulting from a small perturbation of the
speckle pattern [12,13], the ME is responsible for maintaining
the specific shape of a given speckle pattern when tuning an
experimental parameter within a small range (memory effect
range). In a disordered system, however, a whole variety of
different parameters can be tuned, resulting in many variants
of the ME. The best known ME for scattering media is the
tilt-tilt ME [7,14], generalized by [15] to tilt-tilt and shift-shift
MEs. But the ME also involves other degrees of freedom
as illustrated by the recent observation of spectro-axial MEs
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[16,17]. The ME’s limited range, however, drastically re-
stricts its applicability. This range depends on the medium
and is inversely proportional to its thickness so that it is
often too small to improve imaging through thick scattering
media. Several previous studies have characterized the ME
[7], aiming to extend its range either by input or output
light selection [18–20] or by engineering specific metasur-
faces [21,22]. However, little effort has been made so far to
engineer it.

A versatile approach to the study of complex media is
to use wavefront shaping tools and techniques. Using spatial
light modulators (SLMs), the incoming beam can be shaped to
control the propagation of light. These techniques allowed in-
troducing non-normally occurring properties [23] into speckle
patterns as tailoring their statistics through iterative algo-
rithms [24,25] or focusing light behind them [26]. Another
approach is to measure the transmission matrix (TM) [27]
of the system. The TM makes it possible to determine the
input state that focuses light behind the medium [28] or to
modulate the energy delivery distribution using its singular
modes [29]. Nonlocal correlations of the output field are also
possible by appropriate filtering of the Fourier components
of the TM [30]. Furthermore, transmission control with a
TM, initially developed in monochromatic light, can even
be extended to pulses [31,32]. Recently, wavefront shaping
has been used to create adaptable and reconfigurable MEs.
To our knowledge, three techniques have been presented for
this purpose. Related to the conventional tilt-tilt ME, the au-
thors of [33] construct an operator to customize the angular
memory effect. In [34–37], eigenmodes of the Wigner-Smith
operator are used to create speckle patterns resistant to fre-
quency variations [38]—a manner of frequency ME. Finally,
in [39], the authors manage to relate the output fields when
light is propagating through air or a scattering medium. One
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thing all of the techniques have in common is that they rely
on a specific TM-based-operator that combines the informa-
tion for two propagation schemes (i.e., angle, wavelength,
and disorder, respectively). They then use the eigenvectors
of this operator as wavefront inputs. However, so far this
approach is limited to a single type of correlation and two
output fields. For the imaging applications based on ME men-
tioned above, an extension of the current control over the
scattered field would improve the speed and accuracy of image
reconstruction.

In this article, we address the lack of a robust and unified
method for inducing speckle correlations behind a com-
plex medium. We present a general method for on-demand
control/modulation of correlations between any number of
speckle patterns. To do so, we take advantage of the singu-
lar value decomposition (SVD) of a linear combination of
different TMs. We first present and apply this technique to
the hitherto unexplored temporal domain by correlating the
fields for two distinct delays in a pulse (Sec. II). We present an
analytical model that allows us to predict the magnitude of the
correlation. We highlight its correspondence with experimen-
tal data in a monochromatic scheme to illustrate the generality
of the method (Sec. III). Moreover, taking advantage of the
Fourier relation between time and frequency, we investigate
periodic correlation in the temporal (spectral) domain that
arises when generating the input state with information from
spectral (temporal) measurements (Sec. IV). Finally, we gen-
eralize this effect by presenting the correlations obtained
when mixing spectral and temporal information by calculating
the input state from the singular value decomposition of the
sum of a monochromatic TM and a time-gated TM.

II. EXPERIMENTAL EVIDENCE WITH TIME-GATED
TRANSMISSION MATRICES

A. Concept

Let us start by considering the following problem: one
measures two transmission matrices T1 and T2 associated with
two different experimental conditions. How should one shape
the input field such that in both cases it leads to the same
output? In a suitable mode basis this output field is described
by a vector that results from a corresponding input field
vector X :

T1X = T2X. (1)

We consider Eq. (1) as the problem of finding a vector in the
kernel of T1 − T2. When the matrices T1 and T2 are unitary,
this is equivalent to finding an eigenvector of T1T †

2 , as studied
in [39]. However, in the general case (nonunitary), our method
assures that we will find the solution if it exists. We compute
the kernel of T1 − T2 through its singular value decomposi-
tion, which even allows us to deal with rectangular matrices,
and yields two output fields that are perfectly correlated [cor-
responding to a correlation value of 1; see Eq. (2)].

B. Experimental implementation

We first test this hypothesis to generate temporal speckle
correlations. To this end, we send short pulses (100 fs) to a
scattering medium (TiO2 layer suspended on a glass coverslip)

and we measure the intensity on the sample output plane with
a CCD camera [see Fig. 1(a)]. To extract the scattered and
elongated transmitted pulse, part of the incoming pulse is
diverted to a delay-line that we interfere with the transmitted
light following the approach of [40,41]. By varying the length
of the delay-line, we measure the interference for specific
delays on the camera and apply filtering to access the temporal
field information. Using this time-gated experimental setup
(the details of which are presented in Appendix A) together
with a SLM to control the light impinging on the scattering
medium, we can measure time-gated TMs and obtain tem-
poral control over the transmission of an incoming pulse of
light [31]. The TM measurement is performed following the
approach of [27], where the camera images are binned such
that one speckle grain (defined as the width of the autocor-
relation of the amplitude speckle) corresponds to one output
mode. The fields then used for the analysis are binned in the
same manner, with no significant difference with respect to
nonbinned fields; see Appendix F.

C. Results

Correspondingly, we measure two time-gated TMs, T1 and
T2, at delays of t1 = 0.9 ps and t2 = 1.7 ps, respectively. Once
the TMs have been measured and normalized with respect to
their intensity, we calculate their difference (the normalization
allows the two TMs to have the same weight whatever their
measured delay in the pulse) and the singular value decompo-
sition of T1 − T2. We then select the singular vector associated
with the smallest nonzero singular value (corresponding to a
normalized value s̃ = s/

√
〈s2〉 of 0.1), denoted by vmin, and

we display its phase on the SLM to modulate the incoming
field. We extract the temporal evolution of the pulse for this
modulation scheme. The spatially averaged amplitude of the
recorded field is shown in Fig. 1(b). To study the relationship
between the recorded electric fields E (t ), we correlate the
fields measured for all delays with the field measured at t1 and
denote the correlation obtained, Ct1 . We use the correlation
function

C(Ei, Ej ) = E†
i E j√

E†
i EiE

†
j E j

, (2)

where Ei ≡ E (ti ) are complex fields (to get Ct1 , ti = t1 and t j

varies). We plot in Fig. 1(c) (top) the evolution of the absolute
value of Ct1 . For the plane-wave input (black dashed line), the
value reaches 1 for t = t1 and decreases to reach 0 for a delay
longer than the temporal speckle grain width. However, for the
shaped input vmin, another peak is observed at t2 indicating
increased correlation. To highlight the characteristic of vmin,
Fig. 1(c) (bottom) represents the excess correlation of Ct1 ob-
tained by subtracting the reference value. To provide a global
visualization of the correlations between all delays t, t ′, we
plot in Fig. 1(d) a two-dimensional (2D) excess correlation
graph (simply named a 2D correlation graph in the follow-
ing) with axis [〈t〉 = (t + t ′)/2,� = |t − t ′|]. The normalized
excess correlation value is given by a color scale, and its
position in the 2D graph indicates the relative and absolute
values between t and t ′. Only one correlation peak is visible
at the expected position [i.e., t0 = (t1 + t2)/2 = 1.3 ps and
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FIG. 1. Experimental illustration of temporal speckle correlations engineering. (a) Schematic of the experimental setup. The light delivered
by a laser is split into two paths with a half-wave plate (λ/2) and a polarized beam splitter (PBS): (i) signal where the wavefront is modulated
by a reflective phase-only SLM and passes through a layer of TiO2 [focused with microscope objectives of 0.4 numerical aperture (NA)]; (ii)
delay line introducing a delay τ . Both paths are recombined with a beam splitter (BS) and their interference, cleaned from the unscattered
light with a polarizer (P), is imaged on a CCD camera. (b) Averaged temporal amplitude of the field measured behind a thick layer of TiO2

when illuminated by a laser pulse of 100 fs. The black curve corresponds to the field when a blank pattern is displayed on the SLM, whereas
the green curve results from the display of vmin (singular vector associated with the smallest singular value of T1 − T2). The time-gated TMs
are measured with NSLM ≈ 620 modes on the SLM and NCCD = 225 pixels on the CCD-camera at t1 and t2. The camera pixels are always
binned to have one speckle grain per pixel, except in the images of the field amplitude presented in the insets (for visualization purposes).
(c) Top: Temporal evolution of the absolute value of the field correlation with respect to t1 for both the blank SLM pattern (black dashed curve)
and for vmin. Bottom: subtraction of the reference correlation to highlight only the anomalous correlation increases. (d) 2D representation of
the correlations to observe simultaneously all the correlations [with subtraction of the reference as in the bottom of Fig. 1(c)]. For symmetry
reasons, only � = |t − t ′|, i.e., spacing between the two correlated delays, is represented as a function of 〈t〉 = (t + t ′)/2, which is the mean
value of the two correlated delays. A correlation increase is observed for � = |δt | = |t2 − t1| and 〈t〉 = t0 = (t2 + t1)/2. Data are averaged
over four realizations of the medium.

δt = |t2 − t1| = 0.8 ps] confirming that only the correlation
between these two times is enhanced. Note that the correlation
between t1 and t2 is lower than 1, despite what one could
expect from Eq. (1). This is due to the experimental limitation
of phase-only control of the SLM [see Fig. 3(a)].

III. THEORETICAL EXPECTATIONS
AND EXPERIMENTAL VERIFICATION

The above experimental results are consistent with the
search for the kernel of T1 − T2. However, output fields of
singular vectors associated with small singular values have
reduced transmission and are more subjected to noise. For
our approach to be relevant for applications (e.g., imaging),
it needs to combine high transmission and high correlation.
We thus consider the field correlation obtained by modulating
the incoming wavefront with singular vectors associated with
singular values larger than zero and especially the largest one,
vmax. Significant correlation values are also observed in this
case, as visible in Fig. 2. Thus, to understand the observa-
tions, more accurate modeling is needed. In the following,
we present a general study of the eigenvalue problem for
T1 + eiαT2, where α is an arbitrarily fixed phase (recovering
the previous case for α = π ). It is important to keep in mind
that this mathematical approach corresponds, from a more
physical point of view, to determining the wavefront of the
input field that favors specific interferences. In this case, the
interference leads, behind the complex media characterized
by T1 and T2, to related fields. This is quite similar to the
usual wavefront shaping experiments, while here the research
is complicated by taking into account not only the propagation
information contained in a single TM but in two of them. The
singular value decomposition of T1 + eiαT2 is equivalent to the

eigenproblem of the following matrix product:

(T1 + eiαT2)†(T1 + eiαT2) = T †
1 T1 + T †

2 T2 + eiαT †
1 T2

+ e−iαT †
2 T1. (3)

Describing TMs as random matrices [27], we derive in Ap-
pendix G 1 based on Eq. (3) the expected correlation value as
a function of the singular values s (Xs is the singular vector

FIG. 2. Comparison of the absolute value of the correlations
when displaying on the SLM different singular vectors for ex-
perimental data (for TMs of size NCCD = 225 and NSLM ≈ 680),
simulations, and analytical predictions. All correlations are plotted as
a function of the normalized singular values s̃. The experimental data
are represented by the blue dots. The analytical prediction of Eq. (4)
using the experimental TMs and random matrix theory (RMT) is
shown with the black dotted line, and the simulations are shown
with the orange lines. Experimental data are averaged over four
realizations of the medium.
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FIG. 3. Impact of the relative phase α between the TMs on the field correlations. (a) Simulation using 1024 × 1024 random matrices. Plot
of the real part of the correlation for many values of α for phase and amplitude control (solid line) and phase-only control (dotted line). The
data are averaged over four matrix realizations. (b) Experimental result of two-wavelength correlations for α = 0 (brown), α = π (purple),
and blank input pattern (dotted black). TMs are measured for NCCD = 225 and NSLM ≈ 550, the input vector is vmax, and the data are averaged
over four realizations of the medium. (c) Imaginary part of the correlations as a function of the real part for a set of values of α for the same
experiment as in (b). The central black dot corresponds to the blank input pattern.

associated with the singular value s),

C(T1Xs, T2Xs) = e−iα · s̃2 − γ

s̃2 + γ
, (4)

where γ ≡ NCCD/NSLM is defined as the ratio between the
degree of freedom and the number of controlled modes. We
begin by comparing the analytical model with simulations
(including the experimental phase-only constraint) and ex-
periments in Fig. 2 for no dephasing between the TMs. We
set α = 0 and plot the absolute value of the correlation. The
experimental data (blue dots) correspond well to the analytical
predictions (black dotted line) as well as to the simulations
(orange solid line). [For a rapid comparison, it is easy to
verify that the correlation cancels when s̃ = √

γ as predicted
by Eq. (4).] A perfect correspondence is not expected because
Eq. (4) is a prediction for full modulation of the wavefront.
The combination of experimental errors and the use of only
the singular vector’s phase to shape the incoming light leads
to a lower measured correlation.

In addition to giving access to the correlation value, Eq. (3)
illustrates an important aspect of the method: the existence of
two sets of terms. The first set (T †

1 T1 + T †
2 T2) corresponds to

a control at the dedicated time-delays t1 and t2. The second
set, consisting of the cross information of the TMs, (T †

1 T2 +
T †

2 T1), contains the coupling between T1 and T2, which pro-
vides the key to control the correlations (see Appendix D). As
the induced correlations come from the cross terms only, it
is possible to construct the correlation operator directly from
this expression. Note that this is a symmetrized form of the
approach of [39].

So far, we have focused on the absolute value of the
correlations, independently of their phase. However, Eq. (4)
highlights the possibility of controlling the phase α between
the two fields. To explore this aspect, we performed field
measurements and simulations by varying the relative phase α

between two combined TMs. Figure 3(a) presents simulations
in agreement with Eq. (4). The real part of the correlation
as a function of the normalized singular values is plotted for
different values of the parameter α. For α = 0 or π the corre-
lation is real (with opposite signs) and therefore the real part is

extreme, while for intermediate values an imaginary part
exists. The possibility of reaching a correlated or anticorre-
lated field is experimentally illustrated in Fig. 3(b) where two
monochromatic TMs are measured at λ1 = 806 nm and λ2 =
810 nm. They are combined with α varying between 0 and 2π .
For all values of α, the SVD is calculated and the phase of vmax

is displayed on the SLM to shape the input beam. The wave-
length is smoothly tuned from 800 to 816 nm while recording
the field. The real part of the correlation with the field mea-
sured at 806 nm is plotted as a function of λ. We observe a
correlation when α = 0 (brown solid line) and an anticorre-
lation for α = π (blue solid line). All intermediate values are
plotted in the complex plane of Fig. 3(c) and compared to an
input plane wave (black dot). We have thus demonstrated that
the SVD approach allows us to control the amplitude of the
correlation by selecting the singular vector according to the
associated singular value [radius of the circle in Fig. 3(c)] and
the relative phase α of the fields by fixing the relative phase
of the TMs [position on the circle in Fig. 3(c)] for a given
parameter of interest (time-delay, wavelength, etc.).

A practical aspect of the above SVD approach is the
symmetric roles that the two TMs naturally play. Based
on this symmetrized operator form, an extension to more
than two field correlations is straightforward. To illustrate
this point, we measure three time-gated TMs (measured for
delays of 1.3, 2, and 2.7 ps), sum them, and calculate the
SVD of the new matrix T1 + T2 + T3. The 2D correlation
plot corresponding to the sending of the singular vector as-
sociated with the highest singular value (vmax) is presented
in Fig. 4. One can observe three correlation peaks (corre-
sponding to the number of combinations of two TMs in a
set of three) located at [t0 = (t1 + t2)/2 = 1.65 ps, δt = t2 −
t1 = 0.7 ps], [t0 = (t1 + t3)/2 = 2 ps, δt = t3 − t1 = 1.4 ps],
and [t0 = (t2 + t3)/2 = 2.3 ps, δt = t3 − t2 = 0.7 ps]. Slight
increases are also visible for near-zero |δt | values, resulting
from an intensity-induced artifact detailed in Appendix B.
Note that increasing the number of correlated fields unsur-
prisingly decreases the degree of correlations achieved. The
derivation of the scaling of the correlation with the number of
TMs is presented in Appendix G 2.
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FIG. 4. Field correlation for three distinct delays in the pulse.
Measurement of the TMs, calculation of the SVD of (T1 + T2 + T3)
and measurement of the temporal field correlation displayed with a
2D correlation plot. The data are averaged over four realizations of
the medium.

It should be noted that the experiments are either per-
formed with pulsed light correlating different delays (Figs. 1,
2 and 4) or monochromatic light taking the wavelength as
a variable parameter [Figs. 3(b) and 3(c)] to illustrate the
claimed versatility of the approach. Furthermore, additional
experiments are presented in Appendix F, showing that fields
can also be correlated after propagation through different dis-
orders, generalizing [39] for any pairs of scattering media. In
the following, we show how to further customize the correla-
tion of the fields.

IV. CROSS-EFFECTS

We now take advantage of the particular link between time
and frequency, which are conjugate quantities. The idea is to
create spectral (temporal) speckle correlations merely using
temporal (spectral) information. We expect such an approach
to be useful from the imaging perspective when one domain
is easier to access or faster to characterize than the conju-
gate one. The information is obtained here by measuring the
monochromatic or time-gated TMs and by calculating the
input state of interest as described above. However, we no
longer measure the field directly by varying the wavelength or
the delay, but we change the laser settings so that we measure
the evolution of the field for the conjugate quantity. In the
case of operating from time (characterization of the TMs) to
frequency (measurement of the correlations), the procedure is
as follows: (i) measure the two time-gated TMs at delays t1
and t2; (ii) compute the SVD of their sum; (iii) modulate the
field according to the singular vector of interest (vmax); (iv)
change the laser settings and measure the field and correla-
tions varying the illumination wavelength. The experimental
results for both cases (i.e., frequency to time and time to
frequency) are presented in Fig. 5. The application of beam
shaping results in a periodic modulation of the field correla-
tions, well observable in terms of the checkerboard appearing
in the 2D correlation plot presented in Figs. 5(a) and 5(c).
The period of the modulation is related to the spacing of the

FIG. 5. Experimental observation of cross-effects. (a), (b) Time to frequency: measurement of two time-gated TMs at t1 = 0.9 ps and
t2 = 1.7 ps for observing the spectral variations when displaying vmax and tuning the wavelength. The expected period of the modulation
is δλ = λ2

0/(cδt ) = 2.7 nm. (a) 2D correlation plot where (b) represents the amplitude modulation A1 of the singular vector divided by the
amplitude Aref when sending a blank SLM pattern. The gray vertical dashed lines illustrate the expected spacing of the peaks. (c), (d) Frequency
to time: measurement of two monochromatic TMs at λ1 = 805.5 nm and λ2 = 810.5 nm and for temporal field control when the sample is
illuminated by pulses. The expected period of the modulation is δt = λ2

0/(cδλ) = 0.4 ps (see vertical dashed lines). (c) 2D correlation plot
where (d) represents the amplitude modulation (the black dotted line corresponds to the reference amplitude). In both cases (frequency to time
and time to frequency) the TMs are measured with NSLM ≈ 2180 and NCCD = 225 with the data being averaged over four realizations of the
medium. (e), (f) Extension of the correlations by varying different parameters. Two TMs with NSLM ≈ 2220 and NCCD = 225 are measured;
one is time-gated and one is acquired in monochromatic illumination. 2D correlation plot for (e) a temporal scan and (f) a monochromatic scan
when displaying vmax. The effect being weaker than for the observations in (a) and (b), the data presented are averaged over eight realizations
of the medium.
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frequencies (delays) of the TMs and is given by δλ = λ2
0/(cδt )

[δt = λ2
0/(cδλ)]. These correlations of the fields are accompa-

nied by amplitude peaks of the same period. The application
of beam shaping results in a periodic modulation of the field
amplitude, as can be seen in Figs. 5(b) and 5(d). Note that
the correlation checkerboard pattern is the generalization to
many correlated delays of the peaks observed in the three
delays experiment presented in Fig. 4 but with the advantage
of retaining a high correlation value. A very interesting aspect
of the generation of multiple temporal correlations using fre-
quency measurements is therefore both the drastic reduction
of the measurement time and the fact that we retain a high
correlation value where a sum of several TMs would have
led to its non-negligible reduction. The latter advantage is
also valid for the reciprocal experiment. The effect of the
relative phase α between the TMs for the cross experiment
is discussed in Appendix E.

To further extend the possibilities of this technique, in
the following we present experiments in which we relax the
constraint of investigating invariant modes of only one type
of ME at a time. The combined TMs can now be measured
in different experimental configurations (not only varying a
parameter in one given configuration). We choose here to
combine a monochromatic TM and a time-gated TM. The
monochromatic TM is measured at λ = 808 nm and the time-
gated TM is measured at a 1.3 ps delay in the pulse for the
same central wavelength. Their sum is performed and the
phase of the leading singular vector is displayed on the SLM
to modulate the incident beam. Field correlations are extracted
and presented in Figs. 5(e) and 5(f) from a pulse scan (e) and
a monochromatic scan (f). In both cases, in the 2D correlation
plot, correlation lines are observed. We observe a “V-shaped”
correlation whose tip lies at t1 (λ1) for δt = 0 (δλ = 0). This
particular correlation indicates that all speckles at different de-
lays (frequencies) are all partially correlated with the speckle
at t1. Indeed, in this experiment, as for the cross effect, the
correlations are spectrally and temporally delocalized. Here,
the sum of the two TMs relates the field information for
wavelength λ1 and delay t1. The interpretation is therefore as
follows: for all delays, a part of the speckle, with wavelength
λ1, is correlated to the speckle at t1. The measured slope of
2 is expected because the horizontal axis shows t0 instead of
the delay itself. This result is particularly interesting because
it means that a spectrally selective correlation is feasible in the
pulse.

Extending the field correlation with the SVD to any type
of TM makes our approach very practical and promising for
future applications. For example, one could consider combin-
ing a TM with a reflection matrix. Such a choice of matrices
provides us with a new experimental tool to investigate how
the electric field gets distributed and eventually stored inside
a complex medium [42] by constraining the reflected and
transmitted fields to be the same.

V. DISCUSSION AND CONCLUSION

We present here a very general method to correlate two or
more fields behind a scattering medium with the knowledge
of TMs. Our approach relies on the natural mixing of infor-
mation that occurs in the SVD of a linear combination of TMs

and on the sorting of the singular vectors by the corresponding
singular values. We show that the resulting correlation con-
trol is broadly applicable, grants full control of the real and
imaginary parts of the correlation, and is determined by the
distribution of singular values. With the modulation of phase
and amplitude, even a perfect correlation (or anticorrelation)
is possible. Due to its generality, our approach applies to
different illumination configurations such as pulsed light or
different wavelengths in monochromatic illumination; also
extensions to other experimental platforms such as multimode
optical fibers [43] can be considered. Moreover, our approach
is not limited to classical sources since all the techniques used
here are also applicable to single photons [44]. For example,
maintaining and engineering correlations between entangled
photons, usually scrambled in scattering media, would be
extremely valuable for understanding fundamental questions
or for developing quantum technologies [45]. Finally, because
of the many analogies and techniques shared with acoustics
or microwaves, our approach should not be restricted to optics
[46–48].

This flexible and wide extension of the range of field cor-
relation paves the way for engineering the memory effect at
will, with all the practical implications that this entails. Most
promisingly, the correlations are achievable independently of
the natural ME range of the medium—which is typically very
small for thick scattering samples, like the one used here.
Taking advantage of the phase of the correlations may there-
fore prove to be an asset for imaging biological tissues, for
example in the context of structured illumination techniques
[49].

A central point in the field of scattering through complex
media is that wavefront-shaping techniques can turn these
media into arbitrary optical elements [26,50–52]. Here the
joint control of the intensity and correlations of the field at
the output of the medium goes further by opening the way to
coherent control. Our technique makes it possible to create a
source with adjustable scattering properties. When used with
pulsed light, the structured pulse and repetition of the same
pattern at fixed intervals are ideal for pump-probe experi-
ments, where the ultrafast switching of a shaped wavefront
is highly desirable [53]. For these latter experiments, it is very
interesting to note that the presence of the scattering medium
allows the illumination to be modulated at a higher rate than
the initial pulse repetition rate.
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APPENDIX A: EXPERIMENTAL SETUP
AND MEASUREMENT TECHNIQUES

The experimental setup used for all experiments is pre-
sented Fig. 6. The laser, MaiTai HP Spectra Physics, can
be used directly in pulsed mode (Gaussian pulse with a full
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FIG. 6. Schematic of the experimental setup. The light delivered
by a laser (MaiTai HP, Spectra Physics) is split into two paths by a po-
larizing beam splitter (PBS). In one path, the wavefront is modulated
by a reflective phase-only SLM (HSP512L-1064, Meadowlarks) and
passes through a layer of TiO2 (transmittance of ∼0.16, suspended
on a glass slide). The second path is a controlled delay line. The
light from both arms is recombined on a beam splitter (BS) which is
imaged on a CCD camera (Manta, G-046, Allied Vision). A polarizer
(P) located before the camera selects the desired polarization.

width at half-maximum of 	100 fs) or turned into a tunable
monochromatic source. In both uses, the input light is di-
vided into two beams whose relative intensity is modulated
by a half-wave plate. Each beam follows a different path
to allow interferometric measurements. One arm, whose de-
lay can be adjusted using a delay line, is used as a simple
reference in the case of monochromatic light or as a probe
pulse in the case of incoming pulsed light. On the second
arm, the wavefront is spatially distorted (and also temporally
distorted when sending pulses) by its propagation through
a scattering medium. A phase-only SLM (HSP512L-1064,
Meadowlarks) allows the wavefront to be spatially controlled
upstream of the scattering medium. Behind the medium, the
two beams are recombined and their interference is imaged
on a CCD camera (Manta, G-046, Allied Vision). A polarizer
is placed in front of the camera to select only the multiple
scattered light. The field is recovered from the intensity im-
ages using a discrete or continuous phase-stepping holography
technique [31].

The diffusing medium used is a layer of TiO2 with a
transmittance of ∼ 0.16, suspended on a glass slide. The
illumination microscope objective focuses the light on the
sample, and the collection microscope objective associated
with a lens images the output surface of the medium on the
camera. Averaging is performed by moving the scattering
medium laterally to illuminate different regions of the sample.

To measure TMs, we follow the approach of [27]: we
display a set of modes (Hadamard basis, each pixel being
either 0 or π ) on the SLM and record the output field, using
a phase-stepping technique, on the camera. The camera pixels
are binned so that one pixel corresponds to one speckle grain
(defined as the width of the autocorrelation of the amplitude
speckle). The number of camera pixels (after binning) is de-
noted NCCD. On the SLM side, we determine the region of the
SLM from which the light passes through the optical setup

and is collected. Only this region of the SLM is modulated and
the number of modes effectively controlled is denoted NSLM.
Interference occurs with unmodulated light propagating along
the reference arm of the setup. This method is applied to all
measurements of TMs regardless of the nature of the incoming
light. For time-gated measurements, using short pulses, the
position of the delay-line determines the gated time whose
information is measured. In contrast, for our monochromatic
settings, the length of the reference arm is usually not criti-
cal. However, due to the bandwidth of the source (full width
at half-maximum of 1 nm), some precautions must be taken
when measuring two time-gated TMs to perform the cross
measurement in frequency. Indeed, in that case, the position
of the stage is not fixed by the experimental protocol. It is
important, when scanning the frequency, to position the delay
line at the value of either of the time-gated TMs. Otherwise, an
additional phase difference occurs for the field measurement,
and correlation lines for δλ = cst. appear in the 2D correlation
plot. This effect is not intrinsic to the method we present and
can be simply observed when measuring a single time-gated
TM displaying one vector of its SVD on the SLM and looking
at the field correlation for monochromatic light when varying
the wavelength.

APPENDIX B: IMPACT OF INTENSITY
ON CORRELATIONS

As visible in the correlation formula given in Eq. (2)
of the main text, the correlated fields are normalized to
avoid intensity-induced artefacts. However, this does not fully
prevent intensity changes from influencing the correlation
measure. For example, imagine a system with a TM that
continuously changes in time. For a random input, the output
state of this TM will show the same temporal correlations as
the matrix itself. Yet, if we calculate the output generated by
the first singular vector of the TM at a given point in time
t0, we see that its temporal correlations are wider [Fig. 7(a)].
Does this mean that the output of the singular vector is more
stable in time? It does, but the effect is only due to the in-
tensity enhancement associated with the first singular vector
[Fig. 7(b)]. As the output speckle at this point in time has
a much higher intensity, it also has a higher contribution at
neighboring times. This is something the normalization in
Eq. (2) does not account for.

To understand that this is solely caused by intensity vari-
ations, let us consider an even simpler example: A TM
that is composed of only two components with linearly
changing weights T ∝ T1(1 − t ) + T2t . Also here, a random
input decorrelates faster than the first singular vector of T1

[Fig. 7(c)]. However, if we construct an artificial random out-
put with the temporal evolution r = 2r1(1 − t ) + r2t , given
that r1,2 are random vectors, we observe the same temporal
correlations as for the singular vector output. This shows that
simply by matching the intensity evolution of the singular
vector output state, we could reproduce the same correlation
feature [Fig. 7(d)]. Therefore, here the enhanced correlations
are only due to intensity differences and not inherent to the
SVD.

In the measurements, this effect is visible for small δt
or δλ, for example, in Figs. 4 or 9. However, it only acts
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FIG. 7. Correlations induced by intensity variations. The TMs are of size 256 × 256 and sampled every 0.1-time unit (a), (b) or 0.03 (c),
(d). (a) Field correlations between t = 0 and other times for a random input (blue) and the singular vector associated with the largest singular
value of the TM measured at t = 0 (first SVD, red). (b) Total intensity for the same data as in (a). (c) Field correlations for a random input
(blue), the singular vector associated with the largest singular value (red), and an artificial random input having the same time evolution as
the TMs (dashed yellow). (d) Intensity for the same data as in (c). The data are averaged over 20 realizations of the disorder (a), (b) and 10
realizations (c), (d).

on scales of the temporal decorrelation length and does not
affect the long-range correlations investigated in this work.
This can be seen in Fig. 1 of the main text. There, field
correlations are observed between two different delay times
in the pulse that show a slightly reduced intensity. This
leads to a decreased width of the speckle autocorrelations
around these times, i.e., the inverse of the effect explained
in Fig. 7. In the 2D representation of the correlations

presented in Fig. 1(c), this manifests as two dark spots around
t0 = t1,2 but does not affect the SVD-induced correlations at
larger δt .

Note that the intensity artifacts described here occur in
complex media where the speckle pattern and the transmitted
intensity vary. In the case of multimode fibers, where the
transmission is generally constant, we do not expect these
effects to play a significant role [37].

FIG. 8. Evolution of the appearance of the correlation plot when the delay time between the two measured time-gated TMs (NCCD = 225
and NSLM ≈ 680) is modified from 0.4 ps (a) to 3.2 ps (d) while keeping the same central position. The correlation peak appears at a fixed t0 but
with a |δt | that varies with the relative position of the time-gated TMs. The full correlation is only plotted in (b), whereas on the other graphs,
only the area of the dashed red rectangle is shown. The data are not averaged.
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FIG. 9. Importance of the SVD terms coupling the two TMs.
(a) SVD of (T1 + T2) and (b) coherent sum of the phase masks
obtained from the SVD of (T1) and the SVD of (T2) performed
separately. The top parts represent the pulse shape in both cases. The
intensity-induced correlations are visible on the 2D correlation plot
at the bottom. No further correlations are present in the coherent
sum case (b) whereas one appears for |δt | = 0.8 ps in (a). TMs
are measured NCCD = 225 and NSLM ≈ 570. Data averaged over four
realizations of the medium.

APPENDIX C: EVOLUTION OF THE EFFECT
WITH THE TEMPORAL DELAY BETWEEN TMs

To illustrate the variation of the position of the peak in the
correlation plot, a set of experiments is performed keeping
the same central time (t0 = 2.6 ps) but varying the delay δt
between the two time-gated TMs. The results are presented
Fig. 8. The correlation peak moves at a fixed t0 along |δt |.

APPENDIX D: DIFFERENCE WITH MASKS SUM
AND CORRELATION TECHNIQUE

To emphasize the importance of the cross terms in Eq. (3)
in the main text, we compared the correlations and pulse
shapes of the following two situations. For Fig. 9(a), the
usual procedure of this work is applied, i.e., we measure two
time-gated TMs at two different times in the pulse, add them
together, and perform the SVD of the sum. We measure both
the correlations and the pulse shape when the first calculated
singular vector is displayed on the SLM. One observes inten-
sity peaks at the position at two instances of the time-gated
TMs visible both on the pulse shape and on the 2D correlation
plot (see Appendix B) for small |δt |. There is also a correla-
tion peak corresponding to the correlation between the field
at the two time-gated TM instances, thus appearing at t0 =
(t1 + t2)/2 = 1.3 ps and |δt | = t2 − t1 = 0.8 ps. In Fig. 9(b),
the SVDs of the two time-gated TMs are performed separately
and their first singular vectors are summed to create the vector
whose phase is displayed on the SLM, as for the multitime
control [31,32]. In the latter case, the intensity enhancement
is still present (both in the pulse shape and the 2D correlation
plot) but no further field correlation is observable.

In Fig. 1(a) of the main text, due to both the weak control
given by the ratio between the degree of freedom and the
number of controlled modes γ ≡ NCCD/NSLM 	 0.36 and the
use of the singular vector associated with the smallest singular
value, no clear intensity variation is visible for this specific
input state (green curve) compared to the field obtained for a
plane-wave input (black curve).

FIG. 10. Impact of α on the frequency-to time-cross effect. The
bottom plot represents the shape of the pulse for α = 0. The top part
represents the tracking of the maxima of the pulse while varying α:
the maxima are shifted. The data come from the same experiment as
in Fig. 5, thus averaged over four realizations of the medium.

APPENDIX E: PHASE IMPACT FOR THE CROSS EFFECT

The effect of the relative phase α between the two TMs
has already been studied in the main text (Sec. III). It is
presented in the case of two monochromatic TMs in Fig. 3.
Here we present its impact on the cross effect. In Fig. 10, as in
Figs. 5(c) and 5(d), we measure two monochromatic TMs and
extract the singular vectors of their sum for different values of
α. A pulse scan is performed to extract the field. Changing α

causes the complete correlation plot to be translated along t0.
To visualize this, one can look at the shape of the extracted
pulse when performing the frequency-to-time cross effect. On
the top part of Fig. 10 we track the positions of the maxima
for all values of α. For α from 0 to 2π , all the maxima are
shifted by one period.

APPENDIX F: SPATIAL EFFECT

As stated in the main text, the method we present is very
general and does not depend on the parameter used to vary
the TM. We have worked mainly with time and frequency,
but other parameters can be used. To show this explicitly,
we present here the same experiment performed for different
spatial positions. We measure two TMs linking the plane
of the SLM to two different regions of interest (ROIs), R1

and R2, on the camera. TMs are, as usual, summed and the
phase of the first singular vector obtained is displayed on the
SLM. We extract the field for a large ROI of the camera,
including the two regions where the TMs were measured. We
display in Figs. 11(a) and 11(b) the amplitude of the fields
with or without binning of the camera pixels. We calculate
the correlations between R1 and all other possible ROIs using
a moving window, as shown in Fig. 11(c). An increase in
correlation can be observed when the moving window coin-
cides with R2. The correlation values obtained for the binned
and unbinned images are similar. In the case of the unbinned
image, the correlation value is slightly lower; this behavior
is expected as the image contains information about the high
k vectors that is not contained in the TM itself. In Fig. 11,
the geometry presented is simple because the scan is only

033265-9



DEVAUD, RAUER, MAURAS, ROTTER, AND GIGAN PHYSICAL REVIEW RESEARCH 6, 033265 (2024)

FIG. 11. Spatial field correlation. (a) Unbinned image of the
speckle. The TMs are measured on the left (R1) and central (R2) parts
for λ = 808 nm, NCCD = 225, and NSLM ≈ 610. (b) Same speckle
image but binned so that one pixel maps one speckle grain. (c) Cor-
relation of the left ROI (R1) to all the other positions with a moving
window. An increase in correlation is observed when the moving
window reaches the position where the other TM was measured. Data
averaged over four realizations of the medium.

performed on one dimension. However, the result generalizes
to a two-dimensional scan.

APPENDIX G: ANALYTICAL MODEL AND SIMULATIONS

1. Analytical formula for the correlation

In this Appendix, we derive a formula for the correlation
between the output fields of two random transmission matri-
ces when sending a singular vector of a linear combination.
Formally, let T1 and T2 be n-by-m matrices where all coef-
ficients are drawn independently from the same (complex)
Gaussian distribution of mean 0 and standard deviation σ . Fix
two parameters α1 and α2 and define

M = eiα1 T1 + eiα2 T2√
2

and � = eiα1 T1 − eiα2 T2√
2

.

An important property is that our Gaussian distribution is
invariant to rotations, such as the one transforming (T1, T2)
into (M,�). More precisely, coefficients of (T1, T2) are inde-
pendent Gaussian variables of mean 0 and standard deviation
σ , thus coefficients of (M,�) are also independent Gaussian
variables of mean 0 and standard deviation σ . Therefore, we
draw M, which is now a fixed matrix, but � is still random.

We write the singular value decomposition M = U
V †,
where U ∈ Cn×n and V ∈ Cm×m are unitary matrices and 
 ∈
Rn×m

+ is diagonal. Let X ∈ Cm and Y ∈ Cn be the right and
left singular vectors associated with a singular value μ. More
precisely, μ is the jth coefficient of 
 for some j, and X and
Y are, respectively, the jth column of V and U . In particular,
we have

MX = μY and Y †M = μX †.

Recall now the correlation C(T1X, T2X ) between vectors T1X
and T2X ,

C(T1X, T2X ) = X †T †
1 T2X

||T1X ||2 · ||T2X ||2 .

Rewriting T1X and T2X using M and �, we obtain
√

2eiα1 T1X = (M + �)X = μY + �X,
√

2eiα2 T2X = (M − �)X = μY − �X.

We define the random variable z = Y †�X = ∑n
j=1∑m

k=1 YjXk� j,k . Recall that � is random Gaussian and
that X and Y are fixed unit vectors. Therefore, z is also
Gaussian, and a short calculation shows it has mean 0 and
standard deviation σ ,

||T1X ||22 = X †T †
1 T1X = (μY † + X †�†)(μY + �X )/2

= (
μ2 + ||�X ||22

)
/2 + μ Re(z),

||T2X ||22 = X †T †
2 T2X = (μY † − X †�†)(μY − �X )/2

= (
μ2 + ||�X ||22

)
/2 − μ Re(z).

We are finally ready to write the correlation between T1X and
T2X ,

C(T1X, T2X ) = ei(α1−α2 )(μY † + X †�†)(μY − �X )/2√(
μ2 + ||�X ||22

)
/2 + μ Re(z)

√(
μ2 + ||�X ||22

)
/2 − μ Re(z)

= ei(α1−α2 ) · μ2 − ||�X ||22 − 2i Im(z)√(
μ2 + ||�X ||22

)2 − 4μ2Re(z)2
.

A short calculation gives ||�X ||22 = ∑n
j=1 | ∑m

k=1 � j,kXk|2.
Each inner sum is a Gaussian random variable of mean 0
and standard deviation σ , thus the expected value of ||�X ||22
is exactly equal to nσ 2. Notice that up to this point, all the
formulas are exact. We will now approximate random vari-
ables by their expected value (which can be formalized with
concentration inequalities) and say that ||�X ||22 ≈ nσ 2. Thus,

terms involving z are negligible, and we write

C(T1X, T2X ) ≈ ei(α1−α2 ) · μ2 − nσ 2

μ2 + nσ 2
.

To conclude, we define the aspect ratio γ = n/m. We
normalize μ̃2 = μ2/〈μ2〉, computing the average over n
singular values (including zeros if γ > 1). More precisely,
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〈μ2〉 = Tr(
†
)/n = Tr(M†M )/n = ∑
j,k |Mj,k|2/n ≈ mσ 2,

thus

C(T1X, T2X ) ≈ ei(α1−α2 ) · μ̃2 − γ

μ̃2 + γ
. (G1)

Observe that in the formula, both X and μ̃ are invariant
when multiplying M by a constant (here

√
2). Hence, we

can instead compute the singular value decomposition of
eiα1 T1 + eiα2 T2, which exactly corresponds to Eq. (4) from
the main text when α1 = 0, α2 = α, n = NCCD, and m =
NSLM. Finally, Marchenko-Pastur’s law says that μ̃2 varies
between (1 − √

γ )2 and (1 + √
γ )2, so correlations vary be-

tween ei(α1−α2 ) 1−2
√

γ

1−2
√

γ+2γ
and ei(α1−α2 ) 1+2

√
γ

1+2
√

γ+2γ
.

2. Scaling of the correlation with the number of TMs

We will now generalize the result of the previous section to
linear combinations of � random matrices. The main techni-
cal insight is that the rotation (T1, T2) �→ (M,�) used in the
previous section to deal with conditional probabilities can be
replaced by a unitary transformation R.

For convenience, we start by introducing some notations.
For any matrix X of size a × b, we denote X (c,d ) as its re-
shaping of size c × d , with ab = cd , where coefficients of
the matrix are read in row-major order. In particular, X (1,ab)

is the vectorization of X , that is, the row-vector containing
coefficients of X . For convenience, we will write X (a,b) when
we want to emphasize the fact that X has size a × b.

Let T (n,m)
1 , . . . , T (n,m)

� be a collection of � random matrices
of size n × m whose coefficients are drawn independently
from a complex normal distribution of mean 0 and standard
deviation σ . We define a matrix T (�,nm) of size � × nm, whose
jth row is T (1,nm)

j . Choose a unitary matrix R = (r j,k )1� j,k��

of size � × �, which can be thought of as a rotation matrix,
and let S = RT . For every j, we define a matrix S(n,m)

j of size
n × m equal to the reshaping of the jth row of S. We have the
following relations:

for all 1 � j � �, Sj =
�∑

k=1

r j,k · Tk, and

Tj =
�∑

k=1

rk, j · Sk .

We will now have a closer look at M = S1. Classical results on
multivariate normal distributions show that coefficients from
S are independent and normally distributed with mean 0 and
standard deviation σ . Therefore, we draw M, which is now a
fixed matrix, but S2, . . . , S� are still random.

We write the singular value decomposition M = U
V †,
where U (n,n) and V (m,m) are unitary and 
(n,m) is diagonal.
Let U (n,1)

q and V (m,1)
q be the qth left and right singular vectors

of M associated with the singular value μq; that is, Uq, Vq, and
μq are, respectively, the qth columns of U and V , and the qth
coefficient of 
.

For every j1, j2, q, we will compute the correlation be-
tween Tj1Vq and Tj2Vq, for which we need the scalar product

(Tj1Vq)†(Tj2Vq) = V †
q

⎛
⎝

�∑
k1=1

rk1, j1 · S†
k1

⎞
⎠

⎛
⎝

�∑
k2=1

rk2, j2 · Sk2

⎞
⎠Vq

= r1, j1 · r1, j2 · V †
q M†MVq +

�∑
k=2

rk, j1 · rk, j2 ·

×V †
q S†

k SkVq+
∑

k1 �=k2

rk1, j1 · rk2, j2 · V †
q S†

k1
Sk2Vq.

From the singular value decomposition, we have V †
q M†MVq =

μ2
q. For each k �= 1, the matrix Sk is independent from S1, and

thus from the vector Vq. Hence, the same argument as in the
previous section shows that V †

q S†
k SkVq = ||SkVq||22 ≈ nσ 2. For

each k1 �= k2, the vectors Sk1Vq and Sk2Vq are independent,
and because the dimension is high they are approximately
orthogonal, thus V †

q S†
k1

Sk2Vq ≈ 0.
To finalize the formula, we need a disjunction on whether

or not j1 and j2 are equal. When j1 �= j2, we can use the fact
that the matrix R is unitary to write

∑�
k=2 rk, j1 · rk, j2 = −r1, j1 ·

r1, j2 ,

∀ j1 �= j2, (Tj1Vq)†(Tj2Vq) ≈ r1, j1 · r1, j2 · (
μ2

q − nσ 2
)
.

When j1 = j2 = j we have
∑�

k=2 rk, j1 · rk, j2 = 1 − |r1, j |2,

∀ j, (TjVq)†(TjVq) ≈ |r1, j |2 · (
μ2

q − nσ 2
) + nσ 2.

Thus, the correlation formula is

∀ j1 �= j2, C(Tj1Vq, Tj2Vq) ≈ r1, j1 · r1, j2 · (
μ2

q − nσ 2
)

√
|r1, j1 |2 · (

μ2
q − nσ 2

) + nσ 2
√

|r1, j2 |2 · (
μ2

q − nσ 2
) + nσ 2

.

As in the previous section, we introduce the aspect ratio γ = n/m and we normalize μ̃2 = μ2/〈μ2〉 ≈ μ2/(mσ 2),

∀ j1 �= j2, C(Tj1Vq, Tj2Vq) ≈ r1, j1

|r1, j2 |
· r1, j2

|r1, j1 |
· μ̃2

q − γ√
μ̃2

q + γ · (
1

|r1, j1 |2 − 1
)√

μ̃2
q + γ · (

1
|r1, j2 |2 − 1

) .

In particular, computing the singular value decomposition of
∑�

j=1 eiα j Tj corresponds to coefficients r1, j = eiα j /
√

� in the first
row of R, in which case the correlation formula can be simplified to

∀ j1 �= j2, C(Tj1Vq, Tj2Vq) ≈ ei(α j1 −α j2 ) · μ̃2
q − γ

μ̃2
q + γ · (� − 1)

. (G2)

Using random matrix theory, Marchenko-Pastur law shows that μ̃2
q ranges from (1 − √

γ )2 to (1 + √
γ )2, and the correlation

ranges from ei(α j1 −α j2 ) · 1−2
√

γ

1−2
√

γ+�γ
to ei(α j1 −α j2 ) · 1+2

√
γ

1+2
√

γ+�γ
.
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FIG. 12. Comparison of different methods for correlating fields. (a) The absolute value of the correlation is plotted as a function of the
input vector number (ordered by decreasing the absolute value of the singular/eigenvalue). The simulation is performed with TMs of size
1000 × 1000. (b) Ratio of the total transmitted intensities for the same data as in (a).

3. Random unitary matrices

Let us now consider two unitary random matrices T1 and
T2, drawn uniformly at random (which corresponds to the
distribution induced by the Haar measure over the group of
unitary matrices). As in the previous section, we compute
the singular value decomposition of M = eiα1 T1 + eiα2 T2 =
U
V †, where α1 and α2 are two parameters. Let X and Y
be the right and left singular vectors associated with a singular
value μ. More precisely, μ is the jth coefficient of 
 for some
j, and X and Y are, respectively, the jth column of V and U .
We are interested in the correlation between T1X and T2X , that
is,

C(T1X, T2X ) = X †T †
1 T2X

||T1X ||2 · ||T2X ||2 .

Because T1, T2, U , and V are unitary matrices, we have
||T1X ||2 = ||T2X ||2 = 1. Thus, the correlation C(T1X, T2X ) is
equal to the ith diagonal value of the matrix C = U †T †

1 T2U .
As a product of unitary matrices, C is unitary. We are now
going to show that C is also a diagonal matrix, which will
imply that its diagonal coefficients are complex numbers of
modulus 1. Using both the definition of M and its singular
value decomposition, one can write

M†M = (eiα1 T1 + eiα2 T2)†(eiα1 T1 + eiα2 T2)

= 2I + ei(α2−α1 )T †
1 T2 + ei(α1−α2 )T †

2 T1,

M†M = (V 
U †)†(V 
U †) = U
2U †.

Combining both equations gives ei(α2−α1 )T †
1 T2 + ei(α1−α2 )

T †
2 T1 = U
2U † − 2I , which implies that

(ei(α2−α1 )C) + (ei(α2−α1 )C)†

= U †(ei(α2−α1 )T †
1 T2 + ei(α1−α2 )T †

2 T1)U = 
2 − 2I.

This shows that the real part of Z = ei(α2−α1 )C = 
2/2 − I
is a diagonal matrix. Because T1 and T2 are random unitary
matrices, all coefficients from Z are distinct with probabil-
ity 1. We are going to show that the imaginary part of Z
is also diagonal. First, observe that the matrices (Z + Z†)
and (Z − Z†) commute: (Z + Z†)(Z − Z†) = Z2 − (Z†)2 =
(Z − Z†)(Z + Z†). More precisely, this means that Re(Z )
and Im(Z ) commute, and that both matrices stabilize the

eigenspaces of the other matrix. If Re(Z ) is a diagonal matrix
with distinct coefficients, then each of its eigenspaces has
dimension 1 and is spanned by one of the vectors of the
canonical basis. Thus, each vector of the canonical basis is
an eigenvector of Im(Z ), which in turn is diagonal. Hence Z is
diagonal, and because it is also unitary, diagonal coefficients
must be complex of modulus 1.

Going back to our correlations, we showed that the corre-
lation between T1X and T2X is a complex of modulus 1, such
that Re[ei(α2−α1 )C(T1X, T2X )] = μ2/2 − 1. Thus, we have

C(T1X, T2X ) = ei(α1−α2 ) · (μ2/2 − 1 ± iμ
√

1 − μ2/4).

(G3)

4. Simulations

To perform the simulations presented in the article, we
used a simple approach modeling the TM by a random matrix
[27,30]. When quantitatively comparing simulations to exper-
imental results, the remaining grain size after binning is added
to the random matrix by convolving each output dimension
with the adequate Gaussian.

APPENDIX H: COMPARISON OF THE DIFFERENT
OPERATORS

We present in this Appendix simulation results that com-
pare the correlation achievements obtained for different
operators: the SVD of T1 + T2 [eigenvalue of (T1 + T2)†(T1 +
T2)], the eigendecomposition of T †

1 T2, of T †
1 T2 + T †

2 T1 (its
symmetric version), and T †

1 (T2 − T1) [equivalent for the
Wigner-Smith approach, where (T2 − T1) corresponds to the
derivative part [38]. We only consider the case of square
nonunitary matrices. A more complete comparison goes be-
yond the frame of this work.

For all four operators, the input vectors Xs are sorted by
decreasing the absolute value of the singular value/eigenvalue
(it is noteworthy that the eigenvalues are not necessarily real).
The resulting absolute values of the correlation (between T1Xs

and T2Xs) are plotted as a function of the number of the
singular vector [No. in Fig. 12(a)].

Only the SVD approach and the Wigner-Smith approach
allow us to fully modulate the correlations (|C| = 1 in the
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FIG. 13. Simulation of field correlation for multimode fibers.
Real part (blue dots) and absolute value (orange dots) of the cor-
relations when summing two unitary TMs. The analytical prediction
of Eq. (G3) is presented by the black dashed line. The horizontal
black dashed line represents the mean correlation for a random input
vector, and the gray-shaded area is its standard deviation. The data
are not averaged over several realizations.

case of a square TM) while the other methods access a more
restricted range with a lower maximum correlation observed
at 0.8 with the definition of Eq. (2). However, it should be
noted that perfect correlation is expected for the lowest singu-
lar value, which is the most sensitive to noise or phase-only
modulation. In the current experimental capabilities, the latter
point diminishes the specific advantage of the SVD method,
but continued progress in beam shaping control will overcome
this purely experimental limitation. Using the Wigner-Smith
operator grants similar results to the SVD approach while los-
ing the benefit of the sorting due to real singular values, which

is of practical interest. It also lacks easy and independent
control of the absolute value and the phase of the correlation.

The methods of [39] and its symmetrized version give sim-
ilar correlation values. The main difference between the latter
two methods is visible in the transmitted intensities presented
in Fig. 12(b). The ratio of the total transmitted intensities is
displayed, and one can observe that all symmetrized versions
lead to balanced intensities (i.e., the symmetrized version of
[39] and the SVD method). This observation is not surprising
as the two TMs play nonsymmetric roles.

APPENDIX I: EXTENSION TO MULTIMODE FIBERS

We also performed simulations to predict the results of the
technique for unitary systems. A good example of a complex
but lossless platform is multimode fibers (MMFs). In addition,
the finite number of propagation modes makes it possible to
measure complete TMs. We performed the simulations using
the code of [54], which solves the transverse scalar propaga-
tion equation and allows us to calculate the modes for fibers
with arbitrary index profiles and their TMs. We have applied
it to measure the TMs of a 10-cm-long step-index MMF with
0.22 numerical aperture and 25 µm radius illuminated with
a light of either 700 or 800 nm. Due to the variation of the
wavelength, the number of propagation modes is different.
However, the code allows them to be expressed on the pixel
basis, as in the experiments, so that their size is the same, al-
lowing them to be added together. Thus, once the zero singular
values corresponding to the rank difference between the two
TMs are removed, the correlation results presented in Fig. 13
are obtained.

Two main points are worth noting: the absolute value of the
correlation, equal to unity, does not depend on the singular
vector, and the real part of the correlation well follows the
law predicted in Eq. (G3). Thus even if the resulting fields
are perfectly correlated, the unitarity of the transformation
prevents any variations. For this reason, losses and nonunitary
transformations are often sought [55].
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