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Probabilistic inference in the era of tensor networks and differential programming
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Probabilistic inference is a fundamental task in modern machine learning. Recent advances in tensor network
(TN) contraction algorithms have enabled the development of better exact inference methods. However, many
common inference tasks in probabilistic graphical models (PGMs) still lack corresponding TN-based adapta-
tions. In this paper, we advance the connection between PGMs and TNs by formulating and implementing
tensor-based solutions for the following inference tasks: (A) computing the partition function, (B) computing
the marginal probability of sets of variables in the model, (C) determining the most likely assignment to a set
of variables, (D) the same as (C) but after having marginalized a different set of variables, and (E) generating
samples from a learned probability distribution using a generalized method. Our study is motivated by recent
technical advances in the fields of quantum circuit simulation, quantum many-body physics, and statistical
physics. Through an experimental evaluation, we demonstrate that the integration of these quantum technologies
with a series of algorithms introduced in this study significantly improves the performance efficiency of existing
methods for solving probabilistic inference tasks.
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I. INTRODUCTION

Probabilistic inference is a fundamental component of
machine learning. It enables machines to reason, predict,
and assist experts in making decisions under uncertain con-
ditions. The main challenge in applying exact inference
techniques lies in the explosion of the computational cost
as the number of variables involved increases. Unfortunately,
modeling real-world problems often demands a high num-
ber of variables. Because of this, performing probabilistic
inference remains an intractable endeavor in many practical
applications.

In the past decades, several methods have been developed
to enhance the computational efficiency of exact inference
in complex models. Clustering methods, which include the
family of junction tree algorithms [1,2], Symbolic proba-
bilistic inference [3–5], weighted model counting [6,7], and
differential-based methods [8,9] stand out as popular ap-
proaches.

Tensor networks (TNs), widely used in quantum many-
body physics and quantum computation [10], are gaining
increasing attention in the machine learning community.
These networks have been shown to be an exceptionally
powerful framework for modeling many-body quantum states
[11]. Notable examples of TNs include matrix product states
(MPS) [12], tree tensor networks (TTN) [13], multiscale

*Contact author: m.roa.villescas@tue.nl

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

entanglement renormalization ansatz (MERA) [14], and pro-
jected entangled pair states (PEPS) [15]. In recent years, they
have become increasingly popular for classical benchmarking
of quantum computing devices [16–19]. The application of
TNs in machine learning includes both supervised [20] and
unsupervised learning. In unsupervised learning, the focus has
primarily been on generative modeling, where the goal is to
learn a model’s joint probability distribution from data and
generate samples based on it. For instance, Han et al. [21]
proposed using an MPS network for this purpose, ensuring
that the TN topology is constrained to a chain-like structure.
Building on this idea, Cheng et al. [22] advocated for the use
of a TTN over an MPS network, aiming to enhance represen-
tational capabilities and to improve efficiency in both training
and sampling.

While there have been notable advancements in under-
standing the theoretical duality between TNs and PGMs [23]
and the integration of several TN techniques for generative
sampling [21,22], many common probabilistic tasks in PGMs
still lack corresponding TN-based adaptations. In this paper,
we bridge the gap between PGMs and TNs further by formu-
lating and implementing tensor-based solutions for a series
of important probabilistic tasks. Specifically, given evidence
for a subset of the variables in the model, we formulate and
provide TN-based implementations for computing:

(1) the partition function (PR),
(2) the marginal probability distribution over sets of vari-

ables (MAR),
(3) the most probable explanation (most likely assign-

ment) to all variables of the model (MPE),
(4) the maximum marginal a posteriori (MMAP), i.e., the

most likely assignment to a set of variables after marginalizing
a different set, and

(5) samples from the generative model (SAM).
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Our paper features a unity-tensor approach for computing
marginal probabilities and the most likely assignment, pre-
senting an alternative to existing methods such as the data
network approach described in [24]. Positioned at the inter-
section of tensor networks, differentiable programming, and
tropical algebra, this paper uses a combination of these mod-
ern numerical tools to reframe and accelerate the probabilistic
inference tasks previously described.

Inspired by recent technical progress in the fields of quan-
tum circuit simulation, quantum many-body physics, and
statistical physics, our research aims to capitalize on these
advancements. We employ hyperoptimized contraction order
finding algorithms that have evolved in classical benchmark-
ing of quantum computing devices [16–19]. These algorithms,
which optimize both the computation time and runtime mem-
ory usage, include local search methods utilizing simulated
annealing [25], min-cut-based methods [26], and greedy al-
gorithms. Local search methods, such as simulated annealing,
iteratively adjust tensor contraction sequences by applying a
series of strategic transformations, aimed at optimizing the
balance between computational load and memory usage, thus
enhancing overall efficiency. Min-cut-based methods opti-
mize tensor network computations by treating the network as
a graph, strategically partitioning it into smaller sections to
reduce data transfer and communication costs, thereby de-
creasing the overall computational load and speeding up
processing times. Greedy methods select the most beneficial
contractions step-by-step, optimizing immediately without a
global configuration view, offering substantial time savings.
This study also benefits from the latest advances of tropical
tensor networks [27] followed by the introduction of generic
tensor networks [28], which allow us to seamlessly devise per-
formant solutions for the different inference tasks described
earlier by adjusting the element types of a consistent ten-
sor network. Our implementation also leverages cutting-edge
developments commonly found in tensor network libraries,
including a highly optimized set of BLAS routines [29,30]
and GPU technology.

We present experimental results demonstrating that our
tensor-based implementation is highly effective in advancing
current methods for solving probabilistic inference tasks. Our
library exhibits speedups of three to four orders of magni-
tude compared to a series of established solvers for the exact
inference tasks mentioned above. Furthermore, we present
experimental results indicating that by employing a GPU in-
stead of a CPU, our proposed implementation can accelerate
the inference of MMAP tasks by up to two orders of magni-
tude when the problem’s computational cost exceeds a certain
threshold. The ability of our library to facilitate the seamless
use of a GPU instead of a CPU for solving probabilistic
inference tasks represents a significant advantage. The source
code for the methods described in this paper is available in
a Julia package by the name of TensorInference.jl [31],
licensed under the MIT open-source license.

The remainder of this paper is organized as follows.
Section II provides a review of tensor networks, laying the
foundational concepts necessary for understanding subse-
quent discussions. In Sec. III, we delve into the formulation
of various probabilistic modeling tasks in terms of tensor
network contractions, including the partition function (PR,

Sec. III A), the marginal probability (MAR, Sec. III B), the
most probable explanation (MPE, Sec. III C), the maximum
marginal a posteriori (MMAP, Sec. III D), and sampling
(SAM, Sec. III E). Section IV presents benchmarks and em-
pirical results to demonstrate the practical implications of our
approach. Finally, we conclude the paper in Sec. V, where
we discuss the implications, limitations, and potential future
directions of our paper.

II. TENSOR NETWORKS

Tensor networks serve as a fundamental tool for modeling
and analyzing correlated systems. This section reviews their
fundamental concepts.

A tensor is a mathematical object that generalizes scalars,
vectors, and matrices. It can have multiple dimensions and is
used to represent data in various mathematical and physical
contexts. It is formally defined as follows:

Definition II.1 (Tensor). A tensor T associated to a set
of discrete variables V is defined as a function that maps
each possible instantiation of the variables in its scope DV =∏

v∈V Dv to an element in the set E , where Dv is the set of all
possible values that the variable v can take. The function TV

is given by

TV :
∏
v∈V

Dv → E . (1)

Within the context of probabilistic modeling, the elements in
E are non-negative real numbers, while in other scenarios,
they can be of generic types.

Tensors are typically represented as multidimensional ar-
rays, where each dimension is assigned a specific label or
name. In probabilistic modeling, these labels correspond to
random variables (or variables for short). The collective set
of variables upon which a tensor operates is known as its
scope. Before introducing the definition of a tensor network,
it is important to define the concept of slicing (or indexing)
tensors based on variable assignments. Let TV be a tensor
defined over the set of variables V . Let M be another set of
variables with an arbitrary relationship to the set V , i.e., M
and V may have all, some, or no elements in common, or one
may be a subset of the other. The notation M = m denotes the
assignment of specific values denoted by m to the variables
in M. The operation of slicing a tensor, denoted as TV |M=m,
involves evaluating the tensor TV according to the assignment
M = m. This operation effectively reduces the dimensions of
TV by constraining it to the subspace where M = m. Note that
if V and M are disjoint, TV remains unchanged.

We now turn our attention to the formal definition of a
tensor network.

Definition II.2 (Tensor network [28,32,33]). A tensor net-
work is a mathematical framework for defining multilinear
maps, which can be represented by a triple N = (�, T ,V0),
where

(i) � is the set of variables present in the network N .
(ii) T = {TVk }K

k=1 is the set of input tensors, where each
tensor TVk is associated with the labels Vk .

(iii) V0 specifies the labels of the output tensor.
Specifically, each tensor TVk ∈ T is labeled by a set of

variables Vk ⊆ �, where the cardinality |Vk| equals the rank
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of TVk . The multilinear map, or the contraction, applied to this
triple is defined as

TV0 = con(�, T ,V0)
def=

∑
m∈D�\V0

∏
TV ∈T

TV |M=m, (2)

where M = �\V0.
For instance, matrix multiplication can be described as the

contraction of a tensor network given by

(AB){i,k} = con({i, j, k}, {A{i, j}, B{ j,k}}, {i, k}), (3)

where matrices A and B are input tensors containing the
variable sets {i, j}, { j, k}, respectively, which are subsets of
� = {i, j, k}. The output tensor comprises variables {i, k} and
the summation runs over variables � \ {i, k} = { j}. The con-
traction corresponds to

(AB){i,k} =
∑

j

A{i, j}B{ j,k}. (4)

Definition II.2 introduces a minor generalization of the
standard tensor network definition commonly used in physics.
It allows a label to appear more than twice across the tensors
in the network, deviating from the conventional practice of
restricting each label to two appearances. This generalized
form, while maintaining the same level of representational
power, has been demonstrated to potentially reduce the net-
work’s treewidth [28], a metric that measures its connectivity.

Diagrammatically, a tensor network can be represented as
an open hypergraph, where each tensor is mapped to a vertex
and each variable is mapped to a hyperedge. Two vertices are
connected by the same hyperedge if and only if they share
a common variable. The diagrammatic representation of the
matrix multiplication shown in Eq. (4) is given as follows:

Here, we use different colors to denote different hyperedges.
Hyperedges for i and k are left open to denote variables of the
output tensor.

A somewhat more elaborate example of this is as follows:

con({i, j, k, l, m, n},
{A{i,l}, B{l},C{k, j,l}, D{k,m,n}, E{ j,n}},
{i, m})

=
∑
j,k,l,n

A{i,l}B{l}C{k, j,l}D{k,m,n}E{ j,n}, (5)

which is graphically represented by the following open hyper-
graph:

Note that the variable l is shared by three tensors, making reg-
ular edges, which by definition connect two nodes, insufficient

for its representation. This motivates the need for hyperedges,
which can connect a single variable to any number of nodes.

We would now like to stress an important property of tensor
networks, namely the contraction order. While the summa-
tions in Eq. (5) (over j, k, l , and n) can be carried out in
any order without affecting the contraction result, the order
in which these summations are performed significantly im-
pacts the computational cost required to contract the network.
Finding the optimal order of variables to be contracted in a
tensor network is crucial for overall efficiency. To minimize
the computational cost of a TN contraction, one must optimize
over the different possible orderings of pairwise contractions
and find the optimal case [33]. This problem is NP hard.
However, several efficient heuristic contraction order finding
algorithms [25,26] have been developed by the community.
Given a contraction order, each pairwise contraction can be
further decomposed into a series of BLAS operations, which
are highly optimized for modern hardware [34].

To illustrate this point, consider the two contraction orders
specified below for evaluating Eq. (5) using binary trees:

These binary trees specify the order of pairwise contrac-
tions between tensors, starting from the bottom (leaves) and
moving to the top (root). Each leaf represents an initial tensor,
and each internal node results from contracting two child
tensors and summing out any indices not needed for later op-
erations. Note that directly evaluating Eq. (5) requires O(n6)
time, where n is the dimension of each variable. In contrast,
both contraction orders illustrated above reduce the time com-
plexity to O(n4). However, there is an important difference
between these two orders, highlighted in red. Specifically,
contraction order (b) is preferred over (a) because of its lower
space complexity, which is determined by the highest rank
among all intermediate tensors. For example, the intermediate
tensor CD in order (a) has a rank of 4, whereas tensor DE
in order (b) has a rank of 3. Lower space complexity helps
to reduce the memory usage bottleneck in tensor network
computations.

As a final remark, it is worth noting that any contrac-
tion order yields correct results because of the associative
and commutative properties of addition and multiplication, as
discussed in [28]. These properties hold for many common
element types, including real numbers, complex numbers, and
tropical semirings. The complexity of the contraction process
is independent of the specific tensor element type, provided
that it adheres to these associative and commutative proper-
ties.
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III. TENSOR NETWORKS FOR
PROBABILISTIC MODELING

Probabilistic graphical models (PGMs) are a class of
models that use graphs to represent complex dependencies be-
tween random variables and reason about them, with Bayesian
networks, Markov random fields, and factor graphs being
among the most prevalent examples. While tensor networks
and PGMs share a conceptual foundation in representing
multivariate relationships graphically, they have traditionally
evolved in parallel within distinct fields of study. Despite
their different origins, both frameworks exhibit remarkable
similarities in structure and functionality. They are both
used to decompose high-dimensional objects into a net-
work or graph of simpler, interconnected components. The
aim of this section is to reformulate probabilistic model-
ing in terms of tensor networks, thereby allowing the field
of probabilistic modeling to leverage the remarkable de-
velopments achieved in tensor network modeling in recent
years.

It is worth noting that there may not be a tensor net-
work that can fully capture the conditional independence
assumptions encoded by a specific Bayesian network. This
limitation arises because tensor networks use undirected
edges, whereas Bayesian networks use directed edges. Al-
though every Bayesian network can be converted into an
undirected graph through a process called moralization, this
can result in the loss of independence information. Moral-
ization involves removing the direction from the edges and
connecting nodes that have common children. Independence
information is lost as new edges are added. However, if no
new edges are added, then the transformed graph maintains
all the original independence assumptions.

The analyses and discussions in this section are framed
within the context of a probabilistic model. This model is
characterized by a set of variables � with a corresponding
joint probability mass functionp(�). Furthermore, p(�) is
represented as a product of tensors in T , where each ten-
sor TV ∈ T is associated with a subset of variables V in �.
Within �, we distinguish three disjoint subsets of variables:
the query variables Q, representing our variables of interest;
the evidence variables E , which denote observed variables;
and the nuisance variables M, which include the remaining
variables.

In what follows, we present the formulation of prevalent
probabilistic inference tasks through the application of tensor
network methodologies. All the tasks presented below take
into account given evidence for a subset of the variables in the
model. These tasks include:

(1) Calculating the partition function (PR), also referred
to as the probability of evidence (Sec. III A).

(2) Computing the marginal probability distribution over
sets of variables (MAR) (Sec. III B).

(3) Finding the most likely assignment to all variables,
formally referred to as the most probable explanation (MPE)
(Sec. III C).

(4) Finding the most likely assignment to a set of query
variables after marginalizing out the remaining variables, also
known as the maximum marginal a posteriori (MMAP) esti-
mate (Sec. III D).

(5) Generating samples from the learned distribution
(SAM), also known as generative modeling (Sec. III E).

For more information about these tasks, refer to the website
of the UAI 2022 Probabilistic Inference Competition [35].

A. Partition function (PR)

The partition function is a central concept in statistical
mechanics and probabilistic graphical models. In statistical
mechanics, it sums over all possible states of a system,
weighted by their energy, to derive key thermodynamic quan-
tities. In probabilistic models, it not only normalizes the joint
probability distribution, ensuring that the probabilities of all
possible outcomes sum to one, but also facilitates model
comparison by providing a measure of how well each model
explains the observed data.

Suppose we are given some evidence e observed over a set
of variables E ⊆ �. The partition function is calculated by
summing the joint distribution p over all possible values of
the variables M ⊆ � that are not in E , i.e., E ∩ M = ∅. Thus,
the partition function corresponds to

p(E = e) =
∑

m∈D�\E

p(E = e, M = m). (6)

Let us denote the set of tensors associated with the variables
in � as T = {TV }, where TV is a tensor associated with the
variables V ⊆ �. The partition function can be expressed as
the tensor network contraction given by

p(E = e) =
∑

m∈D�\E

∏
TV ∈T

TV |E=e,M=m, (7)

where TE=e = {TV |E=e | TV ∈ T } is the set of tensors sliced
over the fixed values of the evidence variables. We can express
this operation more succinctly using the definition of a tensor
contraction shown in Eq. (2), which results in

p(E = e) = con(�\E , TE=e,∅). (8)

Here, since evidence variables are fixed, the contraction is
performed over the remaining variables in �\E . Correspond-
ingly, the tensors in TE=e are sliced according to the evidence.
To obtain the marginal probability, all remaining variables are
marginalized, leaving the output tensor with an empty label
set ∅.

B. Marginal probability (MAR)

The marginal probability (MAR) task involves comput-
ing the conditional probability distribution for the set of
query variables Q, based on known information about the
evidence variables E , i.e., p(Q|E = e). This process requires
marginalizing out nuisance variables M from the joint dis-
tribution p(�), effectively averaging their impact within the
joint probability distribution. Such averaging is crucial as
it accounts for the indirect effect of these variables on the
resulting marginal probabilities, thereby enabling predictions
and informed decision-making with limited information. In
what follows, we introduce a novel tensor-based algorithm
for efficiently computing marginal probability distributions
over multiple sets of query variables, which demonstrates
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improved performance over traditional approaches, such as
the junction tree algorithm [1].

Given some evidence E = e, the marginal probability
query computes the conditional distribution over the query
variables Q ⊆ �. This is denoted as p(Q = q | E = e), where
q ∈ DQ and it is ensured that E ∩ Q = ∅. Following the law
of total probability, the marginal probability can be obtained
as follows:

p(Q|E = e) = p(Q, E = e)

p(E = e)
. (9)

The numerator p(Q, E = e) corresponds to the joint marginal
probability of configurations, which is given by

p(Q, E = e) =
∑

m∈D�\(Q,E )

p(Q, E = e, M = m), (10)

or, equivalently, by the following tensor network contraction:

p(Q, E = e) = con(�\E , TE=e, Q). (11)

The denominator p(E = e) in Eq. (9) corresponds to the par-
tition function, calculated according to Eq. (8).

Consider the scenario where we want to obtain the
marginal probabilities for multiple sets of query variables.
For simplicity, we consider the sets of single variables Qi ∈
Q, where Q = {{qi} | qi ∈ �\E}. Using the above strategy
would require contracting O(|Q|) different tensor networks,
which is inefficient. In the following, we present an automatic
differentiation [36] based approach to obtain the marginal
probabilities for all sets of variables in Q by contracting the
tensor network only once. The proposed algorithm reduces
the problem of finding marginal probability distributions to
the problem of finding the gradients of introduced auxil-
iary tensors, which can be efficiently handled by differential
programming. The differentiation rules for tensor network
contraction can be represented as the contraction of the tensor
network shown in Theorem III.1.

Theorem III.1 (Tensornetworkdifferentiation). Let (�,T,∅)
be a tensor network with scalar output. The gradient of the
tensor network contraction with respect to TV ∈ T is

∂con(�, T ,∅)

∂TV
= con(�, T \{TV },V ). (12)

That is, the gradient corresponds to the contraction of the
tensor network with the tensor TV removed and the output
label set to V .

The proof of Theorem III.1 is given in Sec. A. The al-
gorithm to obtain the marginal probabilities for all sets of
variables in Q is summarized as follows:

(1) Add a unity tensor 1Qi to the tensor network for each
variable set Qi ∈ Q. A unity tensor is defined as a tensor with
all elements equal to one. The augmented tensor network is
represented as follows:

Taug ← T ∪ {1Qi |Qi ∈ Q}. (13)

The introduction of unity tensors does not change the contrac-
tion result of a tensor network.

(2) Forward pass: Contract the augmented tensor network
to obtain

p(E = e) = con(�\E , (Taug)E=e,∅). (14)

In practice, the tensor network is contracted according to a
given pairwise contraction order of tensors, caching interme-
diate results for later use. As detailed in Sec. II, this order can
be specified using a binary tree, which we will refer to as a
binary contraction tree.

(3) Backward pass: Compute the gradients of the in-
troduced unity tensors by back propagating the contraction
process in Step 2. During back-propagation, the cached inter-
mediate results from Step 2 are used. The resulting gradients
are

G =
{

∂ p(E = e)

∂1Qi

∣∣∣∣ Qi ∈ Q
}
. (15)

Each gradient tensor ∂ p(E = e)/∂1Qi corresponds to a joint
probability p(Qi, E = e). Dividing this gradient tensor by the
partition function p(E = e) yields the marginal probability
p(Qi|E = e).

In Step 1, we augment the tensor network by adding a rank
1 unity tensor for each variable in T . These tensors, being
vectors, can be absorbed into existing tensors of an optimized
contraction tree, thereby not considerably affecting the over-
all computing time. However, the computational cost may
increase significantly when unity tensors for joint marginal
probabilities of multiple variables are introduced.

The caching of intermediate contraction results in Step 2
is automatically managed by a differential programming
framework. These cached results are then utilized in the back-
propagation step. While this caching does not significantly
increase the computing time, it does lead to greater memory
usage. Practically, the added memory cost is typically just
a few times greater than the forward pass’s peak memory.
This occurs because of the program’s nonlinear nature, often
constrained by a handful of intensive contraction steps. Step 3
follows from the observation that for any Qi ∈ Q, the follow-
ing holds:

p(E = e) =
∑

q∈DQi

p(E = e, Qi = q)1L|Qi=q. (16)

Using Theorem III.1, differentiating p(E = e) with respect to
1Qi is equivalent to removing the unity tensor 1Qi from the
tensor network and setting the output label to Qi, the result of
which corresponds to the joint probability p(Qi, E = e).

Corollary III.1. Let P be a program to contract a tensor
network (�, T ,∅) using a binary contraction tree. The time
required to differentiate P using reverse-mode automatic dif-
ferentiation is three times that required to evaluate P .

Proof. Since the program P is decomposed into a series
of pairwise tensor contractions, to explain the overall fac-
tor of three, it suffices to show that for any pairwise tensor
contraction, the computation time for backward-propagating
gradients is twice that of the forward pass. Given a pair-
wise tensor contraction, con(�, {AVa , BVb},Vc), where � =
Va ∪ Vb ∪ Vc, its computational cost is

∏
v∈� |Dv|, where | · |

denotes the cardinality of a set. The backward rule for pair-
wise tensor contraction is also a tensor contraction. Let the
adjoint of the output tensor be C ≡ ∂L

∂C , where L is a scalar
loss function, the explicit form of which does not need to
be known. As shown in Sec. A, the backward rule for tensor
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contraction is

AVa = con(�, {CVc , BVb},Va),

BVb = con(�, {AVa ,CVc},Vb).
(17)

Since the above tensor networks share the same set of
unique variables, their computing time is roughly equal to that
of the forward computation. Consequently, the reverse-mode
automatic differentiation for a tensor network is approxi-
mately three times more costly than computing only the
forward pass, thus proving the theorem. �

C. Most probable explanation (MPE)

Consider the probabilistic model given by the tensor net-
work p(�) = (�, T ,�), and suppose we are given evidence
E = e, where E ⊆ �. The objective of the most probable
explanation (MPE) estimate is to determine the most likely
assignment q for the variables Q ∈ �\E . Mathematically, this
can be expressed as

MPE(E = e) = arg max
q∈D�\E

p(Q = q, E = e),

where the goal is not only to find the most likely assignment
Q = q∗ but also to calculate its corresponding probability.
In the subsequent discussion, we will transition the tensor
elements from real positive numbers to max-plus numbers and
reformulate the configuration extraction problem within the
context of differential programming.

1. Tropical tensor networks

Tropical algebra, a nonstandard algebraic system, diverges
from classical algebra by replacing the standard operations of
addition and multiplication with different binary operations.
In the following discussion, we focus on the max-plus tropi-
cal algebra, a variant where the operations are maximum for
addition and plus for multiplication.

Definition III.1 (Tropical tensor network). A tropical ten-
sor network [27] is a tensor network with max-plus tropical
numbers as its tensor elements. Given two max-plus tropical
numbers a, b ∈ R ∪ {−∞}, their addition and multiplication
operations are defined as

a ⊕ b = max(a, b),

a 
 b = a + b.
(18)

Correspondingly, the zero element (or the additive identity) is
mapped to −∞, and the one element (or the multiplicative
identity) is mapped to 0. Following from Eqs. (18) and (II.2),
the tropical contraction applied to a tropical tensor network
(�, T ,V0) is defined as

tcon(�, T ,V0) = max
q∈D�\V0

∑
TV ∈T

TV |Q=q. (19)

The max operation runs over all possible configurations over
the set of variables absent in the output tensor.

Tropical tensor networks have been effectively employed
in previous studies to determine both the ground-state energy
and its degeneracy across various statistical physics models
[27,28]. In this paper, we extend their application to include a
broader range of tensor network topologies, utilizing them for
probabilistic inference tasks. Given some evidence E = e, let

us denote the MPE as Q = q∗ ∈ D�\E . The log probability of
this MPE estimate can be computed as follows:

log p(Q = q∗, E = e) = max
q∈D�\E

log p(Q = q, E = e)

= max
q∈D�\E

log
∏

TV ∈T
TV |(Q=q,E=e)

= max
q∈D�\E

∑
TV ∈T

log TV |(Q=q,E=e)

= tcon(�\E , log(T )E=e,∅), (20)

where log(T ) ≡ {log(TV ) | TV ∈ T } represents the applica-
tion of the logarithm operation to each tensor in the set T . The
logarithm operation applied to a tensor is defined as taking the
logarithm of each element within the tensor.

2. The most probable configuration

In the context of the MPE estimate, the primary interest
often lies not in acquiring the log-probability of the MPE,
calculated according to Eq. (20), but rather in obtaining the
configuration of Q = q∗ itself. The algorithm for this purpose
is summarized as follows:

(1) For each variable v ∈ �, add a unity tensor 1v that is
associated with v to the tensor network. The augmented tensor
network is given by

Taug ← T ∪ {1{v} | v ∈ �\E}. (21)

Once more, we emphasize that introducing unity tensors does
not change the contraction result of the tensor network.

(2) Evaluate the log-probability of the MPE, given by

log p(Q = q∗, E = e) = tcon(�\E , log(Taug)E=e,∅), (22)

where Q = q∗ ∈ D�\E is the MPE. Intermediate contraction
results are cached for future use.

(3) Backpropagate through the contraction process out-
lined in Step 2 to obtain the gradients for each log-unity
vector,

G =
{

∂ log(p(Q = q∗, E = e))

∂ log(I{v})

∣∣∣∣ v ∈ �

}
. (23)

Following a specific convention, we ensure that for each
Gv ∈ G, there exists exactly one nonzero entry, denoted as
Gv (q∗

v ) = 1. This unique entry q∗
v corresponds to the assign-

ment of variable v in the MPE solution.
Steps 1 and 2 of this approach mirror their counterparts in

the algorithm detailed in Sec. III B for computing marginal
probabilities, with the notable distinction that tensor elements
are now represented as tropical numbers. Step 3 follows from
the observation that, although the introduced log-unity ten-
sors (or zero tensors) do not affect the contraction result of
the tropical tensor network, differentiating the contraction
result with respect to these tensors yields a gradient signal at
Q = q∗.

3. Back-propagation in tropical tensor networks

Obtaining the MPE configuration using back-propagation
through a tropical tensor network is a nontrivial task, espe-
cially when there are multiple configurations with the same
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maximum probability. In such cases, the gradient signal must
be designed to keep only one of the configurations. To achieve
this, we use a Boolean mask to represent the gradient signal of
a tensor, with its elements being either 0 or 1. In the following,
instead of deriving the exact backpropagation rule, we present
a backward rule that only works for Boolean gradients, which
is sufficient for the MPE task.

Theorem III.2. Given a pairwise contraction of two tropi-
cal tensors tcon(�, {AVa , BVb},Vc), where � = Va ∪ Vb ∪ Vc,
the backward rule, used for computing masks for nonzero
gradients, is defined as follows:

AVa = δ
(
AVa , tcon

(
�,

{
C−1

Vc
CVc , BVb

}
,Va

)−1)
,

BVb = δ
(
BVb, tcon

(
�,

{
AVa ,C−1

Vc
CVc

}
,Vb

)−1)
. (24)

Proof. This rule is provable by reducing the tensor net-
work contraction to tropical matrix multiplication C = AB.
The backpropagation rule for tropical matrix multiplication
has been previously derived in [28]. Here, we revisit the main
results for completeness. We require the gradients to be either
0 or 1. This binary nature aligns with the representation of
configurations using one hot vectors. Consequently, a Boolean
mask can effectively be employed to extract or represent any
given configuration in this context. The gradient mask for C
is denoted as C. The back-propagation rule for these gradient
masks is

Ai j = δ
(
Ai j, ((C◦−1 ◦ C)BT )◦−1

i j

)
, (25)

where δ is the Dirac delta function, returning one for equal
arguments and zero otherwise. The notation ◦ signifies the
element-wise product, and ◦−1 indicates the element-wise in-
verse. Boolean false is equated with the tropical zero (−∞),
and Boolean true is the tropical one (0). �

In Eq. (24), the right-hand side primarily involves tropical
tensor contractions, which can be efficiently handled using
fast tropical BLAS routines [30]. Notably, the backward rule’s
computing time mirrors that of the forward pass.

D. Maximum marginal a posteriori (MMAP)

Tensor networks are equally applicable in the context
of computing maximum marginal a posteriori (MMAP) es-
timations. This task involves computing the most likely
assignment for the query variables, after marginalizing out
the remaining variables. Consider a scenario with evidence e
observed over variables E ⊆ � and query variables Q ⊆ �,
such that E ∩ Q = ∅. Mathematically, the MMAP solution is
given by

MMAP(Q | E = e)

= arg max
q∈DQ

∑
m∈D�\(Q,E )

p(Q = q, M = m, E = e). (26)

Upon closer examination of Eq. (26), it is clear that the equa-
tion combines elements of both max-sum and sum-product
networks. To optimize the computation process, we utilize a
routine that divides the computation into two separate phases:
conventional tensor network contraction and tropical tensor
network contraction. The process to compute MMAP solu-
tions using tensor networks is described as follows:

(1) Find a partition Ŝ of T such that, for each marginalized
variable v ∈ �\(Q ∪ E ), there exists an Si ∈ Ŝ that contains
all tensors associated with it.

(2) For each Si ∈ Ŝ , marginalize the variables in �\(Q ∪
E ) by contracting the tensor network

S�i∩Q = con(�i, (Si )E=e,�i ∩ Q), (27)

where �i is the set of variables involved in Si.
(3) Solve the MPE problem on the probability model

specified by tensor network (Q, {S�1∩Q, . . . , S�|Ŝ|∩Q},∅), the
result corresponds to the solution of the MMAP problem.

In Step 1, The sets in Ŝ can be constructed by first choosing
a marginalized variable v ∈ �\(Q ∪ E ), and then greedily
including tensors containing v into the set.

E. Sampling the generative model (SAM)

In the following discussion, we examine the use of tensor
networks for generating samples from learned distributions
in the context of probabilistic modeling. This section aims
to connect the contributions of this paper with other studies
in the domain of tensor-based generative modeling, notably
those by Han et al. [21] and Cheng et al. [22]. We introduce a
generic framework for unbiased variable sampling that gener-
alizes the sampling algorithms of these references.

Generating a sample from the generative distribution is
closely related to the method for computing the partition
function, as detailed in Sec. III A and summarized here:
p(E = e) = con(�\E , TE=e,∅), where E represents the set
of evidence variables, and � denotes the set of all variables
in the model. This computation involves summing the joint
distribution p over all unobserved variables, which requires
selecting a variable elimination order—also referred to as
the contraction order—for all unobserved variables. Given a
tensor network contraction that calculates the partition func-
tion, a sample can be generated by back-tracing this variable
elimination process. This mechanism will be detailed next.

Let Si be the set of variables eliminated in the i-th pair-
wise tensor contraction, where i = 1, 2, . . . , K and

⋃K
i=1 Si =

�\E . Samples for each variable elimination group Si are
generated in the reverse order of the variable elimination
sequence. This process involves generating a sample for the
variables in Si, conditioned on the samples for the variables
eliminated in subsequent steps, as specified by the following
conditional probability distribution:

sSi ∼ p(Si|Si+1 = sSi+1 , . . . , SK = sSK ). (28)

The resulting sample is composed of the combined sam-
ples from each variable elimination group Si, given by
sS1 , sS2 , . . . , sSK . To further explore the generation of a sample
for a variable elimination group Si, as described in Eq. (28),
we refer to Fig. 1, which illustrates a single tensor pairwise
tensor contraction. Note that our algorithm addresses the gen-
eral case where a subset of the variables are to be sampled,
which are indicated in Fig. 1 by edges marked with slashes,
while the rest are marginalized. Let us denote this pairwise
tensor contraction as CZ = con(X ∪ Y, {AX , BY }, Z ), where
AX and BY are the operand tensors that generate CZ . This
contraction can be conceptually visualized as dividing the
tensor network into three parts: The first part comprises the
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FIG. 1. A pairwise contraction AX , BY → CZ can be conceptu-
ally visualized as dividing the tensor network into three parts: the
tensors generating AX , the tensors generating BY , and the remaining
tensors RZ . Each part is indicated by a dashed circle. Variables to
be sampled are denoted by a line with a slash, while the rest are
marginalized.

tensors that generate AX , the second those that generate BY ,
and the third consists of the remaining tensors, referred to as
the environment tensors RZ . Each part is denoted by a dashed
circle in Fig. 1. The set of variables eliminated in this step
is S = X ∪ Y \Z . We consider the general case where only a
subset of variables, S′ ⊆ S, is to be sampled. The marginal
probability for S′ can be obtained by contracting the tensor
network,

p(S′) = con(X ∪ Y, {AX , BY , RZ}, S′), (29)

where AX and BY have been computed and cached during the
forward pass, while RZ , the environment tensor, is updated
during the backward pass. After obtaining a sample sS′ for S′,
the environment tensor RZ , along with the tensors in A and B,
needs to be updated to reflect the new condition. The algo-
rithm for generating an unbiased sample from the generative
model is summarized as follows:

Let the tensor network under consideration be (�, T ,∅),
and the set of variables to be sampled Stot ⊆ �.

(1) Contract the tensor network to obtain the partition
function Z and the cache of intermediate results in a binary
tree C. The children of each tensor in the binary tree are the
operand tensors generating the tensor under consideration.

(2) Call the recursive sampling function in Algorithm 1 to
generate a sample for the variables in Stot as follows:

sStot ← SAMPLERECURSIVE(C∅, R∅, C, Stot ),

where C∅ = Z is a zero-ranked tensor and R∅ = 1 is the envi-
ronment tensor over an empty set of variables ∅.

In Algorithm 1, the recursive function SAMPLERECURSIVE

is designed to generate samples for a subtree rooted at the
tensor CZ , with the aid of an environmental tensor RZ and
a cache C. Initially, the algorithm checks if there are child
tensors for CZ in the cache (Line 1 to 3) and determines which
variables S′ need to be sampled (Line 4). It then computes the
marginal probability p(S′) for these variables by performing
the tensor network contraction given in Eq. (29) (Line 5)
(which accounts for variables previously sampled) and subse-

ALGORITHM 1. Recursive Sampling.

Input: Target tensor CZ , cache C, environment tensor RZ ,
and variables Stot to be sampled.

Output: A sample set for the variables in Stot .
SAMPLERECURSIVE (CZ , RZ , C, Stot)

1 if children (CZ , C) = ∅ then
2 return ∅;
3 AX , BY ← children(CZ , C);
4 S′ ← (X ∩ Y \ Z ) ∩ Stot ;
5 p(S′) ← con(X ∪ Y, {AX , BY , RZ}, S′);
6 sS′ ∼ p(S′);
7 C ← UPDATECACHE(C, sS′ );
8 s1 ← SAMPLERECURSIVE(AX , con(Y ∪ Z, {BY , RZ}, X ),)

C, Stot);
9 s2 ← SAMPLERECURSIVE(BY , con(X ∪ Z, {AX , RZ},Y ),)

C, Stot);
10 return s1 ∪ s2 ∪ sS′ ;

quently samples a set of values sS′ from this distribution (Line
6). The UPDATECACHE function adjusts the cache by slicing
tensors according to these sampled values, which may require
some recomputation to keep the cache valid (Line 7). The
algorithm then recursively invokes SAMPLERECURSIVE for the
children of CZ , using updated environmental tensors (Line 8
and 9). Finally, it aggregates and returns these new samples
with those from the current set S′, producing a sample set for
the current subtree (Line 10).

This sampling algorithm is a natural generalization of those
used in the quantum-inspired probabilistic models, such as
the matrix product state ansatz [21] and the tree tensor net-
work ansatz [22]. In quantum-inspired models, the involved
tensors are complex-valued and probabilities are represented

FIG. 2. Probabilistic interpretation of popular tensor networks.
Dashed arrows denote the variable elimination order. Edges with
slashes correspond to the variables of interest. The set of gray tensors
is the complex conjugate of the black tensors.
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TABLE I. The inference tasks supported by the libraries used in
the benchmark. See Sec. III for descriptions of these tasks.

PR MAR MPE MMAP

TensorInference.jl � � � �
Merlin � � � �
libDAI � � � ×
JunctionTrees.jl × � × ×

using Born’s rule. Born’s rule corresponds to contracting the
complex tensor network with its conjugate, as demonstrated
in Fig. 2. For example, in Fig. 2(a), the contraction order of a
matrix product state ansatz is from left to right, as indicated by
the dashed line. The variables are sampled in the reverse order
of elimination, i.e., from right to left. In a quantum-inspired
ansatz, only the “physical” variables (edges with slashes)
are sampled, while the “virtual” variables (black edges) are
marginalized out. The tree tensor network ansatz, shown in
Fig. 2(b), is similar to the matrix product state ansatz but
features a different tensor network structure.

IV. PERFORMANCE BENCHMARKS

This section presents a series of performance benchmarks
comparing the runtime of our tensor-based probabilistic in-
ference library, namely TensorInference.jl [31], against that
of other established solvers for probabilistic inference. We
have selected two open-source libraries written in C + +
for this purpose, namely the Merlin [37] and libDAI [38]
solvers. Their positive results in past UAI inference competi-
tions [39,40] make them representative examples of standard
practices in the field. Additionally, we have included Junc-
tionTrees.jl [41], an open-source library written in Julia and
the predecessor of TensorInference.jl. The inference tasks sup-
ported by the libraries used in the benchmark are summarized
in Table I.

In these experiments, we used the UAI 2014 inference
competition’s benchmark suite, which comprises problem sets
from various domains, including computer vision, signal pro-
cessing, and medical diagnosis. These benchmark problems
serve as a standardized testbed for algorithms dealing with
uncertainty in AI. For the PR, MAR, and MPE tasks, we
used the UAI 2014 MAR problem sets, as they are suitable
for exact inference tasks. On the other hand, we used the
UAI 2014 MMAP problem sets for the MMAP task, as these
contain specific sets of query variables required for such task.
However, since the MMAP problem sets were designed for ap-
proximate algorithms, we were unable to solve some of these
problems using our exact inference methods. For the CPU
experiments, we conducted benchmarks for all four tasks. For
the GPU experiments, we focused only on benchmarking the
MMAP task, since the problems of the other tasks in the UAI
2014 benchmark suite are either too large for exact inference
or too small to benefit from GPU acceleration. The CPU
experiments were conducted on an AMD Ryzen Threadripper
PRO 3995WX 64-Cores Processor operating at 3.7 GHz and
equipped with 256 GiB of RAM. The GPU experiments were
conducted on an NVIDIA Quadro RTX 8000 with 48 GiB of
VRAM.

It should be noted that the UAI 2014 benchmark problems,
arising from diverse domains, present unique challenges be-
cause of their varied topologies and dependency structures.
This structural variety has motivated our decision to adopt a
generic tensor network (TN) language for their representation
instead of attempting to fit each benchmark problem into stan-
dard TN frameworks such as MPS, TTN, or MERA. Reducing
these problems to standard models may require a computa-
tional cost that exponentially increases with the problem size,
which is not feasible for large-scale problems.

The benchmark results, conducted on a CPU, are presented
in Fig. 3, where each subfigure displays the results for each of
the considered inference tasks. The benchmark problems are
arranged along the x axis in ascending order of the network’s
space complexity. This metric is defined as the logarithm base
2 of the number of elements in the largest tensor encountered
during contraction with a given optimized contraction order.
A common pattern observed among these four benchmark
results is that, as the complexity of the problem increases,
our TN-based implementation progressively outperforms the
reference libraries. The improvement is attributed to the tensor
network contraction order algorithm, which simultaneously
reduces the space, time, and read-write complexities, and is
further enhanced by our use of advanced BLAS routines. The
graphs feature a fitted linear curve in log space to underscore
this exponential improvement. However, for other less com-
plex problems (those with space complexities smaller than
10), our library generally performs slower than the reference
libraries. The reason is that the hyper-optimized contraction
order-finding algorithms in our library incur a cost that be-
comes non-negligible for small-sized problems.

Figure 4 demonstrates the speedups achieved by execut-
ing our tensor-based method on a GPU versus on a CPU
across different problem sizes for the MMAP task. The results
indicate that for large problem sizes, the GPU-based imple-
mentation can improve TensorInference.jl’s performance by
one to two orders of magnitude. However, for tasks with
small problem sizes, the overhead associated with transfer-
ring data between the CPU and GPU, along with the time to
launch GPU kernels, outweighs the advantages of using the
GPU, resulting in decreased performance. This finding aligns
with the observation that when space complexity is high, a
few steps of tensor contraction operations become the most
time-consuming parts, and GPUs are especially effective in
accelerating these operations.

V. CONCLUSIONS

We have formulated a series of prevalent probabilistic in-
ference tasks in terms of tensor network contractions and
provided their corresponding implementations. Our proposed
formulation streamlines analog formulations encountered in
classical Bayesian inference methods, including the family
of junction tree algorithms, by abstracting notions based on
message passing and by leveraging established tools such as
differential programming frameworks. We have shown how
adjusting the algebraic system of a tensor network can be
used to solve different probabilistic inference tasks. We in-
troduced the unity-tensor approach to efficiently compute the
marginal probabilities of multiple variables using automatic
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FIG. 3. Runtime speedup achieved by our tensor-based library, TensorInference.jl, across four different probabilistic inference tasks,
relative to Merlin [37], libDAI [38] and JunctionTrees.jl [41]. The experiments were conducted on a CPU using the UAI 2014 inference
competition benchmark problems.

differentiation. We also demonstrated how tropical tensor net-
work representations can be employed for computing the most
likely assignment of variables. Additionally, we unified the
previously developed sampling algorithms for chain and tree
tensor networks.

As a product of this research, we have provided an imple-
mentation of our proposed methods in the form of a Julia
package, namely TensorInference.jl [31]. Our library
integrates the latest developments in tensor network contrac-
tion order finding algorithms from quantum computing into
probabilistic inference. Moreover, our tensor contraction im-
plementation naturally compiles to BLAS functions, enabling
us to fully utilize the computational power of hardware such
as CPUs, GPUs, and TPUs, although the latter was not tested
in this study.

We conducted a comparative evaluation against three
other open-source libraries for probabilistic inference. Our
method demonstrated substantial speedups in runtime per-
formance compared to the reference libraries across various
probabilistic tasks. Notably, the improvements became more
pronounced as the model complexity increased. These re-
sults underscore the potential of our method in broadening
the tractability spectrum of exact inference for increasingly
complex models.

As a future direction, we plan to apply the ideas presented
in this paper to further improve the computational efficiency
of tensor-based quantum error correction (QEC) algorithms
[42]. This process can be formulated as an MPE problem,
where the goal is to find the most likely error pattern given
the observed syndrome (or evidence).
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FIG. 4. TensorInference.jl’s runtime speedup on a GPU for the
MMAP task, relative to CPU performance, benchmarked on the UAI
2014 inference competition problems.
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APPENDIX: BACKWARD RULE
FOR TENSOR CONTRACTION

In this Appendix, we will derive Eq. (17), which is the
backward rule for a pairwise tensor contraction, denoted by
con(�, {AVa , BVb},Vc). Let L be a loss function of interest,
where its differential form is given by

δL = con(Va, {δAVa , AVa},∅) + con(Vb, {δBVb, BVb},∅)

= con(Vc, {δCVc ,CVc},∅). (A1)

The goal is to find AVa and BVb given CVc . This can be achieved
by using the differential form of tensor contraction, which
states that

δC = con(�, {δAVa , BVb},Vc) + con(�, {AVa , δBVb},Vc).

(A2)

By inserting this result into Eq. (A1), we obtain

δL = con(Va, {δAVa , AVa},∅)

+ con(Vb, {δBVb, BVb},∅)

= con(�, {δAVa , BVb,CVc},∅)
+ con(�, {AVa , δBVb,CVc},∅). (A3)

Since δAVa and δBVb are arbitrary, the above equation immedi-
ately implies Eq. (17).
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