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Tensor network (TN) states, including entanglement renormalization (ER), can encompass a wider variety
of entangled states. When the entanglement structure of the quantum state of interest is nonuniform in real
space, accurately representing the state with a limited number of degrees of freedom hinges on appropriately
configuring the TN to align with the entanglement pattern. However, a proposal has yet to show a structural
search of ER due to its high computational cost and the lack of flexibility in its algorithm. In this study, we
conducted an optimal structural search of TN, including ER, based on the reconstruction of their local structures
with respect to variational energy. First, we demonstrated that our algorithm for the spin-1/2 tetramer singlets
model could calculate exact ground energy using the multiscale entanglement renormalization ansatz (MERA)
structure as an initial TN structure. Subsequently, we applied our algorithm to the random XY models with
the two initial structures: MERA and the suitable structure underlying the strong disordered renormalization
group. We found that, in both cases, our algorithm achieves improvements in variational energy, fidelity, and
entanglement entropy. The degree of improvement in these quantities is superior in the latter case compared
to the former, suggesting that utilizing an existing TN design method as a preprocessing step is important for
maximizing our algorithm’s performance.
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I. INTRODUCTION

Developing numerical methods to analyze nonuniformly
or intricately entangled quantum states is crucial for compre-
hending the physical properties of realistic quantum systems,
including chemical and disordered systems. For instance,
Anderson explained phenomena such as spin diffusion and
conduction in lattices with impurities or defects using a simple
model incorporating disorder [1]. Furthermore, many-body
localization has attracted significant interest within the realm
of strongly disordered quantum many-body systems [2,3].

To address these problems, the strong disorder renormal-
ization group (SDRG) [4,5] has been developed, capable of
approximating the qualitative properties of the ground-state
entanglement. Subsequently, the density matrix renormaliza-
tion group (DMRG) for random systems [6] was introduced
as a variational method that can be systematically improved
and extends beyond the real-space RG based on perturbation
theory.

Concurrently, SDRG was combined with tensor network
(TN) methods for extensive numerical calculations, such as in
the case of higher-dimensional systems. The combined meth-
ods were specifically designed to be applicable in the context
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of tree tensor network (TTN) [7–9] and entanglement renor-
malization (ER) [10]. The TTN state [11–13], a generalization
of matrix product states (MPS) [14,15] known as the vari-
ational state of DMRG [16,17]. ER was initially introduced
in multiscale entanglement renormalization ansatz (MERA)
[18,19], a generalization of TTN, to describe the logarithmic
divergence of the entanglement entropy in one-dimensional
(1D) quantum systems, were the theoretical underpinnings for
this approach.

In the variational approach to nonuniform systems using
tensor networks (TNs) [20–22], as described above, tensor
elements are optimized with the whole TN structure fixing.
However, optimizing the structure to align with the entan-
glement layout within the target quantum state is essential
to obtain more accurate solutions with a fixed degrees of
freedom [23]. This optimization involves combinatorial op-
timization and poses a significant challenge, given that the
number of network patterns in the TN increases exponentially
with the number of tensors. Initially pioneered in TN calcu-
lations for molecular systems in quantum chemistry [24–26],
the structural optimization with TTNs has recently exhibited
attention based on the same principles in the context of both
regular and random quantum spin system [27–29].

Extending these ideas to incorporate ER into TN (ER-
TN) represents a sure foothold in advancing TN methods for
nonuniform systems, although it is acknowledged that this
process is challenging. For instance, we examine an approach
discussed in Ref. [28], which explores the reconstruction of
local structures, including the bipartition regions of given
TTNs. It aims to minimize the entanglement entropy for
the bipartition while simultaneously performing a two-tensor

2643-1564/2024/6(3)/033259(11) 033259-1 Published by the American Physical Society

https://ror.org/035t8zc32
https://ror.org/035t8zc32
https://ror.org/01sjwvz98
https://ror.org/03r519674
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.6.033259&domain=pdf&date_stamp=2024-09-06
https://doi.org/10.1103/PhysRevResearch.6.033259
https://creativecommons.org/licenses/by/4.0/


RYO WATANABE AND HIROSHI UEDA PHYSICAL REVIEW RESEARCH 6, 033259 (2024)

update with the DMRG. Unfortunately, this approach is diffi-
cult to adapt to ER-TN states due to the inner loops existing
in the networks’ layout. The underlying challenge arises from
the complexity involved in evaluating entanglement entropy
within these TN states, attributable to the involvement of a
multitude of tensors.

In this study, we introduce a scheme for an automated
optimal structural search focusing on the reconstruction of
their local structures of ER-TN and benchmark it in the spin
S = 1/2 quantum spin systems. By imposing a fixed rank
on each tensor, we restrict the number of possible structures
with of two adjacent tensors Although our method directly
references a cost function relevant to the entire TN struc-
ture, updating and evaluating local tensors can lead to being
trapped in local minima. To address this issue, we incorporate
ideas of sampling from the Gibbs distribution and replica
exchange [30,31], well-known heuristic methods commonly
used to solve classical combinatorial optimization problems.

Our proposed scheme extends to general isometric TN
states, potentially benefiting the advancement of quantum
computing and quantum information processing [32–34]. It
becomes particularly vital in the era of noisy intermediate-
scale quantum (NISQ) computing devices, where even small-
scale investigations can yield significant insights [35–37].

The organization of this paper is structured as follows.
Section II provides an overview of ER-TN and its variational
algorithms. Section III elaborates on our proposed scheme
for optimizing structures of the ER-TN. Section IV presents
benchmark results for S = 1/2 Heisenberg tetramer chains
[38] and disordered XY chains. For the latter models, we
applied a previously established method [10] to determine the
suboptimal structure and compared the results. Finally, Sec. V
summarizes our findings and explores prospective avenues for
future research, emphasizing practical strategies for applying
our method to large-scale systems.

II. TENSOR NETWORK STATES WITH ENTANGLEMENT
RENORMALIZATION

Here, we briefly review of the ER-TN, a type of isometric
TN, and its optimization algorithms. Figure 1(a) presents the
1D binary MERA network as the simplest example of such
states. The network of Fig. 1(a) is constructed using three
types of tensors: a four-leg disentangler u, a three-leg isometry
v, and a two-leg top tensor t . In this research, we focus on
ER-TNs shown in Fig. 1(a) and its variants; however, any
general TN composed of isometric tensors, regardless of the
number of legs on each tensor, is classified as an ER-TN.

These tensors satisfy the following properties called iso-
metric conditions:

∑
cd

(
uab

cd

)∗
ua′b′

cd = δaa′δbb′ , (2.1)

∑
ab

(
uab

cd

)∗
uab

c′d ′ = δcc′δdd ′ , (2.2)

∑
ab

(
vc

ab

)∗
vc′

ab = δcc′, (2.3)

∑
ab

(tab)∗tab = 1, (2.4)

FIG. 1. Schematic diagrams of (a) an example of isometric TN
states with ER for the 14-site system, where blue, orange, and green
tensors indicate disentanglers, isometries, and top tensors and red
circles represent bare spins. Arrows indicate the direction of renor-
malization. (b) Isometric conditions of disentangler, isometry, and
top tensors.

where δαα′ (α ∈ {a, b, c, d}) is the Kronecker’s delta. These
conditions are schematically represented in Fig. 1(b). The TN
state |�〉 is always normalized, as the isometric conditions
indicate, ensuring 〈�|�〉 = 1.

A central concept of ER is to improve the accuracy of
coarse graining of v by employing u to disentangle local en-
tanglement. Owing to these properties, ER can effectively and
efficiently capture long-range entanglement [39,40]. How-
ever, introducing disentanglers in networks leads to the
formation of loop structures, making it difficult to bipartite
and analyze tensor networks.

Let us explore the optimization problem of a tensor that
constitutes the TN state to search the ground state of the
Hamiltonian H. In this paper, the Hamiltonian consists of the
sum of the two-body interactions hi j between ith and jth sites,
namely H = ∑

i< j hi j . Therefore, to minimize the variational
energy E = 〈�|H|�〉, the goal is to optimize a tensor v while
keeping the remaining tensors fixed. The energy E depends
on v and its conjugate tensor v† quadratically as

E (v) =
∑

abca′b′c′

∑
〈i< j〉

(
vc

ab

)∗
[Ei j]

abc
a′b′c′v

c′
a′b′ + C, (2.5)

where 〈i < j〉 refers to the set of site pairs specifying the two-
body interactions hi j contributing to the optimization of v. Ei j

is the tensor obtained by cutting out v and v† from the tensor
network to evaluate ei j = 〈�|hi j |�〉, and C = ∑

〈i< j〉 ei j with∑
i< j = ∑

〈i< j〉 +∑
〈i< j〉 being a constant term with respect

to the update of v. Regrettably, there is currently no known al-
gorithm for optimizing v in quadratic form while maintaining
isometric constraints.
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Therefore, as an alternative, we linearize the cost function
and solve a linear problem. In this procedure, we introduce

Ẽ (v) ≡
∑
abc

[ϒv]c
abv

c
ab, (2.6)

[ϒv]c′
a′b′ ≡

∑
abc

∑
〈i< j〉

(
vc

ab

)∗
[Ei j]

abc
a′b′c′ , (2.7)

where ϒv is called the environment tensor of v. Thus, the
partial derivative of E (v) concerning v is denoted by

Dv = 2∂vẼ = 2ϒv. (2.8)

It is worth noting that when calculating Dv , one can effec-
tively utilize automatic differentiation with the latest advanced
tensor operation libraries [41–43] instead of performing the
contraction of the environment tensor of v.

Two main algorithms are commonly employed to achieve
a unique global minimization of Ẽ : the algebraic-based op-
timization proposed by Evenbly and Vidal [19], and the
Riemannian optimization on the Stiefel manifold [43,44].

In the former algorithm, a singular value decomposition
(SVD)

[ϒv]c
ab

SVD=
∑

c′
Vcc′Sc′W ∗

c′ab, (2.9)

where V,W are isometries, and S is a positive real vector, is
applied to the environment tensor ϒv . The tensor v is always
updated as follows:

[v]c
ab ← −

∑
c′

Vcc′W ∗
c′ab (2.10)

to maximize the absolute value of the energy Ẽ (v). To ensure
that this update consistently converges to global energies,
namely to minimize Ẽ (v), the Hamiltonian should be rede-
fined as Hγ = H − γ I , where γ must be sufficiently large so
that Hγ is negative definite. Nevertheless, since the optimiza-
tion step size is scaled by γ −1 [44], so γ should be chosen to
be as small as practically possible.

Regarding the latter algorithm, the definite difference point
with the algebraic-based one is that gradient-based methods
can update each tensor slightly with the learning rate:

v ← v − ηg(v), (2.11)

where η is the learning rate and g(v) is the Riemannian gradi-
ent of derivative Dv . After the update described in Eq. (2.11),
retracting the updated tensor v is crucial to ensure its align-
ment with the Stiefel manifold.

Hence, upon obtaining the partial derivatives {Dv} of
all tensors, which can be computed simultaneously using
automatic differentiation for the variational energy E , we
can update all tensors concurrently. Riemannian optimiza-
tion methods primarily converge faster than previous methods
when equipped with properly chosen hyperparameters be-
cause they eliminate the need to redefine the Hamiltonian
with γ . Various gradient-based optimization techniques, such
as nonlinear conjugate gradient and quasi-Newton algorithms,
are available, providing additional optimization options.

TABLE I. Automatic structural search for the ER-TN.

1. Select a pair of adjacent tensors within a given TN
(see Appendix A).

2. Update two tensors for each possible TN structure under
fixed bond dimensions to minimize the variational energy.

3. Adopt a local structure stochastically using Eq. (3.3).
4. Iterate the steps 1–3 until the entire network is updated.
5. Update all tensors with respect to the energy while keeping

the whole TN structure fixed.

III. METHOD

We will now describe our algorithm for the structural
search of ER-TN. In order to focus on the effects of this
algorithm, we set bond dimensions at each leg of tensors being
χ = 2. The fundamental concept of our algorithm lies in the
reconstruction of pairs of tensors [28] in a given ER-TN.

An abstract of procedures of our algorithm is outlined in
Table I.

Before implementing our algorithm, we must define the
local structures according to the given TN. For example, in
the ER-TN composed of only u, v, and t , all local structures
depicted in Fig. 2 meet the isometric conditions for each of
the five types: {u, v}, {v, t}, {v, v}, {u, u}, and {u, t}. Note that
if we use other isometric tensors, such as a three-site isometry,
we have to consider new local structures with them.

After that, in the first step of Table I, our algorithm de-
termines a pair of tensors. Here, we assume the given TN
has NT tensors and NE edges connecting for two tensors. In
our algorithm, one pair of tensors is specified by the two-
dimensional vector ep that stores two integers (n, n′ 	= n) ∈
[1, NT]⊗2 identifying the two tensors connected by the pth
edge with p ∈ [1, NE]. We define the integer fp ∈ {0, 1} to
indicate the status (flag) of updates to the local structure asso-
ciated with its corresponding ep during the step 4. If fp = 0,
the update of adjacent two tensors specified by ep is still
pending, and if fp = 1, it indicates that the update has been
completed. Initially, we set the fp to 1 for p corresponding to
bare spins and 0 for the others. Moreover, before each choice
of tensor’s pair, we ensure to also set the fp to 1 in case the two
tensors mentioned by ep form loops, as depicted in Fig. 3. This
is because these tensors do not match the input-output rules
within the prepared pattern in Fig. 2, and thus they cannot be
reconnected in this manner.

Additionally, we introduce the integer dp ∈ [1, NT] repre-
senting the distance, that is, the minimum number of tensors
required to pass from the top tensor t to edge p along the struc-
ture of TN. Given these values, our algorithm selects the pth
edge with largest dp among the set of ep where fp = 0. This
strategy, which refers to dp, is pivotal in ER as it efficiently
disentangles a region near the physical spaces. Furthermore,
our algorithm prioritizes the adjacent local structures specified
by ep to the one selected in previous step 1 as explained in
Appendix A. If more than one candidate passes the above se-
lections, our scheme selects one randomly from among them.

In the second step of Table I, our algorithm performs the
variational optimization concerning energy for local tensors
across all structural configurations to assess a better structure
for the target state. Specifically, we first initialize two tensors,
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FIG. 2. Schematic diagrams of defining local structures in the TN, including u, v, and t , representing (a) {u, v}, (b) {v, t}, (c) {v, v},
(d) {u, u}, and (e) {u, t} type, respectively.

which are specified in the first step, with χ = 2 to satisfy the
below conditions

{
uab

cd

} =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠,

{
va

bc

} =

⎛
⎜⎜⎝

1 0
0 1
0 0
0 0

⎞
⎟⎟⎠, (3.1)

{tab} =

⎛
⎜⎜⎝

1
0
0
0

⎞
⎟⎟⎠,

FIG. 3. The examples of the pair of tensors, indicated by bold red
edge p, to which our method cannot be applied. We have to update
fp to 1 before the step 1.

respectably. In these equations, {uab
cd} and {va

bc} represent ten-
sors uab

cd and va
bc in matrix form, where the upper indices

correspond to columns, and the lower indices correspond to
rows, and {tab} is vector form of tab. Then, we update them
through the variational calculation. For the update, we used
the ADAM algorithm with the learning rate η using the protocol
of the Riemannian optimization [45], as presented in Sec. II.
In our algorithm, we adopt a strategy where η is progressively
reduced from its initial value, ηinit, to its final value, ηend. This
reduction is defined as

η ← ηinit − (l − 1)
ηinit − ηend

NL − 1
, (3.2)

where NL represents the total number of iterations, and l ∈
[1, NL] is the current iteration number. Furthermore, to ensure
efficiency in our algorithm, our algorithm terminates the up-
dating routine at iteration l , if the difference |El − El−1| is
less than δ, a threshold indicating that the variational energy
has converged to the desired accuracy. We will discuss specific
values, NL, {ηinit, ηend}, and δ in Sec. IV.

When selecting a new configuration during the third step
in Table I, we incorporated the heat-bath method, which oper-
ates within the space of variational energy solutions for each
structural candidate, together with the Boltzmann distribution
to avoid the local minima with respect to the TN structures:

Pi = exp(−βEi )∑
j exp(−βEj )

, (3.3)
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where β represents the inverse temperature and Ei denotes the
variational energy of the structural arrangement i. In Eq. (3.3),
an infinite β → ∞ implies that we always select optimal
structure.

After completing the step 4, at the fifth step of Table I, we
update tensors globally under fixing the obtained TN struc-
tures. We will further explain its specific hyperparameters in
Sec. IV.

If we repeat the entire process outlined in Table I, we could
also integrate the idea of replica exchange methods [46] at
the end of fifth step in Table I to address the issue of local
optimal solution. It is necessary to first create NR replicas with
different finite values of β, evenly distributed within a specific
range [βmin, βmax], and then apply our algorithm to all repli-
cas. Following this, using the Metropolis exchange method,
we exchange adjacent replicas with acceptance probabilities

P = min [1, exp(−�S)], (3.4)

determined by �S = (βr+1 − βr )(Er+1 − Er ), where r ∈
[1, NR − 1] indicate the index of replica.

Furthermore, strategies for pruning unnecessary structures
can be incorporated to enhance the efficiency of the search
algorithm. At each step 3, if the energy difference between
the structure with the lowest energy and one of the second
lowest energy exceeded δstructure, we deterministically selected
the structure associated with the lowest energy as the optimal
one in each replica, even in the presence of a heat bath with
a finite β. At each replica exchange, if the energy difference
between replicas with the lowest energy and those with the
second lowest energy exceeded δreplica, we assigned the best
structure across all replicas.

At the end of this section, we will briefly comment on
the numerical cost of our method. The dominant computa-
tional cost in our scheme arises from the contraction of an
environment tensor for each local Hamiltonian hi j required to
update tensors in steps 2 and 5 of Table I. The cost varies
depending on the structure of ER-TNs due to isometric con-
ditions of tensors. In step 2, since our scheme updates only
the two tensors selected in step 1, it is sufficient to compute
the environment tensor once at the beginning. On the other
hand, step 5 requires iterative calculations. It is worth noting
that all calculations over the number of patterns in step 2 and
the number of replicas are parallelizable, so we conducted our
calculations using this parallelism.

IV. NUMERICAL SIMULATION

In this section, we will show the benchmark calculations
for our algorithm, focusing on the ground-state search of two
quantum many-body systems. The first system is the spin-1/2
tetramer model [38], and it has been established that the exact
ground state in the tetramer-singlet phase can be obtained
from rebuilding TN from 1D binary MERA with χ = 2, mak-
ing it suitable for verifying the adequacy of our method. The
second is the 1D random XY model as a main target of this pa-
per, for which examples of ER-TN calculations incorporating
SDRG have already been reported [10]. We demonstrate that
applying our structural optimization to the ER-TNs generated
by SDRG enables us to approach more accurate solutions with

respect to energy, fidelity, and entanglement entropy without
changing the bond dimension of tensors.

In this research, we used the TENSORNETWORK library [47]
for TN calculation and QGOPT [48] for updating tensors.

A. Spin S = 1/2 tetramer model

1. Hamiltonian and an exact ground state

The Hamiltonian for the spin-1/2 tetramer model, which is
a four-legs ladder model, is given by

H =
L∑

x=1

⎛
⎝J

4∑
y=1

sx,y · sx,y+1 + J ′Sx · Sx+1

⎞
⎠ (4.1)

with the total spin Sx = ∑4
y=1 sx,y of local tetramer under

the torus boundary condition, sL+1,y = s1,y and sx,5 = sx,1,
where sx,y = (sx

x,y, sy
x,y, sz

x,y) indicates the S = 1/2 operator at
coordinates (x, y). The coefficients J and J ′ represent the cou-
plings in the intratetramer and the intertetramer interactions,
respectively.

In this model, it is known that there is the tetramer singlets
phase in range of J ′/J � 0.628 in the thermodynamic limit
[38]. Until it deviates from this phase, the exact ground state
forms a direct product of tetramer singlets.

2. Numerical settings

To practically demonstrate, we applied our algorithm for
Eq. (4.1) in case of L = 4, J ′/J values of 0.0, 0.741, 0.7411,
and 0.75, respectively. The choice of J ′/J is based on the
results obtained by the Lanczos method, which indicates
that the exact ground state varies from the product state of
tetramer singlets within the interval 0.741 < J ′/J < 0.7411
for Eq. (4.1) with L = 4. Although the ground states remain
the same until breaking the tetramer singlets, as the J ′/J ratio
increases and the frustration between interactions increases,
this problem is expected to become more difficult as the en-
ergy spectrum becomes more dense at lower energies.

Here, we prepared NR = 8 replicas; each assigned a β

equally divided within [βmin, βmax] = [6.0, 16.0], and we ap-
plied the following procedure for all replicas in parallel.
First, we initialized the MERA state with random isometric
tensors and updated them with NL = 2500, δ = 10−14, and
{ηinit, ηend} = {0.1, 0.0001}. After that, we executed our al-
gorithm described in Sec. III and repeated this process ten
times. At each step 2 in Table I, we employed NL = 2500 and
δ = 10−12. At each step 5, we used NL = 2500 and δ = 10−14,
and we performed the replica exchange in accordance with
Eq. (3.4). We also used pruning parameters δstructure = 10−1

and δreplica = 10−2, respectively. Note that in the steps 3 and
5, we adopted the learning rate

{ηinit, ηend} = {(E − Egs) × 10−1, (E − Egs) × 10−4} (4.2)

to prevent jumping the variational energy from the previous
value due to a large learning rate. In general, we cannot access
the exact ground energy with a large system, so in this case we
could set η with a constant number or approximate ground-
state energy given by other numerical methods.
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FIG. 4. (a) The iteration dependence of relative errors �, for spin S = 1/2 tetramer model, with L = 4 and J ′/J = 0.0, across binary
MERA and tetramer singlets structures in (b). In two network diagrams, blue, orange, and green circles represent disentangler, isometry, and
top tensor, respectively. The tetramer singlets structure is determined manually by the definition of the Hamiltonian Eq. (4.1). It is divided
between bare spin groups consisting of a tetramer singlet.

3. Results

First, we will show an empirical result that the tetramer
singlets state can be represented by a rebuilt structure from
the 1D binary MERA, which consists of four physical bare
sites with several disentanglers and isometries. The Fig. 4(a)
represents the iteration of tensor-update dependence of rela-
tive errors

� = (E − Egs)/Egs (4.3)

between the variational energy E and the exact ground energy
Egs for Eq. (4.1) with L = 4, J = 1.0, and J ′ = 0. Then, we
employed two TNs as shown in Fig. 4(b), where both TNs can
go back and forth with each other by sequentially performing
proposed recombination operations on the local structure. In
this experiment, all tensors were initialized randomly, meeting
isometric conditions, and then we updated all of them with
NL = 2500, δ = 10−14, and {ηinit, ηend} = {0.1, 0.0001}. We
confirm that the tetramer singlet structure can exactly repre-
sent the tetramer singlet state in numerical precision.

Figure 5 shows iteration dependencies of the relative er-
rors � for J ′/J = 0.0, 0.741, 0.7411, and 0.75, respectively,
for the MERA state and reconstructed two structures after
applying our algorithm; the instance without the heat bath
(β → ∞) and those showing minimum energy error within
all replicas. In this figure, to show the differences in results
between obtained structures, we initialized tensors randomly,
meeting isometric conditions, and updated all of them with
NL = 2500, δ = 10−14, and {ηinit, ηend} = {0.1, 0.0001}. In
cases where the ratio J ′/J are 0.0 and 0.741, it is evident
that our algorithm incorporating replica exchange converges
nearly to the exact ground energy. On the other hand at the
instance without the heat bath only minimal improvements
are observed. It supports empirical evidence that replica ex-
change and heat-bath methods with finite temperatures could
increase the potential to find instances that close the targets. It
is noted that the number of times first converging to the exact
ground energy was observed, the fourth time in J ′/J = 0.0

and the ninth time in J ′/J = 0.741, out of the ten repetitions
of our algorithm. This could be because the variational energy
landscape becomes more complex as the gap between the
ground and first excited states is smaller for the increase of
J ′/J .

To investigate the obtained structures in detail, we illustrate
the structure showing minimum energy error � in J ′/J = 0
(Fig. 5) as Fig. 6. It suggests that the obtained TN is not
a trivial structure composing tetramer singlets, as shown in
the right panel of Fig. 4(b). We also found that some exact
tetramer singlets are formed through the optimization process,
even if intertetramers are not completely disentangled in the
sense of structure. This behavior is one of the interesting
phenomena that indirectly suggests the TN possesses more
than enough degrees of freedom to form a tetrameric singlet
state.

In the case of J ′/J = 0.7411 and 0.75, the exact ground
state is associated with S = 2 Haldane phase [38]. To sum-
marize, while we did not achieve the exact ground energy

FIG. 5. The iteration dependence of relative errors � for the
binary MERA (green symbols), optimized structure without the heat
bath (orange symbols) and with the heat bath and the replica ex-
change (blue symbols) for several J ′/J .
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FIG. 6. The diagram of the structure showing minimum energy
error value in case of J ′/J = 0.0. The numbers assigned to bare spins
represent indices of Hamiltonian.

as in the singlet phase case, we made concrete progress. For
J ′/J = 0.7411, we reduced the error from 4.30 × 10−2 at the
initial state to 9.88 × 10−5. However, for J ′/J = 0.75, there
was almost not improvement, as the error only converged from
2.26 × 10−2 to 5.43 × 10−2.

B. S = 1/2 one-dimensional random XY chain

1. Hamiltonian

The S = 1/2 1D random XY chain with periodic boundary
condition is given by

H =
N∑

i=1

Ji
[
sx

i sx
i+1 + sy

i sy
i+1

]
, (4.4)

where N is the system size, (sx
i , sy

i ) denotes S = 1/2 operators
for ith site, sx(y)

i+N = sx(y)
i , and the random coupling parameters

{Ji ∈ R} are allowed to vary in the range [0,1] with uniform
distribution. It is known that spacial averaged entanglement
entropy of the exact ground state for the Hamiltonian obeys
the logarithmic scaling [49].

2. Numerical settings

We demonstrated our algorithm for two initial structures:
binary MERA and suboptimal structures obtained using the
SDRG method for ER proposed in Ref. [10], for system
sizes N = 8 and 16. The latter is explained in more detail in
Appendix B, is referred to in this paper as ER-SDRG. For
N = 8, the internal degrees of freedom on tensors of MERA
and ER-SDRG are 175 and 172, and for N = 16 they are
399 and 392, respectively. Thus, the fact that the difference
in internal degrees of freedom between the two structures
consistently remains within 3% facilitates discussions on how
the structure of the initial TN influences the performance
of our algorithm. Additionally, if the system size is suffi-

FIG. 7. The benchmark for the relative energy errors in MERA
and ER-SDRG structures. “opt ◦” represents the results after apply-
ing our method, starting with ◦ as the initial structure. The dashed
lines connecting the circles before and after the optimization indicate
the change in relative errors for each disorder configuration.

ciently large, it is known that evaluating an each energy term
requires O(χ9) computational complexity for MERA struc-
tures [19] and O(χ7) for ER-SDRG structures [10], respec-
tively. For both structures, we prepared one replica with
β → ∞ for 50 disorder realizations with randomly varying
coupling strengths. In all prepared structures, we initialized
tensors randomly maintaining isometric conditions and up-
dated them with NL = 5000, δ = 10−12 and {ηinit, ηend} =
{0.1, 0.0001}. After that, we repeated applying the proposed
procedure five times. The total number of iterations was set to
NL = 5000 for both the steps 2 and 5, and the thresholds were
set to δ = 10−6 and 10−12 at the steps 2 and 5, respectively.
About learning rate η in the steps 3 and 5 were defined the
same as in the tetramer model.

3. Results

The panel in Fig. 7 compares the relative errors � from
the exact ground-state energy Egs in the case of system sizes
N = 8 and 16 across four different structures. The horizontal
axis represents structural differences, where “opt ◦” denotes
an optimized ◦ network using our method. The result indicates
that our method can lead to better solutions, with a lower
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average � from the initial structure in both the MERA and
ER-SDRG. Specifically, we observed the decreasing rate of
the relative errors

RTN =
(

1 − �(opt TN)

�(TN)

)
× 100 [%] (4.5)

with TN ∈ {MERA, ER-SDRG} in both 8-site and 16-site
configurations as follows:

8-site

TN MERA ER-TN

mean 1.37% 24.9%
max 15.1% 99.6%

and

16-site

TN MERA ER-TN

mean 15.2% 26.0%
max 79.0% 91.7%

.

From this analysis, our algorithm succeeded more for ER-
SDRG, and this suggests that our method works more
powerfully when utilizing the TN design methods for nonuni-
form systems as a preprocessing step.

Next, we compare the infidelity per site

�F = 1 − |〈�|�gs〉|1/N (4.6)

between the variational state |�〉 and the exact ground state
|�gs〉 in Fig. 8. In random systems, fidelity could be signifi-
cantly boosted with a slight improvement in energy because
many low-energy states tend to emerge more than in uni-
form systems. We observed the decrease ratio in Eq. (4.5) as
follows:

8-site

TN MERA ER-TN

mean 1.59% 25.2%
max 15.4% 99.994%

and

16-site

TN MERA ER-TN

mean 10.4% 30.9%
max 76.2% 98.3%

.

Excluding the results from the 16-site MERA, the decreasing
rates in fidelity error per site were greater than those in relative
energy error.

Finally, in Fig. 9, we show the average entanglement
entropy 〈S〉 of any possible subsystem size L for 50 disor-
der configurations, where S = −Tr[ρA log2(ρA)] with ρA =
TrB[|�〉〈�|] is the entanglement entropy defined when the
N-site system is divided into a subsystem A that includes
L sites of the system and a subsystem B that contains the
remaining sites. Here, TrB means the partial trace for the
physical degrees of freedom associated with subsystem B. Our
method, which refers to variational energy, also improved en-
tanglement entropy. Similar to � and �F, our method against
ER-SDRG apparently yielded superior results compared to
the MERA state. In this experiment, we did not impose U(1)
symmetry on each tensor, and it is interesting to see if our
method will produce further improvements when consider-
ing symmetry. This is because it is generally known that
tensor network methods with low bond dimensions tend to
break the symmetry of the system and favor states with low
entanglement.

V. CONCLUSION

In this paper, we have proposed the method for structural
search of ER-TN to approach the ground state of quantum

FIG. 8. The benchmark for the infidelity at each bare bond in
MERA and ER-SDRG structures. The explanation of this type of
figure is already described in Fig. 7.

FIG. 9. The results are averaged over all possible subsystem
sizes L for 50 disorder configurations. We plot the results for different
structures at each L, which are slightly shifted along the x axis to
improve visibility.

033259-8



AUTOMATIC STRUCTURAL SEARCH OF TENSOR NETWORK … PHYSICAL REVIEW RESEARCH 6, 033259 (2024)

many-body systems. While existing references utilize SDRG
to construct ER-TN for disordered systems, our study explores
the reconstruction of local structures. Compared to TTNs,
which can directly evaluate entanglement entropy between
two subsystems based on singular values at the canonical
center [28], ER-TN cannot perform the evaluation straightfor-
wardly. This is because ER-TN do not always allow defining
canonical centers because of internal loops. Thus, we focused
on rearranging two local tensors in ER-TNs by referring to
the optimized variational energy, which improves the over-
all structures. Our study demonstrated the potential of our
approach in optimizing structures for both the spin S = 1/2
tetramer and random XY models.

In the spin S = 1/2 tetramer model, we encountered a
problem where our algorithm does not converge to the ex-
act target state when continually adopting the structure with
minimum variational energy. To address this problem, we
introduced the concept of the heat-bath method and the replica
exchange. When applied iteratively with replica exchange, our
algorithm proved effective in scenarios with strong interte-
tramer interactions until the direct product of tetramer singlets
state is disrupted. Furthermore, it successfully reduce the rel-
ative error by R = 99.8 after breaking the tetramer singlets
state.

For the 1D random XY model, we applied our method to
both MERA and TNs obtained by SDRG to verify the high
accuracy of the variational state. Our results showed energy,
fidelity, and entanglement entropy improvements for both ini-
tial structures. Our method’s efficacy is more pronounced for
the latter structure, highlighting the importance of providing
suitable initial structures. Nevertheless, this must depend on
the problem itself, so if there are no hints in problem to pre-
pare initial structure, incorporating the heat-bath method and
the replica exchange, as mentioned above, is one reasonable
option.

Our research concept shares similarities with previous
studies updating the connectivity of TN structures. Automatic
quantum circuit encoding (AQCE) [50] involves the process
of reconnecting each quantum gate sequentially in quantum
circuits, which can be classified as ER-TN. AQCE is an algo-
rithm that transforms any quantum state into a quantum circuit
by iteratively inserting optimal gates at the best positions in
each circuit depth. AQCE always focuses on one two-qubit
gate to decide connectivity; conversely, our method differs by
targeting adjacent gate pairs and introducing the choice for
stochastic selection of local structures. Our method, of course,
can be used with such algorithms to address problems for
quantum computing.

Expanding the bond dimension and applying it to larger
systems are essential steps to enhance the applicability of our
method. Contraction techniques for TN with loop structures
will be crucial for achieving this goal [51,52]. Moreover,
given our algorithm’s focus on local regions of the network,
it will be effective to explore the parallelization of each step
as seen in the real-space parallel algorithm for TN [53–55].
Another area of focus will be refining tensor update methods
to improve both efficiency and accuracy. We aim to develop
algorithms capable of algebraically decomposing high-rank
tensors into two tensors to follow each structure, similar to
the two-tensor DMRG approach.

ALGORITHM 1. Select local tensors.

Require: integer j ∈ [0, NE], set of pair of integers
E = {ei ∈ [1, NT]⊗2}, set of binary F = { fi ∈ {0, 1}}, set of
integer D = {di ∈ [1, NT]} for 1 � i � NE

Ensure integer jnew ∈ [1, NE]
1: if j is 0 then

� j = 0 means our algorithm is at the first selection.
2: Q ← {i ∈ [1, NE] | fi = 0}
3: dmax ← maxq∈Q {dq}
4: R ← {q ∈ Q | dq = dmax}
5: else

� j(∈ [1, NE])th edge was selected in the previous step 1.
6: f j ← 1
7: P ← ADJACENT_EDGE_INDICES( j, E)

�The function ADJACENT_EDGE_INDICES(i, E) returns
indices of edge in E , where they connect with two tensors
which are indicated ei except for i itself.

8: Q ← {p ∈ P | fp = 0}
9: if Q is ∅ then

10: Execute the same procedure as in line 2.
11: end if
12: Execute the same procedure as in lines 3–4.
13: end if
14: jnew is sampled from R
15: return jnew
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APPENDIX A: SPECIFIC ALGORITHM FOR SELECTION
LOCAL TWO TENSORS

In Sec. III, we briefly described how to select local tensors
in our algorithm. To ensure clarity and thoroughness, we
will further explain the methods we adopted using the spe-
cific procedure to select local tensors shown in Algorithm 1,
which is used in step 1 of Table I. This procedure can recon-
struct all possible local structures only once within step 4 in
Table I, while prioritizing the strategies described in Sec. III.
It should be noted that there may be a more optimal approach
that would improve the performance of our overall network
recombination algorithm.
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APPENDIX B: ENTANGLEMENT RENORMALIZATION
FOR DISORDERED SYSTEMS

Establishing a suboptimal structure in advance is cru-
cial for our method. We employed the method proposed
in Ref. [10] to prepare an initial structure for the dis-
ordered systems. Here, we provide an overview of this
method.

Unlike the local reconstruction approach, this algorithm
constructs the structure by referencing the coupling con-
stants of the Hamiltonian. For the Hamiltonian, exemplified in
Eq. (4.4), this method approximates a state for the pair of spins
with the strongest coupling Ji as the singlet. Then, using the
second-order perturbation theory, we determine the effective
coupling

J̃i = Ji−1Ji+1

Ji
(B1)

between the spins on either side, as depicted in Fig. 10.
This network contains two kinds of local structures: {u, u}
[Fig. 2(d)] and {u, t} shown in Fig. 2(e). Note that, while
Ref. [10] fixing t tensors as the singlet state and impose u

FIG. 10. A Schematic diagrams illustrating the construction of
the optimal structure by the method mentioned in Ref. [10].

tensors are updated while meeting U (1) symmetry, our
method updates all tensors without this symmetry.
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