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Nonadiabatic nonlinear non-Hermitian quantized pumping
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We analyze a quantized pumping in a nonlinear non-Hermitian photonic system with nonadiabatic driving. The
photonic system is made of a waveguide array, where the distances between adjacent waveguides are modulated.
It is described by the Su-Schrieffer-Heeger model together with a saturated nonlinear gain term and a linear loss
term. A topological interface state between the topological and the trivial phases is stabilized by the combination
of a saturated nonlinear gain term and a linear loss term. We study the pumping of the topological interface
state. We define the transfer-speed ratio ω/� by the ratio of the pumping speed ω of the center of mass of the
wave packet to the driving speed � of the topological interface. It is quantized topologically as ω/� = 1 in the
adiabatic limit. It remains to be quantized dynamically unless the driving is not too fast even in the nonadiabatic
regime. On the other hand, the wave packet collapses and there is no quantized pumping when the driving is too
fast. In addition, the stability against disorder is more enhanced by stronger nonlinearity.
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I. INTRODUCTION

Topological insulator is a prominent idea in contemporary
physics [1,2]. A typical example is a quantum Hall effect or a
Chern insulator in a two-dimensional system described by the
Chern number. The Thouless pump is a dynamical counterpart
of a Chern insulator [3–6], where the Chern number is defined
in the space-time variable. A pumped charge per one cycle is
quantized. Especially, a topological-edge state is pumped in
the quasicrystal model [7,8], the Rice-Mele model [9], and
the Su-Schrieffer-Heeger (SSH) model [10].

Photonic systems provide us with an ideal playground
of topological physics [11–21]. Various topological phases
are realized in photonic crystal by modulating the hopping
parameter spatially. A simplest example is the SSH model
[22–26]. Especially, a large area topological interface laser is
theoretically proposed by using the topological interface state
of the SSH model [27,28]. The Thouless pumping is realized
by using spatially modulated waveguides [7,8,29–31], where
the hopping parameter between waveguides are spatially mod-
ulated by modulating the distances between the adjacent
waveguides. Dynamics is governed by the Schrödinger equa-
tion [32,33], where the direction z of the waveguide acts
as time t . Nonlinear Thouless pumping has been studied in
photonic systems [34–38]. Recently, pumping by modulating
the topological interface state of the SSH model is proposed
in a linear Hermitian system [39], which is not the Thouless
pumping.

Non-Hermiticity [40–42] and nonlinearity [43–47] natu-
rally arises in topological photonics, which has expanded
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the field of topological physics starting from condensed mat-
ter physics. Photon loss is effectively well described by a
non-Hermitian loss term. On the other hand, the gain has
a saturation, which is described by a nonlinear term. Stable
laser emission occurs in the presence of both of these terms
[48,49]. The interplay of non-Hermiticity and nonlinearity is
interesting [50–52]. It is understood in general that the Thou-
less pump is valid only in the adiabatic limit [53,54], although
there exists a modification of the Thouless pump resulting
in quantized nonadiabatic transport in the linear Hermitian
case [55].

In this paper, we study a pumping in a nonlinear non-
Hermitian photonic system. The basic structure is described
by the SSH model, which has the topological and the trivial
sectors. The topological interface state emerges around the in-
terface between these two sectors. We investigate the pumping
of this interface state by driving the interface. It is quantized
topologically in the adiabatic limit. As long as the driving is
not too fast, the motion of the interface state is synchronized
with the motion of the interface and it remains to be quantized
dynamically even in the nonadiabatic regime. This is because
the interface state is stabilized dynamically by a nonlinear
gain term and a linear loss term. On the other hand, when
the driving is too fast, the synchronization is broken. The
wave packet collapses and there is no quantized pumping. In
addition, the stability against disorder is more enhanced by
stronger nonlinearity.

II. MODEL AND INTERFACE STATE

We study a pumping of the topological interface state in
the SSH model. The SSH model is the simplest model for
topological insulators. It is a one-dimensional model with
dimerized hopping parameters κA and κB as illustrated in
Fig. 1. It has two phases, i.e., the trivial phase for |κA| > |κB|
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FIG. 1. SSH model is defined on a chain made of sites with
dimerized hopping parameters κA and κB. The hopping parameter
becomes larger when the distance between the adjacent sites is
smaller. A green line indicates the hopping κA, while a yellow line
indicates the hopping κB. The width of a line indicates the strength
of the hopping. (a) It is in the trivial phase for |κA| > |κB|. (b) It is
in the topological phase for |κA| < |κB| together with the topological
edge states at zero energy. (c) A single chain may contain both a
trivial sector and a topological sector together with the interface state
and the edge state at zero energy. Here, three hopping parameters
κA > κB > κ ′

A are introduced. (d) The topological edge state can be
removed from the spectrum by removing the edge site at n = N + 1
with N = 11. See Fig. 2 with respect to the energy and the profile of
the topological interface state.

as in Fig. 1(a) and the topological phase for |κA| < |κB| to-
gether with the topological edge states as in Fig. 1(b). We may
consider the SSH model which contains both the trivial and
the topological sectors, where one of the edge states turn into
the interface state, as illustrated in Fig. 1(c). Furthermore, we
remove the remaining edge state by removing the edge site as
in Fig. 1(d). We focus on the interface state in the SSH chain
of the type given by Fig. 1(d).

In the field of photonics, the SSH model is realized by
an array of spatially modulated waveguides [7,8,14,29,31,56].
We consider N pillars on the (x, z) plane with z being the di-
rection of the waveguide for z � 0. When an input is injected
to the interface site nIF at z = 0, the wave packet evolves
mainly along the pillar. However, there are slight leaks along
the x direction, which results in the hopping between adjacent
pillars. When the spacing is large (small), the hopping is small
(large).

A set of points on the pillars along the x axis at fixed z con-
stitutes the SSH model [7,8,14,29,31,56], where the hopping
parameter can be tuned by the spacing between the adjacent
pillars and becomes a function of z. We tune the hopping
parameters as follows:

κA,n(z) = κ

(
1 − λ tanh

n − n IF(z)

ξ

)
, κB,n = κ. (1)

Note that κA,n(z) > κB for n < nIF(z), implying that the sector
is trivial, while κA,n(z) < κB for n > nIF(z), implying that

the sector is topological. Hence nIF(z) is the position of the
interface as a function of z. Here, λ > 0 and ξ > 0 represent
the interface modulation amplitude and the interface width,
respectively. Small (large) ξ represents a sharp (smooth)
interface.

For definiteness, we choose the same site number N ′ for
the trivial and the topological sectors, where N ′ is an even
integer as illustrated in Figs. 1(a) and 1(b). Then, the interface
position is given by nIF = N ′ + 1 as in Fig. 1(c). Next, we
remove the right edge site in order to remove the topological
edge state from the energy spectrum, as we have explained in
Fig. 1(d). Hence the total site number is N = 2N ′ − 1 . Then,
the interface position is given by the site

nIF = N + 1

2
+ 1. (2)

Here, N is an odd integer such that 1
2 (N + 1) is an even

integer. In this work, we inject a pulse to the interface site
nIF at z = 0. The pulse evolves along the z direction. Then,
we drive the interface nIF(z) as a function of z. Its dynamics is
governed by [48]

i
dψn

dz
=

∑
m

Mnm(z)ψm − iγ

(
1 − χ

[1 − (−1)n]/2

1 + |ψn|2/η
)

ψn,

(3)
where ψn is the amplitude at the site n with n =
1, 2, 3, . . . , N . In this equation, Mnm is a z-dependent hopping
matrix representing the SSH model,

Mnm(z)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 κA,n(z) 0 0 0 · · ·
κA,n(z) 0 κB 0 0 · · ·

0 κB 0 κA,n(z) 0 · · ·
0 0 κA,n(z) 0 κB

. . .

0 0 0 κB 0 . . .
...

...
...

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4)

γ represents the constant loss in each waveguide, γχ repre-
sents the amplitude of the optical gain via stimulated emission
induced only at the odd site, and η represents the saturation
parameter of nonlinear gain [48]. All these parameters are
positive. The system turns out to be a linear non-Hermitian
model in the limit 1/η → 0. On the other hand, γ controls
simultaneously the nonlinearity and the non-Hermiticity as far
as 1/η �= 0. The system is linear and Hermitian for γ = 0. In
Eq. (3) we measure z in units of 1/κ and the loss parameter γ

in units of κ , where κ is defined in Eq. (1).
An interface state emerging at the interface between the

topological and the trivial sectors is obtained by solving the
eigenequation Mnmψn = Eψn with the matrix Mnm given by
Eqs. (1) and (4). We show the result in Fig. 2. There is one
zero-energy state as in Fig. 2(a) representing the topological
interface state, which is shown in Fig. 2(b). Note that we
have removed the topological edge state by removing the
corresponding edge site as illustrated in Fig. 1(d).
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FIG. 2. (a) Energy spectrum of the SSH model (4) in the presence
of the interface (1). There is only one zero-energy state representing
the topological interface state. (b) The eigenfunction of the topolog-
ical interface state. We have used a chain with N = 99. Then, the
interface state emerges around nIF = 51 according to Eq. (2). We
have set ξ = 1 and λ = 0.5.

The explicit equations for a finite chain with length N
follow from Eq. (3) as

i
dψ2n−1

dz
= κBψ2n−2 + κA,n(z)ψ2n

− iγ

(
1 − χ

1 + |ψ2n−1|2/η
)

ψ2n−1, (5)

i
dψ2n

dz
= κBψ2n+1 + κA,n(z)ψ2n−1 − iγψ2n. (6)

We analyze them in the following.

III. RELAXATION PROCESS

We solve the set of Eqs. (5) and (6) by imposing the
boundary condition

ψn(z = 0) = δn,nIF . (7)

It is convenient to regard z as time t . Then, Eqs. (5) and (6)
are the Schrödinger equations describing a quench dynamics
starting from the interface site by giving an input to it with the
initial condition (7). We consider the case where the interface

position is given by Eq. (2) or

nIF(z) = 1
2 (N + 1) + 1 (8)

for the relaxation process z < z0 and by

nIF(z) = [
1
2 (N + 1) + 1

] + �(z − z0) (9)

for the driving process z > z0. In what follows, we may oc-
casionally regard z as time t . The pumping is said to be
adiabatic for � � κ , which means that any finite driving is
nonadiabatic.

The relaxation process is necessary before the driving pro-
cess, where the wave packet spreads from the delta function
(7) and reaches the stational distribution as in Figs. 3(a1) and
3(b1). The interface state is formed in the relaxation process
(z < z0) to balance the nonlinear gain terms and the linear loss
terms.

IV. ADIABATIC PUMPING

We investigate the driving process, where the interface
position n IF(z) is modulated as in Eq. (9) for z > z0. We first
consider the adiabatic driving, where the eigenfunction is well
approximated by the snapshot solution using the adiabatic
approximation. The eigenstate ψn is obtained by a stationary
solution at each z by solving the equation

∑
m

Mnm(z)ψm − iγ

(
1 − χ

[1 − (−1)n]/2

1 + |ψn|2/η
)

ψn = 0. (10)

The stationary solution is given by

ψn(z) = ψn−nIF(z)(z0), (11)

where the wave packet perfectly follows the interface without
any deformation. It is numerically confirmed as in Fig. 3(a2).

V. TOPOLOGICAL PUMPING

We proceed to argue that the pumping is topological and
it is quantized in the adiabatic limit. Although we have so far
investigated a pumping phenomenon in an open SSH chain

FIG. 3. Wave packet in quench dynamics in bird’s eye view and in the (n, z) plane. (a1), (b1) � = 0; (a2), (b2) � = κ/2; (a3), (b3) � = κ;
(a4), (b4) � = 2κ; (a5), (b5) � = 4κ . We have used a chain with N = 799. We have set η = 10, ξ = 20, λ = 0.5, γ = 0.1, and χ = 1. The
evolution is calculated in the range 0 � z � 200, where z0 = 100. A green line represents the interface position nIF(z) given by Eqs. (8) and
(9). Here, nIF(z) = 401 in the relaxation process (z � 100). (c) The color palette showing the absolute value of the wave function.
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with length N , we may consider torus geometry by identify-
ing n = N as n = 1. Then, because the driving is periodic,
�(z0 + N/�) = �(z0), we identify z = z0 and z = z0 + N/�.
In the periodic system, according to the definition of polariza-
tion by King-Smith and Vanderbilt [57], the mean position
(16) is rewritten as

〈x(z)〉 =
∫

〈ψkx (z)| ∂

i∂kx
|ψkx (z)〉dkx, (12)

where ψkx (z) is the Fourier transform of ψn(z), for which we
may use the wave function of the interface state as far as the
motion of the interface state and the motion of the interface are
synchronized. The formula (12) implies that 〈x(z)〉 is a phase
of the wave function ψkx (z) and hence it can be multivalued.

Then, the topological number P is the winding number,

P = 1

N

∫ z0+N/�

z0

∂〈x(z)〉
∂z

dz, (13)

which is the pumped charge when the interface shifts by N
sites. We now insert Eq. (13) to Eq. (17) to obtain P = ω/�.

In the adiabatic limit, the mean position is exactly given by

〈x(z)〉 = nIF(z) = �(z − z0) (14)

by using Eq. (11). By inserting it to the winding number (13),
we obtain the winding number is quantized to be 1.

VI. NONADIABATIC PUMPING

Next, we study nonadiabatic driving numerically. What is
unexpected is the numerical result for larger values of �.
For slow driving � < κ , the wave packet is stabilized as in
Figs. 3(a1)–3(a3), whose motion is perfectly synchronized
with the motion of the interface described by Eq. (9), as shown
by the green line in Figs. 3(b1)–3(b3). On the other hand, for
fast driving � > κ , the wave packet collapses and spreads, as
shown in Figs. 3(b4)–3(a5) and 3(b4)–3(b5).

To investigate these phenomena quantitatively, we calcu-
late the fidelity defined by

F (z) ≡ |〈ψn−nIF (z)(0)|ψn(z)〉|. (15)

The wave packet synchronizes perfectly with the moving
interface in the adiabatic limit and is well described by
|ψn(z)| = |ψn−nIF (z)(0)|, or F (z) = 1 as �/κ → 0. We show
the fidelity at z = 200 in Fig. 4(a) as a function of the driving
speed � for various values of the parameter γ . The fidelity
is almost 1 in a wide range of �/κ unless γ = 0 and this
range becomes wider as γ increases, where the wave packet
is pumped without changing its form. It fluctuates around 1
in the linear Hermitian model (γ = 0). On the other hand, the
fidelity decreases rapidly as a further increase of �. It means
that the driving is too fast for the wave packet to follow it.

To determine the pumping velocity, we calculate the expec-
tation value of the mean position by

〈x(z)〉 ≡
∑

n [n − nIF(0)]|ψn(z)|2∑
n |ψn(z)|2 . (16)

We show the z evolution of 〈x(z)〉 for various � in Fig. 5(a).
It is almost zero in the relaxation process (z < z0). On the
other hand, it increases almost linearly in the driving process

FIG. 4. (a) Fidelity as a function of �/κ for various γ . (b) Ratio
ω/� as a function of �/κ for various γ . The horizontal axis is in the
logarithmic scale (log2 �/κ). (c) Fidelity in the presence of disorder
ζ = 0.1. (d) Ratio in the presence of disorder ζ = 0.1. Calculations
are done for a specific configuration of randomness. Red curves
indicate γ = 0 (the linear model), blue curves indicate γ = 0.1,
green curves indicate γ = 1, and cyan curves indicate γ = 4.

(z > z0). Namely, 〈x(z)〉 is well approximated by

〈x(z)〉 = ω(z − z0). (17)

We define the pumping velocity ω at each � by this formula.
We then calculate numerically the transfer-speed ratio

ω/�. We plot the ratio ω/� as a function of �/κ for various
γ in Fig. 4(c), where it is found that the pumping speed is
almost identical to the driving speed, i.e., ω = �, in a wide
range of �/κ , and this range becomes wider as γ increases as
in the case of the fidelity.

These phenomena are interpreted as follows. The wave
packet is dynamically stabilized by the nonlinear gain term
and the linear loss term. These terms act as a restoring force
for a wave packet for slow driving.

We have estimated log10 |1 − ω/�| in order to see how
ω/� is quantized. It is found to be of the order of 10−6 for
�/κ = 2−10: see Fig. 5(b). Namely, the ratio ω/� is of the
order of 0.999999 for �/κ = 2−10. In addition, the accuracy
is more enhanced for slower driving.

FIG. 5. (a) Evolution of the mean position 〈x(z)〉. The pumping
velocity ω is determined from the slope of the line for each �/κ .
The horizontal axis is z with 0 � z � 200. (b) log10 |ω/� − 1| as a
function of �. We have set η = 10, ξ = 20, λ = 0.5, γ = 0.1, and
χ = 1.
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VII. SCALE INVARIANCE

We discuss the effect of the nonlinear saturation η. By
making a scale transformation

ψ2n−1 	→ √
ηψ ′

2n−1, (18)

Eq. (3) is rewritten as

i
dψ ′

n

dz
=

∑
nm

Mnmψ ′
m − iγ

(
1 − χ

[1 − (−1)n]/2

1 + |ψ ′
n|2

)
ψ ′

n, (19)

with the initial condition ψn(z = 0) = √
ηδn,nIF , where the

nonlinear saturation is found to be normalized. Because the
saturated wave packet is independent of the initial condition,
there is a scale invariance in the fidelity and the transfer-
speed ratio as a function of η as far as 1/η �= 0. Namely,
they are irrelevant to the magnitude of η. On the other hand,
the wave packet diverges due to the gain term in the linear
non-Hermitian model (γ �= 0, 1/η = 0).

VIII. DISORDER EFFECT

We study disorder effects. We introduce uniformly dis-
tributing randomness from −ζn(z) to ζn(z) to the hopping
parameters at each z and site n as

κA,n(z) = κ

(
1 + λ tanh

n − nIF(z)

ξ
+ ζn(z)

)
, (20)

κB,n(z) = κ[1 + ζn(z)]. (21)

The fidelity and the mean velocity are calculated with the
10% randomness for specific configuration of randomness,
whose results are shown in Fig. 4. The fidelity is found to
be robust in the presence of disorder. Especially, stability is
more enhanced by stronger nonlinearity as shown in Fig. 4(c).
Similarly, the velocity is also found to be robust in the pres-
ence of disorder. Especially, the stability is more enhanced for
stronger nonlinearity as shown in Fig. 4(d). In conclusion, the

pumping is robust against disorder even in the nonadiabatic
regime, where the stability is enhanced by strong nonlinearity.

IX. DISCUSSIONS

The nonlinear non-Hermitian pumping is quantized topo-
logically in the adiabatic limit. We have shown that the
nonlinear non-Hermitian pumping is quantized dynamically
even in the nonadiabatic regime. The combination of the
saturated gain and the linear loss stabilizes the wave packet
dynamically and hence it is robust even for nonadiabatic driv-
ing as long as the driving speed is not too fast. Our work
provides an example that the interplay among non-Hermiticity
and nonlinearity gives an intriguing phenomena in the nona-
diabatic regime.

Femto-second laser writing waveguide [14,58,59] or semi-
conductor waveguide [60–62] are used in experiments.
Typical distance between waveguides is 15 µm (5 µm) and the
length of the waveguide is 500 mm (50 µm) for a femtosecond
laser writing [14] (semiconductor [62]) waveguide. We have
set N = 799, which corresponds to 12 mm for a femtosec-
ond laser writing waveguide and 4 mm for a semiconductor
waveguide, in numerical simulations.

Loss is introduced by using a lossy photonic crystal
[63] and waveguides [64,65]. Gain is provided through two-
wave mixing using the material’s photorefractive nonlinearity
[66–68] or optical pumping [69–72].
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