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Coherent population trapping for reservoir engineering and spin squeezing
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Spin squeezing has important applications in the field of quantum metrology and quantum information
processing. Here we propose that coherent population trapping is well suitable for establishing cavity dissipation
mechanism and generating a spin-squeezed state. An ensemble of N double �-type atoms is placed inside the
two-mode optical cavity, where one � subsystem is driven resonantly by two strong control fields to form a dark
resonance and the other � subsystem is coupled by two cavity vacuum fields and two external fields with large
detunings. Due to the dark resonance, the atoms are trapped in a dark state and one has the maximal coherence
between the two ground states. Two double off-resonance stimulated Raman scattering interactions are induced
between fields and dressed atoms to establish a dissipative quantum dynamical process based on a collective
cavity reservoir. As a result, strong stable spin squeezing is generated, which is verified by our numerical and
analytical results.

DOI: 10.1103/PhysRevResearch.6.033256

I. INTRODUCTION

In the field of quantum metrology, the measurement preci-
sion with uncorrelated particles is restricted by the standard
quantum limit (SQL), which arises from the quantum noise
inherent in measurements [1]. However, this limit can be
overcome by exploiting quantum correlated states, such as
spin-squeezed states (SSSs) [2–6]. These states are entangled
quantum states of collective spins with reduced quantum fluc-
tuations in one spin component perpendicular to the mean
spin direction by increasing the fluctuations of the other com-
ponent [7,8]. The reduced quantum fluctuations can improve
the measurement precision, even up to the Heisenberg limit
(HL). The SSSs have many important applications in the
improvement of high-precision measurements, e.g., Ramsey
spectroscopy [9–20], atomic clocks [21–31], magnetome-
ters [32–43], and gravitational-wave interferometers [44–50].

Up to now, there are many methods for preparing SSSs,
which can be roughly divided into the following three cat-
egories. One method is to transfer the squeezing states of
light to the spin system directly [51–56]. It is determined
by the quality of squeezed light and the transfer efficiency.
Another method is to perform the quantum nondemolition
measurement on the states of photons coupled with the
atomic ensemble [4,5,57–63]. The generating spin squeezing
is nondeterministic and depends entirely on the results of the
measurement. In fact, the spin squeezing is greatly affected
by the spontaneous radiation of atomic ensemble itself and
the detection efficiency of photon detector. The last method
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is based on the nonlinear atom-atom interaction. Compared
to the first two methods, the acquired spin-squeezed state can
be generated deterministically with no need for high-quality
squeezing lights and efficient quantum detectors. There are
many theoretical proposals for implementing such nonlinear
interactions, some of which have been implemented exper-
imentally, such as in Bose-Einstein condensates via atomic
collisions [3,64–68], in atomic ensembles via photon-induced
atom-atom interactions [69–84], and in diamond nanostruc-
tures via phonon-induced spin-spin interactions [85–89].

Among the category of nonlinear atom-atom interaction
platforms, Sørensen and Mølmer used double off-resonance
stimulated Raman scattering (SRS) to realize one-axis twist-
ing (OAT) [70]. This method can also been extended to
two-axis twisting (TAT) via adding another two classical
driving fields [71]. Until now, a number of schemes based
on the SRS processes have been put forward to generate
the SSSs. For example, Torre et al. excited a pair of two-
photon Raman transitions in a four-level atomic ensemble
and constructed a collective atomic dark state to feature spin
squeezing [73]. In this similar configuration, Zhang et al. real-
ized the two-axis countertwisting spin-squeezing Hamiltonian
with the aid of phase-locked atom-photon coupling [74]. Re-
cently, Liu et al. implemented a single off-resonance SRS
in a three-level atomic ensemble to produce OAT and TAT
spin squeezing [77]. The SRS process requires a large de-
tuning between the atom ensemble and the field to ensure
their dispersive interaction. In the large detuning regimes, the
atoms are hardly excited and spontaneous emission is almost
avoided. However, there are two disadvantages for those ap-
proaches based on the SRS process between the bare states.
One is that the atoms stay dominantly in a single bare state and
have only small coherence or zero average coherence between
two ground states. Generally speaking, quantum information
processing requires large quantum coherent nodes. The other
is that the strengths of the spin interaction are relatively
small. Once the strengths are not enough to overcome the
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decoherence noises, the possible spin squeezing will be
washed out.

In this paper, we propose a scheme based on the cavity
dissipation mechanism to generate the steady spin-squeezed
state in CPT. We consider an atomic ensemble with a double
�-type configuration, where one � subsystem is driven reso-
nantly by two strong control fields to form a dark resonance
and the other � subsystem is coupled by two cavity vacuum
fields and two external fields with the large detunings. It is
well-known that CPT is one of the most remarkable resonant
coherent effects. The dark resonance means that the atoms
are trapped in a superposition of two ground states, no longer
excited, and there is the maximal coherence between the two
ground states. The dispersion interactions between the two
cavity fields, the two external fields, and the dressed atoms
induce two double off-resonance SRS interactions between
the atomic dressed states. A dissipative quantum dynamical
process is established based on a collective cavity reservoir.
In this case, the cavity dissipation play an positive role for
the generation of the steady spin-squeezed state. Comparing
to previous schemes, our scheme has the following striking
features: (i) Due to the dark resonance, the atoms are hardly
excited but oscillate between two long-lived ground states and
the maximal coherence exists between the two ground states.
The SRS interactions are induced between the fields and the
atomic dressed states, but not the bare states. (ii) This dissi-
pation mechanism is robust against the environmental noise
and does not need the initial preparation of the nonclassical
states. (iii) The obtained spin-squeezed state is stable and
deterministic with no need for efficient quantum detectors.

The remaining part of this paper is organized as follows.
In Sec. II, we describe the system model and master equa-
tion. In Sec. III, we give the cavity-spin interaction based on
CPT. In Sec. IV, we discuss the spin squeezing induced by dis-
sipation and give the numerical results of the general case, the
analytical description of the special case, and the experimental
implementations. Finally, a conclusion is given in Sec. V.

II. MODEL AND MASTER EQUATION

We first describe our system and present the master equa-
tion. As sketched in Fig. 1, an ensemble of N double �-type
atoms is placed inside the two-mode optical cavity. The
atomic ensemble is driven by two strong control fields with
Rabi frequencies �1,2 and two external fields with Rabi fre-
quencies ε1,2. The two control fields �1,2 are applied to drive
the atomic electronic dipole-allowed transitions |1, 2〉 ↔ |3〉
resonantly. The two cavity fields a1,2 and the two external
fields ε1,2 are coupled to the atomic electronic dipole-allowed
transitions |1, 2〉 ↔ |4〉 with the large detunings. |1〉 ↔ |2〉 is
electronic-dipole forbidden. The Heisenberg-Langevin equa-
tion for the operator o of the atom-field system is written as

ȯ = −�oo + i

h̄
[H, o] + Fo(t ), (1)

where the operator o includes the atomic operators σ jk ( j, k =
1, 2, 3, 4) and the field operators al , a†

l (l = 1, 2). Here σ jk =∑N
μ=1 | jμ〉〈kμ| are the collective projection operators for j =

k and the collective spin-flip operators for j �= k. al and a†
l

FIG. 1. Sketch of the proposed scheme. An ensemble of N dou-
ble �-type atoms with two ground states |1, 2〉 and two excited
states |3, 4〉 is placed inside the two-mode optical cavity along the x
direction. The atomic ensemble is driven by two strong control fields
with Rabi frequencies �1,2 along the z direction, and simultaneously
interacts with two external fields with Rabi frequencies ε1,2 along
the y direction. Two control fields �1,2 are applied to drive the
atomic transitions |1, 2〉 ↔ |3〉 resonantly to form CPT. The atoms
are in a superposition of ground states |1, 2〉, i.e., the dark state.
Two cavity fields a1,2 and two external fields ε1,2 are coupled to the
atomic transitions |1, 2〉 ↔ |4〉 with the large detunings �1,2 and δ1,2,
respectively.

denote the annihilation and creation operators of the cavity
modes. The spontaneous emission rates of the atoms from the
excited states |3〉(|4〉) to the ground states |l〉 are represented
by γ3l (γ4l ), the dephasing rate between the two ground states
is represented by γp, and the cavity loss rates are represented
by κl . The dissipation term �o is determined by these decay
rates and satisfies the relation �o = �o† , which is given in
Appendix A. Fo(t ) is the noise force with zero average and
shows a δ correlation with an associated diffusion coefficient
that can be found using Einstein relation. The total Hamilto-
nian of the system reads

H = HCPT + Hoff , (2)

of which the first term

HCPT =
∑
l=1,2

h̄�l (σ3l + σl3) (3)

describes the resonant interactions of the atomic ensemble
with the two control fields, and the second term,

Hoff =
∑
l=1,2

h̄(glalσ4l e
−i�l t + g∗

l a†
l σl4ei�l t )

+
∑
l=1,2

h̄(εlσ4l e
−iδl t + ε∗

l σl4eiδl t ), (4)
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represents the far off-resonant interactions of the atomic en-
semble with the cavity fields and the external fields. Here gl

are the coupling strengths between the atomic ensemble and
the cavity fields. �l = ωcl − ω4l and δl = νl − ω4l are the
detunings of the cavity field frequencies ωcl and the external
field frequencies νl with respect to the corresponding atomic
transition frequencies ω4l , respectively.

III. CPT-BASED CAVITY-SPIN INTERACTION

Next we describe the far off-resonant interactions of the
CPT atoms with the cavity fields and the external fields. It is
convenient to merge the strong control fields into the atoms
and to treat the atoms in terms of the dressed states. We
assume that the Rabi frequencies of the control fields are
much stronger than the atomic and cavity decay rates �l �
(γ3l , γp, κl )(l = 1, 2). By diagonalizing HCPT, the dressed
atomic states can be expressed in terms of the bare atomic
states as

|D〉 = − sin θ |1〉 + cos θ |2〉,
|+〉 = 1√

2
(cos θ |1〉 + sin θ |2〉 + |3〉),

|−〉 = 1√
2

(cos θ |1〉 + sin θ |2〉 − |3〉), (5)

where we have defined cos θ = �1
�

and sin θ = �2
�

with

� =
√

�2
1 + �2

2. In terms of the dressed atomic states, the
Hamiltonian HCPT can be rewritten as

HCPT = h̄�(σ++ − σ−−), (6)

where σkl = ∑N
μ=1 |kμ〉〈lμ|(k, l = D,+,−). The dressed

states |D〉 and |±〉 are equally spaced and have their eigen-
values λD,± = 0,±h̄�.

Note that the state |D〉 consists of only the ground states but
not the excited states. Spontaneous transitions happen only
into |D〉 but not out of it. As a consequence, the atoms are
trapped in it. Therefore, the state |D〉 is usually called the
dark state. The steady-state populations are 〈σDD〉 = N and
〈σ++〉 = 〈σ−−〉 = 0. In the CPT case, one has the maximal
coherence 〈σ12〉 = −N

2 . We also note that the other orthogonal
superposition state |B〉 = cos θ |1〉 + sin θ |2〉, which acts as
the component of the |±〉 states, is the bright state. In what
follows, we will use both |D〉 and |B〉 as equivalent ones to the
ground states |1〉 and |2〉.

Here the term HCPT constitutes the free Hamiltonian for the
dressed atom-field system. The dressed states are well sepa-
rated from each other since � � (γ3l , γ4l , γp, κl ). We can use
the free Hamiltonian HCPT to make a unitary transformation:

H̃I (t ) = e− i
h̄ HCPTt Hoff e

i
h̄ HCPTt . (7)

Since the atoms interact with the cavity fields and the external
fields with the large detuning, the excited state |4〉 can be elim-
inated adiabatically. We follow the technique as in Ref. [90]
and derive the effective interaction Hamiltonian:

Heff = − i

h̄
H̃I(t )

∫ t

0
dt ′H̃I(t

′). (8)

FIG. 2. Dressed atom-field interactions diagram. Two double off-
resonance SRS interactions are induced between cavity fields a1,2,
external fields ε1,2, and dressed atoms. The atoms are almost in a
dark state |D〉.

Assuming �1 = δ1 + �, �2 = δ2 − � and discarding the
rapidly oscillating terms, we can obtain the effective interac-
tion Hamiltonian,

Heff = h̄[G1a†
1(σD+ cosh r1 + σ−D sinh r1) − G2a†

2

×(σD− cosh r2 + σ+D sinh r2)] + H.c., (9)

where we have defined the effective coupling strengths Gl =
g|εl | sin(2θ )

|δl �l |

√
|δ2

l −�2
l |

8 and the hyperbolic functions sinh rl =
|�l |√
|δ2

l −�2
l |

, cosh rl = |δl |√
|δ2

l −�2
l |

(l = 1, 2). Here g∗
1 = −g∗

2 = g

has been used. The interactions of the dressed spins with the
cavity fields and the external fields are pictorially described
in Fig. 2. The atoms are trapped in the dark state and two
double off-resonance SRS interactions are induced between
the dressed spins and the fields.

The dressed states |±〉 can be represented as a su-
perposition of the bright state |B〉 and the excited state
|3〉, i.e., |±〉 = 1√

2
(|B〉 ± |3〉). Then the effective interaction

Hamiltonian can be rewritten as

Heff = h̄√
2

[(G1a†
1 cosh r1 − G2a†

2 cosh r2 + G1a1 sinh r1

− G2a2 sinh r2)σDB + (G1a†
1 cosh r1 + G2a†

2 cosh r2

− G1a1 sinh r1 − G2a2 sinh r2)σD3] + H.c. (10)

The purpose of rewriting the Hamiltonian in this way is to
make the physical mechanism of the spin squeezing clearer,
as we will see later.

IV. SPIN SQUEEZING VIA DISSIPATION

Then we describe the characteristic effect of the cavity
interaction on the ground state spin of the CPT atoms. Since
we focus on the subspace of only the ground states |1〉 and
|2〉, we define the Cartesian components J = (Jx, Jy, Jz ) of the
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independent ground state spin as

Jx = J12 + J21, Jy = −i(J12 − J21),

Jz = J11 − J22. (11)

The operators satisfy the SU(2) angular momentum commuta-
tion relations [Ji, Jj] = 2iεi jkJk , where εi jk (i, j, k = x, y, z) is
the Levi-Civita symbol. Assuming the equal Rabi frequencies
�1 = �2, i.e., sin θ = cos θ = 1√

2
, the spin components can

be represented as

Jx = −(σDD − σBB), Jy = i(σDB − σ
†
DB),

Jz = −(σDB + σ
†
DB). (12)

For the dark resonance, we have their mean values 〈Jx〉 =
−N, 〈Jy〉 = 〈Jz〉 = 0. Therefore, the mean total spin is along
the x direction.

The spin squeezing allows one to surpass SQL for phase
estimation within Ramsey interferometry. To characterize the
degree of spin squeezing, we introduce the spin-squeezing
parameter [9,10]

ξ 2 = N (δJ⊥)2
min

〈Jx〉2
, (13)

where (δJ⊥)2
min = (〈J2

⊥〉 − 〈J⊥〉2)min is the minimum spin fluc-
tuation in the direction perpendicular to the mean total spin Jx

and J⊥ = Jy cos φ + Jz sin φ(φ ∈ [0, 2π ]). The optimal angle
of squeezing can be derived as φm = φ or φm = π

2 − φ, where

tan(2φ) = 〈δJyδJz〉+〈δJzδJy〉
〈(δJy )2〉−〈(δJz )2〉 . A state is a spin-squeezed state if

ξ 2 < 1. The smaller ξ 2 indicates the stronger squeezing.

A. Numerical results

In numerical calculations, the atomic spontaneous emis-
sion rates are assumed to be the same, i.e., γ31 = γ32 = γ

and we use γ as the unit of the decay rates, the detunings,
and the Rabi frequencies. The CPT atoms are constituted by
the resonant interactions between the ground states |1, 2〉 and
the excited state |3〉, and the large detuned interactions of the
other fields with the CPT atoms have less effect on the CPT
atoms. Therefore, the atoms are almost trapped in the dark
state |D〉, and there is nearly no population on the bright state
|B〉 and the excited state |3〉. In this case, the operators satisfy
the commutation relations [σDB, σBD] = [σD3, σ3D] ≈ N and
[σ3D, σDB] = [σBD, σD3] ≈ 0. Following the standard tech-
nique [91–93], we derive the quantum Heisenberg-Langevin
equations from Eq. (10) as

σ̇DB = −
(

γ

2
+ 3

8
γp

)
σDB + γp

8
σ

†
DB

− iN√
2

(G1 cosh r1a1 − G2 cosh r2a2

+ G1 sinh r1a†
1 − G2 sinh r2a†

2) + FσDB (t ), (14)

σ̇D3 = −
(

γ

2
+ 3

8
γp

)
σD3 − γp

8
σ

†
D3

− iN√
2

(G1 cosh r1a1 + G2 cosh r2a2

− G1 sinh r1a†
1 − G2 sinh r2a†

2) + FσD3 (t ), (15)

ȧ1 = −κ1

2
a1 − iG1√

2
[cosh r1(σDB + σD3)

+ sinh r1(σ †
DB − σ

†
D3)] + Fa1 (t ), (16)

ȧ2 = −κ2

2
a2 − iG2√

2
[cosh r2(σD3 − σDB)

− sinh r2(σ †
D3 + σ

†
DB)] + Fa2 (t ). (17)

Here the noise terms F ’s satisfy correlations 〈Fo(t )Fo′ (t ′)〉 =
2Doo′δ(t − t ′), where the nonzero diffusion coefficients
are listed as 2DσDBσDB = 2Dσ

†
DBσ

†
DB

= − γp

8 N , 2DσD3σD3 =
2Dσ

†
D3σ

†
D3

= γp

8 N , 2DσDBσ
†
DB

= 2DσD3σ
†
D3

= (γ + 3
4γp)N ,

2Dal a
†
l
= κl (l = 1, 2). At steady state 〈σDB〉 = 〈σD3〉 =

〈al〉 = 0, then δσDB = σDB, δσD3 = σD3 and δal = al . To
quantify the spin squeezing, we introduce the quadrature
components as δXi = 1√

2
(νi + ν

†
i ), δPi = − i√

2
(νi − ν

†
i ),

(ν1 = σDB, ν2 = σD3, ν3 = a1, ν4 = a2), and the noise
quadratures FXi and FPi are defined in the same way. The
quantum Heisenberg-Langevin equations of the quadrature
fluctuations can be written as the matrix form

u̇(t ) = Au(t ) + ζ (t ), (18)

where the column vector for the fluctuation variables is
arranged as u(t ) = (δX1, δP1, δX2, δP2, δX3, δP3, δX4, δP4)T ,
the corresponding noise terms are listed as ζ (t ) =
[FX1 (t ), FP1 (t ), FX2 (t ), FP2 (t ), FX3 (t ), FP3 (t ), FX4 (t ), FP4 (t )]T ,
and the drift matrix is given in Appendix B.

The system is stable only if all eigenvalues of the drift
matrix A have negative real parts, which can be derived from
the Routh-Hurwitz criterion [94]. In the following numeri-
cal calculations, the selected parameters satisfy the stability
condition. Defining an 8 × 8 covariance matrix (CM) Q
with components Qi j (t ) = 1

2 〈ui(t )u j (t ) + u j (t )ui(t )〉, (i, j =
1, 2, . . . , 8), we can derive a dynamical equation of the CM,

Q̇(t ) = AQ(t ) + Q(t )AT + D, (19)

where the diffusion matrix is given by D =
diag[N�1, N�2, N�2, N�1,

κ1
2 , κ1

2 , κ2
2 , κ2

2 ] and �1,2 have
been defined in Appendix B. The diffusion matrix D
characterizing the noise correlations is defined through
Di jδ(t − t ′) = 1

2 〈ζi(t )ζ j (t ′) + ζ j (t ′)ζi(t )〉. The spin squeezing
can be determined entirely by the elements of the CM.

The time evolutions of the spin-squeezing parameter ξ 2 are
given in Fig. 3. To characterize the effect of system parameters
on the spin squeezing, we define the two new parameters:
the ratio of the effective coupling strength s = G1

G2
and the

ratio of the squeezing parameter q = r1
r2

. Figure 3(a) plots
the time evolutions of ξ 2 for different s by taking param-
eters κ1,2 = 10γ , γp = 0.01γ , δ1 = −δ2 = −10γ , ε1 = 5γ ,

r1,2 = 1.5, and C0 = 102. Here C0 = g2N
κγ

is defined as the
cooperativity parameter. With the evolution of the time, the
spin-squeezing parameter ξ 2 slows down and eventually tends
to a stable value. For s = 0.5, the curve drops the fastest
and the stable value is the smallest. When the cooperativity
parameter is increased to C0 = 103, as shown in Fig. 3(b), the
spin-squeezing parameter ξ 2 becomes smaller and there is a
weak oscillating behavior before reaching a stable value. It
can be seen that the asymmetric effective coupling strength
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FIG. 3. Time evolution of the spin-squeezing parameter ξ 2. The
parameter s is the ratio of the effective coupling strength, i.e., s = G1

G2
.

The parameter q is the ratio of the squeezing parameter, i.e., q = r1
r2

.

(a) C0 = 102, r2 = 1.5, δ2 = 10γ ; (b) C0 = 103, r2 = 1.5, δ2 = 10γ ;
(c) C0 = 102, ε2 = 5γ ; (d) C0 = 103, ε2 = 5γ . The other parame-
ters are chosen as κ1,2 = 10γ , γp = 0.01γ , δ1 = −10γ , ε1 = 5γ ,
r1 = 1.5.

(s = 0.5) can generate stronger steady spin squeezing than the
symmetric effective coupling strength (s = 1). Figures 3(c)
and 3(d) plot the time evolutions of ξ 2 for different q by set-
ting parameters κ1,2 = 10γ , γp = 0.01γ , δ1 = −10γ , ε1,2 =
5γ , r1 = 1.5, C0 = 102, and C0 = 103, respectively. When
C0 = 102, the parameter q = 2 corresponds to the best steady
spin squeezing, but when C0 is increased to 103, the parameter
q = 1 corresponds to the best steady spin squeezing. Similar
to Figs. 3(a) and 3(b), the large cooperativity parameter can
lead to more pronounced oscillating behavior and the smaller
stable spin-squeezing parameter.

Figure 4(a) gives the density plot of the stable spin-
squeezing parameter ξ 2 versus the cooperativity parameter C0

and the parameter s, and the corresponding 2D plot is shown
in Fig. 4(b). As the cooperativity parameter C0 increases, the
spin-squeezing parameter ξ 2 decreases rapidly until it reaches
a stable value. The constant value is the largest for s = 1,
which means the spin squeezing is the weakest. This can also
be seen from Fig. 4(a). Figure 4(b) shows that the best spin
squeezing can reach 90%. Figure 4(c) is the density plot of
the stable spin-squeezing parameter ξ 2 versus the squeezing
parameter r2 and the parameter q, and the corresponding 2D
plot is given in Fig. 4(d). Figure 4(d) shows that with the
increase of r2, the spin-squeezing parameter ξ 2 first decreases
to a minimum value and then gradually increases until the spin
squeezing disappears. The best spin squeezing can be obtained
at a certain value of r2. When q = 0.5, the spin squeezing is
the weakest and the squeezing range is the widest. In contrast,
when q = 2, the spin squeezing is the strongest, about 90%.
When q = 1, the squeezing range is the narrowest, which can
also be seen intuitively in Fig. 4(c).

FIG. 4. Density plot (a) and 2D plot (b) of the spin-squeezing
parameter ξ 2 versus the cooperativity parameter C0 and the parameter
s. Taking parameters ε1 = 5γ , r1,2 = 1.5. Density plot (c) and 2D
plot (d) of the spin-squeezing parameter ξ 2 versus the squeezing
parameter r2 and the parameter q. Taking parameters ε1,2 = 5γ ,
C0 = 103. The other parameters are the same as in Fig. 3.

Figure 5(a) shows the density plot of the stable spin-
squeezing parameter ξ 2 versus the squeezing parameter r
and the cooperativity parameter C0. The spin-squeezing pa-
rameter ξ 2 versus C0 for different r is plotted in Fig. 5(b).
Here we consider the symmetric parameters and take κ1,2 =
10γ , γp = 0.01γ , δ1 = −δ2 = −10γ , ε1,2 = 5γ , r1,2 = r,

FIG. 5. (a) Density plot of the spin-squeezing parameter ξ 2 ver-
sus the squeezing parameter r and the cooperativity parameter C0.
(b) The spin-squeezing parameter ξ 2 versus C0 for different r. (c) The
spin-squeezing parameter ξ 2 versus r for different C0. (d) The spin-
squeezing parameter ξ 2 versus �/γ for different C0. The parameters
are chosen as κ1,2 = 10γ , γp = 0.01γ , δ1 = −δ2 = −10γ , ε1,2 =
5γ , r1,2 = r, �1 = −�2 = −�.
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FIG. 6. (a) The spin-squeezing parameter ξ 2 versus the angle
φ/π . Setting the parameter r = 1.5. (b) The spin-squeezing pa-
rameter ξ 2 versus the squeezing parameter r for different φ. The
parameters are taken as C0 = 103, r1,2 = r. The other parameters are
the same as in Fig. 5.

�1 = −�2 = −�. As the cooperativity parameter C0 in-
creases, the spin-squeezing parameter ξ 2 decreases slowly and
tends to a stable value. The magnitude of this stable value is
related to r. Figure 5(c) gives the spin-squeezing parameter
ξ 2 versus r for different C0. When increasing r, the spin-
squeezing parameter ξ 2 first decreases to a minimum value,
then increases, and finally the spin squeezing disappears. The
best spin squeezing can be obtained for a moderate value
of r. Fig. 5(d) plots the spin-squeezing parameter ξ 2 versus
�/γ for different C0. When � increases, the spin-squeezing
parameter slowly decreases to a minimum value and then
increases rapidly. Note that if � is too small, the cavity field
is in near resonance with the excited state |4〉 and more atoms
get excited. In this case, the spontaneous emission from the
excited state may destroy the spin squeezing. Therefore, to
avoid the atomic excitation, � is taken to be at least larger
than 3γ , as shown in Fig. 5(d). The best spin squeezing in
Fig. 5 is about 85%.

Figure 6(a) gives the spin-squeezing parameter ξ 2 versus
the angle φ/π . It is clear that the spin squeezing varies period-
ically with φ/π , and the degree of spin squeezing is the best at
φ = 0.5π and φ = 1.5π . Figure 6(b) plots the spin-squeezing
parameter ξ 2 versus the squeezing parameter r for different
φ. For the case of φ = 0.5π , we achieve the strongest spin
squeezing, about 85%. As r increases, the spin squeezing first
increases, then decreases, and eventually disappears. The best
spin squeezing can be obtained when r takes a moderate value.

B. Approximate analytic solutions

To measure the degree of squeezing, it is better to find the
expression for the spin-squeezing parameter under appropri-
ate approximations. Assuming that the system parameters are
symmetric, i.e., κ1,2 = κ , r1,2 = r, G1,2 = G, the Heisenberg-
Langevin equations for the spin operators σDB and σD3 can be
simplified from Eqs. (14) and (15) to

σ̇DB = −γ

2
σDB − iGN (d cosh r + d† sinh r) + FσDB (t ),

(20)

σ̇D3 = −γ

2
σD3 − iGN (c cosh r − c† sinh r) + FσD3 (t ), (21)

where we have defined the collection cavity sum mode c =
1√
2
(a1 + a2) and the difference mode d = 1√

2
(a1 − a2). Here

the effect of γp has been ignored because γ � γp. It can be
seen that σDB is coupled only to the collection difference mode
d and the decoupling between σDB and σD3 occurs.

An effective Hamiltonian for the spin interaction is ob-
tained from the coherent terms in Eq. (20) when the incoherent
terms are temporarily dropped, as

Heff = h̄Gd†(σDB cosh r + σ
†
DB sinh r) + H.c. (22)

The effective Hamiltonian describes the transition between the
dark state |D〉 and the bright state |B〉, creating or annihilating
a collective cavity mode d .

We now consider the case of N → ∞, so the dynamics of
the collective spin can be mapped to a bosonic mode σDB/

√
N .

Here, we have assumed that the atoms are almost in the dark
state |D〉 and the atomic number of the bright state |B〉 is
much smaller than the total number N , i.e., 〈σ †

DBσDB〉 � N ,
and have made the spin-wave approximation. The effective
Hamiltonian is correspondingly transformed to

Heff = h̄G(d†β + β†d ), (23)

where β is the collective Bogoliubov mode, which is defined
as

β = σDB cosh r + σ
†
DB sinh r. (24)

The dissipation of the collective cavity mode d can drive
the mode β to its vacuum state, which corresponds to the
squeezing vacuum state of the mode σDB.

Following the standard technique [91–93], we derive the
quantum Heisenberg-Langevin equations from Eq. (23) as

β̇ = −γ

2
β − iGNd + cosh rFσDB (t ) + sinh rFσ

†
DB

(t ),

ḋ = −κ

2
d − iGβ + 1√

2
[Fa1 (t ) − Fa2 (t )]. (25)

If the cavity dissipation is sufficiently large, the collec-
tive cavity mode can be eliminated adiabatically. Then the
Heisenberg-Langevin equation for the mode β can be derived
as

β̇ = −γ

2
(1 + C)β + F (t ), (26)

where C = 4G2N
κγ

is the effective cooperativity parameter, and
the noise term is represented as

F (t ) = cosh rFσDB (t ) + sinh rFσ
†
DB

(t )

− i
√

2GN

κ
[Fa1 (t ) − Fa2 (t )]. (27)

In Eq. (26), γ

2 is the atomic decay rate by the vacuum reser-
voir, γC

2 is the cavity-induced damping rate, and F (t ) includes
the atomic and cavity noise fluctuations.

The spin components Jy and Jz are expressed in terms of
the β mode as Jy = ier (β − β†), Jz = −e−r (β + β†), then the
dynamical equations of the spin variances are derived as

d

dt

〈
J2

y

〉 = −γ (1 + C)
〈
J2

y

〉 + Nγ (1 + Ce2r ),

d

dt

〈
J2

z

〉 = −γ (1 + C)
〈
J2

z

〉 + Nγ (1 + Ce−2r ),

d

dt
〈JzJy + JyJz〉 = −γ (1 + C)〈JzJy + JyJz〉. (28)
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FIG. 7. The spin-squeezing parameter ξ 2 (solid line), the effec-
tive cooperativity parameter C (dashed line), and the squeezed factor
e−2r (dotted line) versus the squeezing parameter r. The parame-
ters are chosen as γp = 0, δ1 = −δ2 = −10γ , ε1,2 = 5γ , r1,2 = r,
C0 = 103.

The solutions to these differential equations are

〈
J2

y

〉 = e−γ (1+C)t + Nγ (1 + Ce2r )

γ (1 + C)
,

〈
J2

z

〉 = e−γ (1+C)t + Nγ (1 + Ce−2r )

γ (1 + C)
,

〈JzJy + JyJz〉 = e−γ (1+C)t . (29)

It can be seen from the above expressions that the di-
rection of the optimal squeezing (minimal variance) varies
with time t and the minimal variance in the yz plane
can be directly calculated via (δJ⊥)2

min = 1
2 [〈J2

y 〉 + 〈J2
z 〉 −√

(〈J2
y 〉 − 〈J2

z 〉)2 + 〈JzJy + JyJz〉2] [8]. Finally, using the re-

sults of Eqs. (29), the spin-squeezing parameter is obtained
from Eq. (13) as

ξ 2 = e−γ (1+C)t + Nγ (1 + Ce−2r )

Nγ (1 + C)
. (30)

When t → ∞, the spin-squeezing parameter of Eq. (30) can
be expressed as

ξ 2 = 1 + Ce−2r

1 + C
. (31)

Obviously, the spin-squeezing parameter ξ 2 is determined by
the ideal squeezed factor e−2r and the effective cooperativity
parameter C. Figure 7 plots the spin-squeezing parameter
ξ 2, the effective cooperativity parameter C, and the squeezed
factor e−2r versus the squeezing parameter r. In general, the
larger the squeezing parameter r, the greater the spin squeez-
ing will be. However, the effective cooperativity parameter C
is associated with the effective coupling strength G. With the
increase of the squeezing parameter r, the effective coupling
strength G decreases, resulting in the decrease of the effective
cooperativity parameter C. This effectively inhibits the atomic
reservoir effect and reduces the spin squeezing. Therefore,

FIG. 8. Density plot of the spin-squeezing parameter ξ 2 versus
the squeezing parameter r and the cooperativity parameter C0. The
black dashed line corresponds to Eq. (33). The other parameters are
the same as in Fig. 7.

with the increase of r, the spin squeezing first increases to
the maximum and then gradually decreases. The best spin
squeezing occurs at a moderate value of r. Finally, optimizing
ξ 2 with respect to r, we can obtain the optimal spin-squeezing
parameter

ξ 2
opt = 2Y + 2

Y (2 + √
Y + 2) + 2

(32)

at

ropt = 1
2 ln(1 + √

Y + 2), (33)

where Y = 2C0ε
2
l

|δl |2 . Figure 8 shows the density plot of the

spin-squeezing parameter ξ 2 versus the squeezing parame-
ter r and the cooperativity parameter C0. The black dashed
line corresponds to Eq. (33). As C0 increases, ropt in-
creases and the degree of the spin squeezing also increases
significantly.

Figure 9 shows the analytical and numerical results of the
spin-squeezing parameter ξ 2 versus the squeezing parame-
ter r. The analytical and numerical results are according to
Eqs. (19) and (31), respectively. We choose different cavity

FIG. 9. Analytical (solid line) and numerical (dotted line) results
of the spin-squeezing parameter ξ 2 versus the squeezing parameter
r. The analytical and numerical results are according to Eqs. (19)
and (31), respectively. Taking the parameters (a) κ1,2 = 10γ and
(b) κ1,2 = 100γ . The other parameters are the same as in Fig. 7.
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decay rates: (a) κ1,2 = 10γ and (b) κ1,2 = 100γ . The other pa-
rameters are taken as γp = 0, δ1 = −δ2 = −10γ , ε1,2 = 5γ ,
r1,2 = r, C0 = 103. It can be seen from Fig. 9 that the analyt-
ical results are valid under the adiabatic condition κ1,2 � γ

and independent of κ1,2. However, the numerical results are
dependent on κ1,2. When κ1,2 = 10γ , there is a deviation
between the analytical and numerical results, which is less
than 10%, as shown in Fig. 9(a). If κ1,2 are increased to
100γ , the analytical results are very in agreement with the
numerical results, as shown in Fig. 9(b). In this case, the best
spin squeezing is about 90%.

In comparison with previous studies on the spin squeez-
ing [69–84], our scheme exhibits the following significant
characteristics: (i) Previous proposals mostly relied on the far-
off-resonant interactions, where the atoms are hardly excited
and the spontaneous emission is immune. In contrast, our
approach exploits a resonantly interacting system to generate
the spin squeezing, in which the atoms are trapped in the dark
state and the spontaneous emission is eliminated in destructive
interference. (ii) Different from the previous experimental
schemes which apply a π

2 microwave pulse to prepare an equal
superposition of two ground states, our scheme directly uses
quantum interference effects to produce a maximum coherent
state of the two ground states with no need of the preparation
of the initial spin state. (iii) Our scheme exploits the dissi-
pation mechanism of cavity reservoir to generate the atomic
spin squeezed state. Therefore, the resulting spin squeezing
is stable and deterministic, does not require the initial prepa-
ration of the nonclassical states, and is robust against the
environmental noise.

C. Experimental implementations

Finally, we give a discussion on the experimental fea-
sibility. In recent years, a large number of experimental
investigations on the spin squeezing via the atom-field in-
teractions have been performed in different quantum optics
systems [4–6,25,57–60]. For example, Schleier-Smith et al.
obtained the initial spin state by optical pumping the ensemble
into the ground state followed by applying a π

2 microwave
pulse, and then induced conditional spin squeezing by em-
ploying two probe light pulses and a π microwave pulse to the
initial spin state [5]. Leroux et al. demonstrated a method for
deterministically generating squeezed states using switchable
light-mediated interactions in a dilute ensemble of other-
wise noninteracting atoms [6]. On the other hand, Krauter
et al. reported on an experiment where dissipation con-
tinuously generates entanglement between two macroscopic
objects by using atomic tomography via quantum polarization
spectroscopy [95].

The present scheme contains an atomic ensemble, a two-
mode optical cavity, and four classical laser beams. It is
well-known that rubidium is an alkali metal element with
univalent positron and relatively simple electronic structure
for experimental control. The preparation of cold Rb atoms
has been well demonstrated experimentally. In our scheme,
to access the spin squeezed state in experiments, the CPT
atoms need to be prepared first. The two strong control fields
with linearly polarized light couple resonant pairs of hyperfine

sublevels of electronic ground-state Rb atoms via the excited
state [96]. In this case, one has a maximum coherent state
of the two ground states. Second, switching on a two-mode
optical cavity and the other two classical laser beams to
induce the spin squeezing by large detuned interactions with
the CPT atoms. Finally, a weak probe field is used to verify the
atomic spin squeezed state by detecting the photon numbers
of the transmitted probe field. An ensemble of 87Rb atoms
can be used effectively in our scheme, in which the D1 line
serves for the double � configuration with |1〉 = |52S1/2, F =
1〉, |2〉 = |52S1/2, F = 2〉, |3〉 = |52P1/2, F = 1〉, and |4〉 =
|52P1/2, F = 2〉. As shown in Fig. 1, an ensemble of N ∼ 106

cold 87Rb atoms is placed inside the two-mode optical cavity
along the x direction, and the four classical laser beams are, re-
spectively, along the y and z directions. The frequencies of the
cavity fields can be adjusted flexibly to ensure the far-detuned
interactions with the atomic ensemble, and their decay rates
should be large enough to validate the adiabatic elimination
of the cavity fields. We can take the cavity loss κ1,2 = 10γ ,
the atom-cavity coupling coefficient g1,2 = 0.1γ , and then
the cooperativity parameter is C0 = 103. When the two cavity
fields and the two external fields have antisymmetric detun-
ings with the atomic transitions, i.e., δ1 = −δ2,�1 = −�2,
the condition �1 = δ1 + �, �2 = δ2 − � can be satisfied.
In this case, there are the two same squeezing parameters
r1 = r2. In addition, the squeezing parameters can be changed
by adjusting the detunings and the Rabi frequencies of the
control fields. In general, this scheme is feasible and very
convenient to control in experiments.

V. CONCLUSION

In conclusion, we have shown that the cavity dissipation-
induced spin squeezing in CPT can almost approach
85%-90%. When two control fields are tuned to resonantly
drive the atomic transitions between the two ground states and
one excited state, the atoms are trapped in the dark state and
one has the maximal coherence. The dispersion interactions
between the two cavity fields, the two external fields, and the
dressed atoms induce two double off-resonance SRS interac-
tions between the atomic dressed states. The cavity dissipative
quantum dynamical process can be established after the ex-
cited state is adiabatically eliminated. The cavity dissipation
plays an active role for generating the steady spin squeezed
state. Furthermore, the parameter regimes are given by numer-
ical calculation and the physical mechanism is analyzed under
reasonable approximation. Our paper provides an option for
preparing the spin squeezed state, which has potential appli-
cations in high-precision measurements, quantum information
processing, and quantum computing.
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APPENDIX A: THE DAMPING RATES IN TERMS
OF THE ATOM-FIELD SYSTEM

The dissipation term �o of the atom-field system can be
written as

�σ12 = γp,

�σ13 = �σ23 = γ31

2
+ γ32

2
+ γp

4
,

�σ14 = �σ24 = γ41

2
+ γ42

2
+ γp

4
,

�σ33 = γ31 + γ32,

�σ34 = γ31

2
+ γ32

2
+ γ41

2
+ γ42

2
,

�σ44 = γ41 + γ42,

�a1 = κ1

2
, �a2 = κ2

2
. (A1)

APPENDIX B: THE DRIFT MATRIX

The drift matrix in the quantum Heisenberg-Langevin
equations of the quadrature fluctuations reads

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−�1 0 0 0 0 G1N√
2

e−r1 0 −G2N√
2

e−r2

0 −�2 0 0 −G1N√
2

er1 0 G2N√
2

er2 0

0 0 −�2 0 0 G1N√
2

er1 0 G2N√
2

er2

0 0 0 −�1 −G1N√
2

e−r1 0 −G2N√
2

e−r2 0

0 G1√
2
e−r1 0 G1√

2
er1 − κ1

2 0 0 0

− G1√
2
er1 0 − G1√

2
e−r1 0 0 − κ1

2 0 0

0 − G2√
2
e−r2 0 G2√

2
er2 0 0 − κ2

2 0
G2√

2
er2 0 − G2√

2
e−r2 0 0 0 0 − κ2

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B1)

where �1 = γ

2 + γp

4 , �2 = γ

2 + γp

2 .
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