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Popping: A granular transition
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In experiments conducted on a weakly confined 2D assembly of deformable cylinders subject ed to rapid
in-plane shear loading, we have identified the key obstacle in achieving compaction. This obstacle involves a
dynamic transition between mechanical instabilities, progressing from in-plane rearrangement to out-of-plane
popping as the density increases. The popping effect reinforces the frictional constraints from the confining
wall and restricts particle mobility, impeding the system from attaining greater compaction. We quantify this
transition and demonstrate that interparticle friction contributes to smoothing the transition.
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I. INTRODUCTION

Achieving a desired level of granular compaction, a prob-
lem with both practical [1–4] and scientific significance [5,6],
can be attained either through static and dynamic compaction
[1,7–9] or by supplying energy via small-amplitude vibrations
[5,10–14]. The former involves plastic deformation of the
granular media [15,16] while the latter achieves compaction
by mobilizing particles [11]. Therefore, reduced particle mo-
bility can significantly hinder the compaction process [14].
In this study, we demonstrate how frictional constraints trig-
gered by mechanical instabilities, can restrict the compaction
process. Lowering mobility through frictional constraints is
broadly applicable in soft systems; consider two deformable
spheres confined within a slightly undersized cylindrical
container. With small compression, they bounce back upon
release; however, under greater force, they deform sideways,
transferring their elastic force to the walls and becoming
immobilized.

In this article, we experimentally study the compaction of
a 2D assembly of deformable granular cylinders under repet-
itive shear loading. Our setup involves weak confinement,
with a small gap between the granular material and its top
confining plate. This type of weak confinement is commonly
used in experimental setups aimed at studying the mechanical
properties of 2D granular packings [17]. It is worth noting
that experiments without a top confining plate operate under
loads where out-of-plane buckling instability can be prevented
[18,19]. The grains move in response to an applied stress and
their motion is resisted by the formation of load-bearing force
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chains. In cases where space allows, these chains can buckle
within the plane due to increased stress, leading to particle
rearrangement and elastic deformation of the soft grains.
Upon stress removal, the stored elastic energy is released,
relaxing the compact state. This happens at lower densities.
At higher densities, some of the particles wedge out of the
plane under stress, redirecting internal elastic stress toward
the confining plate through out-of-plane rearrangements. Fric-
tional forces at the boundaries quench the motion of these
wedged-out particles. As a result, the rest of the cylinders
lose mobility which in turn helps maintain the compressed
state achieved from loading. The distinction between these
compaction behaviors–one with no internal stress and an-
other characterized by a nonzero residual stress, marks a
dynamic transition from in-plane particle rearrangement to
out-of-plane popping. The experimental need for a constituent
material with low friction that would not topple under external
loading operationally translated to the use of hollow rubber
cylinders whose softness prevented toppling and the annular
contact ensured low friction.

II. EXPERIMENTAL DETAILS

The experiments were conducted in a square shear cell
(see Fig. 1) measuring 190 mm per side, containing a pack of
co-axial rubber cylinders with heights of 12 mm and inner and
outer diameters of 5.32 mm and 12.25 mm, respectively. This
cell was sandwiched between two acrylic plates. The top plate,
secured by springs, maintained a clearance gap (H0 = 16 mm)
to allow cylinder movement without popping out. A pneu-
matic shaft, connected to an air compressor, repeatedly struck
the cell every 10 seconds, moving a distance of 160 mm before
being brought to rest by a stopper (Fig. 1). This brought the
system to its maximally strained state. The system’s density
ρ was varied by changing the number of cylinders in the
assembly. ρ is defined as

ρ = NπR2/Acomp = NπR2/(L2 sin θmax),
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FIG. 1. Experimental setup schematic: (a) Illustration of the setup featuring rapid shear application and a 2D laser sheet projected onto
the shear assembly to measure vertical movement and scan the granular pack’s height profile. Inset: Highlight of the gap between the top and
bottom plates, with the top plate at resting position (H0). (b)–(d) Top view of the shear assembly at different cycle stages: (b) initial, (c) after
shear loading, and (d) relaxation post-loading. The yellow arm indicates the inclination of the system relative to the horizontal line aligned
with the pneumatic shaft.

where N is the number of cylinders, Acomp is the area of the
shear cell in the maximally strained configuration, L is the
length of the shear cell arm, R is the radius of a cylinder, and
θmax is the angle (see Fig. 1(c)) formed by the shear cell side
walls with the direction of shaft movement in the maximally
strained state (with θmax = 64.9◦ which is the same for all
experiments). For the density spanned in these experiments,
the number of cylinders in the shear cell varied from 224
to 252.

After loading, the system relaxed to a new configuration.
The impacts continued for 500 cycles under specific density
and cylinder friction coefficients. Before each experiment,
cylinder positions were randomized to eliminate memory ef-
fects from previous runs. Unless specified otherwise, all data
presented were averaged over at least 8 − 10 independent
experimental runs. For our experimental study, we used three
different kinds of cylinders with ρ ranging from 0.8 to 0.92.
All the cylinders were cut from nitrile butadiene green rubber
pipes. To reduce the friction coefficient the cylinders were
coated with glossy paint further lubricated by boric acid while
for increasing friction, sandpapers of fine grit were pasted
around the objects. Details about the method of friction mea-
surement are provided in the Appendix.

Rapid shear loading at high densities caused the cylin-
ders to move upward, compress the springs, and raise the

top plate. The force exerted by springs was quantified by
monitoring the vertical displacement of the top plate using a
side camera, while a camera mounted atop recorded the cell
configuration and cylinder arrangement (see S3.avi [31]). A
custom-built laser scanning profilometer was used to construct
the assembly’s surface profile ζ (x, y). Figures 1(b)–1(d) de-
pict initial, post-shear loading, and post-relaxation positions
for the first impact. The relaxed state density ρr is defined as
ρr = NπR2/Arelx = ρ sin θmax/ sin θr , where N is the number
of cylinders, Arelx is the area of the shear cell in the relaxed
state, and θr is the angle at which the shear cell relaxed in
absence of loading. For a given ρ (or rather N), repeated
impacts drove the system’s dynamic progression toward its
most compact configuration. The compaction can be observed
in Fig. 2(a) (top panel), where ρr is plotted for two repre-
sentative densities. This gradual compaction resembles the
slow relaxation process observed in vibrated granular systems
[5,10].

III. RESULTS AND DISCUSSION

As the system became increasingly compact under re-
peated impacts, θr decreased eventually reaching a steady
state fluctuating around an asymptotic angle θr,st . θr is a
measure of residual strain within the system. The normalized
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FIG. 2. Dynamical transition: (a) Top panel: Growth in relaxed density ρr . Bottom panel: Normalized residual strain γ = θr (n)/θr (n = 1)
for ρ = 0.83 and ρ = 0.88, fitted with a stretched exponential function (1 − γ∞) exp(−(n/n0)β ) + γ∞ using parameters n0 and γ∞. (b) Cycle
constant n0 versus ρ for friction coefficients μ = 0.57, 0.82, and 1.79, with power-law fits (exponent −0.75) and critical points at ρc = 0.849,
0.864, and 0.900. (c) The relaxed steady-state angle θr,st is plotted for different friction coefficients, illustrating sharper transitions with lower
friction. (c) Shows θr,st versus the steady state density ρr,st for various μ, collapsing onto a single S-shaped curve. (d) ρr,st is plotted with ρ,
showing the effect of ρ and μ on the compaction.

residual strain is defined as γ (n) = θr (n)/θr (n = 1) and its
evolution is plotted in Fig. 2(a) (bottom panel) for two
representative densities (ρ < ρc and ρ > ρc). Here ρc is
a critical density associated with a dynamical transition,
which is explained in detail later in the paper. Since, θr =
sin−1(ρ sin θmax/ρr ) = θr (ρ, ρr ), for a given ρ, the evolution
of γ (n) (or θr) is reflective of the compaction mechanism
inside the system.

The parameter γ (n) fits to a stretched exponential function:

γ (n) = (1 − γ∞) exp(−(n/n0)β ) + γ∞,

with γ∞ and n0 as fit parameters. Here, n0 is the cycle-constant
associated with each ρ, and the long-time saturation value is
given by θr,st = γ∞θr (0). The solid lines in the bottom panel
of Fig. 2(a) represent the curve fits where β is the stretching
exponent. Initially, the fitting was performed for β ranging
from 0 to 1 for all the densities and the best fit was found for
β = 0.3 ± 0.05.

The cycle constant n0 obtained from the fitting is plotted
as a function of ρ (see Fig. 2(b)) for cylinders with vary-
ing friction coefficients μ = 0.57 (black squares), μ = 0.82
(red circles) and μ = 1.79 (green triangles). The data show
divergence at a friction-dependent critical density ρ = ρc. The
strength of the frictional coupling significantly influences both
the critical density ρc and the sharpness of the transition. A
trend emerges where lower values of the friction coefficients
correspond to more pronounced divergences and smaller ρc.
The functional form |ρ − ρc|−ν , where ν ≈ 0.75, captures this

divergence well. This critical exponent is reminiscent of the
temporal divergence observed in the relaxation of a quasistat-
ically sheared mono-disperse disk packing [20].

Since θr,st is a measure of how much compaction has
taken place, (more the θr,st , less the compaction) we plot it
against ρ for three friction coefficients. The plot shows a
sharp rise beyond ρc for μ = 0.57, whereas it gets smeared
out for the highest friction studied. It also demonstrates that
for an arbitrary ρ > ρc, higher friction results in greater
compaction. Plotting θr,st against steady-state relaxed den-
sity (ρr,st) reveals a collapse of data onto a master curve
(Fig. 2(d)) suggesting that irrespective of N or μ, the sys-
tem needs an effective steady-state density ρr,eff � 0.85 to
exhibit the transition. It so happens that, to achieve the same
ρr,eff, cylinders with higher interparticle friction need larger
ρc compared to the lower friction cylinder assembly. Notably,
the value of ρr,eff draws close resemblance to the Random
Close Packing density in 2D disordered media [21,22]. The
plot in Fig. 2(e) illustrates the relationship between the steady-
state density ρr,st in the relaxed state and ρ, revealing two
distinct compaction processes denoted by dashed lines. Ini-
tially, ρr,st grows linearly with ρ but near the transition,
for lower friction, the cylinders get wedged out of the 2D
plane and touch the top plate. As a result, the system finds
it difficult to rearrange in-pane resulting in a lower state of
compaction. Since we keep on adding more cylinders, the
compaction cannot stop. Therefore, it happens along a differ-
ent line, beyond the critical point. On the other hand, cylinders
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FIG. 3. Transition to the popped state: (a), (b) Slanted views of the granular assembly at n = 1 for densities ρ = 0.83 (<ρc ) and ρ =
0.87 (>ρc ) with μ = 0.57. The right panels of (a) and (b) show corresponding steady-state configurations after 500 shear cycles. (c) Deviation
(Dy) of the stripe (C) on the surface from a straight line due to cylinder elevation. (d) Representation of height ζ (x, y) using color in the image,
with unit vectors η̂ and ŷ along the shear cell’s side and bottom walls (black boundary shown). (e) Fraction of popped-out cylinders ( fB) vs.
ρ is plotted for three μ values. The number of popped-out cylinders is computed from the height profile obtained using the laser scanning
profilometer. (f) Inset: Vertical force exerted on the top plate by the shear assembly plotted for densities ρ = 0.83 < ρc and ρ = 0.87 > ρc,
along with steady-state computations for different friction coefficients. The force increases beyond ρc for μ = 0.57 and μ = 0.82.

with higher friction do not pop out resulting in achieving
a higher degree of compaction. The critical slowing down
of the timescale observed in Fig. 2(b) has been extensively
studied in various disordered media [23–26]. Our observation
of a similar relaxation strongly points to the inherently dis-
ordered nature of our system. As we will detail shortly, even
to start with, the cylinders’ cross-sections were not exactly
circular, giving rise to an inherent disorder in the system.
Above the critical point, in the presence of mechanical con-
straints, this inherent disorder was amplified, accompanied by
a fraction of cylinders popping out randomly from the 2D
plane.

To investigate the nature of the disorder across the tran-
sition we captured snapshots of the granular shear assembly
from a slanted view after the initial and final impact, as
shown in Figs. 3(a) and 3(b). These images were taken in
the post-loading state. The images show a distinct qualitative
difference in the surface profile of the system below and
above the critical density. Below the critical density, the sys-
tem exhibited compaction through in-plane rearrangements
of the cylinders (Fig. 3(a) and Movie S1.avi [31]). For ρ >

ρc, the very first impact caused the cylinders to coherently
buckle out of the 2D plane (see Movie S2.avi [31]). The

signature of this out-of-plane mechanical instability is also
captured in the speed profile of the pneumatic shaft (see
Fig. 12) during the first impact. Even after removing the ex-
ternal loads, the system’s buckled state persisted, with certain
cylinders remaining wedged out in the relaxed state. Sub-
sequent loading cycles intensified the structural instabilities
associated with the out-of-plane motion of the cylinders, in-
creasing the probability of cylinders remaining in the popped
state.

We quantified the number of popped-out cylinders using
a Laser Scanning Profilometer. A 2D laser sheet was pro-
jected onto the shear assembly at a nonzero angle relative
to the direction of gravitational acceleration, forming a stripe
C along the x axis, see Fig. 3(c). The height at each y value
was calculated as h(y) = Dy(y) tan ψ , where Dy(y) is the de-
viation along the negative y axis of C from a perfectly flat
surface and ψ = 45◦ is the angle made by the laser sheet
with the xy plane. The height resolution of this method is
about 2 mm, this is mainly set by the width of the laser
sheet. The height resolution of this method is approximately
2 mm, which is about 16% of the size of the cylinders. This
resolution is primarily determined by the width of the laser
sheet.
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FIG. 4. Disorder in shape: (a) Ellipses fitted to internal contours of cylinder cross-sections illustrate fit quality in this plot. (b) Bivariate
histograms of the system in a relaxed state, displaying distributions of semi-major (�2) and semi-minor (�1) axes of inner elliptical contours
for cylinder cross-sections at ρ = 0.87. The left plot is at n = 1, and the right one is in the steady state, n = 500. The solid lines, �2 = �1,
represent the points corresponding to circular cross-sections. (c) Steady-state values δεr,st are shown as functions of ρ for three different friction
coefficients. Inset: Change in average eccentricity (δεr = 〈εr〉 − 〈ε1,r〉) plotted for two representative densities.

To study the height profile ζ (x, y) of the assembly, the
laser was incrementally translated along the negative y axis,
causing C to sweep across the shear cell length. The top
camera captured C images on the cylinder surface. Fig. 3(d)
shows a typical height profile, where colors represent cylinder
heights in mm. Cylinders over 16 mm in height are considered
popped-out of the 2D plane. The plot in Fig. 3(e) shows the
evolution of the popped state (measured by the fraction of
popped-out cylinders, fB) as a function of density ρ for three
different μ. Increasing friction leads to a less distinct transi-
tion, indicating that higher interparticle friction stabilizes the
planar arrangement of cylinders, making it difficult for them
to pop out.

To measure the confining force exerted by the popped-
out cylinders beyond ρc, the combined spring constant of
the springs attached to the top plate was multiplied by the
plate’s vertical displacement, which was monitored using the
side camera. Details of the method of measuring the spring
constant are given in the Appendix. Inset in Fig. 3(f) plots the
vertical force Fz(N ) as a function of n for two representative
densities (ρ < ρc and ρ > ρc). It shows that beyond ρc, after a
few initial impacts, Fz(N ) starts rising, eventually reaching to
a steady state. We plot the average vertical force Fz,st exerted
in the steady state as a function of ρ. It shows a transition at
ρ = ρc corresponding to their respective friction coefficients.
Interestingly, Fz,st reduced significantly for any arbitrary
ρ > ρc, suggesting higher friction causing lesser internal
stress.

The radial deformation of the cylinders is a measure of
local stress in the system. To quantify this deformation, we
measured the eccentricity of the internal contour of the top
annular region of each cylinder. Coordinates of the internal
contours were detected and an equation of ellipse was fit-
ted to these coordinates. Figure 4(a) shows a small patch
of the system depicting the quality of fits. Further details
about detecting the eccentricities are given in the Appendix.
Ideally, without any deformation, the cross-section of each

cylinder should be circular. However, at the outset of the
experiment, the cross-sections of the cylinders were mea-
sured to be slightly elliptical rather than circular, exhibiting
an average residual eccentricity 〈εres〉 ∼ 0.38. The bivariate
histogram of the semi-major (�2) and semi-minor axes (�1) of
the cylindrical cross-sections are plotted in Fig. 4(b) for n = 1
and n = 500 in the relaxed state. The quoted densities are
determined by approximating these elliptical cross-sections as
circular, introducing an error of δρ = ±0.01. Inset of Fig. 4(c)
demonstrates the average eccentricity at an instance minus the
average eccentricity at n = 1, δεr = 〈εr〉 − 〈εres〉 as a function
of n for two representative densities (ρ < ρc and ρ > ρc).
While δεr remains almost constant for ρ < ρc, it increases and
finally saturates in the steady state at ρ > ρc. This internal
stress building up can be further understood by plotting the
steady state value of δεr,st against ρ. It is observed that similar
to the vertical stress developed in the system, the average
radial deformation also gets enhanced beyond ρc for μ =
0.57 and μ = 0.82 but does not show a significant increase
for μ = 1.79. High interparticle friction destroys the internal
stress retained in the system, resulting in a more compact
configuration. This type of disorder aligns with studies on
properties of systems with very low polydispersity [27,28].

To gain insights into the mechanisms of cylinder popping
and the rotational motions associated with in-plane rear-
rangement and out-of-plane popping, we individually marked
and tracked each cylinder over time. Figure 5(a) shows the
average absolute angular displacement |�(n)| for three den-
sities, showing the characteristics of the power law with n.
|�(n)| is defined as |�(n)| = 〈�(n)〉 − 〈�(n = 1)〉, where
〈�(n)〉 is the average orientation of the cylinders. The plot
indicates the absence of a state where all rotational activ-
ity ceases (see Appendix, Fig. 14(b)). In Fig. 5(b), the final
|� f | against ρ reveals a maximum at ρ = ρc, suggesting
increased cylinder rotation propensity at the transition density.
Below ρc, particle rotations involve sliding during in-plane
particle rearrangement, while above ρc, in-plane rotations are
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FIG. 5. Particle rotation: (a) Shows the variation of the average
absolute angular displacement per particle |�(n)| with n for three
representative densities (ρ < ρc, ρ = ρc, and ρ > ρc). All the data
show a power law behavior with respect to n. In (b) we plot |� f |,
i.e., the average absolute angular displacement at the final cycle as a
function of ρ. It shows a maxima at ρ = ρc. The friction coefficient
μ between the cylinders in this experiment is 0.57.

complemented by screw-type motions extending out of the
plane (see S3.avi [31]).

IV. CONCLUSIONS

In this paper we have shown that the reconfiguration of
particles due to mechanical instabilities leads to a popped
state, directing stress toward the confining walls. Furthermore,
we demonstrate a dynamical transition between non-popped
and popped states during the process. Interparticle friction
stabilizes the non-popped state, isolating it from the influ-
ence of boundary friction. By increasing friction between
particles, one can smoothen this transition, influencing the
overall behavior of the system. The paper establishes that
the mechanical response of a system can be effectively con-
trolled by adjusting its relaxation time or particle mobility.
Typically, this control involves modifying an external param-
eter within the system, such as temperature in the context
of glasses [29], which alters molecular mobility and con-
sequently increases relaxation time. In the present context,
popping hinders particle mobility by introducing frictional
constraints from boundaries, which arise as individual parti-
cles reorganize during compaction. It is via these additional
frictional forces, that the system can significantly increase
the system’s relaxation time. This paper does not address
the effect of system size dependence on the transition,
however, that is a question better answered by numerical
studies.
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APPENDIX A: EXPERIMENTAL SETUP

1. Granular particles

We used coaxial rubber cylinders as soft granular particles.
These cylinders were cut from nitrile butadiene green rubber
pipes and had the following dimensions: an inner diameter
of 5.32 mm, an outer diameter of 12.25 mm, and a height of
12 mm. Hollow cylinders were used because the experimental
requirement was to use soft material that could get pushed
without toppling. Unfortunately, most soft materials also have
high friction. If the friction is too high, it could result in
mechanical instability and cause the cylinders to topple. Thus,
it is crucial to balance the softness of the cylinders and the
friction between them and the bottom substrate. The chosen
cylinders represent a solution in this regard. Their hollow
nature imparts softness, and since only the annulus makes
contact with the substrate, they exhibit low friction.

2. Controlling interparticle friction

The experiments involved adjusting the friction between
the cylinders using three different approaches: The first in-
volved using the original cylindrical rubber tubes with their
natural friction coefficient (μ = 0.82). The second approach
employed rubber tubes coated with glossy paint and further
lubricated with boric acid to decrease the friction coefficient
(μ = 0.57). Lastly, rubber tubes were wrapped with fine-
grit sandpaper (180) to increase the friction coefficient (μ =
1.79). The friction coefficients of the cylinders were measured
using the method described by Bandi et al. [17].

3. Measurement of the friction coefficient

The experimental setup for measuring friction is depicted
in Figs. 6(b) and 6(c). Four rubber cylinders are arranged in
contact, with three outer cylinders fixed in place and unable
to move or rotate. The middle cylinder is connected to an axle
that is linked to a pair of pulleys. This setup allows the middle
cylinder to rotate by applying torque through weights (W )
suspended from the pulleys (P1, P2). An external force (Fa)
is applied to the top cylinder using an indenter connected to
a load cell, which measures the force exerted by the indenter.
The load cell generates a voltage corresponding to this force,
which can be converted into actual forces using a calibration
curve. The calibration curve is shown in Fig. 9(a). The bottom
cylinders, positioned at angle θ = 30◦ with respect to gravity,
also exert an equal force Fb on the middle cylinder. Thus, the
total normal force acting on the middle cylinder is

FN = Fa + 2Fb.

In mechanical equilibrium, Fa = 2Fb cos θ , thus

FN = Fa + Fa/ cos θ.

Applying a tangential force FT on the middle cylinder allows
it to slip at a critical force, enabling the determination of the
static friction coefficient μ = FT /FN for the cylinders. This
tangential force FT is generated by the torque from the weights
W suspended from P1 and P2. Using torque balance, we find
FT = W R/r, where r is the radius of the cylinder and R is the
pulley radius. Once FT is known, the friction coefficient can
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FIG. 6. Panels in (a) show representative photographs of the cylindrical particles of varying friction coefficients. The top one is of
intermediate interparticle friction whereas the middle and the bottom one correspond to lowest and highest friction coefficients. The top
one has an interparticle friction coefficient of μ = 0.82. In the middle, the particle is coated with glossy black oil paint. To reduce friction
further, the entire assembly was lubricated with boric acid, reducing the interparticle friction coefficient to μ = 0.57. Sandpaper with a grit of
180 was pasted around the objects to increase friction. This enhanced the friction coefficient to μ = 1.79. A representative image of a cylinder
wrapped in fine-grit sandpaper is shown at the bottom of (a). The experimental setup to measure friction is schematically shown in (b). The
schematic view of the cross-section of the cylinder assembly with force diagrams are depicted in (c).

be calculated using the formula

μ = FT

Fa(1 + 1/ cos θ )
= W R/r

Fa(1 + 1/ cos θ )
.

4. Quantifying the cross-section of the cylinders

Notably, at the outset of the experiment, the cross-
sections of the cylinders were elliptical rather than perfectly
circular, exhibiting a nonzero eccentricity in the system. To
ensure accurate measurement of the eccentricity of the cylin-
der cross-sections, precautionary measures had been taken.
The bottom sheet had been painted black, and bright light
sources were strategically positioned above the assembly to
illuminate the upper annular region of the cylinders. This
specific lighting arrangement was designed to eliminate the
visibility of the vertical inner walls of the cylinders in cap-
tured images, effectively preventing any interference with the
process of ellipse detection. For a system with N cylinders,
the center and eccentricity of each cylinder were located and
estimated through the following procedure. First, the green
channel of the image was binarized, and a Canny edge fil-
ter was applied to detect the inner and outer boundaries of
the annular region of the cylinders. Subsequently, all closed
contours in the thresholded image were recognized to identify
each cylinder. Classifiers such as convexity, area, and perime-
ter length were used to distinguish contours representing the
inner edge of a cylinder. The method of least squares, as
detailed in [30], was then employed to determine the equa-
tion of the ellipse that best fit the set of 2D data points
corresponding to each selected closed contour. This procedure
provided estimates for the center, Ci, and eccentricity, εi, of the
cross-section of each cylinder, where i = 1 . . . N . The fitted
ellipses are shown as red contours in Fig. 7.

5. Quantification of cylinder orientations

To track the orientation of each cylinder around its own
axis, a red patch was applied to its annular region. An example

of this red patch on the cylinder’s annular region is depicted
in the inset of Fig. 7. The center (Pi) of this patch was then
located. The angle formed by the line connecting Ci and Pi

with the y-axis determined the orientation angle (�i) for the
i-th cylinder. These lines (CiPi) are represented as red straight
lines in Fig. 7.

6. Shear cell

The shear cell, housing these cylinders, consisted of four
arms (190 mm × 20 mm × 14 mm) and was placed on a
rectangular acrylic sheet. The sheet was attached to the ex-
perimental table, and one arm of the shear cell was fixed
onto the acrylic plate, while the other three arms could move,

FIG. 7. The cross-sections of the cylinders are quantified by
fitting ellipses (marked in red) to the inner circumference of the
cylinders. The red patch (P) marked on the annular part of the cylin-
der is used to determine its instantaneous angular position. Radial
straight lines connect the center of the red patch to the center (C) of
the cylinder.
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FIG. 8. The panel (a) illustrates the schematics of the experimental setup. Panel (b) schematically depicts the displacement of the top plate
in response to the particles popping out of the plane.

ensuring that parallel arms remained parallel at each instanta-
neous stance of the shear cycle (see Fig. 1(b)–1(d) for three
representative stances). Before the experiments commenced,
cylinders were randomly placed with their axes perpendicu-
lar to the bottom plate. The density (ρ) was defined as the
ratio of the area occupied by those cylinders to the maxi-
mum area of the shear cell in its fully sheared configuration.
For the density spanned in these experiments, the number of
cylinders in the shear cell was varied from 224 to 252. The
system was kept horizontal, and a transparent acrylic sheet
(486 mm × 200 mm × 6 mm) was attached to prevent run-
away instability and maintain a constant number of cylinders.
A camera (v2-8MP) was mounted atop the shear assembly to
capture images throughout the experiment (see Fig. 1(a)) with
a resolution of ∼6.53 pixels/mm. A more detailed schematic
of the experimental setup is given in Fig. 8.

7. Measurement of the normal force F

Four identical metallic springs (ID = 15 mm, OD =
16.5 mm, height = 35 mm, stiffness constant k = 0.621 ±
0.006 N/mm) were clamped to steel rods (12 mm diameter)
at the plate corners (see Figs. 1(a), 8(a), and 8(b)). Spring
stiffness coefficients were measured by attaching the spring
to a load cell connected to a linear motorized stage, and dis-
placement was controlled while voltage was measured using a
multi-meter. Calibration data for force and voltage of the load
cell was used to compute spring stiffness. Additional details,
including calibration data, are provided in the Fig. 9.

A plexiglass piece (66 mm × 53 mm × 3 mm) with a
marked black line was attached perpendicularly to the top
plate. The line’s movement was monitored by a second camera
(v2-8MP) mounted sideways to measure the top plate’s height
change with a resolution of ∼59 pixels/mm. To move upward,

cylinders must overcome the stiffness of the springs clamped
to the steel rods above the top plate. The vertical force F
exerted by the system was the effective spring constant (K =
4k = 2.484 N/mm) multiplied by the vertical displacement
�H0 of the springs (and thus the top plate), i.e.,

F = 4k�H0.

FIG. 9. (a) The calibration curve of the load cell (SYNAPSIS
TECHNO INDUSTRIES, MODEL-LZYA, 0-5KG) is generated by
the following method. An object of a nonzero mass is suspended
from the load cell and the voltage generated due to the weight of
the object is recorded. The object mass is varied in multiple of a
finite mass (11.2 g). Slope (�V/�F ) of the curve is 0.597 ± 0.003.
(b) Inset: The schematic diagram of the spring measurement appa-
ratus. The spring is sandwiched between a linear translator stage
connected to a stepper motor and the load cell. The motorized stage
moves in the −ve z direction. As a result, the spring gets com-
pressed and exerts a resistive force in the opposite direction. This
force is measured in terms of voltage generated by the load cell.
From the calibration curve, the voltage can be converted into force.
Slope of the F (N ) vs. (z0 − z) (mm) curve is the stiffness constant
(k = 0.621 ± 0.006 N/m) of the spring. z0 (= 35 mm) is the length
of the spring without any externally applied force.
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FIG. 10. Laser Scanning Profilometry: (a) Schematic diagram of the custom-built scanning 2D laser stripe profilometer. A 2D laser sheet
projected onto the surface of the cylinders makes a red stripe C. The plane of the laser sheet makes an angle of 45◦ with the xy plane. The
laser, connected to a stepper motor, incrementally moves across the system along the y axis, this causes the stripe C to sweep across the length
of the shear cell. At each step, the top camera captures an image of the laser stripe C on the surface of the cylinders. (b) The stripe (C) on the
surface forms a curve due to finite height of the cylinders. Height can be calculated from the angle at which the laser is projected onto the
surface using the formula: h = Dy tan θ , where Dy is the deviation of C from the imaginary straight line that would have formed on a perfectly
flat surface. To study the height profile ζ (x, y) of the complete assembly, the laser is systematically traversed along the y− axis in incremental
steps. At each laser position, an image of the laser stripe on the assembly of the rubber cylinders is captured. Once the laser stripe has traversed
the entire assembly, a sequential stack of these images is compiled. A composite image as shown in panel (c) is subsequently generated from
this stack by projecting the maximum intensity in the direction of the stack. A white line is delineated to indicate the inner boundary of the
cell. (d) Height ζ at each (x, y) coordinate is represented by a heat map in the image. Any of the cylinders which has elevation more than the
height of the shear cell wall (16 mm), is defined as popped-out cylinder in our experiment. The unit vectors η̂ and ŷ point along the side and
bottom wall of the shear cell (shown by the black boundary).

8. Residual strain measurement

To quantify the angle θ between the shear cell and the
impact direction, one side arm of the shear cell was colored
in yellow for easy identification (see Fig. 1). The image was
processed by subtracting the blue channel from the green to
isolate non-zero pixels in the yellow-colored region. Canny
edge detection was then employed to identify the edge of the
colored side arm. Subsequently, Hough transformation was
utilized to identify the slope m of this edge, and thus

θ = π − arctan(m).

9. Height profile measurement

To analyze the height profile of the configuration, we uti-
lized a custom-built scanning 2D laser stripe profilometer. Its
schematic representation is shown in Fig. 10. In this method,
a 2D laser sheet was projected onto the system at a 45-degree
angle. The laser, connected to a stepper motor, incrementally

moved across the system along the y axis. At each step, the top
camera captured an image of the laser stripe on the surface
of the cylinders. On a flat surface, the laser stripe formed
a straight line. When the cylinders moved out of the plane,
this laser stripe deviated from the reference line and began to
represent a curved line. The estimation of the vertical motion
of each cylinder was determined by measuring the deviation
of the laser stripe from its reference straight line. Analyzing
this deviation enabled the construction of the height profile
ζ (x, y) for the configuration. We defined those cylinders to be
buckled, which had an elevation of about 16 mm.

APPENDIX B: EXPERIMENTAL PROCEDURE

For a fixed number of cylinders, the shear assembly was
slammed by a pneumatic shaft connected to an air compressor,
for 2 seconds and the external force was removed to let the
system relax for 10 seconds. Air pressure in the compressor
was kept fixed at 5 bars throughout the experiment. Motion
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FIG. 11. In-plane buckling: These images correspond to frames 30 to 46 in the movie sequence (Movie S1.avi [31]), with a 4-frame
interval, and show instances of in-plane buckling.

of the pneumatic shaft was controlled by a microprocessor
called Raspberry PI. The Raspberry PI that we used was
of 4 GB RAM and 2.5 GHz processor speed. It was con-
nected to a camera (Raspberry PI built in Camera Module,
V2-8 MP) at the top. The side camera was connected to
another Raspberry PI of similar specifications. To simulta-
neously capture snapshots, the standard parallel processing
protocol MPI (Message Passing Interface) was employed us-
ing the mpi4py Python module, installed on both of these
microprocessors. Following the installation, the machinefiles
containing IP addresses of these microprocessors was cre-
ated on each of them. To facilitate remote communication
with these Raspberry PIs, the secure shell protocol (SSH)
was enabled.

For secure and password-less login, the Rivest-Shamir-
Adleman (RSA) encrypted public and private keys were
generated and shared between the Raspberry PIs. This en-
abled secure access to the microprocessors without the
need for passwords during remote communication. The
cameras captured the top and side views of the system
respectively, before and after completion of each shear
cycle.

All experiments were started from random initial configu-
rations and all of them ran for 500 shear cycles. Before each
experimental ran, the system was vigorously shaken to ensure
that no memory of the previous experiment was retained by
the configuration.

APPENDIX C: SIGNATURES OF IN-PLANE
AND GLOBAL BUCKLING

The response to the initial impact on the granu-
lar assembly was observed using a high-speed camera
(PHANTOM/AMETEK, MIRO-M310) mounted sideways to
the system. These videos provide direct evidence of in-plane
and global buckling in the system. Below the critical density,
the system exhibited compaction through in-plane rearrange-
ments of the cylinders (Movie S1.avi [31]). However, for ρ >

ρc, the very first impact caused the cylinders to coherently
buckle out of the 2D plane (Movie S2.avi [31]).

1. In-plane buckling

The three images in Fig. 11 are from the film S1.mov,
capturing instances of in-plane buckling in a collection of

load-bearing linear structures in response to shear deforma-
tion. The direction of the shear deformation is indicated by
arrows. These images correspond to frames 30 to 46 in the
movie sequence [31], with a 4-frame interval. The blue line
in the first image represents a linear force chain, which un-
dergoes buckling over time. Similar in-plane buckling events
result in significant particle rearrangements observed towards
the end of the movie [31].

In addition, the system’s response to the pneumatic shaft
impact is analyzed through two aspects: (1) examining the ve-
locity profile of the shaft and (2) investigating the assembly’s
height profile.

2. Velocity profile of the shaft after initial impact

In Fig. 12(a), the pneumatic shaft’s velocity magnitude
(vy) is plotted against time for various densities, reveal-
ing two distinctive velocity peaks. The first peak marks the
point of maximum shaft velocity during collision with the
shear cell, followed by a rapid deceleration phase as the
particulate configuration undergoes compression at nearly
5 bars. The system undergoes a cycle of acceleration and
deceleration in about 150 ms before the pneumatic shaft
resumes acceleration (indicated by a vertical black arrow
in Fig. 12(a)). The first velocity peak is universal, depen-
dent on the physical characteristics of the pneumatic shaft.
However, a smaller secondary peak follows, representing the
pack’s response to intense compression and indicating the
pack’s rejuvenation from yielding in constituent coaxial cylin-
ders. The temporal separation between the secondary peak
and the post-slamming deceleration phase hinders the sys-
tem from adaptation during shear loading. Yielding, recorded
through shaft speed (vy), is short-lived and uniform at low
densities but extends longer for densities exceeding ρc. Sup-
plementary movies (S1.avi, S2.avi) qualitatively evidence this
behavior, with yielding visible at higher densities in S2.avi
due to its stretched-out time profile, as quantitatively shown
in Fig. 12(a).

3. Height profile of the assembly after first impact

To quantify the distinction around the critical density
ρc, we plot the height profile ζ (y) of the coaxial cylin-
der system after the first shear loading for various densities
in Fig. 12(b). Minimal height deformations are observed
at densities ρ < 0.864, while densities ρ > 0.864 exhibit
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FIG. 12. (a) Temporal variation of pneumatic shaft velocity for representative densities ρ at friction coefficient μ = 0.82. (b) Height
profile of hollow cylinders 〈ζ (y)〉x averaged along the x axis, immediately after the first shear loading for various densities. Global buckling is
evident from the data of continuous deformation for ρ > ρc. (c) Variation of average height profile 〈ζ 〉x,y with ρ for three friction coefficients
(μ = 0.57, 0.82, 1.79).

characteristic out-of-plane bowing, indicating continuum
slender body buckling. We operationally identify the criti-
cal density as ρc = 0.864. Distinct instability mechanisms
below and above ρc result from interparticle friction. Fric-
tion constrains rotational degrees of freedom, causing coaxial
cylinders to behave like a continuum solid and buckle out of
plane above ρc. This is supported by Fig. 12(c), where we
plot 〈ζ 〉x,y, the averaged height profile inside the shear cell,
for three friction coefficients. Firstly, ρc–the density where
〈ζ 〉x,y starts rising above 0 mm–shifts to higher densities with
increasing friction coefficients, confirming the role of fric-
tion in the dynamical transition. Secondly, the magnitude of
the jump in 〈ζ 〉x,y becomes smoother and more gradual with
increasing friction coefficient μ, suggesting that friction sta-
bilizes the pack against mechanical failure and smoothes out
the transition.

APPENDIX D: DENSIFICATION OF THE SYSTEM

Upon repeated impacts, the system begins to densify. The
degree of densification achievable depends on the coefficient
of friction between the cylinders. A system with lower in-
terparticle friction attains lower density due to mechanical
instability when a critical density is exceeded. This instability
causes the cylinders to pop out of plane, enhancing the friction
interaction between the popped-out cylinders and the wall.
This increased frictional interaction limits the in-plane motion

of the cylinders, hindering the densification process. Figure 13
shows the growth in the density ρr of the system in its relaxed
state, i.e., θ = θr with the number of impacts for three dif-
ferent a priori densities, ρ, of the cylinders in the shear cell.
The data is presented for three different friction coefficients
between the cylinders: (a) μ = 0.57, (b) μ = 0.82, and (c)
μ = 1.79. The a priori density, ρ, of the cylinder-assembly
is measured in the maximum-shear loading state of the shear
cell, θ = θmax.

APPENDIX E: PERSISTENT ROTATIONAL ACTIVITY

In conventional Cauchy mechanics, which deals with con-
tinuous elastic materials, the relative deformations among
individual constituents–a characteristic response in granu-
lar solids–are not considered. However, both continuum and
granular solids can experience sudden shape changes, known
as structural instabilities. Buckling of slender structures is a
common instability in Cauchy solids, analyzed using linear
stability methods. However, in granular solids, neighbor-
ing particles can undergo different rearrangements under
external loading, like shear band formation, leading to me-
chanical instability at the constituent level rather than the
system scale.

In our experiments, we observed that individual cylinders
started rotating during the loading phase, and this rotation
does not get undone during the relaxation phase. As the
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FIG. 13. Relaxed State Density with number of impacts: The figure depicts the growth in the density ρr of the system in its relaxed
state, i.e., θ = θr with the number of impacts for three different a priori densities, ρ, of the cylinders in the shear cell. The data is presented
for three different friction coefficients between the cylinders: (a) μ = 0.57, (b) μ = 0.82, and (c) μ = 1.79. The a priori density, ρ, of the
cylinder-assembly is measured in the maximum-shear loading state of the shear cell, θ = θmax.

system became denser, the fraction ( fR) of cylinders ex-
hibiting persistent rotation decreased with increasing impact
number (n) until it reached a saturation value ( f s

R). The high-
est fraction of rotating particles was observed at the critical
density. In Fig. 14(a) we plot the fraction of rotating cylin-
ders, fR, against the impact number n for three representative
a priori densities, ρ. Over successive impacts, fR initially
decreases but eventually saturates to a nonzero steady-state
value, f s

R.(b) The fraction of rotationally active cylinders in the
steady state, 〈 f s

R〉, exhibits a peak near the critical density ρc.
Averaging is performed over the last 100 cycles. A cylinder
is considered rotationally active if its angular displacement in
the relaxed state between two consecutive impacts is greater
than 0.1 radians. We are not claiming that there is a divergence
in rotational activity. Rather, we aim to show that rotational
activity increases at the critical density. In fact, the presence
of the top plate prevents any possibility of divergence, as a
cylinder that pops up and touches the top plate cannot rotate
further.

APPENDIX F: ERROR ANALYSIS

For the data presented in Fig. 12(c), the average was taken
over the length of the laser line and the error bar presented
was the standard deviation of these averages for various initial
configurations divided by the square root of the total number
of initial configurations.

We explained the error analysis for the Fig. 4(c), the
increase in average eccentricity δεr,st plot as an exemplar,
the remainder of the plots in Figs. 2 and 3, i.e., n0, Fz,st ,
and θr,st followed the same procedure. Between 8 to 10
independent experimental runs were conducted for each ρ,
and for each experimental run the mean eccentricity of the
cylinders in the shear cell was computed for the last 100
shear cycles (these are all steady state cycles). Therefore,
there were average eccentricities for various initial configu-
rations corresponding to a specific density. The error bar was
calculated as the standard deviation of these average eccen-
tricities divided by the square root of the number of initial
configurations.

FIG. 14. Persistent rotational activity: (a) The plot illustrates the fraction of rotating cylinders, fR, against the impact number n for three
representative a priori densities, ρ. Over successive impacts, fR initially decreases but eventually saturates to a nonzero steady-state value, f s

R.
(b) The fraction of rotationally active cylinders in the steady state, 〈 f s

R〉, exhibits a peak near the critical density ρc. Averaging is performed
over the last 100 cycles. A cylinder is considered rotationally active if its angular displacement in the relaxed state between two consecutive
impacts is greater than 0.1 radians.
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