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Examining the quantum signatures of optimal excitation energy transfer
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The transport and capture of photo-induced electronic excitations is of fundamental interest to the design of
energy efficient quantum technologies and to the study of potential quantum effects in biology. Using a simple
quantum optical model, we examine the influence of coherence, entanglement, and cooperative dissipation on
the transport and capture of excitation energy. We demonstrate that the rate of energy extraction is optimized
under conditions that minimize the quantum coherence and entanglement of the system, which is a consequence
of spontaneous parity time-reversal symmetry breaking. We then examine the effects of vibrational disorder
and show that dephasing can be used to enhance the transport of delocalized excitations in settings relevant
to biological photosynthesis. Our results highlight the rich, emergent behavior associated with the quantum-to-
classical transition with relevance to the design of room-temperature quantum devices.

DOI: 10.1103/PhysRevResearch.6.033252

I. INTRODUCTION

The efficient transport of photo-induced electronic exci-
tations is an important process mediating long-range energy
transfer in atomic, molecular, and artificial quantum systems.
Transport in isolated systems (i.e., “closed” quantum systems)
is driven by the build-up of quantum coherences that mediate
interactions between quantum emitters at spatially separated
sites. As compared to classical transport, the quantum proper-
ties afforded by these coherences—such as entanglement—
can allow for exponential speedups in information transfer
[1] and may be useful for designing new quantum technolo-
gies [2]. In practice, however, these processes are invariably
subject to environmentally induced decoherence that destroys
the well-defined phase relationships required for quantum
superpositions [3–6]. The coupling of such “open” quantum
systems to lossy external environments therefore limits any
possible advantages provided by quantum coherence or entan-
glement. When the system-environment couplings are large,
the transport process admits an effectively classical descrip-
tion given by a series of incoherent rate equations. As such,
the traditional approach to designing new quantum devices
has been to engineer platforms in which these environmental
couplings are minimized, with the express purpose of preserv-
ing quantum correlations over long timescales.

However, despite the role of decoherence in limiting the
quantum properties of excitation transport, recent studies have
shown that, in some cases, environmental fluctuations can
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actually improve the rate of energy transfer. The crucial role
of dephasing in overcoming Anderson localization [7] in dis-
ordered spin networks [8], molecular aggregates [9–13], and
quantum dot arrays [14,15] is now an active area of research.
The crossover between coherent and incoherent dynamics
has also attracted significant interest in the study of biolog-
ical photosynthetic complexes where the role of long-lived
coherent oscillations remains controversial [16–23]. Further
analyses of quantum signatures in the presence of decoher-
ence are therefore fundamental to the characterization of
energy transfer processes in artificial and biological systems
alike. A more complete understanding of mixed quantum-
classical interactions in both the transport and extraction (or
“trapping”) of excitation energy may also lead to the design of
novel biomimetic light-harvesting technologies that operate at
room temperature [24].

The underlying task of how to describe, overcome, and
ultimately leverage system-bath interactions to efficiently ex-
tract energy from a quantum optical system motivates a more
in-depth exploration of the quantum-to-classical transition in
realistic electromagnetic environments. Within the context
of biological and artificial light harvesting, the inter-emitter
interactions are typically assumed to be those of near-field
electrostatic dipoles, and the bath dynamics are often limited
to models of independent decay and/or pure dephasing [9,11–
13,25–27]. These simplifications are warranted only for local-
ized excitations at very short timescales, or when vibrational
fluctuations render phase coherences negligible. However, the
full light-matter interaction between quantum electric dipoles
also involves cooperative dissipation that leads to the forma-
tion of delocalized superradiant and subradiant modes. These
collective modes are essential to the accurate description of
quantum dynamics in excitation transport systems [28–34]
and can greatly influence how these systems respond to en-
vironmental decoherence. Consideration of these cooperative
effects within the context of biologically inspired design
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may also offer new insights into optimal quantum device
engineering.

In this paper, we seek to elucidate the fundamental mech-
anisms that drive efficient energy transfer between quantum
emitters—with particular emphasis on the role of quantum co-
herence and entanglement. Using a simple model of excitation
transport and trapping, we present a series of general results
linking a wide variety of optimal transport conditions to the
quantum-to-classical transition. In particular, we demonstrate
that, counterintuitively, optimal transport occurs for excitation
trapping rates that minimize the total entanglement of the
system. We show that this finding is not limited to disordered
or high-temperature systems but is instead a fundamental con-
sequence of spontaneous parity time-reversal (PT ) symmetry
breaking associated with the energy extraction process. We
then highlight the influence of cooperative decay and compare
the effects of both vibrational and static disorder on localized
and delocalized exciton states. Our results demonstrate that
dephasing can be used to enhance the transport of delocalized
excitations in settings relevant to biological photosynthesis.

The remainder of the paper is organized as follows. Sec-
tion II introduces the cooperative light-matter interactions
relevant for long-range quantum transport and excitation
trapping. Section III A discusses how minimizing quantum
coherence and entanglement via PT symmetry breaking
leads to the optimal extraction of excitation energy. Sec-
tions III B and III C relate these results to exceptional points
in non-Hermitian optics. Section IV A demonstrates how
vibrational-induced dephasing can enhance transport by dis-
rupting bright state emission in settings relevant to biological
photosynthesis. Section IV B discusses how level broadening
can enhance the robustness of excitation trapping in the pres-
ence of static disorder. Section V summarizes the main results
and offers perspectives on future work.

II. THEORETICAL MODEL

We are interested in describing the quantum transport
and subsequent trapping of photo-induced electronic excita-
tions between atoms or atom-like emitters (e.g., chromophore
molecules, quantum dots). In a complete description, this
transport is mediated by interactions with a quantized radi-
ation field and includes cooperative effects that result from
collective coupling to the vacuum field modes. In later
sections, we also examine the influence of additional environ-
mental fluctuations that induce both dynamical (dephasing)
and static (frequency shifts) disorder. For clarity of presenta-
tion, we focus here on the key concepts required to understand
the results of the main text. Additional details and derivations
can be found in the Appendices.

We consider the paradigmatic example of a one-
dimensional chain of N equally spaced two-level emitters,
each with an excited state |ei〉 and ground state |gi〉 separated
by a resonance frequency ω0 = 2πc/λ0, where c is the speed
of light and λ0 is the wavelength of the electronic transition
(Fig. 1). Coherent excitation transport between the emitters is
described by the Hamiltonian

H =
N∑

i=1

ω0σ
†
i σi +

∑
i �= j

Ji jσ
†
i σ j, (1)

J,Γ
i = 1 i = N

|ei

|gi

ω0

|eN

|gN Trap
γ γ κ

FIG. 1. Schematic drawing of the excitation transport-trapping
process in a one-dimensional chain of quantum emitters. Excita-
tions within the chain are transported between emitters via resonant
dipole-dipole interactions Ji j . Each emitter also experiences inde-
pendent spontaneous emission with rate γ and cooperative radiative
decay with rate �i j . The “acceptor” emitter at site i = N is inco-
herently coupled to an external trap state with rate κ , leading to the
irreversible extraction of energy from the system.

where the transition operators σ
†
i = |ei〉〈gi| and σi = |gi〉〈ei|

describe the raising and lowering of an excitation at site i. The
emitters are coupled to one another via resonant dipole-dipole
interactions with rate

Ji j = 3γ

4

{
[3(p̂i · r̂)(p̂ j · r̂) − p̂i · p̂ j]

(
cos ξ

ξ 3
+ sin ξ

ξ 2

)

− [(p̂i · r̂)(p̂ j · r̂) − p̂i · p̂ j]

(
cos ξ

ξ

)}
(2)

for dipole matrix element vector ℘i = ℘ip̂ and relative
coordinate ξ = ω0r/c, where r = rr̂ and r = |ri − r j | (Ap-
pendix A). The quantity γ denotes the independent radiative
decay rate of each emitter. Crucially, the dipole-dipole interac-
tion also includes cooperative decay that leads to superradiant
and subradiant emission at subwavelength distances [35,36].
In the limit where the chain admits (at most) a single ex-
citation at any given time, these radiative processes can be
described through the anti-Hermitian term

HR = − i

2

N∑
i, j=1

�i jσ
†
i σ j, (3)

where the diagonal elements of the collective emission rate

�i j = 3γ

2

{
[3(p̂i · r̂)(p̂ j · r̂) − p̂i · p̂ j]

(
sin ξ

ξ 3
− cos ξ

ξ 2

)

− [(p̂i · r̂)(p̂ j · r̂) − p̂i · p̂ j]

(
sin ξ

ξ

)}
(4)

are equal to γ . Although often neglected in studies of pho-
tosynthetic energy transfer, the off-diagonal elements of �i j

are essential to the study of nontrivial quantum dynamics and
cannot be neglected even in the limit as ξ → 0 (Appendix B).
As such, the full Hamiltonian describing excitation transport
through the chain—including both independent and collective
radiative emission—is given by Hch = H + HR.

In addition to transport, the successful transfer of energy
from the site of initial photon absorption to a spatially sepa-
rated location also involves extracting the excitation from the
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FIG. 2. (a) Illustration of the quantum-to-classical transition. Small trapping rates lead to coherent oscillations and long-lived quantum
entanglement. Optimal excitation trapping occurs for trapping rates that minimize the quantum properties of the system and is accompanied
by spontaneous PT symmetry breaking. At much larger trapping rates, the quantum behavior of the system is restored via the quantum Zeno
effect. (b) Transport efficiency η for a chain of N = 10 emitters as a function of the trapping rate κ and lattice spacing a at time γ t = 10.
The green line denotes the optimal trapping rate based on the group velocity argument, κopt ≈ 2J . (c) The total quantum coherence C(t ) as
a function of time for different values of the trapping rate. (d) The total entanglement E (t ) as a function of time for different values of the
trapping rate. (e) Site populations ρii for each of the emitters and the trap state when κ/κopt = 0.001. (f) Site populations for κ/κopt = 1.
Figure legend is the same as in panel (e). Lattice spacing for panels (c)–(f): a/λ0 = 0.05.

system. This process is of considerable interest to the study
of biological photosynthesis where excitations are funneled to
a photochemical reaction center, eventually leading to charge
separation [37]. Excitation trapping is also an important pro-
cess in artificial light harvesting and could be mediated, for
example, by nanowire structures [2,38,39] or semiconductor
wells [40,41]. As is applicable in these systems [9–12,42],
we assume that the trapping process is irreversible and can
be modeled as an additional Markovian decay channel on the
N th site (denoted the “acceptor” site) with rate κ by the term

HT = − i

2
κσ

†
NσN . (5)

The complete transport-trapping Hamiltonian is then Heff =
Hch + HT . As discussed below, the trapping process itself has
a significant influence on the energy transfer efficiency and
can be a source of nontrivial quantum dynamics.

III. EXCITATION TRAPPING
AND THE QUANTUM-TO-CLASSICAL TRANSITION

In this section, we show that the optimal trapping condition
is one of maximal decoherence and is accompanied by a
spontaneous PT symmetry breaking. We thus demonstrate
that varying the trapping rate can facilitate unidirectional
energy transfer and can be used to probe the quantum-to-
classical transition [Fig. 2(a)]. The main results are presented
in Sec. III A. Additional supporting analyses based on
exceptional point physics are presented in Secs. III B and

III C using simplified two-site and nearest-neighbor models,
respectively.

A. Unidrectional energy transfer through PT
symmetry breaking

An initial excitation |(0〉 = |e1〉 located at one end of
the chain will evolve according to Heff via the Schrodinger
equation i∂t |(t )〉 = Heff |(t )〉. The primary quantity of in-
terest for evaluating the excitation capture process is the
transport/trapping efficiency

η(τ ) = κ

∫ τ

0
dt〈(t )|σ †

NσN |(t )〉, (6)

which quantifies the probability that an initial excitation lo-
cated within the chain at time t = 0 is found in the trap
state at a much later time t = τ . We can study the quantum
nature of this process by analyzing the population coher-
ences and entanglement between different emitters. We define
the total quantum coherence of the system as the sum of
the l1 norms of off-diagonal density matrix elements [43]
C(t ) = ∑

i �= j |ρi j (t )|, where ρi j = 〈σ †
i σ j〉. As a measure of

quantum entanglement, we consider the logarithmic nega-
tivity, which is an entanglement monotone defined for an
arbitrary density matrix of a general bipartite system [44].
The logarithmic negativity for subsystems A and B is given
by E (A|B) = log2 ‖ρTB‖, where the superscript ·TB indicates
the partial transpose of subsystem B and the operation ‖ · ‖
denotes the trace norm. For the case where there is at most a
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single excitation in the chain, the logarithmic negativity can
be written in terms of the population coherences as [42,45]

E (1, . . . , k|k + 1, . . . , N ) = log2

(
1 − p0 +

√
p2

0 + 4X
)
,

(7)

where X = ∑k
i=1

∑N
j=k+1 |ρi j |2 and p0 = 1 − ∑N

i=1 ρii. We
thus define the total entanglement of the system E (t ) as the
sum of the logarithmic negativity across all possible (unique)
bipartitions.

Figure 2(b) shows the trapping efficiency for a chain of
N = 10 transversely polarized emitters as a function of the
lattice spacing and the trapping rate. In all configurations,
the efficiency exhibits a clear maximum, indicating the ex-
istence of an optimal trapping rate κopt. Strikingly, we find
that the trapping process is optimized under conditions that
minimize the “quantumness” of the system. At short times,
the intersite couplings drive the build up of spatial coherences
between different emitters. These coherences decay as a con-
sequence of radiative lifetime broadening, but can be long
lived when the coherent couplings are large. As the trapping
rate increases, the lifetime of the acceptor site is reduced, and
decoherence proceeds more rapidly owing to the additional
lifetime broadening of the acceptor emitter induced by the
trap. Figure 2(c) shows the time evolution of the total coher-
ence for different values of the trapping rate. At small trapping
rates, the coherences undergo damped oscillations with a de-
cay envelope ∝ e−t/τC , characterized by a coherence time τC
and an oscillation timescale related to the intersite coupling
strength [see also Eq. (14)]. This damping is accompanied by
a similar exponential decay of the quantum entanglement with
rate constant τE [Fig. 2(d)]. At the optimal trapping rate, both
the total coherence and the total entanglement are critically
damped and tend rapidly to zero as the excitation leaves the
chain via the trap.

Examination of the site populations ρii illustrates this tran-
sition from coherent quantum behavior to incoherent classical
transport [Figs. 2(e) and 2(f)]. As the system evolves, the ini-
tial excitation acquires a group velocity and proceeds forward
to the acceptor site at the opposite end of the chain. When
the trapping rate is small, the excitation is not transferred
rapidly enough to be captured in its entirety [Fig. 2(e)]. A sig-
nificant portion is then reflected backwards and can interfere
with the remaining forward moving component. This leads to
coherent oscillations between the emitters that are damped by
the vacuum decay channels. At the optimal trapping rate, the
transport becomes unidirectional and proceeds down the chain
into the trap without reflection [Fig. 2(f)]. Consequently, the
interference phenomena associated with the superposition of
the forward and backward moving components is suppressed,
and the excitation loses its wave-like nature.

A prediction of this interpretation is that optimal energy
extraction should occur when the rate of transfer to the trap
is commensurate with the rate of population arriving at the
acceptor via the other emitters in the chain. We can validate
this claim by comparing the optimal trapping rate with the
group velocities of the resonant chain eigenmodes [33]. In
the limit of large N and small dissipation, the eigenener-
gies of Hch form a continuous band and are approximately
given by the nearest-neighbor estimate E (k) ≈ 2J cos (ka),

where J = Ji,i+1 is the nearest-neighbor hopping rate, a is
the distance between nearest-neighbor sites, and k is the lat-
tice quasimomentum. The eigenmodes that are on resonance
with the acceptor emitter are located at ka = ±π/2 and have
group velocity v = |dE (k)/dk|π/2 = 2a|J|. The rate at which
population arrives at the acceptor via these resonant modes
is then given by κopt = v/a = 2|J|. This analytical estimate
shows excellent agreement with the exact numerical values
[Fig. 2(b)].

The transition between the coherent (oscillatory) and inco-
herent (unidirectional) transport regimes is a manifestation of
spontaneous PT symmetry breaking. This symmetry break-
ing is a known consequence of non-Hermiticity in classical
optics [46] and can be extended to the quantum optical trans-
port processes described here (see also Secs. III B and III C
for more detail). Quite generally, PT symmetry breaking can
be identified by examining the eigenmode structure of the
non-Hermitian Hamiltonian. The exact eigenvalues of Heff are
complex and given by ε̃n = εn − (i/2)�n, where εn and �n

denote the real energy and decay rate of each mode. The onset
of PT symmetry breaking is marked by the existence of an
eigenmode with a first derivative in its decay rate that changes
sign at the PT symmetry-breaking transition κPT . We denote
this “slowly decaying” mode as |vs〉. That is, PT symmetry
breaking occurs when the decay rate of this mode �s satisfies

d�s/dκ
∣∣
κ=κ−

PT
> 0 and d�s/dκ

∣∣
κ=κ+

PT
< 0, (8)

where κ−
PT and κ+

PT denote evaluation of the derivative im-
mediately to the left or right of κPT , respectively [47,48].
Figure 3(a) shows the behavior of the eigenmode decay rates
as a function of the trapping rate. The slowly decaying mode
exhibits a sharp decrease in its decay rate near the optimal
trapping rate κopt. Concurrently, the decay rate for the “fast”
mode |v f 〉 diverges towards � f → κ + γ . The rapid splitting
of the fast and slow decay rates is a hallmark feature of
spontaneous PT symmetry breaking.

As discussed above, the slow trapping regime κ < κopt ≈
κPT is dominated by wave-like behavior that results in inter-
ference between the incident and reflected excitations. This
regime corresponds to the PT symmetric phase where the
oscillatory nature of the quantum transport is most apparent.
Trapping rates in the vicinity of κopt ≈ κPT correspond to
the PT broken phase, where the transport is unidirectional
down the chain and into the trap. An interesting feature of this
system is that the quantum, oscillatory, and PT symmetric
aspects of excitation capture become dominant again at large
trapping rates. This is apparent from Figs. 2(c) and 2(d),
which show the revival of long-lived quantum coherence and
entanglement for κ 	 κopt. This phenomenon can be studied
in more detail through an eigenmode analysis of Heff . For
large N and very small trapping rates (κ 
 Ji j ), the collective
eigenmodes |vn〉 = ∑

j vn j |e j〉 are well approximated by the
analytical form [30]

vn j ≈
√

2

N + 1
cos(knx j ), for n odd

vn j ≈
√

2

N + 1
sin(knx j ), for n even, (9)
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N
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=
9

|vf
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FIG. 3. (a) Decay rates �n for the N = 10 chain as a function of increasing trapping rate. The system undergoes spontaneous PT symmetry
breaking characterized by a slowly decaying mode with a first derivative that changes sign at κPT . (b) Excitation probabilities in the site basis
for each eigenmode showing progressive localization of the acceptor with increasing trapping rate. (c) Characteristic decay rate of the total
system coherence τC and entanglement τE . Optimal transport occurs near the PT symmetry-breaking transition where both the coherence and
entanglement times are minimized. The blue-shaded area indicates the classical regime.

where kna = πn/(N + 1) and x j = ja − (N + 1)a/2. As the
trapping rate is increased and the PT symmetry is bro-
ken, the acceptor site becomes isolated from the remaining
states. Figure 3(b) demonstrates this isolation numerically for
the N = 10 chain. Each block shows the site probabilities
in the eigenbasis |vn j |2 for different values of the trapping
rate. The site index j runs along the columns of each block,
whereas the rows denote different eigenstates |vn〉. At κ = 0,
the eigenstates are well described by Eq. (9). For κ < κPT ,
the fast and slow modes |v f 〉 and |vs〉 acquire increasingly
larger overlaps with the acceptor site |eN 〉 with increasing κ .
However, at the PT symmetry-breaking point, |v f 〉 becomes
rapidly localized at the acceptor site and the overlaps with the
other sites are drastically reduced. As κ/J → ∞, |v f 〉 → |eN 〉
and the remaining eigenstates again become well described by
Eq. (9) but with N → N − 1. In other words, the eigenstates
of the N = 10 chain with strong trapping [top-right panel
of Fig. 3(b)] are those of the N = 9 chain at zero trapping
[bottom-left panel of Fig. 3(b)], plus an additional isolated
mode. The original N-dimensional Hilbert space H = HA ⊕
HB is therefore partitioned into two noninteracting subspaces:
HA consisting of the localized state |v f 〉 = |eN 〉, and HB

spanned by the remaining N − 1 basis states |ei〉 for i �= N .
The simultaneous decrease in the trapping efficiency that

accompanies the isolation of the acceptor site is a direct con-
sequence of the quantum Zeno effect (QZE) [9,14,15,26,49–
52]. The high-frequency trapping rate acts as a continuous
environmental measurement of the acceptor site and prevents
transitions to (or from) the remaining, longer-lived states. The
suppression of these transitions can be studied by examining
the survival probability S(t ) for an initial state |(0)〉 to be
found in the same state at a later time t . For an external
measurement apparatus, the trend towards S(t ) → 1 for in-
creasingly frequent projective measurements is a hallmark
of the QZE [53]. Here, we impose only a single projective
measurement at time t and show that the high-frequency trap-
ping rate leads to a “freezing” of the coherent time evolution.
The survival probability for |(0)〉 = |eN 〉 under Hamiltonian
evolution with Heff is given by

S(t ) = |〈eN |e−iHeff T |eN 〉|2

= |〈(0)|1 − iHeffT − 1
2 H2

eff T
2 + · · · |(0〉|2, (10)

where the Hamiltonian acts as

Heff |eN 〉 = − i

2
(γ + κ )|eN 〉 +

∑
i �=N

(
JiN − i

2
�iN

)
|ei〉 (11)

(for convenience, we subtract off the constant energy ω0 con-
tribution). In the limit κ 	 JiN , �iN , the initial state is an
approximate eigenstate of Heff , and the survival probability
is S(t ) ≈ e−(γ+κ )t . The equality becomes exact as κ/J → ∞.
The exponential decay of |(0)〉 is the same as that for an
isolated atom (i.e., JiN , �iN = 0). In other words, the initial
state does not feel the influence of the surrounding atoms: the
coherent evolution is “frozen in time.”

The effect of this isolation is that initial states that do not
have overlap with the acceptor site are fully contained within
a restricted subspace. In the high-frequency trapping limit, the
Hamiltonian then takes the form

Heff → PHeff P − i

2
(γ + κ )σ †

NσN (12)

where the projection operator P = ∑
i �=N |ei〉〈ei| runs over the

restricted subspace. A general state on this subspace |ψ〉 =∑
i �=N ci|ei〉 is therefore immune to the additional decoherence

imposed by the trapping process and cannot escape the chain
except by decaying to vacuum. In the limit where κ 	 Ji j 	
γ , �i j , these states form an (approximate) decoherence-free
subspace resulting in long-lived quantum coherence and en-
tanglement. The net result is that the QZE effectively restores
the PT symmetry of the system at a cost of reducing the
dimensionality of the Hilbert space. Optimal excitation trap-
ping occurs between these two PT symmetric regimes, where
decoherence imposes a directionality on the energy transfer
process.

B. Two-site model

We can gain some intuition for the results of the pre-
ceding section by studying a simple two-site model where
the transition from coherent to incoherent evolution and the
accompanying PT symmetry breaking are more apparent. For
simplicity, we neglect cooperative dissipation in this discus-
sion (�i j = δi jγ ). In the {|e1〉, |e2〉} basis, the non-Hermitian
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effective Hamiltonian is

Heff =
[− i

2γ J

J − i
2 (γ + κ )

]
(13)

(we set ω0 = 0 and J ∈ R without loss of generality). Begin-
ning in the initial state |(0)〉 = |e1〉, the time evolution of the
vector |(t )〉 = c1(t )|e1〉 + c2(t )|e2〉 is given by

c1(t ) = e−χt/2

[
κ

4

sin (λt )

λ
+ cos (λt )

]
,

c2(t ) = −iJe−χt/2 sin (λt )

λ
, (14)

where we have defined the quantities λ ≡
(1/2)

√
4J2 − (κ/2)2 and χ ≡ γ + κ/2. It is clear from

Eq. (14) that both the excited state populations ρii(t ) =
|ci(t )|2 and the population coherences |ρi j (t )| = |ci(t )c∗

j (t )|
experience a transition from underdamped to overdamped
dynamics when κ = 4J . The critical damping condition
therefore delineates the coherent and incoherent transport
regimes. For the Hamiltonian (13), this transition is
marked by a branch cut singularity at λ = 0, known as
an exceptional point (EP). The EP denotes the location
where the complex eigenvalues and eigenvectors of the
non-Hermitian Hamiltonian coalesce.

We may further examine the dynamics by solving for the
transport efficiency as a function of the trapping rate, κ . In the
limit as t → ∞, the analytical solution is given by

η(∞) = 4J2κ

(2γ + κ )[4J2 + γ (γ + κ )]
. (15)

The efficiency reaches a maximum of

ηopt = 4J2/(4J2 + 3γ 2 + 2γ
√

8J2 + 2γ 2) (16)

for the optimal trapping rate κopt =
√

8J2 + 2γ 2. At much
larger trapping rates, the transport is hindered by the QZE.
Figure 4(a) compares the optimal trapping rate with the lo-
cation of the EP at κEP = 4J . Except at very small coupling
strengths (J 
 γ /2), the optimal trapping rate is well ap-
proximated by the critical damping condition. As discussed in
the previous section, the emergence of irreversible, incoherent
dynamics is a manifestation of spontaneous PT symmetry
breaking. The coherent (underdamped) regime corresponds to
the PT symmetric phase where the two eigenmodes differ in
energy but have equal decay rates [Fig. 4(b)]. In this phase,
the PT operation leaves the eigenmodes invariant, up to a
global decay that changes sign (Appendix C). At the EP, the
decay rates split into one fast (� f ) and one slow (�s); the PT
symmetry is spontaneously broken.

Strictly speaking, true PT symmetry occurs only in bal-
anced gain-loss systems where the Hamiltonian commutes
with the PT operator. The Hamiltonian (13) is related to a
true PT symmetric Hamiltonian through a global decay term
with rate χ ,

Heff = HPT − i

2
χ1, (17)

where [HPT ,PT ] = 0 and 1 is the identity operator. The
eigenmodes of Heff and HPT are related through a gauge

(a) (b)(a)

FIG. 4. (a) Trapping efficiency η(∞) for the two-site model as
a function of the trapping rate κ and intersite coupling J . The solid-
green line indicates the optimal trapping rate κopt whereas the solid-
blue line denotes the EP at κ = 4J . The dashed-white line marks
where optimal transport coincides with critical damping at J = γ /2.
(b) Energies εn (solid lines) and decay rates �n (dashed lines) of the
collective eigenmodes showing a branch cut singularity at the EP.
(c) Populations of the emitter sites and trap state in the coherent (left)
and incoherent (right) trapping regimes.

transformation. In this context, Heff is said to exhibit a “pas-
sive” PT symmetry that can be defined through properties
of its complex eigenvalues, ε̃n = εn − (i/2)�n. Here, εn and
�n are the (real) energies and decay rates of each eigenmode.
Passive PT symmetry breaking is then defined by Eq. (8). For
the two-site Hamiltonian, κPT = κEP, though the definition
based on Eq. (8) remains valid even in the absence of EPs (see
Sec. III C and Ref. [47]).

C. Nearest-neighbor model

In order to study the crossover between the independent
decay two-site model (where PT symmetry breaking occurs
at the EP) and the more complicated N-site cooperative decay
model (where the role of EPs is less clear), we now focus on an
N-site nearest-neighbor model. We continue to set �i j = δi jγ ,
as the inclusion of cooperative decay in a nearest-neighbor
transport model can lead to unphysical results. In this case, the
nearest-neighbor transport-trapping Hamiltonian is given by

Heff =
N∑

i=1

(
ω0 − i

2
γ

)
σ

†
i σi + J

∑
〈i, j〉

σ
†
i σ j − i

2
κσ

†
NσN ,

(18)

where the angled brackets denote a sum over nearest-neighbor
sites. This Hamiltonian also exhibits EPs, which can be found
by first solving for the degenerate eigenvalues. After a suitable
gauge transformation (see Appendix D), the eigenvalues ε̃ of
Eq. (18) are given by the roots of the characteristic equation

φN (x) = JN

[(−iκ

2J
− 2x

)
UN−1(x) − UN−2(x)

]
, (19)
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Re
κ

J

Im
κ

J

FIG. 5. (a) Location of the EPs in the complex plain for
the nearest-neighbor Hamiltonian. Colors indicate different system
sizes: N = 2 (blue), N = 5 (red), and N = 20 (green). (b) Eigen-
mode decay rates for exemplary even (left) and odd (right) N chains.
κEP = κPT for even N . (c) Comparison of the nearest EP projected
onto the real axis with the location of the PT symmetry-breaking
transition as a function of chain length. The two quantities converge
as N → ∞.

where x = −ε̃/(2J ) and Un(x) is the nth degree Chebyshev
polynomial of the second kind. The EPs are then found by
setting the discriminant of φM (x) equal to zero and affirming
the degeneracy of the associated eigenvectors. It is easy to
verify that Eq. (19) reproduces the location of the single EP
for the two-site model given in the previous section.

Figure 5(a) shows the location of the degenerate eigen-
values in the complex plane for chains of N = 2, 5, and 20
atoms. There are always 2N − 2 points where φN (x) has at
least one degenerate root. Notably, there is a prominent dis-
tinction between systems of even and odd numbers of atoms.
Nearest-neighbor chains of even N yield an EP on the positive
real axis, corresponding to a physically realizable value of the
trapping rate. Similar to the two-site case, this EP is located
at a branch cut singularity where the initially identical decay
rates of two separate eigenmodes begin to diverge [Fig. 5(b)].
The lower branch exhibits a first derivative in κ that changes
sign at the EP, indicating a passive PT symmetry-breaking
phase transition.

For odd N , however, all EPs are shifted into the complex
plane. The branch cut singularity is therefore inaccessible for
real-valued J and κ , and the eigenmodes never coalesce by
varying the trapping rate. Yet, despite the obfuscation of the
EP, odd N chains continue to demonstrate spontaneous PT
symmetry breaking. The fast and slow modes involved in the
EP form an avoided crossing on the real axis as a function of κ ,
with the extremum in the slowly decaying branch d�s/dκ = 0
denoting the phase transition at κ = κPT . As for the even N
chains, the transition yields two distinct phases: a passive PT
symmetric phase in which the decay rates increase with κ , and

a passive PT broken phase characterized by a decay rate with
a first derivative that changes sign.

For large N , the location of the passive PT transition is
well approximated by the projection of the nearest EP onto the
positive real axis [Fig. 5(b)]. The two quantities are identical
for even N . As N increases, the distance between the nearest
EP and the real axis decreases (for odd N), and the difference
between even and odd—that is, between N and N + 1—tends
to zero. One should note that For N > 2, Eq. (18) is not
isomorphic with any true PT symmetric Hamiltonian and
cannot be identity shifted in the way of Eq. (17) to form a
balanced gain-loss system. Nevertheless, the eigenmodes of
the multisite model still exhibit the same symmetry-breaking
characteristics of a passive PT phase transition.

IV. ENHANCING TRANSPORT THROUGH VIBRATIONAL
AND STATIC DISORDER

The previous section illustrates that the directionality im-
posed by spontaneous PT symmetry breaking can enhance
the efficiency of excitation trapping through the critical
damping of spatial coherences. In this section, we look at
two other mechanisms of decoherence: vibrational disorder
through dynamical dephasing (Sec. IV A) and static disorder
through frequency fluctuations (Sec. IV B). We show that
proper consideration of cooperative dissipation [Eq. (4)] re-
veals mechanisms for enhancing long-range excitation energy
transfer in biologically relevant settings, and that level broad-
ening can increase the robustness of the trapping process.

A. Dephasing assisted transport without disorder

The traditional picture of vibrational-induced decoherence
in the context of excitation transport is that local fluc-
tuations reduce the transport efficiency through dynamical
dephasing. A simple example is the exponential decay of
perfect Rabi oscillations in the presence of a thermal reser-
voir. However, numerous studies have since demonstrated
that high-temperature dephasing can actually enhance trans-
port when the transition frequencies of the emitters are
nonuniform [8–15]. In these instances, system-bath inter-
actions can overcome the effects of Anderson localization
induced by the static-frequency disorder. Such phenomena
have been termed “environment-assisted quantum transport”
or “dephasing-assisted transport” and play a crucial role in
modern theories of biological photosynthetic light harvesting.

Here we demonstrate a strong dephasing assisted transport
enhancement that occurs without static disorder. The effect
is only revealed through a proper inclusion of off-diagonal
cooperative decay [Eq. (4)]. At finite temperature, the emitters
are subject to thermal fluctuations that couple to the electronic
degrees of freedom through the interaction term [9,54]

Hφ =
N∑

i=1

qi(t )σ †
i σi. (20)

Here, qi(t ) denotes classical stochastic fluctuations in the res-
onance frequencies of the emitters caused by the effects of
the thermal bath (e.g., chromophore molecules vibrating in
a protein scaffold). We assume the fluctuations at spatially
distinct sites are independent, identical, and Markovian such
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κ

κ

|Ψ(0) = |G

|Ψ(0) = |e1

|Ψ(0) = |e1 |Ψ(0) = |G

|B

|D n = B, D

Γij = γδij

εn

εm

FIG. 6. (a) Comparison of the transport efficiency between the localized initial state |e1〉 (blue) and the delocalized initial state |G〉 (red) as
a function of dephasing strength. Dashed lines show the corresponding transport efficiencies in the absence of collective dissipation. The time-
averaged quantum coherence C(t ) is shown in grey. (b) Comparison of the mean residence times between the localized (left) and delocalized
(right) initial states for each chain mode. Blue and yellow curves indicate the dark and bright states |D〉 and |B〉, respectively. (c) Blue and
yellow circles denote the site amplitudes for states |D〉 and |B〉. Dashed lines show the corresponding values according to the mode ansatz
in Eq. (9). (d) Open circles denote the optimal dephasing rate as a function of mean eigenmode energy splitting for the delocalized state
in the independent decay model. A slope of 1 on the log-log plot (dashed line) indicates a linear relationship. Parameters for all panels:
N = 10, a = 0.05λ0, κ = 4J, t = 10/γ .

that 〈qi(t )q j (t ′)〉 = �φδi jδ(t − t ′) for homogeneous linewidth
�φ . The Markov approximation is valid in the high tempera-
ture limit kBT 	 J where the vibrational coherence time is
much shorter than the characteristic timescale of the emit-
ters [55,56]. For unbiased Gaussian fluctuations satisfying
〈qi(t )〉 = 0, the dynamics generated by Eq. (20) are well de-
scribed by the pure dephasing Lindbladian

Lφ[ρ] =
N∑

i=1

�φ

2

(
2σ

†
i σiρσ

†
i σi − {σ †

i σi, ρ}). (21)

This Lindbladian leads to a suppression of quantum coherence
and therefore probes the quantum-to-classical transition. The
resulting equations of motion are then given by

ρ̇(t ) = −i
(
Heffρ(t ) − ρ(t )H†

eff

) + Lφ[ρ(t )]. (22)

We note that excitation and stimulated emission by thermal
photons remain negligible in this regime so long as the as-
sumption ω0 	 kBT remains valid (e.g., optical transitions at
room temperature).

The effects of dephasing on excitation transport and trap-
ping are strongly influenced by the degree of localization
of the initial state. In particular, for subwavelength chro-
mophore complexes, the incident light field will excite a
delocalized state with a symmetric phase distribution. Here,

we consider the delocalized Gaussian initial state |G〉 =
(1/A)

∑
j g(x j )|e j〉, where g(x j ) = exp {−x2

j /2s2}, x j is de-
fined as in Eq. (9), s is the standard deviation, and A is a
normalization factor. To maintain the notion of “transport,”
we set s/a = 3 < N/3 such that the initial overlap with the
acceptor site is negligible—although this is not essential,
and similar results are obtained for other states with sym-
metric phase distributions (e.g., plane waves). The bottom
panel of Fig. 6(a) shows the transport efficiency for the de-
localized state as a function of the dephasing strength. The
time-averaged quantum coherence in the site basis is given by
C(t ) = (1/t )

∫ t
0 C(t ′)dt ′ and is denoted by the dotted-dashed

grey line. Remarkably, thermal fluctuations can strongly im-
prove the transport efficiency in the presence of cooperative
dissipation (solid red curve). The enhancement is maximized
for dephasing rates on the order of the nearest-neighbor cou-
pling, �φ/J ≈ 1. This is a strikingly different result than that
observed in quantum random walks where the onset of de-
phasing and the associated loss of quantum coherence greatly
reduces transport speed [1,57] (although we note that at very
large dephasing rates transport is again suppressed, this time
by the QZE [9]). Dephasing assisted transport in delocalized
symmetric states thus highlights another key instance where
decoherence effects can be leveraged to enhance excitation
transport and trapping.
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The dynamics are qualitatively different when initializing
in a completely localized state. For the case of |(0)〉 = |e1〉,
the trapping efficiency is a monotonically decreasing func-
tion of the dephasing rate [Fig. 6(a), solid-blue line]. In this
instance the conventional wisdom holds, and the rapid de-
cay of intersite coherences leads to a reduction in trapping
efficiency. A comparison with the independent decay model
(dashed-blue curve) demonstrates that an accurate quantita-
tive assessment of excitation transport at small to moderate
dephasing is only possible by including cooperative decay.

The mechanism responsible for enhancing the transport of
the delocalized initial state is fundamentally distinct from sim-
ilar dephasing assisted transport phenomena that have been
described previously [8–15]. In those studies, static frequency
disorder induces Anderson localization [7] that suppresses
the transport of initially localized states by shifting the site
energies off resonance from one another. Dynamical dephas-
ing then acts as a diffusive process and allows the excitation
to explore other sites via a classical random walk [9]. By
contrast, here we describe a system without static disorder,
and where the effect is lost for localized initial states (blue
curves) and for noncooperative decay channels (dashed-red
curve). Instead, the difference in transport dynamics between
the localized and delocalized initial states in the cooperative
decay model is primarily caused by the existence of sub-
radiant and superradiant collective modes. These modes are
eigenstates of the chain Hamiltonian Hch and are either dark
(�D 
 γ ) or bright (�B 	 γ ) depending on the local phase
relationships. The most subradiant mode |D〉 and the most
superradiant mode |B〉 are given approximately by Eq. (9) for
n = N and n = 1, respectively. The influence of these modes
on the transport dynamics can be quantified using the mean
residence time τn [26]. When computed in the eigenbasis of
Hch, the mean residence time denotes the average time an
excitation spends in a particular chain mode until decaying
to the vacuum or trap state,

τn(t ) =
∫ t

0
dt ′Tr{ρ(t ′)|vn〉〈vn|}. (23)

Figure 6(b) shows the mean residence time for each eigen-
mode as a function of the dephasing rate. In the case
of |(0)〉 = |G〉, the initially delocalized excitation couples
strongly to the short-lived bright state. The corresponding
contribution from dark state transport is negligible, and the
excitation is rapidly lost to vacuum. More time spent in the
bright state therefore leads to low transport efficiencies at
zero dephasing. However, the difference in the mean residence
times between the bright and dark states is reduced in the pres-
ence of dynamical disorder. In the site basis, the components
of |B〉 and |D〉 are nearly identical in magnitude but differ
in their phase relationships [Fig. 6(c)]. As the strength of the
thermal fluctuations is increased, the Lindbladian (21) acts to
randomize the phases of ρ in the site basis with characteristic
time 1/�φ . The corresponding loss of coherence renders the
bright and dark states largely indistinguishable. The excitation
is then able to access the subradiant mode where it can reach
the acceptor site before decaying. The loss of quantum co-
herence therefore enhances excitation transport by disrupting
superradiant decay paths.

On the other hand, when the initial state is fully localized in
|e1〉, Hamiltonian evolution generates large overlaps between
the initial excitation and the long-lived dark state. The dark
state is able to facilitate transport to the acceptor site with
minimal losses, where it is subsequently trapped. When the
dephasing rate is small, the time spent in the bright state is
also small, and the excitation is protected from decaying to
vacuum. As the dephasing strength is increased, the initial
state generates overlap with the bright state and the transport
efficiency is reduced.

The inclusion of cooperative decay is quantitatively signif-
icant at small and intermediate dephasing (�φ/J � 4) where
the mean residence times are different between the subradiant
and superradiant collective modes. Transport for the localized
initial state is less efficient in the independent decay model
because the enhancement caused by long dark state lifetimes
is eliminated. The opposite effect is seen in the delocalized
case as a result of the omission of the superradiant decay
path. At larger dephasing, the excitation spends roughly equal
amounts of time in states |B〉 and |D〉 such that the influence of
cooperative decay is lost. This is an intuitive result: Collective
modes require coherent phase relationships that are random-
ized in the presence of strong fluctuations. Nevertheless, the
off-diagonal elements of Eq. (4) cannot be neglected for de-
phasing rates on the order of the nearest-neighbor coupling
strength (or smaller), especially when the initial state is delo-
calized (see also Appendix B).

The above result is of significant importance to the study of
biological photosynthetic energy transfer [24,58]. In natural
light-harvesting complexes, the interchromophore spacings
are typically on the order of nanometers, whereas the optical
transition wavelengths are in the visible range [25]. These
complexes are therefore extremely subwavelength and expe-
rience a symmetric phase distribution in response to incident
light. In the absence of vibrational dephasing, the initial ex-
citation would be in the form of the symmetric bright state
that radiates rapidly to vacuum. The near-perfect trapping effi-
ciency observed in biological photosynthesis would therefore
not be possible for such subwavelength complexes without
strong vibrational coupling. Thus, the quantum-to-classical
transition is explicitly manifest in biological energy transfer
through the damping of bright state coherences.

Interestingly, we report a slight dephasing assisted trans-
port enhancement for the delocalized state even in the absence
of collective dissipation. This effect cannot be caused by the
disruption of superradiant pathways because all eigenmodes
have equal decay rates when �i j = γ δi j . We attribute this
enhancement to classical homogeneous broadening induced
by the dephasing process [42]. Because the initial state has
only a very small overlap with the acceptor site, the excitation
must make transitions to other states in order to reach the trap.
However, the initial superposition state experiences an energy
shift caused by the coherent couplings Ji j in the Hamiltonian.
This pushes the initial state off resonance with the other
available modes. In the presence of thermal fluctuations, the
linewidths of these states are increased, with the homogeneous
linewidth determined by �φ . Figure 6(d) shows the optimal
dephasing rate for the delocalized initial state in the indepen-
dent decay model under various lattice spacings. Values are
plotted as a function of the average chain eigenmode energy
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FIG. 7. (a) Trapping efficiency as a function of trapping rate κ and acceptor detuning �. Larger trapping rates result in a broader bandwidth.
(b) Time-averaged coherent C(t ) as a function of trapping rate and acceptor detuning. Optimal transport is associated with minimal coherence.
(c) Average trapping efficiency across 100 realizations of � ∈ N (0, σ0). Larger trapping rates result in more robustness to disorder. Shaded
uncertainty bands show 30% distribution around the mean. Parameters for all panels: N = 10, a = 0.05λ0, t = 10/γ .

splitting

�ε =
∑
n<m

|εn − εm| (24)

for each geometry. The optimal dephasing rate increases lin-
early with the average energy splitting, suggesting an optimal
spectral overlap resulting from homogeneous broadening. Im-
portantly, however, this mechanism is not sufficient to explain
the magnitude of the transport enhancement in the cooperative
decay model.

B. The influence of static disorder

As a final result, we now consider the influence of static
disorder in the resonance frequency of the acceptor emitter. As
a consequence of the additional lifetime broadening induced
by the trapping process, highly efficient energy extraction can
be achieved in both the broad-band and narrow-band regimes:
a desirable property for quantum device design. The band-
width of this process is determined by the trapping frequency
and can be assessed by adding a frequency detuning to the
acceptor emitter

H� = �σ
†
NσN . (25)

Figure 7(a) shows the trapping efficiency for the N = 10 chain
beginning with a localized excitation at the first site. As the
trapping frequency increases, the range of acceptor detunings
for which there is highly efficient trapping also increases.
This allows for flexibility in the energy extraction process,
as excitations of multiple frequencies can be trapped without
sacrificing efficiency. The high-trapping efficiencies are, once
again, mediated by a reduction in quantum coherence [and
therefore also by a reduction in entanglement via Eq. (7)].
Figure 7(b) shows the time-averaged coherence for the same
trapping frequency and detuning ranges as in panel (a). Much
like in Sec. III A, the increase in total coherence for detun-
ings outside the optimal bandwidth results from wave-like
oscillations following reflection at the acceptor site. In this
case, reflection is caused not by suboptimal trapping rates,
but by the level shift of the acceptor. At larger trapping rates,
the increase in acceptor linewidth compensates for this shift,
allowing the excitation to be trapped without reflection.

In turn, the broader bandwidth induced by larger trapping
rates leads to a robustness against static disorder. Figure 7(c)
shows the average trapping efficiency across 100 realizations
with � drawn from a normal distribution N (0, σ0) of zero
mean and standard deviation σ0. At large disorder (σ0 � 2J),
the optimal trapping rate is no longer equal to the group
velocity of the resonant chain eigenmode and is instead dic-
tated by the bandwidth of the acceptor site. The broad-band
nature of this site allows for robust transport and trapping
even with disorder much larger than the coherent coupling
strength. This feature may allow for flexibility in designing
incoherent energy extraction mechanisms that may introduce
large amounts of local disorder.

V. CONCLUSION

In this paper, we have shown that a wide variety of decoher-
ence mechanisms can be leveraged to enhance the extraction
of excitonic energy from a paradigmatic quantum optical
system. In particular, we have demonstrated that excitation
trapping is optimized under conditions that minimize the total
quantum coherence and entanglement of the system. This is in
stark contrast to quantum random walk models of excitation
transport that have demonstrated exponential speedups in in-
formation transfer. The key difference between those models
and the results presented here is the explicit inclusion of the
trapping process that mediates the retrieval of energy from
the system. As shown, this trapping facilitates a quantum-
to-classical transition through spontaneous PT symmetry
breaking that results in unidirectional energy flow. We have
also demonstrated that vibrational fluctuations can greatly
enhance the trapping of delocalized excitations in the presence
of cooperative radiative decay. This cooperative dissipation is
present in all dipole coupled systems and cannot be neglected
unless the dephasing strength is sufficiently large. Finally, we
have examined the influence of static frequency disorder and
shown that the transition from narrow-band to broad-band
trapping results in an increased robustness to disorder, and
is again associated with minimal quantum coherence. Due to
the simplicity of the models studied, these phenomena are
expected to be generalizable to arbitrary configurations of
quantum emitters in one, two, and three dimensions.
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Our results are of fundamental interest to the design of new
photonics devices, artificial light-harvesting technologies, and
to the study of biological photosynthetic energy transfer. Con-
sideration of cooperative decay is important for the accurate
quantification of transport efficiency, coherence, and entangle-
ment in these systems, especially at subwavelength distances.
For biological light harvesting in particular, the high-density
packing of chromophore molecules into an extremely sub-
wavelength volume presents a challenge for optimizing the
transport efficiency as a result of the formation of short-lived
bright states. On the one hand, a densely packed ensemble in-
creases the chances of absorbing an incident photon. However,
if the chromophores are too close together, they will be excited
into the symmetric bright state and radiate strongly to vacuum
before the absorbed photon can reach the reaction center.
Our results suggest that vibrational dephasing is essential for
disrupting bright state emission and can allow for increased
transport efficiency while maintaining subwavelength scales.
The ability to simultaneously maximize the number of photon
absorbers while maintaining efficient excitation transport is
a remarkable consequence of the quantum-to-classical transi-
tion applied to biological photosynthesis. Moreover, despite
numerous studies examining photosynthetic energy transfer,
comparatively little attention has been given to the role of
excitation trapping at the photochemical reaction center. In
addition to vibrational dephasing and static frequency disor-
der, the trapping rate represents another potential evolutionary
knob that may have been tuned towards optimal energy
extraction. Future studies of more realistic biological and
biologically inspired geometries can help assess the role of
these interactions in nature and will help shed light on the
many fascinating features associated with decoherence and
the quantum-to-classical transition.
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APPENDIX A: LIGHT-MATTER INTERACTIONS

For a collection of N two-level atoms with excited states
|ei〉, ground states |gi〉, and resonance frequency ω0, the full
atom-photon Hamiltonian is given in the electric dipole ap-
proximation by

Hat−ph =
N∑

i=1

ω0σ
†
i σi +

∑
k

νk

(
a†

kak + 1

2

)
−

N∑
i=1

pi · E.

(A1)

Here, σ
†
i = |ei〉〈gi| and σi = |gi〉〈ei| are atomic raising and

lowering operators, and a†
k (ak) creates (annihilates) a photon

in mode k with frequency νk. The matter operators obey

spin-1/2 commutation relations, though in the single exci-
tation limit are equivalent to those of bosons or spinless
fermions. The third term describes electric dipole interac-
tions between the quantized electric field E = ∑

k(Ekak +
E∗

k a†
k ) and atoms with dipole moment pi = ℘iσi +℘∗

i σ
†
i . It

is convenient to trace out the field degrees of freedom and
to consider effective dipole-dipole interactions between the
atoms directly. Treating the radiation field as a Markovian
bath and applying the Born and rotating wave approximations
in the usual way [28–30,59,60], the system Hamiltonian and
radiation Lindbladian can be written as

H =
N∑

i=1

ω0σ
†
i σi +

∑
i �= j

Ji jσ
†
i σ j (A2)

LR[ρ] =
N∑

i, j=1

�i j

2
[1 + n̄(ω0)](2σ jρσ

†
i − {σ †

i σ j, ρ})

+
N∑

i, j=1

�i j

2
n̄(ω0)(2σ

†
j ρσi − {σiσ

†
j , ρ}), (A3)

where n̄(ω0) = 1/[e(ω0/(kBT )) − 1] is the average thermal pho-
ton occupation in the Bose-Einstein distribution, T is the
temperature, and kB is the Boltzmann constant. For optical
frequencies at room temperature (ω0 	 kBT ), we may ap-
proximate n̄(ω0) ≈ 0. The quantities Ji j and �i j describe the
coherent and dissipative components of the effective inter-
action between oscillating optically induced dipoles. They
are given in terms of the dipole matrix element vector ℘i =
℘ip̂ and the relative coordinate ξ = ω0r/c for r = rr̂, and
r = |ri − r j | as

Ji j = 3γ

4

{
[3(p̂i · r̂)(p̂ j · r̂) − p̂i · p̂ j]

(
cos ξ

ξ 3
+ sin ξ

ξ 2

)

− [(p̂i · r̂)(p̂ j · r̂) − p̂i · p̂ j]

(
cos ξ

ξ

)}
, (A4)

�i j = 3γ

2

{
[3(p̂i · r̂)(p̂ j · r̂) − p̂i · p̂ j]

(
sin ξ

ξ 3
− cos ξ

ξ 2

)

− [(p̂i · r̂)(p̂ j · r̂) − p̂i · p̂ j]

(
sin ξ

ξ

)}
. (A5)

The terms proportional to 1/ξ 3, 1/ξ 2, and 1/ξ in each
expression correspond to the familiar near-field zone, interme-
diate zone, and radiation zone regimes of the time-dependent
electric dipole field. The term γ ≡ �ii = ω3

0|℘i|2/(3π h̄ε0c3)
describes the Wigner-Weisskopf spontaneous emission rate of
each atom.

For very short distances (ξ 
 1), or equivalently very short
times (γ t 
 1), it is common to invoke the quasistatic ap-
proximation and neglect the intermediate and radiation zone
contributions. The atomic interactions are then reduced to
those between electrostatic dipoles,

Ji j → 3(℘∗
i · r̂)(℘j · r̂) −℘∗

i ·℘j

4πε0r3
, (A6)

�i j → γ p̂i · p̂ j . (A7)

Numerous studies, including those concerning photosynthesis
and artificial light-harvesting, further neglect off-diagonal dis-
sipation altogether by setting �i j = δi jγ . This approximation
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FIG. 8. (a) Site populations ρ11 (blue) and ρ22 (red) for the N = 2 chain according to the effective Hamiltonian (A8). Solid lines denote
the full cooperative decay model [Eq. (A5)] whereas dashed lines indicate the independent decay approximation �i j = γ δi j . Columns indicate
different emitter spacings. The top row corresponds to an initial excitation on the first site, whereas the bottom row shows results when
initializing in the dark state |D〉 = (|e1〉 − |e2〉)/

√
2. (b) The characteristic coherence time τC for the N = 10 chain of Sec. III A in the

presence (solid line) and absence (dashed line) of cooperative decay. (c) Comparison of the trapping efficiency η with (left) and without
(right) cooperative decay as a function of the trapping rate and chain length. Different rows correspond to different initial states. From top to
bottom: |(0) = |e1〉〉, |(0) = |D〉〉, |(0) = |B〉〉. Additional parameters for panels (b) and (c): a/λ0 = 0.05, γ t = 10.

is, however, not generally correct when the exciton states
are delocalized, even in the limit as ξ → 0 [61]. The finite
contribution of the off-diagonal �i j terms leads to cooperative
phenomena, such as superradiance and subradiance, that are
not captured when these terms are neglected (see Appendix B
below). Such effects are crucial to the accurate description
of quantum optical systems, but are not typically included in
transport analyses of biologically inspired light harvesting.

For a general multi-excitation system, the time dynamics
are governed by the master equation ρ̇ = −i[H, ρ] + LR[ρ].
However, if we restrict ourselves to the case when there is
at most a single excitation in the system at any given time,
we may neglect the quantum jump terms ∝ 2σ jρσ

†
i in the

radiation Lindbladian. Setting n̄(ω0) = 0, the equations of
motion are then equivalent to evolving with the Schrodinger
equation for the non-Hermitian effective Hamiltonian

Heff =
N∑

i=1

(
ω0 − i

2
γ

)
σ

†
i σi +

∑
i �= j

(
Ji j − i

2
�i j

)
σ

†
i σ j .

(A8)

This single-excitation regime is most suitable to the study of
optimal transport parameters under low light conditions, or
when the rate of photon absorption is small relative to the
inverse transport time.

APPENDIX B: THE ROLE OF COLLECTIVE DISSIPATION

Here we expand on the necessity of including off-diagonal
collective dissipation in order to accurately describe excitation
transport between quantum emitters. It is sometimes assumed
that for interemitter spacing a much less than the dipole
transition wavelength λ0 that the off-diagonal terms of the
dissipative interaction �i j can be neglected. This erroneous
assumption likely stems from the fact that Ji j 	 �i j when
a 
 λ0, but is incorrect because it neglects the role of de-
structive interference. Figure 8(a) compares the population
dynamics for a two emitter system in the presence [solid
lines, �i j determined by Eq. (A5)] and absence (dashed lines,
�i j = δi jγ ) of cooperative decay. In direct contrast with the
above assumption, the discrepancy between the cooperative
and independent decay models actually increases as a/λ0 →
0. For subwavelength spacings, the approximation �i j = γ δi j

is valid only for localized excitations at very short times
(t 
 γ −1). For delocalized excitations, the approximation is
applicable only when the emitters are far apart, or in the
presence of strong dephasing (Fig. 6).

The independent decay model can be used in the pres-
ence of strong dephasing because dephasing destroys the
phase coherences required for destructive interference. How-
ever, as discussed in the main text, these coherences play
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an instrumental role in describing the fundamental aspects
of excitation transport and trapping. Figure 8(b) compares
the coherence time results of Sec. III A with the correspond-
ing values in the independent decay model for the N =
10 chain. The transition between the quantum and classical
regimes is obfuscated by the neglect of cooperative dissipa-
tion. Moreover, this approximation also prohibits an accurate
quantitative assessment of the trapping efficiency. Figure 8(c)
shows the results with and without cooperative dissipation
when initializing in either the dark or bright state. When col-
lective effects are included, initializing in |D〉 leads to minimal
losses and enhances the transport as compared to the localized
initial state. The opposite effect is seen for the bright state |B〉.
In the independent decay model, all modes have equal decay
rates and the discrepancy between the dark and bright states is
greatly reduced. Collective dissipation is therefore essential to
the accurate description of excitation trapping in the absence
of strong vibrational fluctuations.

APPENDIX C: PT SYMMETRY BREAKING
IN THE TWO-SITE MODEL

The PT symmetry-breaking transition is most easily ob-
served through the gauge transformation(

c1

c2

)
→ e−χt/2

(
c1

c2

)
, (C1)

which removes the trivial global excitation loss with rate
χ . The resulting gauge-transformed Hamiltonian H ′

eff obeys
[PT , H ′

eff ] = 0, where, for the bipartite system, the parity and
time-reversal operators act as P = σx and T : i → −i. H ′ has
eigenvectors

|v±〉 = 1√
1 + | iκ±4λ

4J |2

(
iκ±4λ

4J
1

)
(C2)

and eigenvalues ε̃± = ±λ that transition from purely real to
purely imaginary when κ = 4J . For 4J > κ , λ ∈ R such that
|(iκ ± 4λ)/4J| = 1 and Eq. (C2) may be written as

|v±〉 = eiα±/2

√
2

(
eiα±/2

e−iα±/2

)
(C3)

for α± = arg[(iκ ± 4λ)/4J]. It is easy to verify in this case
that PT : |v±〉 → e−iα± |v±〉 such that the eigenstates are in-
variant under the combined PT operation up to a U (1) gauge
ambiguity. For 4J < κ , the components of |v±〉 no longer
have equal modulus and the PT symmetry is spontaneously
broken.

APPENDIX D: EPS OF THE NEAREST-NEIGHBOR
HAMILTONIAN

The nearest-neighbor effective Hamiltonian given in
Eq. (18) can be written as Heff = H0 + H ′, where

H0 =
N∑

i=1

(
ω0 − i

2
γ

)
σ

†
i σi, (D1)

H ′ = J
∑
〈i, j〉

σ
†
i σ j − i

2
κσ

†
NσN . (D2)

The EPs of the system can be found by first solving for the
eigenvalues of Heff that have algebraic multiplicity greater
than their geometric multiplicity. To aid in this calculation,
we first move to the interaction picture with H0 and de-
fine the interaction picture states |̂(t )〉 = eiH0t |(t )〉. In the
single-excitation subspace, the number operator σ

†
i σi simply

acts as the identity, and the interaction Hamiltonian satisfies
Ĥ ′ = eiH0t H ′e−iH0t = H ′. The eigenstates then obey |v̂n〉 =
e(iω0+γ /2)t |vn〉. In other words, the eigenstates are transformed
into the frame rotating with complex frequency ω0 − iγ /2.
This change of reference frame does not change the multi-
plicity of the eigenvalues, meaning we can work exclusively
with H ′. For κ = 0, the eigenvalues of H ′ are distinct and
given by ε̃n = 2J cos [nπ/(N + 1)] with orthonormal eigen-
vectors |vn〉 = ∑

j vn j |e j〉, where vn j = sin [n jπ/(N + 1)]
and n, j = 1, . . . , N . This is the standard result for a finite-
size tight-binding Hamiltonian [62]. However, for κ �= 0,
the eigenvalues of H ′ are not necessarily distinct, but can
still be calculated as the roots of the characteristic polyno-
mial φN (ε̃) = det(H ′ − ε̃1N ), where 1N is the N × N identity
matrix. In search of an analytic solution, we note that
the Hamiltonian may be written as H ′/J = T − (iκ/2J )K ,
where Ti j = δi, j+1 + δi+1, j is an N × N tridiagonal symmetric
Toeplitz matrix with zeros on the diagonal and Ki j = δiNδN j .
Using the identities derived in Ref. [63], the characteristic
polynomial for such a matrix is given by

φN (ε̃) =
(−iκ

2J
− ε̃

J

)
UN−1

(−ε̃

2

)
− UN−2

(−ε̃

2

)
(D3)

where Un(x) is the nth degree Chebyshev polynomial of
the second kind. Finally, using the identity det(αA − ε̃1N ) =
αN det(A − (ε̃/α)1N ) for scalar α and N × N matrix A, the
characteristic polynomial for H ′ is given by

φN (ε̃) = JN

[(−iκ

2J
− ε̃

J

)
UN−1

(−ε̃

2J

)
− UN−2

(−ε̃

2J

)]
,

(D4)

in agreement with Eq. (19).
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