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Price of information in games of chance: A statistical physics approach
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Information in the form of data, which can be stored and transferred between users, can be viewed as an
intangible commodity, which can be traded in exchange for money. Determining the fair price at which a string
of data should be traded is an important and open problem in many settings. In this work we develop a statistical
physics framework that allows one to determine analytically the fair price of information exchanged between
players in a game of chance. For definiteness, we consider a game where N players bet on the binary outcome of
a stochastic process and share the entry fees pot if successful. We assume that one player holds information about
past outcomes of the game, which they may either use exclusively to improve their betting strategy or offer to sell
to another player. We find a sharp transition as the number of players N is tuned across a critical value, between
a phase where the transaction is always profitable for the seller and one where it may not be. In both phases,
different regimes are possible, depending on the “quality” of information being put up for sale: we observe
symbiotic regimes, where both parties collude effectively to rig the game in their favor, competitive regimes,
where the transaction is unappealing to the data holder as it overly favors a competitor for scarce resources, and
even prey-predator regimes, where an exploitative data holder could be giving away bad-quality data to undercut
a competitor. Our analytical framework can be generalized to more complex settings and constitutes a flexible
tool to address the rich and timely problem of pricing information in games of chance.
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I. INTRODUCTION

Since Maxwell conceived his demon thought experiment
[1,2], information has played an essential role in shaping
our understanding of the statistics and thermodynamics of
physical systems. In the enigma formulated by Maxwell, a
demon living in an isolated system would be able to let
fast-moving molecules through a mass-less door leaving the
slow-moving ones isolated in one compartment, in apparent
violation of the second law of thermodynamics. However, the
demon would be required to “know” the velocities or energies
of individual gas molecules, and selectively allow them to
pass through the barrier between two compartments. More
recently, Landauer’s principle [3–5] shed further light on the
energy costs of information manipulation, establishing a lower
bound (temperature-dependent) on the energy needed to erase
one bit of information stored in a computer. Meanwhile,
Shannon [6] had already startled the scientific community
by proposing his mathematical theory of information, which
forms the theoretical basis of data compression. In more re-
cent years, the field of “information thermodynamics” has
flourished [5,7], with a number of spectacular results where
information content and thermodynamic variables are treated
on an equal footing.
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Information has had a profound impact on modern eco-
nomic theory and policy as well as physics, especially in
the context of competitive equilibrium analysis and efficient
market hypothesis [8–10]. With the dawn of the big data era,
another incarnation of “information”—in the form of large
amounts of data, which can be stored and transferred between
users—started to become apparent: that of a commodity,
which can be traded in exchange for money. Examples include
genome sequences, financial time series, software, and digital
music records, among many others: The implications of our
ability to attach a price tag to intangible entities—made up of
bits, stored and transmitted electronically—are far-reaching,
and have already had a profound impact on the way modern
economies operate.

Contrary to the traditional “supply/demand” equilibrium,
though, which forms the theoretical framework to price mate-
rial commodities [11,12], intangible assets feature some very
peculiar traits, which make the question “How much should I
reasonably pay for this digital item?” so much harder in this
context.

First, the costs for duplication and distribution of data are
typically much lower than for material assets. Moreover, at
odds with material goods whose scarcity normally drives the
price up, intangible assets like software, news, and music
may actually become more valuable the more widespread
they are: This often leads to extremely low-priced promo-
tional offers, as a wide circulation and “network effects” of
a product are considered more valuable than the immediate
loss of revenues they would entail. Also, information goods
lend themselves to aggressive price discrimination strategies,
whereby different levels of pricing can be easily implemented
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to meet the demands of different customer profiles: Typical
strategies include windowing—bringing information goods
like a movie or a book in different forms, at varying times
on to the market—versioning—the offer of a digital good in
different versions and with different privileges, allowing the
customers to select their preferred level of engagement—and
bundling—whereby two or more goods are combined and
offered together on the market for a more convenient price
[11,13,14]. Furthermore, information goods sale and usage is
nonrival, i.e., their consumption by one user does not preclude
other sales or compromise their quality. This should be con-
trasted with physical assets for which property often implies
exclusivity and their usage implies depreciation [15].

Information assets can be categorized into digital and data
assets, which share similar pricing challenges but differ in
their consumption. Digital assets like e-books, movies, and
software are designed for specific purposes, whereas data
asset consumption use cases may be known only to the buyer.
Data assets exhibit less frequent versioning because they can
be aggregated in various ways based on the specific use case
and data analytics needs. Additionally, data retains value even
when segmented, while disaggregating digital goods often
renders them worthless. In essence, data can be viewed as a
“raw” commodity in contrast to the more refined nature of
digital goods [14].

The problem of data pricing comes in a huge variety of
potential settings, with several contributing factors and com-
peting interests to take into account in any particular situation.
In this work, we focus on a specific class of problems, known
as “games of chance,” i.e., games where different agents—
holding on to different levels of information—compete for
a pot of money by betting on the outcome of a stochastic
process.

In this context, we propose a general and flexible frame-
work grounded in statistical physics to determine analytically
the fair price of information. For simplicity, we further analyze
in detail a simple game where N players pay a fee φ to
place a bet on the binary outcome {+1,−1} of an underlying
stochastic process and share the entry fees pot if their bet is
successful. One of the players (the data holder) is special,
though: they hold a long sequence of past outcomes of the
game, which they can decide to either use exclusively—to
improve their forecast on future outcomes of the game and
therefore of their own winning chances—or to partially share
with another player (the prospective buyer) in exchange for a
monetary compensation.

There are several real-life scenarios in which agents com-
pete using their resources—capital and information—and
achieve gains often at the expense of others’ losses. For
instance, in trading, hedge funds that have developed propri-
etary algorithms may decide to sell their predictive models
(or the information they generate) to other traders for imme-
diate revenue gains, but at the risk of increasing correlations
between investment strategies that may potentially lead to
higher stock prices. Similarly, on a smaller market scale,
retailers with detailed customer behavior insights may sell
their datasets to competitors, or private equity firms can share
market information while still competing to acquire shares of
the same companies. All these real-life scenarios mirror—at
least conceptually—the “game of chance” setting we present

here, where an informed player may decide whether to sell
their knowledge or hold on to it, balancing immediate profit
against the dilution of their competitive advantage.

In our simplified setting, we are able to compute analyt-
ically the fair price range the data holder should put their
information up for sale. We find that the “ecosystem” of
players displays a rich and nontrivial informational landscape
depending on the quality of information being potentially
traded as well as the number of participants in the game.
First, we observe a sharp transition in the number of players
N participating in the game, which separates a phase where
a crowded game makes the transaction always appealing and
favorable to the data holder from another where the scarcity
of resources (namely, the fees contributed by the N − 2 unin-
formed players) may lead to the onset of a fiercely competitive
regime, where information sharing is discouraged. A simi-
lar phase transition in the number of information-processing
agents was observed in Ref. [9] when considering financial
market efficiency.

Depending on the parameters of the data being offered,
other situations are possible, e.g., a symbiotic regime where
the transaction benefits both the seller and the buyer at the
expense of the N − 2 uninformed players, as well as a “prey-
predator” regime, where the quality of data being offered
is low enough that it would actually mislead the buyer into
betting on the “wrong” outcome, with clear benefits for
a potentially exploitative seller in terms of thwarted com-
petition. Our setting resembles a small ecological network
[16] in which the interplay between scarcity of resources,
competition, and the entry cost threshold creates interesting
consequences on the information trading process.

The advantage of using a statistical physics approach to
the game is threefold: first, we can apply a standard “expected
utility” maximization argument [17] to compute analytically
the ex ante ask/bid price curves of the seller and the buyer
such that the game becomes more profitable for one or both.
Second, the framework is sufficiently flexible and general that
it can be adapted to more complex and realistic cases. Third,
the problem—even in this very simple setting—turns out to
be extremely rich and nontrivial, with phase transitions and
regime changes also observed, for instance, in the context of
information aggregation for achieving consensus [18] or in the
processing of financial market information [9].

The main pricing mechanism, when the transaction goes
through, lies in the interplay between increased competition—
namely, the fact that the seller expects to realize a lower gain
from the game, due to a larger expected number of winners—
and a reduced risk—because the seller will realize a fixed,
nonrandom income (the payment made by the buyer to obtain
the data). Quite interestingly, the financial goals of seller and
buyer may be aligned or misaligned, depending on the regions
in parameter space and the total number of other players,
giving rise to a complex landscape of interactions rooted in
the informational asymmetry [19,20] of the game.

Our work does not delve into the discussion of so-called
disclosure rules, i.e., the mechanisms by which sellers and
buyers share some information about the assets to reach an
agreement on the price, which is typically the focus of eco-
nomic studies. Typically, sellers can reveal information prior
to the sale [21] or they can commit to a sale mechanism before
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any state variable becomes known [17]. In our study, we do
not establish any specific disclosure policy and we mainly
assume that the data holder is a reputable player, who is not
interested in over-exploiting the prospective buyer but simply
wants to act according to fair market dynamics.

The plan of the paper is as follows. In Sec. II we briefly
summarize the existing literature (mainly in economics) deal-
ing with valuation and pricing of intangible commodities, and
point out the differences with our setting. In Sec. III, we
develop a general statistical physics framework, which we
specialize to a binary-outcome game in Sec. III A. We then
cast the problem of determining the impact on players’ wealth
when information is exchanged into establishing the “fair”
price range for the trade of such information in Sec. III B,
before a brief recap of the main ingredients of the general
framework in Sec. III C. In Sec. IV, we summarize our find-
ings for a few specific regions in parameter space, and we
discuss the “pricing phase transitions” we observe. In Sec. V,
we compute the baselines (expected wealth change) for the
prospective buyer—when they place a bet in the absence of
any extra information about the game or the other players’
strategy—and the prospective seller—who will anyway still
use the data they hold exclusively to gain an edge over the
other uninformed players. In Sec. VI, we compute the ex-
pected wealth changes of the buyer and the seller after the
transaction has been arranged, which are necessary ingredi-
ents to compute the price curves. In Sec. VII, we offer some
concluding remarks and an outlook on future research and in-
teresting extensions that can be tackled using our framework.
The Appendixes are devoted to more technical remarks.

II. RELATED WORKS

The intriguing features of digital and data goods and
their pricing problem have attracted the attention of sev-
eral communities. Theoretical economists have significantly
contributed to the understanding of probabilistic theories of
information exchange. This is particularly true in the study of
cost functions and the development of digital product menus
that are optimally priced in monopolistic contexts, as explored
in Ref. [22].

The precursory methodology introduced by Ref. [23] on
dynamic decision-making processes, specifically the sequen-
tial probability ratio test, establishes a rule for an observer to
decide whether to prolong or terminate the observation of a
valuable state variable. Building upon this, Ref. [24] incor-
porated the consideration of costs linked to various strategies
and sampling efforts, particularly on the trade-off faced by ob-
servers when balancing the value against the cost implications
of their observations.

Further research has focused on the costs associated with
information acquisition. The study in Ref. [25] introduces
a comprehensive theory on the cost for decision-makers to
sequentially acquire information, providing insights into
what are deemed “reasonable” cost functions, especially
for Bayesian decision-makers faced with single-instance
decisions and gathering data through the realisation
of Blackwell experiments, i.e., abstract mathematical
information structures that produce an observation of a state of
nature according to a predefined probability, unknown to the

observer. Alternatively, papers such as Ref. [26] have focused
on Shannon information-based cost models, designing
entropy-based cost functions and examining how these
functions correlate with observable “willingness-to-pay” data.

Other theoretical investigations have grappled with more
realistic scenarios. For instance, Ref. [27] incorporates game
theory concepts like reconnaissance to evaluate a game’s value
based on information gained—from other players—through
strategic moves. The work in Ref. [28] addresses the pric-
ing of information queries from databases and analyzes the
arbitrage-free condition in the application. Game theorists
have also looked at the topic in some depth, with Refs. [29,30]
looking at cooperative games.

In the field of rational inattention and information costs, in
which an agent purposefully makes decisions based on incom-
plete information as acquiring complete knowledge would be
prohibitively costly, the studies carried out in Refs. [31,32]
have contributed most significantly, among others. The former
provides a testable framework for posterior separability in cost
functions, while the latter examines the relationship between
information cost and the prior beliefs of the decision-maker,
highlighting certain incompatible assumptions with the de-
fined cost function. The impact of marginal costs is explored
in Ref. [33]. A recent study by Ref. [34] introduces a compe-
tition dynamics among symmetric buyers in an information
market, investigating the characteristics of the information
cost function for binary choices and the strategies for equi-
librium information allocation, considering factors like seller
recommendations, buyer obedience and the accuracy of other
buyers’ revealed preference. In Ref. [35], the focus shifts
to the impact of data externalities among data owners with
overlapping information and their influence on information
costs. Other approaches seen in Refs. [20,21,36–38] study
the compensation mechanism for selling third-party privacy-
sensitive information queries, data sharing, and the losses due
to voluntary data disclosure.

The challenge of a practical approach to data pricing and
valuation has become a cornerstone in the digital economy,
giving birth to a new cross-disciplinary research field dubbed
infonomics, still in its infancy [39], primarily stemming from
business economics. This emerging area aims to explore the
topic in a more pragmatic and empirical way, particularly
focusing on the characteristics of data and digital assets (e.g.,
pricing of nonrival goods, and pricing with bundling or ver-
sioning), their roles in the economy, and their contributions
to value creation for both companies and public institutions
[14,40–44]. In parallel with the rising business research, many
companies and startups have been founded in the past few
years to provide data valuation services: In the absence of an
established practice, though—or even common goals—they
seem to rely mostly on general heuristics and bespoke or
proprietary models, which are claimed to work only in the
specific settings they were developed ad hoc for.

Computer scientists have explored algorithmic approaches
to data valuation in which the payoff is usually measured
by the impact of information on a prescriptive action. In
Ref. [45], a number of algorithmic strategies are proposed for
pricing training data designed to improve a machine learning
task. In Ref. [46], the authors introduced a “data Shapley”
metric for valuing individual data points in machine learning,
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showing why such value metric can be used effectively in
valuation tasks that depend on the quality of information being
used.

In the physics literature, examples of valuation are very
limited. Some works have explored the consequences of ra-
tional agents in a nonergodic market. In Ref. [47], the authors
conceptualize a “quasiergodic” market where agents continu-
ously update their beliefs in response to observed outcomes.
Despite agents having divergent beliefs and engaging in
trades, the model suggests that they cannot derive learning or
achieve consensus from the market dynamics. The model does
not incorporate the costs of acquiring information, focusing
solely on a portfolio optimization problem involving just two
securities. Another study [48], which focuses on applied ex-
pected utility theory to asset trading, draws parallels between
rational players’ information strategies and stochastic ther-
modynamics. Unique to this model is the introduction of an
“energy expenditure” required for participation in the trading
game. The study examines the behaviors of these agents who
have the option to enter the game employing either risk-prone
or risk-averse fee payment strategies. In the “poker game” ex-
amined in Ref. [49], players are categorized as either rational
or irrational, where the rational players utilize the information
from the cards revealed to them, while the irrational players
do not. The study reveals that the effectiveness of a strat-
egy, and consequently whether the processed information is
“valuable,” is contingent on the presence of a sufficient num-
ber of rational players. If the number of rational players is too
low, then the game becomes a pure game of chance, regard-
less of the information available. Interestingly, the authors
observe a transition between two states—strategy-driven and
random—as the ratio of rational to irrational players varies.
Finally, in Ref. [50], the authors show that random sequences
of two losing games may result into a winning game. This
phenomenon is modeled on the theory of Brownian ratchets,
systems known for their ability to mitigate thermal fluctua-
tions. A key finding of this research is the counterintuitive
role of information in this context. The study demonstrates
that in such systems, using information about the previous
outcome to adjust one’s gambling strategy may actually be
less effective than it appears and may be outperformed by
purely random choices.

However, these studies do not consider the impact of
information sharing on the payoff for the parties involved,
nor do they explore the dynamics of their interactions. We
maintain that this presents a significant challenge, well-suited
for examination by the statistical physics and complex sys-
tems communities. Our research is designed to provide the
foundational setting for investigating the phenomena of infor-
mation sharing through the lens of statistical physics, offering
an alternative approach to traditional theoretical economics
frameworks. This perspective not only broadens the scope of
those communities’ interests, but also will enable new ways
of tackling information pricing issues.

III. STATISTICAL PHYSICS
OF INFORMATION-TRADING GAMES

To set up the statistical physics framework, we will con-
sider a stochastic process that returns a value σt ∈ A at time

t , and we will denote with σ0,...,t−1 a particular realization of
its trajectory from time 0 to t − 1. This could be the sequence
of t independent coin tosses (A = ±1), or a Markov chain of
length t over K states (A = 1, . . . , K), or any other (arbitrarily
correlated and complex) process.

Suppose that N agents, referred to as players, can enter
up to M rounds of a game of chance, built on the outcomes
of this underlying stochastic process, by paying a fee φ in
exchange to the ability to place one bet per round and realize
a profit, should they be able to predict the outcome of the
game. The players are ordinarily unaware of the full under-
lying stochastic process that generates the outcomes σt , but
may hold some partial information about it (for example, a
portion of trajectory of the R past outcomes, σt−R,...,t−1). The
state space A is revealed in advance to all players that wish to
participate.

In particular, before the t th outcome is announced, each
player j ( j = 1, . . . , N) will have committed φ money units
to a common pot and will have placed their bet σ

( j)
t ∈ A on

the outcome of the game. The game’s configuration space at
round t is given by the vector σt = (σ (1)

t , . . . , σ
(N )
t ), compris-

ing the list of all bets placed at that round. We assume that the
players start placing their bets at t = 0 on the values of the
future states σ0, . . . , σM−1 of the process, using information
they may hold on past outcomes. Thus, the game is fully
specified by the joint distribution of the M sets of bets and
M outcomes (conditional on the past)

P(σ0,...,M−1, σ0, . . . , σM−1|σ−R,...,−1)

= P(σ0,...,M−1|σ−R,...,−1)
M−1∏
t=0

P(σt |σ−R,...,t−1). (1)

In any realistic setting, such distribution is unknown to the
players, who will try to estimate it based on the information
they have.

In the most general scenario, not all players will have the
same information about past outcomes: At each round, each
player i will hold a different piece of information and will
estimate (or will make assumptions on) the information held
by the other players. We denote the amount of information
available to (or estimated by) player i at time t with

I(i)
t = (

I (i)
1,t , . . . , I (i)

N,t

)
, (2)

where I (i)
j,t is the information attributed to player j by player

i at time t , which will depend on the process outcomes
up to time t − 1, i.e., we use the short-hand notation I (i)

j,t ≡
I (i)

j (σ−R,...,t−1). Player i’s will thus estimate (1) as

P(i)
(
σ0,...,M−1, σ0, . . . , σM−1

∣∣I(i)
0

)
= P(i)(σ0,...,M−1

∣∣I (i)
i,0

) M−1∏
t=0

P(i)(σt

∣∣I(i)
t

)
, (3)

where the first term in the second line is the probability of the
outcome trajectory—as estimated by player i—on the basis
of the information he/she has on the game, while the second
term is the probability—always estimated by player i—of
the bets placed by all the players (including i), based on the
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information that player i attributes to the other players and the
information that player i holds.

The particular form taken by Eq. (3) depends not only on
the information held by the players, but also on the particular
assumptions they make on the process, regardless of its true
nature (which is generally unknown to them). For instance, if
player i assumes that the process be uncorrelated in time, then
their estimate (3) will specialize to

P(i)
(
σ0,...,M−1, σ0, . . . , σM−1

∣∣I(i)
0

)
=

M−1∏
t=0

P(i)
(
σt

∣∣I(i)
t

)
P(i)

(
σt |I (i)

i,t

)
, (4)

i.e., at each time t , σt will be seen by player i as being drawn
randomly and independently from a distribution estimated
from the past outcomes. However, if the player i assumes an
underlying Markovian dynamics, then Eq. (3) will take the
form

P(i)
(
σ0,...,M−1, σ0, . . . , σM−1

∣∣I(i)
0

)
=

M−1∏
t=0

P(i)
(
σt

∣∣I(i)
t

)
P(i)

(
σt

∣∣σt−1, I (i)
i,t

)
, (5)

i.e., at each time step t the configuration σt is seen by
player i as being sampled from the transition probabil-
ity (from the earlier configuration σt−1), estimated from
the past outcomes. We will henceforth assume M � R
so that the data acquired from the players during the
game (i.e., for 0 � t � M − 1) will not significantly af-
fect the players’ estimates, i.e., P(i)(σt |I(i)

t ) � P(i)(σt |I(i)
0 ),

P(i)(σt |I (i)
i,t ) � P(i)(σt |I (i)

i,0 ), and, similarly, P(i)(σt |σt−1, I (i)
i,t ) �

P(i)(σt |σt−1, I (i)
i,0 ). As the only temporal index appearing in the

information vector will be t = 0 to ease the notation, we will
from now on drop the temporal index and write I (i)

j,0 = I (i)
j and

I(i)
0 = I(i).

At each round, all players that have placed a successful bet
are rewarded with the full pot of entry fees Nφ split evenly
among them. After M rounds starting from time t = 0, each
player will therefore see their wealth change by the following
random amount:

�Wi(σ0,...,M−1, σ0, . . . , σM−1) = −Mφ +
M−1∑
t=0

Nφ

Nt
δ
σt ,σ

(i)
t

,

(6)

where Nt is the (random) number of winners of round t , and
δ
σt ,σ

(i)
t

= 1 if the bet placed by player i at round t was success-
ful, and zero otherwise. The number of winners at round t is
given by

Nt =
N∑

k=1

δ
σt ,σ

(k)
t

. (7)

The observables of interest are the average wealth changes
that each player i expects to realize after M rounds, condi-
tioned on the amount of information they believe every player

held at each round. Formally,

E(i)
I(i) [�Wi] =

∑
σ0,...,M−1

σ0, . . . , σM−1

�Wi(σ0,...,M−1, σ0, . . . , σM−1)

× P(i)(σ0,...,M−1, σ0, . . . , σM−1|I(i) ). (8)

In this formulation of the problem, each player i will only
rely on information available to or estimated by them when
computing their expected wealth change: the exact details of
the stochastic process (unknown to all players), as well as the
actual information held by all other players do not matter.

While the discussion of our framework could be kept very
general, it is now convenient to specialize the formalism to a
more concrete example (a binary-outcome game) and discuss
how the information exchange between players may work,
and what the effect on the pricing of this information is.

A. Betting on a binary-outcome game

Assume now that, at each round t , the binary outcome
σt ∈ {+1,−1} of an underlying concealed stochastic process
is announced. Prior to observing the outcome, each player j
will have paid the entry fee and will have declared their bet
σ

( j)
t on the outcome in the binary state space A = {+1,−1}.

We assume that each player i will regard the process as
uncorrelated in time, essentially as a sequence of independent
coin tosses. In addition, we assume that each player will as-
sume the other players to bet either head or tail (respectively,
σ

(i)
t = +1 or σ

(i)
t = −1) independently of each other at each

round.1 Hence, one can write the first probability appearing
on the right-hand side of Eq. (4) as

P(i)(σt |I(i) ) =
N∏

j=1

P(i)
j

(
σ

( j)
t

∣∣I(i)
)
, (9)

where P(i)
j (σ ( j)

t |I(i) ) is the probability that player i believes
that player j will bet according to. This can be rewritten more
explicitly in terms of ρ j , the best estimate that player j will
use for the bias of the coin. In particular, conditioning on ρ j ,
we can write

P(i)
j

(
σ

( j)
t |I(i)

) =
∫

dρ jP
(i)
j

(
σ

( j)
t

∣∣ρ j
)
P(i)

j (ρ j |I(i) )

=
∫

dρ jP
(i)
ρ j

(
σ

( j)
t

)
fI(i) (ρ j ), (10)

with P(i)
ρ j

(σ ( j)
t ) ≡ P(i)

j (σ ( j)
t |ρ j ) being the individual bet-

ting probability that player i attributes to player j based
on his/her best estimate ρ j of the coin bias, and with
fI(i) (ρ j ) ≡ P(i)

j (ρ j |I(i) ), the probability density function (pdf)

1From now on, we will talk about “head,” “tail,” and “coin” as if
the underlying process were indeed a biased coin toss. In reality,
we stress that this is only a (natural) “modeling” assumption that
every player may make about a stochastic process they actually
know nothing about. Our formalism could accommodate different
modeling choices by the players on the actual underlying process,
for instance a Markov two-state model.
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for the optimal bias parameter ρ j that j could use, as estimated
by player i using the information he/she holds.

For a binary game, it is natural for every player to assume
a bimodal distribution, i.e., P(i)

ρ (σ ) ≡ P̃ρ (σ )∀i, and that this
probability will have the form

P̃�(σ ) = g(�)δσ,+1 + (1 − g(�))δσ,−1, (11)

where g(�) is a deterministic function of the bias parameter.
It turns out (see Appendix A) that the best choice available to
players is always given by

g(�) = θ (� − 1/2), (12)

where θ (x) is the Heaviside step function. In other words,
the best betting strategy available to players is to assume
that the “coin” will always come up heads if their best estimate
of the bias is >1/2, and tails otherwise.

Each player i will then draw their best estimate ρi, and that
of their opponents ρ j , of the coin bias parameter from the pdf
fI(i) (ρ j ). In the absence of any extra information, i.e., I(i) = 0,
it is reasonable to assume that f (i)

0 (ρ j ) will be uniform in [0,1]
for all players and all rounds.

After M rounds, each player will therefore see their wealth
change by �Wi, as defined in Eq. (6). As φ appears as an over-
all multiplicative constant, from now on we will set, without
loss of generality, φ = 1. This is equivalent to setting the unit
of wealth change equal to the fee that players pay to enter the
game.

We now assume that one of the players (say, number 1)
is “special”: They hold a long sequence of size R � 1 of
past outcomes of the game, which shows a total number H
of heads. Player 1 (hereafter dubbed the data holder/seller)
has therefore two choices: (i) they can simply use this
information—without sharing it with anyone—to improve
their betting strategy by guessing a more accurate value for the
coin bias, or (ii) they can trade part of this information with
one colluding player (the buyer), say player 2, in exchange for
money. The additional information parameters of our game
are therefore R (length of the string of past outcomes of the
game that player 1 holds2), r (length of the substring of data
that player 1 is willing to sell to player 2), h (number of heads
showing up in the string of length r put up for sale), and x (ex-
cess of heads in the longer string, so H = h + x are the heads
showing in the seller’s string). Consequently, the information
vectors I(1) and I(2) of players 1 and 2, respectively will take
values—before the transaction3

I (1)
i =

{{H, R} for i = 1,

0 for i = 2,
(13)

and

I (2)
i = 0 for i = 1, 2, (14)

2In the following, we are going to assume that R � 1, so by the
Law of Large Numbers we expect that the data holder will always
have “good quality” data, and therefore an edge in the game. A
discussion of the “finite horizon” case—where too short a string of
past outcomes could actually mislead the data holder—is deferred to
a future publication.

3We will loosely write I ( j)
i = 0 instead of the more precise I ( j)

i = ∅.

indicating that player 2 holds no information on any player,
including him/herself. After the transaction, these objects will
evaluate to

I (1)
i =

{{H, R} for i = 1
{h, r} for i = 2

(15)

and

I (2)
i =

{{h, r} for i = 1
{h, r} for i = 2

. (16)

This is because the buyer is unaware of the length R of the
string held by the seller or the number H of heads in it, and
will therefore attribute his/her own “best” available informa-
tion (h heads showing in a string of r outcomes) also to the
seller.

We will use the short-hand notation for the following aver-
ages (see Eq. (8))

ER = E(1)
({H,R},0...,0),

ER,r = E(1)
({H,R},{h,r}...,0),

E0 = E(2)
(0,...,0),

Er,r = E(2)
({h,r},{h,r},0,...,0).

We will also use a similar notation to make the dependence on
the information in the expression of the coin bias pdf explicit.
In particular, we define the following short-hands:

fR(ρ) = f({H,R},0,...,0)(ρ),

fR,r (ρ) = f({H,R},{h,r},...,0)(ρ),

f0(ρ) = f(0,...,0)(ρ),

fr,r (ρ) = f({h,r},{h,r},...,0)(ρ).

For later convenience, we will denote with α = H/R the frac-
tion of heads in the string held by the seller. Values of α > 1/2
(α < 1/2) will signal a bias toward head (tail) in the seller’s
string.

B. Fair price of information

Our goal is now to compute the fair price at which the data
holder should put up some of their data for sale, for different
values of the model parameters. To compute this fair price,
we need to determine—from the point of view of the data
holder—the “wealth gain” (if any) that the data holder and
the buyer may expect to realize if the transaction takes place.

The act of selling information may in principle decrease the
data holder’s wealth because another player (the buyer) will
have a greater chance of placing a successful bet, therefore
leading the fee pot to be split among a larger number of
winners. This expected decrease in revenues should be (at
the very least) compensated by the amount of money 
min

received by the buyer in exchange for the data. Similarly, the
act of buying information may potentially increase the buyer’s
revenues, therefore there will be a maximal price 
max the
buyer should be fairly asked to pay for the data before their
acquired edge in the game is wiped out.

The transaction should therefore be proposed by a fair
seller to a prospective buyer only if 
max � 
min > 0, and
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may happen at any price 
 such that 
min � 
 � 
max. We
claim that


min = max[ER[�W1] − ER,r[�W1], 0], (17)


max = max[Er,r[�W2] − E0[�W2], 0], (18)

where the max operator ensures that 
min, 
max are nonneg-
ative (as required for prices) and the different expectation
operators corresponding to different levels of information
available to players, as explained in the earlier section.

The meaning of Eq. (17) is clear: the minimal price the data
holder must impose is the average loss (if any) they will incur
by selling data as opposed to holding on to it exclusively. Sim-
ilarly, for Eq. (18), the maximal price that the buyer should
be fairly asked to pay is the average gain (if any) they would
estimate if they could use the acquired information as opposed
to their original state of complete ignorance, represented by
the operator E0.

We stress that the two baselines (i.e., expected wealth dif-
ference before the transaction is arranged) for the data holder
and the prospective buyer are different: while the buyer does
not have any extra information about the game and would
need to bet blindly unless the transaction takes place, the data
holder could (and will!) still rely on the long string of past
outcomes they hold exclusively to achieve a stronger betting
performance.

Even though the price curves (17) and (18) have been
defined for the specific binary-outcome game, it is straightfor-
ward to generalize the reasoning to more complicated settings
by comparing the expected “wealth gains” before and after the
transaction.

C. Interim summary

In summary, the class of stochastic games we are consider-
ing require specifying the following ingredients: (i) Eq. (3)
for all players i = 1, . . . , N , namely the joint probability
of the future outcome trajectory and the bets cast by all
players at all time given the past history of the game, as
perceived/estimated by each player, (ii) the amount of in-
formation I(i) ≡ I(i)

0 [see Eq. (2)] available to each player
about all the others, prior to the start of the game, and (iii)
the rule by which two (or more) players may exchange part
of their exclusive information, namely how the information
vectors would change between before and after the transac-
tion. Given these ingredients, it is possible to compute the

min and 
max price curves by comparing the expected wealth
changes perceived by each player involved in the transaction.
For the binary-outcome game described in more detail here,
these curves are determined by Eqs. (17) and (18) and will be
computed explicitly below.

In the next section, we summarize our results on the limit-
ing price curves, for the case of a single round M = 1 of the
binary-outcome game described in detail above. Specifically,
we will discuss different choices of the values of the param-
eters and the regions where the transaction may or may not
take place. In the following sections, we will compute all the
averages appearing in Eqs. (17) and (18) explicitly.

FIG. 1. Limiting price curves 
min (blue) and 
max (red) from
Eqs. (17) and (18) for M = 1, φ = 1, and N = 5 as a function of
h, the number of heads showing in the substring of length r = 60
offered for sale. The number of extra heads, unobserved by the buyer,
is fixed to x = 40 in a string of length R = 100, which is owned
by the seller. The explicit expressions for the curves are reported in
Appendix F.

IV. SUMMARY OF RESULTS

Consider a single round (M = 1) of the game with N = 5
players. Player 1 holds a string of R = 100 past outcomes
of the coin toss, which shows H = h + 40 heads. Here, h ∈
{0, 1, . . . , 60} is the number of heads showing in the sub-
string of length r = 60 being potentially traded with the buyer
(player 2).

In Fig. 1, we show the limiting price curves 
min (blue) and

max (red) in Eq. (17) and (18), as a function of h and for φ =
1. The analytical expressions of 
min and 
max as functions
of the parameters of the game are reported in Appendix F.

We observe five different regimes:
(1) Regime [S1]—Symbiosis. The transaction should take

place, as it will be profitable for both players. In this regime,
both the buyer and the seller would agree that the coin must be
strongly tail-biased—as the buyer observes at most 10 heads
in a string of r = 60 past outcomes, and the seller observes
at most 50 heads in a string of R = 100 past outcomes. This
information assists both players in placing a favorable bet and
the buyer upside opportunity is enough to cover the loss of
edge held by the seller should the transaction not occur. As
a result, any price point 
 between the blue (seller) and red
(buyer) curves in Fig. 1 would realize a favorable transaction
for both parties.

(2) Regime [PP]—“Prey-Predator”. This is a region
where the substring that the data holder should put up for
sale displays the opposite bias to the original (longer) one that
they own. In this situation, an exploitative seller (predator)
could, in principle, sell the string at a positive price or even
give it away for free, realizing a profit by tricking a potential
competitor (the buyer) into betting on an unlikely outcome.
Indeed, had the buyer access (post transaction) to the seller’s
knowledge, they would ascertain that the absolute best strat-
egy in this regime would have been to refuse the transaction
altogether. This is a classical caveat emptor situation, where
the purchase of a defective good—genuine (nondoctored) yet
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misleading data—is the buyer’s responsibility unless the seller
had made an active misrepresentation of the data quality. This
situation would not occur, however, under our assumption
that the seller is fair and reputable. Realizing the information
they hold is at best worthless for the buyer, if not outright
misleading, they would not put their substring up for sale in
this regime.

(3) Regime [S2]—Symbiosis. The transaction should take
place again. In this regime, both the buyer and the seller are
in agreement that the coin must be head-biased and they will
both profit from exchanging this information for a fair price.

(4) Regime [C]—Competition. This is a regime of high
competition, in which the data holder would need to receive
a large sum of money to cover the potential loss of edge.
From the buyer’s perspective, the upside opportunity in this
region is not enough to justify the investment in the data
and thus the transaction would not occur. In fact, both the
buyer and the seller are in agreement that the coin must be
head-biased and both would bet on the same outcome, cre-
ating a “destructive interference” between these two special
players.

(5) Regime [S3]—Symbiosis. The transaction would take
place. The situation is mirror-symmetric with respect to
Regime [S1], the head bias of the coin being so strong and
apparent that, even though the seller has great confidence
in the final outcome of the game, the buyer would still be
offering an amount of money that would cover for the seller’s
lowered expected return.

We note a surprising nonmonotonic behavior of 
max

around h = r/2: Seemingly, the buyer is inclined to pay more
for information that is completely unbiased than for infor-
mation that is slightly biased. The interpretation is that any
slight bias will induce the buyer to think that the seller will
be playing the same strategy as him/her, and therefore the
buyer will perceive a higher competition with the seller, which
is not balanced by a sufficiently high expectation to win the
bet. Upon increasing the number of players N , such direct
competition (for finite resources) between the buyer and the
seller becomes weaker, as the pool of resources increases with
N . Numerical analysis shows that indeed for N above a certain
threshold, N̄ , 
max transitions from a double well to a single
well function.

Consider now a single round (M = 1) but with a larger
number of players (N = 15), still keeping the same parame-
ters as before (R = 100, r = 60, and x = 40). In this case (see
Fig. 2), there are no longer situations where the transaction is
unappealing to the data holder—as was the case in Regime [C]
beforehand. We still observe two “symbiotic” regimes ([S1]
and [S2]) and a “prey-predator” regime, with the same features
as before.

The comparison between Figs. 1 and 2 shows that a sharp
phase transition may occur in the number N of players,
such that for N < N� we expect a “competition” regime
to materialize, which hinders the prospective transaction,
whereas for N � N� the transaction is always appealing to
the data holder, and—only in the “symbiotic” regimes—also
favorable to the buyer. The fact that a more crowded game
may remove the “destructive competition” regime between
the two special players has an interesting interpretation
in the context of the ecology of the game, as it simply

FIG. 2. Limiting price curves 
min (blue) and 
max (red) from
Eqs. (17) and (18) for M = 1, φ = 1, and N = 15 as a function of
h, the number of heads showing in the substring of length r = 60
offered for sale. The number of extra heads, unobserved by the buyer,
is fixed to x = 40 in a string of length R = 100, which is owned
by the seller. The explicit expressions for the curves are reported in
Appendix F.

signals that more unsuspecting players become available
to prey upon. The amount of available resources in a
“smaller” game—namely, the fees brought in by the N − 2
uninformed players—may be insufficient to accommodate a
symbiotic/cooperative interaction between the two special
players, who are instead better off relying on their own means.
For the same reason, the data holder is willing to sell at a
lower price the higher the number of players. As 
 in Fig. 2
is double-well (with maximum and minima seen to lie almost
on a horizontal line, on this scale) we have that N� < N̄ , i.e.,
destructive competition is removed at a lower value of N than
the value N̄ at which 
 becomes single-well.

In Fig. 3, we further investigate the seller-buyer interaction
and the behavior of the critical value N� as a function of R
(the length of the string held by the data holder) and h (the
number of heads in the buyer’s string), for a fixed value of
N (the number of players). For N� � N (red shaded area) the
game is in the phase where destructive competition emerges.
The contour lines N�/N = 1.5 and N�/N = 2 show that N�

grows as one moves deeper inside this region. Hence, for fixed
h, N� is a monotonic function of R which increases when
h < r/2 and decreases for h > r/2, whereas for fixed R, N�

is a nonmonotonic function of h. Outside of the red-shaded
area, the game is always appealing and, in particular, is char-
acterized by the prey-predator regime in the blue region and
the symbiotic regime in the light blue region. Interestingly,
this occurs both at large and small values of the bias in the
string that is put on sale (i.e., h far away from r/2 and close to
it, respectively).

As a final remark, we note that the two curves shown in
Figs. 1 and 2 can only be known to the seller. The buyer
could only calculate the family of curves 
max for different
values of h and r (which are however unknown to him/her
until the transaction occurs). This is however not a limitation
in the context of our setting, where it is assumed that a rep-
utable seller proposes a fair price to a prospective buyer (see
Sec. III B).
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FIG. 3. Phase diagram in the parameter space (h, R), where R
is the length of the string held by the seller and h is the number
of heads in the buyer’s string. The red-shaded area, delimited by
the line N�/N = 1 denotes the phase where destructive competition
emerges. Contours within this region indicate the lines N�/N = 1.5
and N�/N = 2. Outside the red shaded area, the game is in the
phase where it is always appealing to the data holder. The dark blue
region corresponds to the “prey-predator” regime, while the light
blue region indicates the “symbiotic” regime. The parameters are
set as follows: the number of players is N = 6, the number of extra
heads in the seller’s string (unobserved by the buyer) is x = 40 and
the length of the string put on sale is r = 60.

In the next section, we compute explicitly the two baseline
payoffs for the prospective seller and buyer that appear in
Eqs. (17) and (18).

V. CALCULATION OF BASELINES

A. Prospective buyer

We start by computing the baseline E0[�W2] appearing in
Eq. (18) from Eq. (8). This is the wealth difference (gain/loss)
that the prospective buyer (or any other uninformed player)
expects to make placing a bet, in the absence of any infor-
mation about the previous history of the game or the other
players, and without any transaction being arranged.

By linearity of expectations, this requires computing

E0[
δ
σt ,σ

(2)
t

Nt
], where Nt , the number of winners at round t is

given in Eq. (7). The expectation needs to be computed over
the full joint distribution for the (uncorrelated) outcomes
and the bets P(i)(σ0,...,M−1, σ0, . . . , σM−1|I(i) ) for i = 2, in-
troduced in Eq. (4) equipped with Eqs. (9) and (10), where
I(2) = 0. Given the factorization over time in Eq. (4), such
expectation boils down to computing the expectation over the
marginal distribution at time t , P(i)(σt |I(i) )P(i)(σt |I (i)

i ).
With our assumptions, player 2 would not have any other

choice but to use the same estimate P̃ρ2 from Eq. (11) for
both his/her betting strategy, and the actual outcome of the

process. Ordinarily, it would not make sense to bet on a
process according to a probability law that is different from
the best estimate one has of how the process actually unfolds!

The only other possibility would be for player 2 to assume
that the underlying process is actually an independent (biased)
coin toss happening with probability

Pρ (σt ) = ρδσt ,+1 + (1 − ρ)δσt ,−1. (19)

The obvious problem with this choice would be that the ex-
pected wealth changes are going to depend on the actual bias
ρ of the “coin,” which no player actually knows. However,
it turns out that—for the specific calculation of the baseline
below—the actual coin bias ρ drops out of the final ex-
pression, therefore this second (ordinarily precluded) avenue
becomes actually viable for player 2.

Let us therefore write the expectation explicitly, with the
newly introduced notation for the actual outcome probability,
without replacing it with any proxy

E0

[
δ
σt ,σ

(2)
t

Nt

]
=

∫ 1

0
dρ1 f0(ρ1) · · ·

∫ 1

0
dρN f0(ρN )

×
∑

σt =±1

Pρ (σt )
∑

σt ∈{±1}N

P̃ρ1

(
σ

(1)
t

) · · · P̃ρN

(
σ

(N )
t

)

×
δ
σt ,σ

(2)
t∑N

k=1 δ
σt ,σ

(k)
t

. (20)

For uniform pdfs f0(�) of the estimates of the coin bias made
by all players—the ρ-dependence completely drops out,4 and
we eventually find (see Appendix B for details)

E0

[
δ
σt ,σ

(2)
t

Nt

]
= 1

2

2 − 21−N

N
, (21)

from which it follows that the baseline for player 2 reads

E0[�W2] = −M
1

2N
. (22)

In the next section, we will compute the baseline payoff
for the only player that owns some information about past
outcomes.

B. Prospective seller (data holder)

In this section, we compute the baseline ER[�W1] appear-
ing in Eq. (17) from Eq. (8). This is the wealth gain that
player 1—the data holder—expects to achieve by exploiting
exclusively the time series of the past R outcomes of the coin

4If this fortunate dropping-out did not happen, then we should have
performed the calculation from the point of view of player 2—dubbed
E0,�ρ

[· · · ]—who would have used their own estimate ρ2 for the coin
bias in lieu of the actual (unknown) coin bias ρ. The calculation of
this case is performed in Appendix B as well, and leads to a higher
prefactor (3/4 instead of 1/2) in Eq. (21). It is therefore natural to
assume that player 2 will use his/her more “conservative” estimate in
Eq. (21) as opposed to the more generous estimate in Eq. (B9), as the
latter would be inevitably inflated by the use of the same distribution
for one’s own betting strategy and the actual outcome of the process.
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toss σ−R,...,−1. Given that the data holder has recorded exactly
H heads out of the past R outcomes (H ∈ {0, 1, . . . , R}), they
will build an estimate of the coin bias pdf fR(ρ1) based on
the number of heads H observed in the string. Using Bayes’
theorem

fR(ρ1) = P(H |R, ρ1) f (ρ1)∫ 1
0 P(H |R, �) f (�)d�

, (23)

where the probability P(H |R, �) of obtaining H heads in R
tosses of a coin with bias � is given by

P(H |R, �) =
(

R

H

)
�H (1 − �)R−H , (24)

while f (�) is the prior probability density function for the coin
bias, which we may assume uniform. Hence, the posterior
follows as

fR(ρ1) = ρH
1 (1 − ρ1)R−H∫ 1

0 �H (1 − �)R−H d�

= (R + 1)!

H!(R − H )!
ρH

1 (1 − ρ1)R−H , (25)

which is correctly normalized,
∫ 1

0 dρ1 fR(ρ1) = 1.
Similarly to the previous case, the expectation requires

computing ER[
δ
σt ,σ

(1)
t

Nt
], in analogy with Eq. (20) but with

f0(ρ1) replaced by the data holder’s best estimate of the actual
coin bias pdf.

Although this calculation is possible, it yields a result that
this time depends explicitly on the actual coin bias ρ, at
odds with what happened for the “zero-information” case [see
Eq. (21) and Appendix B]. Since no player knows the actual
bias of the coin, nobody can estimate their expected gain
using this piece of information unless ρ drops out of the final
expression: as pointed out in the previous paragraph, we are
therefore forced to assume that the data holder will use their
best estimate ρ1 for the coin bias in both their own betting
strategy and as a proxy for the true coin bias, which will in
general lead to an over-estimate of their winning chance.

To compute this expectation, we can start from Eq. (20)
with σ

(2)
t replaced by σ

(1)
t to indicate the focus on the seller’s

bet, the uniform (“zero information”) pdf f0(ρ1) replaced
by the posterior fR(ρ1) in Eq. (25), and Pρ (σt ) replaced by
Pρ1 (σt ). Eventually, we obtain

ER

[
δ
σt ,σ

(1)
t

Nt

]
= 2 − 21−N

N
�R(H ), (26)

where

�R(H ) = ER
[
δ
σt ,σ

(1)
t

]
=

∫ 1

0
dρ1 fR(ρ1)[ρ1g(ρ1) + (1 − ρ1)(1 − g(ρ1))]

(27)

is the winning probability estimated by the data holder (with-
out any knowledge of the actual coin bias) and g(�) is the
betting parameter defined in Eq. (12)—see Appendix C for

FIG. 4. Expected win rate from Eq. (28) as a function of the
number of heads H , in the string of length R = 200 held by the seller
(data holder).

more detail. This is given by

�R(H ) = (R + 1)!

H!(R − H )!2R+2
[F (H + 1, R − H )

+ F (R − H + 1, H )], (28)

where

F (x, y) =
∫ 1

0
dt (1 + t )x(1 − t )y = 2F1(1,−x; y + 2; −1)

y + 1
,

(29)
in terms of a hypergeometric function defined as

2F1(a1, a2; b1; z) =
∞∑

κ=0

(a1)κ (a2)κ
(b1)κ

zκ

κ!
, (30)

where (a)n is the nth order Pochhammer polynomial.
In Fig. 4, we plot the expected win probability of the data

holder, as given in Eq. (28), for a string of length R = 200.
The plot is consistent with the limiting behavior of �R(H )
for large R, which can be calculated as (see Appendix C for
details)

�R(H = αR) ∼ αθ (α − 1/2) + (1 − α)θ (1/2 − α). (31)

This behavior is in line with our expectations: in the extreme
cases α = 0 and α = 1 (no head, or no tail observed in a long
string of size R), the data holder will rightfully conclude that
the coin will always come up tail or head, respectively, and by
betting accordingly they expect to win every time (�R(H =
0, 1)) → 1. Increasing α from zero (or decreasing α from
1, symmetrically) signals a coin that is strongly biased, but
will not come up heads (or tails) every single time: this leads
the data holder’s winning expectation to deteriorate linearly,
up until the maximally uncertain situation α = 1/2, where
the winning probability is 50-50. Interestingly, for α = 0.5
(when there is no bias/information to be exploited in the
seller’s data) and finite R, the expected win rate is still higher
than 1/2.

Inserting Eq. (26) into Eq. (6), we can now compute the
expected wealth difference for the data holder after M rounds
from their own viewpoint:

ER[�W1] = M(2 − 21−N )�R(H ) − M. (32)
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We remind that we have assumed that the estimates be made
before playing the first of the M rounds of the game and
not be updated as the game progresses—thus using only the
information that is initially available to the data holder.

In the next section, we are going to compute the data
holder’s estimates of their own expected wealth difference—
as well as the buyer’s—should their proposed transaction go
through, which will feed into the limiting prices in Eqs. (17)
and (18).

VI. EXPECTED WEALTH CHANGES
AFTER THE TRANSACTION IS ARRANGED

We now imagine that a deal is proposed by the data
holder (hereafter, the seller) to player 2 (hereafter, the buyer),
whereby some portion of the data held by the seller is shared
with the buyer for a fee. In particular, the seller would put
up a substring of r � R elements of the recorded outcomes
σ−r,...,−1 for sale. In our specific setting, it is not essential that
the outcomes put up for sale be sequential. The seller could as
well randomly select r elements from the string of outcomes
they hold. However, in more complex games (e.g., Markov
chains, processes with memory...) and for more complex bet-
ting strategies (e.g., Markov state models), the exact sequence
and ordering of data may become relevant. Note however that
in our general setting the seller does not ever have the power
to cherry-pick or engineer the entries of the substring put up
for sale.

We now wish to compute the estimates made by the
seller of their own expected wealth change—as well as the
buyer’s—if the transaction went through.

We now rewrite the posterior in Eq. (23) minding the infor-
mation that the holder exchanges with the buyer

P(x, h|R, r, �) =
(

r

h

)
�h(1 − �)r−h

(
R − r

x

)
�x(1 − �)R−r−x,

(33)

with x + h = H . This is the probability that a string of coin
outcomes of length R includes a substring of length r, with
h heads in the substring of length r and x = H − h heads

in the remaining substring of length R − r, if the tosses are
generated with bias �. Note that the distribution in Eq. (33) is
correctly normalized as

r∑
h=0

R−r∑
x=0

P(x, h|R, r, �) =
r∑

h=0

(
r

h

)
�h(1 − �)r−h

×
R−r∑
x=0

(
R − r

x

)
�x(1 − �)R−r−x = 1.

This can be inverted using Bayes’ theorem, and—assuming
the priors to be uniform—we get, similar to Eq. (25),

fR,r (ρ1) =
(r

h

)(R−r
x

)
ρh+x

1 (1 − ρ1)R−(h+x)∫ 1
0

(r
h

)(R−r
x

)
�h+x(1 − �)R−(h+x)d�

= (R + 1)!

(h + x)!(R − (h + x))!
ρh+x

1 (1 − ρ1)R−(h+x).

(34)

This is the pdf of the coin bias as estimated by the seller, given
the information available to them.

However, the buyer would estimate the coin bias as being
drawn from the posterior in Eq. (25) with R, H replaced by
r, h, namely

fr,r (ρ2) = (r + 1)!

h!(r − h)!
ρh

2 (1 − ρ2)r−h. (35)

A. Seller’s wealth change

We first compute the seller’s estimate of their wealth
change ER,r[�W1], appearing in Eq. (17), assuming that the
transaction would take place. This can be computed from
Eq. (8), but in this case using the bias posterior of Eq. (34) for
the seller own estimate and the buyer bias posterior introduced
in Eq. (35) to inform the buyer’s betting strategy. In formulas,
we proceed as usual, by using the identity 1

x = ∫ ∞
0 ds e−sx

for x > 0 to lift up the denominator Nt , then compute the
expectation

ER,r

[
δ
σt ,σ

(1)
t

Nt

]
=

∫ ∞

0
ds

∫ 1

0
dρ1 fR,r (ρ1)

∫ 1

0
dρ2 fr,r (ρ2) · · ·

∫ 1

0
dρN f0(ρN )

∑
σt =±1

Pρ1 (σt )
∑

σ
(1)
t =±1

P̃ρ1

(
σ

(1)
t

)

× δ
σt ,σ

(1)
t

e
−sδ

σt ,σ
(1)
t

∑
σ

(2)
t

P̃ρ2

(
σ

(2)
t

)
e
−sδ

σt ,σ
(2)
t · · ·

∑
σ

(N )
t

P̃ρN

(
σ

(N )
t

)
e
−sδ

σt ,σ
(N )
t . (36)

The calculation is performed in Appendix D and gives

ER,r

[
δ
σt ,σ

(1)
t

Nt

]
= CN XR,r (x, h) + DNYR,r (x, h), (37)

with the coefficients CN and DN defined in Eqs. (D7) and
(D8), and the final expressions for XR,r and YR,r in terms
of hypergeometric functions given in Eqs. (D18) and (D22),
respectively. Using this result, the expected wealth difference
ER,r[�W1] appearing in Eq. (17) can be easily computed from

Eq. (6). This expectation is shown in Fig. 5, as a function of
the length r of the string put up for sale, and fixed number
of heads, h = 20, for different values of N , as shown in the
legend.

The expected wealth difference is higher in correspondence
of the “prey-predator” region, as the buyer faces a more sig-
nificant risk of losing in the competition for the prize when
sold deceptive information. However, this impact diminishes
as the number of players increases, leading to a flattening of
the seller’s wealth curve.
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FIG. 5. Expected wealth difference ER,r[�W1] as a function of
the length r of the string put up for sale, and fixed number of heads,
h = 20, for different values of N , as shown in the legend. The seller
holds a string with total length R = 200 and a total number of heads
H = 80.

B. Buyer’s wealth change

We still need to determine the expected change in wealth
for the buyer, assuming the transaction proceeds, denoted as
Er,r[�W2], as appearing in Eq. (18). This expectation can
be interpreted from the two equivalent viewpoints (i) the ex
post buyer’s perspective, i.e., as if the buyer could actually
look into the substring being put up for sale and use the only
information therein to estimate their own strategy, the seller’s,

and the actual coin bias, therefore being retroactively able to
assign a monetary value to the quality of data they received,
or—more realistically—(ii) the ex ante seller’s viewpoint, i.e.,
assuming that the seller puts themselves in the (future) buyer’s
shoes and aims to know what the buyer should be fairly asked
to pay for the quality of information they will find in the r
substring when they receive it. As previously remarked, there
exists an informational asymmetry between the seller and the
buyer, and we refrain from endorsing any specific viewpoint
or disclosure rule. The framework developed here is intended
to be general and it aims at determining the potential price
range at which information transactions can, in principle, be
advantageous for either biased player. In fact, both parties
can independently construct their price curves based on the
number of heads in the substring offered for sale, treating it as
a free parameter, even in cases where a sale is not ultimately
agreed upon.

A key consideration in computing this final expecta-
tion involves selecting the appropriate bias posterior pdf for
the seller. We have noted that post-transaction, the buyer
would still lack access to the full scope of the seller’s in-
formation and cannot ascertain the amount of information
the seller possesses. Nevertheless, it is prudent for the buyer
to operate under the assumption that the seller will en-
gage with—at the very least—the same level of knowledge
to shape their strategy. Consequently, the bias posterior
pdfs that should be employed for both the seller and
the buyer in these calculations are specified by Eq. (35).
The buyer’s expected wealth change is thus determined by the
expectation

Er,r

[
δ
σt ,σ

(2)
t

Nt

]
=

∫ ∞

0
ds

∫ 1

0
dρ1 fr,r (ρ1)

∫ 1

0
dρ2 fr,r (ρ2) · · ·

∫ 1

0
dρN f0(ρN )

∑
σt =±1

Pρ2 (σt )
∑

σ
(2)
t =±1

P̃ρ2

(
σ

(2)
t

)

× δ
σt ,σ

(2)
t

e
−sδ

σt ,σ
(2)
t

∑
σ

(1)
t

P̃ρ1

(
σ

(1)
t

)
e
−sδ

σt ,σ
(1)
t · · ·

∑
σ

(N )
t

P̃ρN

(
σ

(N )
t

)
e
−sδ

σt ,σ
(N )
t . (38)

The calculation is performed in Appendix E and gives
eventually

Er,r

[
δ
σt ,σ

(2)
t

Nt

]
= CN Xr (h) + DNYr (h), (39)

with the coefficients CN and DN defined in Eqs. (D7) and (D8),
and Xr and Yr given by Eqs. (E13) and (E17), respectively.
Using this result, the expected wealth difference Er,r[�W2]
appearing in Eq. (18) can be easily computed from Eq. (6).
This expectation is shown in Fig. 6, for various numbers of
players, corresponding to values lower (blue curve) and higher
(red and black curves), than the critical number N� of players,
respectively, and fixed number of observed heads h = 20. The
expectation is higher for strongly biased coins, i.e., for small
and high values of r, respectively. As in the limits r → h and
r � h the bias is equally strong (albeit opposite), the curve
looks stretched in the region r > h/2 compared to the region
r < h/2.

VII. CONCLUSIONS AND OUTLOOK

We have examined the decision-making process of a set
of agents in the context of a broad range of stochastic games
in which some “players” may possess valuable information
about previous realizations of the game. We propose a
statistical physics framework to tackle the problem of pricing
information exchange and explore the effect of information
asymmetry on the players’ payoff. We thus offer a guideline to
the reader interested in applying the framework to a particular
game, emphasizing on the necessary modeling decisions
required.

We have then specialized our analysis to a simple binary-
outcome game of chance, where a fixed number N of players
pay a fee φ (which can be set, without loss of generality, to
one) to be able to independently place a bet on one of the
two possible outcomes of an unknown underlying stochastic
process, which they model as a biased coin. At each round,
all (if any) players placing a successful bet will split the entry
fees pot as payoff. We assume that none of the players is aware

033250-12



PRICE OF INFORMATION IN GAMES OF CHANCE: A … PHYSICAL REVIEW RESEARCH 6, 033250 (2024)

FIG. 6. Expected wealth difference Er,r[�W2] as a function of r,
the length of the portion of string offered for sale with a fixed number
of heads, h = 20.

of the actual “coin” bias (or whether the process is indeed a
coin toss), but will estimate it based on the information they
hold about past outcomes of the game.

In particular, player 1 (the data holder) is assumed to hold a
long string of R � 1 past outcomes of the coin toss and num-
ber H of heads showing therein, which they can either decide
to use exclusively to improve their betting performance, or
partially share with player 2 in exchange for a fee.

We have determined analytically the optimal price curves
for the seller and the buyer for a single round of the game,
which determine the fair price range the data holder should
put their information up for sale, as a function of N, R, H and
the length r of the substring of data offered for sale and the
number h of heads therein.

Our results show that this game exhibits a rich behavior
characterized by a sharp phase transition as the number of
players is tuned across a critical value N�, which depends
on the other informational parameters. Above this critical
value, i.e., N � N�, the transaction is always appealing to the
data holder: the reason is that in a crowded game, there are
enough resources—the entry fees paid by the N − 2 unin-
formed players—to make the rigged game always profitable
at least for the seller. The prospective buyer could also benefit
from the transaction in the symbiotic regimes, but may actu-
ally leave themselves vulnerable to exploitation by a bad-faith
seller in the “prey-predator” regime, where the quality of data
being offered is low enough that it would actually mislead
the buyer into betting on the “wrong” outcome. However,
below the critical number of players, i.e., N < N�, it is no
longer true that the transaction is always profitable for the
seller and the competition for scarce resources may make it
more convenient for the seller to hold on to the data and not
share any information with the prospective buyer. Therefore,
the ecology of the “information landscape” of this game is
incredibly rich, even though we have restricted our study to
arguably one of the simplest settings (i.e., binary outcomes,
memoryless processes, and a single pairwise data transaction
being arranged).

From a general point of view, our work provides a novel
framework, grounded in complexity science, to address a
crucial and understudied problem in econometrics and in the

emerging field of infonomics, which concerns quantifying the
price of information. In particular, we hope that our study
can lay the foundations for further work aimed at enabling a
fair assignment of monetary value to an asset as intangible as
information, in a controlled and replicable setting, in absence
of a data exchange.

The framework we proposed is very general and flexible,
and it could accommodate several modifications aimed at
improving the realism of the setting.

For example, we have not considered here the “improved”
knowledge about the game that all players gain as more and
more rounds are played. One could imagine that the infor-
mation about the first M outcomes will feed into the players’
M + 1th bet, generating interesting memory effects. Similarly,
one could study the effect of revealing a small “preview,” free
of charge, of the data to one or more potential buyers on the
seller’s profit, irrespective of whether any transaction would
occur.

Another possible outlook would be to assume that the
length R of the string of past outcomes held by one player is
of finite (possibly short) length. This would allow for a further
interesting effect to explore, namely the possibility that the
data be corrupted or unreliable to begin with.

In addition, the number of players at each round can be
made random, and different levels of fees may be imposed,
corresponding to different privileges (e.g., the possibility of
placing multiple bets in a multi-outcome game). Similarly,
agents could randomly decide to pass (skip rounds) or place
bets with a probability proportional to the strength of the bias,
should they hold any extra information.

We may also consider different generating mechanisms for
the outcome altogether, with or without memory (e.g., Markov
chains), as well as more refined betting strategies than the
simple uniform prior associated with a constant (and identical
for all players) g(�).

Also, the model can be generalized to games with mul-
tiple outcomes, several players holding different degrees of
information (e.g., past time series of different lengths), and in-
cluding multiple pairwise transactions between players—for
instance on an underlying network structure of interactions—
which are likely to create interesting correlations and feed-
back loops among the players.

In addition, we have not yet discussed any price implica-
tion that may stem from establishing a disclosure policy. For
example, a more refined version of the game might involve
the introduction of “data scrambling” mechanisms when the
offer of the transaction is made by the data holder. This setting
would allow the prospective buyer to get a glimpse of the
quality of data held by the seller, without of course receiving
the full information before the price is agreed upon.

We may also consider the full distribution of the wealth
changes (not just their averages) when constructing the utility
functions for the players or extend risk-neutral pricing to
risk-averse or risk-seeking agents. Furthermore, our model
is well-placed to further explore the most peculiar features
of information assets. For instance, one may consider the
situation where the buyer re-sells part of the data they bought
to a third party, or where there is a “data breach” so that
some players may get hold of part of the information during
the exchange process. Alternatively, the seller may exploit the
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nonrival nature of the asset and sell (possibly different) sub-
strings to multiple players. These modifications would likely
lead to richer feedback effects.

In summary, the framework we proposed lends itself to a
number of interesting generalizations and extensions, where
the intangible nature of the asset being exchanged is assigned
a monetary value on the basis of an expected utility maximiza-
tion approach, with interesting interpretations in the context of
the ecology of the game and resource sharing thereof.
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APPENDIX A: OPTIMAL SELECTION
OF THE BETTING STRATEGY

We consider here the problem of selecting the best betting
parameter g(�) appearing in Eq. (11), based on the best esti-
mate � of the actual coin bias made by a player having some
information I about the game.

Natural choices for g(�) could be g(�) = � and g(�) =
θ (� − 1/2), with θ (x) the Heaviside step function. In the
former case [g(�) = �], the player will choose to bet heads
or tails with the same probability they have estimated for the
actual bias of the coin—so if they think that the coin has a 75%
bias in favor of heads, they will bet 75% of the times on head
and 25% of the times on tail. In the latter case, the player will
always bet in the direction of the bias (however strong it is),
so in the example above of a coin whose bias is estimated at
75% heads, the player will always bet heads. It can be shown
that this second choice leads to a better outcome on average.

Indeed, if the player’s j best estimate of the pdf of the coin
bias parameter is fI (�), and they play according to the strategy
in Eq. (11), then their probability of winning (averaged over
many draws of the bias parameter) is given by

p j =
∫ 1

0
d� fI (�)[�g(�) + (1 − �)(1 − g(�))], (A1)

where the first term in square brackets is the probability that
the coin comes up heads and the player has bet heads, and
the second term is the probability that the coin comes up tails
and the player has bet tails. It is a trivial exercise to show that
p j = 2/3 if g(�) = � and pj = 3/4 if g(�) = θ (� − 1/2) (for
the case of uniform prior fI (�) = 1). We can generalize this
result by rewriting the integral in Eq. (A1) as follows:

p j =
∫ 1

0
d� fI (�)(1 − �) +

∫ 1

0
d� fI (�)g(�)(2� − 1)

= 1 − 〈�〉 +
∫ 1

1/2
d� f ( j)

I (�)g(�)(2� − 1)

−
∫ 1/2

0
d� fI (�)g(�)(1 − 2�), (A2)

where the first part of the expression is a constant, and the
remaining integrals contain only non-negative terms. Now we
can see that the choice g(�) = θ (� − 1/2) (irrespective of the
amount of information I) both minimizes the negative and
maximizes the positive contribution to the sum so that for any
gI (�) with support and range in [0,1] it holds that∫ 1

0
d� fI (�)g(�)(2� − 1) �

∫ 1

1/2
d� fI (�)g(�)(2� − 1).

(A3)

This inequality justifies the choice in Eq. (12). A completely
analogous argument holds in the case where the true bias of
the coin ρ is known.

APPENDIX B: CALCULATION OF E0 AND E0,�ρ
1. Average E0

Assume now that no information is available to any player,
but we look at the expected wealth difference of Player 2 from
the point of view of an omniscient observer, who knows that
the coin tosses are indeed independent and biased, with bias
ρ. Using the identity 1

x = ∫ ∞
0 ds e−sx, for x > 0 to lift the

denominator Nt , we can write (exploiting sum factorization)

E0

[
δ
σt ,σ

(2)
t

Nt

]
=

∫ ∞

0
ds

∫ 1

0
dρ1 f0(ρ1) · · ·

∫ 1

0
dρN f0(ρN )

∑
σt =±1

Pρ (σt )
∑

σ
(1)
t =±1

P̃ρ1

(
σ

(1)
t

)

× e
−sδ

σt ,σ
(1)
t

∑
σ

(2)
t

P̃ρ2

(
σ

(2)
t

)
δ
σt ,σ

(2)
t

e
−sδ

σt ,σ
(2)
t · · ·

∑
σ

(N )
t

P̃ρN

(
σ

(N )
t

)
e
−sδ

σt ,σ
(N )
t (B1)

=
∫ ∞

0
ds

∫ 1

0
dρ2 f0(ρ2)[ρg(ρ2)I+(N − 1, s) + (1 − ρ)(1 − g(ρ2))I−(N − 1, s)], (B2)

where

I+(N − 1, s) = e−s
N∏

k �=2

⎡
⎣∫ 1

0
d� f0(�)

∑
σ=±1

P̃�(σ ) exp(−sδσ,+1)

⎤
⎦ = e−s

N∏
k �=2

[∫ 1

0
d� f0(�)[g(�)e−s + (1 − g(�))]

]
, (B3)

and

I−(N − 1, s) = e−s
N∏

k �=2

⎡
⎣∫ 1

0
d� f0(�)

∑
σ=±1

P̃�(σ ) exp(−sδσ,−1)

⎤
⎦ = e−s

N∏
k �=2

[∫ 1

0
d� f0(�)[g(�) + (1 − g(�))e−s]

]
. (B4)

033250-14



PRICE OF INFORMATION IN GAMES OF CHANCE: A … PHYSICAL REVIEW RESEARCH 6, 033250 (2024)

Using f0(ρ2) = 1, g(ρ2) = θ (ρ2 − 1/2) and the symmetry condition 1 − g(ρ2) = g(1 − ρ2) (which further implies∫ 1
0 dρ2 g(ρ2) = ∫ 1

0 dρ2(1 − g(ρ2)), we get that the ρ dependence drops out, and

E0

[
δ
σt ,σ

(2)
t

Nt

]
=

∫ ∞

0
ds e−s

(
1

2
e−s + 1

2

)N−1 ∫ 1

0
dρ2g(ρ2) = 2 − 21−N

N

∫ 1

0
dρ2g(ρ2), (B5)

independent of ρ. Computing the integral explicitly, leads to Eq. (22), showing that the expectation is always negative. This is
expected as—in the event of all players betting on the wrong outcome—the “dealer” would keep the total entry fee collected
from the players, which would not be redistributed among them.

In the next subsection, we perform the same calculation but this time assuming the viewpoint of player 2, who does not know
the actual value of the coin bias ρ and will therefore use their own estimate ρ2 in lieu of ρ.

2. Average E0,�ρ
Here we compute the expected wealth change, from the point of view of player 2 (or, equivalently, any other uninformed

player), using the estimate ρ2 to replace the true, unknown, coin bias ρ. We refer to this expectation as E0,�ρ
[�W2] to remark the

use of a proxy for ρ in the computation of Eq. (20), rather than leaving it as a free parameter, even though it eventually drops
out. The computation is carried out as before, starting from

E0,�ρ
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δ
σt ,σ
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t

Nt

]
=

∫ ∞

0
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0
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∑
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∑
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σ
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t · · ·
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e
−sδ

σt ,σ
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t (B6)

=
∫ ∞

0
ds

∫ 1

0
dρ2 f0(ρ2)[ρ2g(ρ2)I+(N − 1, s) + (1 − ρ2)(1 − g(ρ2))I−(N − 1, s)], (B7)

where I±(N − 1, s) are defined in Eqs. (B3) and (B4).
Assuming again that all uninformed players will estimate

the bias parameter of the coin uniformly in [0,1], we get again
for g(�) = θ (� − 1/2) that

I+(N − 1, s) = I−(N − 1, s) = e−s

[
1

2
e−s + 1

2

]N−1

, (B8)

from which it follows that

E0,�ρ

[
δ
σt ,σ

(2)
t

Nt

]
=

∫ ∞

0
ds e−s

(
1

2
e−s + 1

2

)N−1

× E0,�ρ
[
δ
σt ,σ

(2)
t

] = 3

4

2 − 21−N

N
, (B9)

where

E0,�ρ
[
δ
σt ,σ

(2)
t

] =
∫ 1

0
dρ2(ρ2g(ρ2) + (1 − ρ2)(1 − g(ρ2)))

= 3

4
(B10)

is the winning probability estimated by player 2, who does not
have any knowledge of the actual bias of the coin.

Taking the expectation of Eq. (6) and inserting Eq. (B9),
we get

E0,�ρ
[�W2] = −M + M

3(1 − 2−N )

2
= 1

2
M

(
1 − 3

2N

)
.

(B11)

Comparing Eqs. (B11) and (22), we find that E0,�ρ
[�W2] >

E0[�W2]. This is intuitive, as in E0,�ρ
the player is using

the same parameter ρ2 to estimate their best strategy and
the actual bias of the coin, which obviously leads to a more
optimistic outlook on their game.

APPENDIX C: CALCULATION OF WINNING
PROBABILITY FOR THE DATA HOLDER

AND ASYMPTOTICS FOR R → ∞
We compute here the probability that the data holder wins

the bet in a single round (estimated by the data holder them-
selves) assuming that they hold a string of the past R outcomes
and will use it to place their bet

ER
[
δ
σt ,σ

(1)
t

] =
∫ 1

0
dρ1 fR(ρ1)

∫ 1

0
dρ2 f0(ρ2) · · ·

∫ 1

0
dρN f0(ρN )

∑
σt =±1

Pρ1 (σt )
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σ
(1)
t =±1

P̃ρ1

(
σ

(1)
t

)

× δ
σt ,σ

(1)
t

∑
σ

(2)
t

P̃ρ2

(
σ

(2)
t

) · · ·
∑
σ

(N )
t

P̃ρN

(
σ

(N )
t

) =
∫ 1

0
dρ1 fR(ρ1)[ρ1g(ρ1) + (1 − ρ1)(1 − g(ρ1))]. (C1)
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Here, we have used the fact that the data holder (player 1)
will estimate the actual coin bias and the parameter appearing
in their own best strategy as ρ1, which is drawn from the
posterior pdf fR(ρ1) given in Eq. (25). We also used that the
betting distributions P̃� are normalized to unity.

Performing the elementary integral in Eq. (C1) with
g(ρ1) = θ (ρ1 − 1/2) and fR(ρ1) given in Eq. (25) we get

ER
[
δ
σt ,σ

(1)
t

] = (R + 1)!

H!(R − H )!2R+2

× [F (H + 1, R − H ) + F (R − H + 1, H )]

=: �R(H ), (C2)

where F (x, y) is defined in Eq. (29) in terms of the 2F1 hyper-
geometric function.

We can now compute the asymptotics �R(αR) for large R
for a fraction 0 � α � 1 of heads seen in the long string of
data held by player 1. From Eq. (C2), we need the following
saddle-point asymptotics:

F (αR + 1, R − αR) =
∫ 1

0
dt (1 + t )αR+1(1 − t )R(1−α)

=
∫ 1

0
dt (1 + t ) exp[Rgα (t )] (C3)

F (R − αR + 1, αR) =
∫ 1

0
dt (1 + t )R−αR+1(1 − t )αR

=
∫ 1

0
dt (1 + t ) exp[Rg1−α (t )], (C4)

with

gα (t ) = α log(1 + t ) + (1 − α) log(1 − t ), (C5)

from which

g′
α (t�) = 0 ⇒ t� = 2α − 1, (C6)

which is within the integration interval for 1/2 < α < 1. Us-
ing the Stirling approximation for the prefactor

(R + 1)!

H!(R − H )!2R+m
∼ e−R[α log(1−α)+(1−α) log(1−α)+log(2)]

× 1

2m

√
R

2πα(1 − α)
(C7)

and computing gα (t�), we see that the leading exponential
terms cancel out exactly, and for m = 2 combining all the
prefactors together we finally obtain Eq. (31) of the main text.

APPENDIX D: CALCULATION OF ER,r

We start from Eq. (36)

ER,r

[
δ
σt ,σ

(1)
t

Nt

]
=

∫ ∞

0
ds

∫ 1

0
dρ1 fR,r (ρ1)

∫ 1

0
dρ2 fr,r (ρ2) · · ·

∫ 1

0
dρN f0(ρN )

∑
σt =±1

Pρ1 (σt )
∑

σ
(1)
t =±1

P̃ρ1

(
σ

(1)
t

)

× δ
σt ,σ

(1)
t

e
−sδ

σt ,σ
(1)
t

∑
σ

(2)
t

P̃ρ2

(
σ

(2)
t

)
e
−sδ

σt ,σ
(2)
t · · ·

∑
σ

(N )
t

P̃ρN

(
σ

(N )
t

)
e
−sδ

σt ,σ
(N )
t (D1)

=
∫ ∞

0
ds

∫ 1

0
dρ1 fR,r (ρ1)

∫ 1

0
dρ2 fr,r (ρ2)[ρ1g(ρ1)I+(N − 2, s)χ+(ρ2, s)

+ (1 − ρ1)(1 − g(ρ1))I−(N − 2, s)χ−(ρ2, s)], (D2)

where I± are defined in Eqs. (B3) and (B4) and

χ+(�, s) = g(�)e−s + 1 − g(�), (D3)

χ−(�, s) = g(�) + (1 − g(�))e−s. (D4)

Here, we have used factorization of the summations after
Nt is lifted up using the s-identity, and the fact that N − 2
summations (corresponding to the uninformed players) are
identical.

Also, for uniform priors f0, we have that

I+(N − 2, s) = I−(N − 2, s) = e−s

[
1

2
e−s + 1

2

]N−2

, (D5)

leading to

ER,r

[
δ
σt ,σ

(1)
t

Nt

]
= CN XR,r (x, h) + DNYR,r (x, h), (D6)

where

CN =
∫ ∞

0
ds e−2s

[
1

2
e−s + 1

2

]N−2

= 2N + 22−N − 4

(N − 1)N
,

(D7)

DN =
∫ ∞

0
ds e−s

[
1

2
e−s + 1

2

]N−2

= 2 − 22−N

N − 1
, (D8)

and

XR,r (x, h) =
∫ 1

0
dρ1 fR,r (ρ1)

∫ 1

0
dρ2 fr,r (ρ2)[ρ1g(ρ1)g(ρ2)

+ (1 − ρ1)(1 − g(ρ1))(1 − g(ρ2))], (D9)

YR,r (x, h) =
∫ 1

0
dρ1 fR,r (ρ1)

∫ 1

0
dρ2 fr,r (ρ2)[ρ1g(ρ1)

× (1 − g(ρ2)) + (1 − ρ1)(1 − g(ρ1))g(ρ2)].

(D10)
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XR,r (x, h) =
∫ 1

0
dρ1 fR,r (ρ1)

∫ 1

0
dρ2 fr,r (ρ2)

× [ρ1g(ρ2)g(ρ1) + (1 − ρ1)(1 − g(ρ2))

× (1 − g(ρ1))] = J1 + J2, (D11)

where

J1 =
∫ 1

1/2
dρ2 fr,r (ρ2)

∫ 1

1/2
dρ1 fR,r (ρ1)ρ1, (D12)

J2 =
∫ 1/2

0
dρ2 fr,r (ρ2)

∫ 1/2

0
dρ1 fR,r (ρ1)(1 − ρ1). (D13)

First, we have∫ 1

1/2
dρ2 fr,r (ρ2) = Cr,h

1

2r+1
F (h, r − h), (D14)

∫ 1

1/2
dρ1 fR,r (ρ1)ρ1 = CR,x+h

2R+2
F (h + x + 1, R − (h + x)),

(D15)∫ 1/2

0
dρ2 fr,r (ρ2) = Cr,h

1

2r+1
F (r − h, h), (D16)

∫ 1/2

0
dρ1 fR,r (ρ1)(1 − ρ1)

= CR,h+x

2R+2
F (R − (h + x) + 1, h + x), (D17)

where Cr,h = (r + 1)!/(h!(r − h)!) and CR,x+h = (R +
1)!/((h + x)!(R − (h + x))!). F (x, y) is defined in Eq. (29).

Therefore,

XR,r (x, h) = CR,h+xCr,h

2R+r+3

× {F (h, r − h)F (h + x + 1, R − (h + x))

+ F (r − h, h)F (R − (h + x) + 1, h + x)}.
(D18)

Similarly,

YR,r (x, h) =
∫ 1

0
dρ1 fR,r (ρ1)

∫ 1

0
dρ2 fr,r (ρ2)[ρ1g(ρ1)

× (1 − g(ρ2)) + (1 − ρ1)(1 − g(ρ1))g(ρ2)]

= K1 + K2, (D19)

where

K1 =
∫ 1/2

0
dρ2 fr,r (ρ2)

∫ 1

1/2
dρ1 fR,r (ρ1)ρ1, (D20)

K2 =
∫ 1

1/2
dρ2 fr,r (ρ2)

∫ 1/2

0
dρ1 fR,r (ρ1)(1 − ρ1). (D21)

Using the previously computed elementary integrals, we can
immediately write

YR,r (x, h) = CR,h+xCr,h

2R+r+3

× {F (r − h, h)F (h + x + 1, R − (h + x))
+ F (h, r − h)F (R − (h + x) + 1, h + x)}.

(D22)

APPENDIX E: CALCULATION OF Er,r

We start from Eq. (E2)

Er,r

[
δ
σt ,σ

(2)
t

Nt

]
=

∫ ∞

0
ds

∫ 1

0
dρ1 fr,r (ρ1)

∫ 1

0
dρ2 fr,r (ρ2) · · ·

∫ 1

0
dρN f0(ρN )

∑
σt =±1

Pρ2 (σt )
∑

σ
(2)
t =±1

P̃ρ2

(
σ

(2)
t

)

× δ
σt ,σ

(2)
t

e
−sδ

σt ,σ
(2)
t

∑
σ

(1)
t

P̃ρ1

(
σ

(1)
t

)
e
−sδ

σt ,σ
(1)
t · · ·

∑
σ

(N )
t

P̃ρN

(
σ

(N )
t

)
e
−sδ

σt ,σ
(N )
t (E1)

=
∫ ∞

0
ds

∫ 1

0
dρ1 fr,r (ρ1)

∫ 1

0
dρ2 fr,r (ρ2)[ρ2g(ρ2)I+(N − 2, s)χ+(ρ1, s)

+ (1 − ρ2)(1 − g(ρ2))I−(N − 2, s)χ−(ρ1, s)], (E2)

where χ± is defined in Eqs. (D3) and (D4), and I± are defined in Eqs. (B3) and (B4). Also, using Eq. (D5), we have that

Er,r

[
δ
σt ,σ

(2)
t

Nt

]
= CN Xr (h) + DNYr (h), (E3)

where CN and DN are defined, respectively, in Eqs. (D7) and (D8), also

Xr (h) =
∫ 1

0
dρ1 fr,r (ρ1)

∫ 1

0
dρ2 fr,r (ρ2)[ρ2g(ρ2)g(ρ1) + (1 − ρ2)(1 − g(ρ2))(1 − g(ρ1))], (E4)

Yr (h) =
∫ 1

0
dρ1 fr,r (ρ1)

∫ 1

0
dρ2 fr,r (ρ2)[ρ2g(ρ2)(1 − g(ρ1)) + (1 − ρ2)(1 − g(ρ2))g(ρ1)]. (E5)
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Xr (h) =
∫ 1

0
dρ1 fr,r (ρ1)

∫ 1

0
dρ2 fr,r (ρ2)[ρ2g(ρ2)g(ρ1)

+ (1 − ρ2)(1 − g(ρ2))(1 − g(ρ1))]

= J ′
1 + J ′

2, (E6)

where

J ′
1 =

∫ 1

1/2
dρ1 fr,r (ρ1)

∫ 1

1/2
dρ2 fr,r (ρ2)ρ2, (E7)

J ′
2 =

∫ 1/2

0
dρ1 fr,r (ρ1)

∫ 1/2

0
dρ2 fr,r (ρ2)(1 − ρ2). (E8)

First, we have

∫ 1

1/2
dρ1 fr,r (ρ1) = Cr,h

1

2r+1
F (h, r − h), (E9)

∫ 1

1/2
dρ2 fr,r (ρ2)ρ2 = Cr,h

1

2r+2
F (h + 1, r − h), (E10)

∫ 1/2

0
dρ1 fr,r (ρ1) = Cr,h

1

2r+1
F (r − h, h), (E11)

∫ 1/2

0
dρ2 fr,r (ρ2)(1 − ρ2) = Cr,h

1

2r+2
F (r − h + 1, h),

(E12)

where Cr,h = (r + 1)!/(h!(r − h)!) and F (x, y) is defined in
Eq. (29).

Therefore,

Xr (h) = (Cr,h)2 1

22r+3
{F (h, r − h)F (h + 1, r − h)

+ F (r − h, h)F (r − h + 1, h)}. (E13)

Similarly,

Yr (h) =
∫ 1

0
dρ1 fr,r (ρ1)

∫ 1

0
dρ2 fr,r (ρ2)

× [ρ2g(ρ2)(1 − g(ρ1)) + (1 − ρ2)(1 − g(ρ2))g(ρ1)]

= K ′
1 + K ′

2, (E14)

where

K ′
1 =

∫ 1/2

0
dρ1 fr,r (ρ1)

∫ 1

1/2
dρ2 fr,r (ρ2)ρ2, (E15)

K ′
2 =

∫ 1

1/2
dρ1 fr,r (ρ1)

∫ 1/2

0
dρ2 fr,r (ρ2)(1 − ρ2). (E16)

Using the previously computed elementary integrals, we can
immediately write

Yr (h) = (Cr,h)2 1

22r+3
{F (r − h, h)F (h + 1, r − h)

+ F (h, r − h)F (r − h + 1, h)}. (E17)

APPENDIX F: EXPLICIT EXPRESSIONS
FOR �min AND �max FOR M = 1

Let us put ourselves in the simplified setting M = 1 (single
round of the game). Recalling Eq. (6) and the various inter-
mediate results,

ER

[
δ
σt ,σ

(1)
t

Nt

]
= 2 − 21−N

N
�R(H ), (F1)

ER,r

[
δ
σt ,σ

(1)
t

Nt

]
= CN XR,r (x, h) + DNYR,r (x, h), (F2)

Er,r

[
δ
σt ,σ

(2)
t

Nt

]
= CN Xr (h) + DNYr (h), (F3)

E0

[
δ
σt ,σ

(2)
t

Nt

]
= 1

2

2 − 21−N

N
, (F4)

we get


min/φ = max[(2 − 21−N )�R(h + x)

− NCN XR,r (x, h) − NDNYR,r (x, h), 0], (F5)


max/φ = max[NCN Xr (h) + NDNYr (h)

− 1
2 (2 − 21−N ), 0], (F6)

where

�R(H ) = (R + 1)!

H!(R − H )!2R+2
[F (H + 1, R − H )

+ F (R − H + 1, H )], (F7)

with

F (x, y) =
∫ 1

0
dt (1 + t )x(1 − t )y = 2F1(1,−x; y + 2; −1)

y + 1
.

(F8)

Furthermore, we have

CN = 2N + 22−N − 4

(N − 1)N
, (F9)

DN = 2 − 22−N

N − 1
, (F10)

Xr (h) = (Cr,h)2 1

22r+3
{F (h, r − h)F (h + 1, r − h)

+ F (r − h, h)F (r − h + 1, h)}, (F11)

Yr (h) = (Cr,h)2 1

22r+3
{F (r − h, h)F (h + 1, r − h)

+ F (h, r − h)F (r − h + 1, h)}, (F12)
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XR,r (x, h) = CR,h+xCr,h

2R+r+3

× {F (h, r − h)F (h + x + 1, R − (h + x))

+ F (r − h, h)F (R − (h + x) + 1, h + x)},
(F13)

YR,r (x, h) = CR,h+xCr,h

2R+r+3

× {F (r − h, h)F (h + x + 1, R − (h + x))

+ F (h, r − h)F (R − (h + x)

+ 1, h + x)}, (F14)

in terms of constants Cp,q = (p + 1)!/(q!(p − q)!).
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