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Phase modulation of directed transport, energy diffusion, and quantum
scrambling in a Floquet non-Hermitian system
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We investigate both analytically and numerically the wavepacket’s dynamics in momentum space for a Floquet
non-Hermitian system with a periodically kicked driven potential. We have deduced the exact expression of a
time-evolving wavepacket under the condition of quantum resonance. With this analytical expression, we can
investigate thoroughly the temporal behaviors of the directed transport, mean energy, and quantum scrambling.
We find interestingly that, by tuning the relative phase between the real part and imaginary part of the kicking
potential, one can manipulate the directed transport, mean energy, and quantum scrambling efficiently: When
the phase equals to π/2, we observe a maximum directed transport and mean energy, while a minimum
scrambling phenomenon protected by the PT symmetry; when the phase is π , both the directed transport and
the time dependence of the energy are suppressed; in contrast, the quantum scrambling is enhanced by the
non-Hermiticity. For the quantum nonresonance case, we numerically find that the quantum interference effects
lead to dynamical localization, characterized by the suppression of the directed transport, the time dependence
of the energy, and quantum scrambling. Interestingly, these suppression effects can be adjusted by the phase of
the non-Hermitian kicking potential. Possible applications of our findings are discussed.
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I. INTRODUCTION

Engineering the wavepacket’s dynamics, such as directed
transport [1–4], energy diffusion [5–9], and information
scrambling [10–12], is of great interest both theoretically and
experimentally across various fields of physics [13,14]. The
phase incorporated in Floquet driven potentials is vitally a
knob to manipulate the quantum dynamics [15]. For example,
the temporal modulation of the phase of laser standing waves
can be used to create artificial gauge fields for ultracold neu-
tral atoms, mimicking the transport behavior of electrons in
a synthetic nanotube, with the Aharonov-Bohm flux control-
lable by the phase [16–18]. The quasiperiodically modulated
phase of the external driven potential even induces the forma-
tion of synthetic dimension [19–22], wherein the Anderson
metal-insulator transition of disorder systems is experimen-
tally observed by using a variant of the kicked rotor model
[23–25]. More significantly, complex potentials are achiev-
able in atom-optical experiments, where precise control over
the relative phase between the real and imaginary components
of this non-Hermitian potential allows for the realization of
distinct symmetry classes of systems [26,27].
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Nowadays, non-Hermiticity is widely acknowledged as
a fundamental extension of conventional quantum mechan-
ics [28,29] because of its natural incorporation of the gain
and loss or nonreciprocity in diverse systems like photonic
crystals [30–35], acoustic arrays [36,37], and electrical cir-
cuits [38,39]. The emergence of the complex eigenspectra
of non-Hermitian systems gives rise to rich phenomena with
no Hermitian counterpart. For example, as the system adi-
abatically crosses the exceptional points at which both the
eigenvalues and eigenstates coalesce, the Landau-Zener tun-
neling emerges, indicating the breakdown of adiabaticity
[40–43]. The spontaneous PT -symmetry breaking induces
the quantized acceleration of directed transport [44] and
the quantized response of quantum scrambling [45] in
non-Hermitian chaotic systems [46]. In addition, various topo-
logical symmetry classes, including point gap and line gap
eigenbands in the complex plane, have been recognized as
having significant impacts on edge-state transport behavior,
for instance non-Hermitian skin effects [47–50]. Besides,
the non-Hermitian potential can be engineered effectively in
versatile platforms of photonic systems [51,52] and atom-
optics [27], which unveils the possibilities for manipulating
the wavepacket’s dynamics in a controllable manner.

In this context, we investigate both analytically and nu-
merically the phase modulation of the directed transport, the
time dependence of the energy, and quantum scrambling, in
a non-Hermitian quantum kicked rotor (NQKR) model with
quantum resonance condition. The directed transport of the
NQKR model is defined by the time evolution of the expecta-
tion of momentum. We find that the relative phase between
the real part and imaginary part of the kicking potential
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dominates the wavepacket’s dynamics. Specifically, as time
evolves, the directed transport undergoes a crossover from
quadratic growth, dependent on the non-Hermitian driving
strength, to linear growth, which becomes independent of the
non-Hermitian driving strength. Such a dynamical crossover
from non-Hermiticity dependent regime to non-Hermiticity
independent regime is also observed in the ballistic diffu-
sion of mean energy. Furthermore, we unveil the quadratic
growth in the out-of-time ordered correlators (OTOCs) during
the initial stages of time evolution and a crossover to linear
growth after a sufficiently long period, both influenced by
the non-Hermitian driving strength. It is worth noting that
the OTOCs we employed coincide with the variance of the
energy. Interestingly, when the phase equals to π/2 ensuring
PT symmetry, we observe a maximum transport behavior and
a minimum scrambling phenomenon. At a phase of π , both the
directed transport and the time dependence of the energy are
suppressed, in contrast the quantum scrambling is enhanced
by the non-Hermiticity.

For quantum nonresonance case, we find the dynamical
localization [53–55] for the non-Hermitian system, charac-
terized by the saturation behavior of directed transport, mean
energy, and OTOCs during time evolution. Interestingly, their
saturated values can be effectively adjusted by the phase of
non-Hermitian kicking potential. In the semiclassical regime
(i.e., h̄eff → 0), the OTOCs increase exponentially with time,
and the growth rate is larger than the classical Lyapunov
exponent of the Hermitian kicked rotor model. Our find-
ings provide theoretical guidance for Floquet engineering
of quantum dynamics in non-Hermitian systems, which has
significant implications in various physics fields, including
quantum chaotic control and condensed matter physics.

The paper is organized as follows. In Sec. II, we describe
the system. In Sec. III, we show the phase modulation of
wavepacket’s dynamics with an emphasis on the directed
transport, the time-dependence of the energy, and quantum
scrambling in quantum resonance case. In Sec. IV, we discuss
the wavepacket’s dynamics in quantum nonresonance case. A
summary is presented in Sec. V.

II. NQKR MODEL

The dimensionless Hamiltonian of the NQKR reads

H = p2

2
+ VK (θ )

∑
n

δ(t − tn) , (1)

with the kicking potential

VK (θ ) = K cos(θ ) + iλ cos(θ + φ), (2)

where p = −ih̄eff∂/∂θ is the angular momentum operator,
and θ is the angle coordinate, satisfying the commutation
relation [θ, p] = ih̄eff, with h̄eff the effective Planck constant.
The parameters K and λ represent the strength of the real and
imaginary components of the kicking potential, respectively.
The relative phase between these two components is deter-
mined by the parameter φ. This kind of complex potential has
been realized in the atom-optics experiment [27].

In the atom-optics experiment, the complex potential in
Eq. (2) has been realized by the superposition of two standing
laser fields, interacting with ultracold atoms that encompass

FIG. 1. Schematic of the experiment for the realization complex
driven potential. The far-tuned standing laser coupling E1 and E−

2

generates a dipole force on the atoms, representing the real part of
the complex potential. Meanwhile, the resonant laser facilitates the
transition from E1 to E+

2 . The ultracold atoms in E+
2 then transition

to Ei, leading to particle loss and mimicking the imaginary part of
the complex potential.

a ground state E1, excited states with two hyperfine levels
E±

2 , and a noninteracting state Ei (see Fig. 1) [26,27]. The
far-tuned standing laser, coupling E1 and E−

2 , generates a
dipole force on the atoms, emulating the real component of the
complex potential. The resonant laser facilitates the transition
from E1 to E+

2 . The ultracold atoms in E+
2 subsequently tran-

sition to Ei, resulting in particle loss and thereby mimicking
the imaginary part of the complex potential. The precise mod-
ulation of the relative phase between the real and imaginary
parts of the complex potential is achievable by adjusting the
distance between the atomic beam and the mirror surface. The
delta-kicking potential is emulated using a sequence of short
square pulses created through the modulation of the standing
wave by an acousto-optical modulator [24].

The eigenequation of angular momentum operator is
p|ϕn〉 = pn|ϕn〉 with eigenvalue pn = nh̄eff and eigenstate
〈θ |ϕn〉 = einθ /

√
2π . With the completed basis of |ϕn〉, an

arbitrary state can be expanded as |ψ〉 = ∑
n ψn|ϕn〉. One-

period evolution of the quantum state from tn to tn+1 is
governed by |ψ (tn+1)〉 = U |ψ (tn)〉, where the Floquet op-
erator U = Uf UK (or U = UKUf ) is composed of the free
evolution Uf = exp(−ip2/2h̄eff ) and the kicking evolution
UK = exp[−iVK (θ )/h̄eff].

III. QUANTUM RESONANCE CASE

In the quantum resonance condition (i.e., h̄eff = 4π ),
Uf (pn) = exp(−in22π ) = 1, indicating that the Uf is unity.
Therefore, the two expressions of the Floquet operator U =
Uf UK and U = UKUf are equivalent. One can get the ex-
act express of the quantum state after arbitrary kick period,
i.e., |ψ (t )〉 = Ut

K |ψ (t0)〉 = exp[−itVK (θ )/h̄eff]|ψ (t0)〉. In ad-
dition, the quantum resonance condition is of particular
interest in that the generalized models of the kicked rotor
based on this fine tuned point exhibit controllable quantum
walk [56], topologically protected transport [57,58] and quan-
tum Hall effect [59].

Without loss of generality, we choose the ground state
of the angular momentum operator as the initial state, i.e.,
ψ (θ, t0) = 1/

√
2π . Then, the quantum state |ψ (t )〉 in coor-

dinate space has the expression

ψ (θ, t ) = 1√
2π

exp

{−it

4π
[K cos(θ ) + iλ cos(θ + φ)]

}
,

(3)
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whose norm takes the form

N (t ) =
∫ π

−π

|ψ (θ, t )|2dθ = I0

(
λt

2π

)
. (4)

Here, I0(x) denotes the modified Bessel function of the first
kind with zeroth order (See Appendix). The nonunitary evo-
lution is characterized by the unbounded growth of the N (t )
with time, i.e., N (t ) ≈ exp(λt/2π )

√
2π/λt for λt/2π � 1.

In the present paper, we investigate both analytically
and numerically the dynamics of the momentum current
〈p(t )〉, mean energy 〈p2(t )〉, and quantum scrambling C(t ) =
−〈[A(t ), B]2〉 [60–62]. Note that the C(t ) is defined in
the Heisenberg picture, with A(t ) = U †(t )AU (t ) and 〈·〉 =
〈ψ (t0)| · |ψ (t0)〉 indicates the expectation value of the op-
erator with respect to the initial state [63,64]. To reduce
the impact of the norm to observables, we introduce
the rescaled quantities as 〈p(t )〉 = ∑

n pn|ψn|2/N (t ) and
〈p2(t )〉 = ∑

n p2
n|ψn|2/N (t ) [65].

We use the operators A = e−iεp and B = |ψ (t0)〉〈ψ (t0)|
to construct OTOCs. Straightforward derivation yields the
relation C(t ) = N 2(t ) − |〈ψ (t )|e−iεp|ψ (t )〉|2 [66]. Then, a
natural definition of the rescaled OTOCs is given by C(t ) =
1 − |〈ψ (t )|e−iεp|ψ (t )〉|2/N 2(t ) [66]. We consider the case
ε � 1. Our main results are described by the three following
relations:

〈p(t )〉 = −K sin(φ)
I1

(
λt
2π

)
I0

(
λt
2π

) t, (5)

〈p2(t )〉 = K2 sin2(φ)t2

+ 2π

λ

I1
(

λt
2π

)
I0

(
λt
2π

) [K2 cos(2φ) + λ2]t, (6)

and

C(t ) ≈ K2ε2 sin2(φ)t2

⎧⎨
⎩1 −

[
I1

(
λt
2π

)
I0

(
λt
2π

)
]2

⎫⎬
⎭

+ 2πε2t

λ

I1
(

λt
2π

)
I0

(
λt
2π

) [K2 cos(2φ) + λ2], (7)

where I1(x) denotes the modified Bessel function of the first
kind with order one (see Appendix).

A. Directed transport

Figure 2(a) shows that, for short time, the 〈p〉 increases
in the quadratic function of time with the coefficient de-
pending on λ. Nevertheless, the 〈p〉 turns to grow with time
linearly in a long term evolution with the coefficient not
depending on λ. Such a crossover occurs around a critical
time tc. In addition, one can see perfect agreement between
numerical results and analytical prediction in Eq. (5). For
λt/2π � 1, we have the approximations I0(λt/2π ) ≈ 1 and
I1(λt/2π ) ≈ λt/4π (see Appendix). Taking these relations to
Eq. (5) yields the relation 〈p(t )〉 ≈ −Kλ sin(φ)t2/4π . Appar-
ently, the growth rate 〈p(t )〉/t2 = −Kλ sin(φ)/4π increases
with the increase of λ, which is validated by our numerical re-
sults. For λt/2π � 1, substituting the approximations of both
I0(λt/2π ) ≈ exp(λt/2π )(1 + π/4λt )/

√
λt and I1(λt/2π ) ≈

exp(λt/2π )(1 − 3π/4λt )/
√

λt (See Appendix) into Eq. (5)

FIG. 2. Left panels: Time dependence of the 〈p〉 (a), 〈p2〉 (c),
and C (e) for λ = 0.3 (squares), 0.5 (circles), and 1 (triangles). Red
solid lines in (a), (c), and (e) indicate our analytical predictions in
Eqs. (5), (6), and (7), respectively. Arrows mark the threshold value
of tc. Geen-dashed lines denote a square function of time. Violet
dash-dotted lines in (a) and (e) denote the linear function of time,
while in (b) it indicates the square function of time. Right panels: The
values of Sp/λ (b), SE (d), and SC/ε2 (f) in the parameter space (t, λ),
which show three distinct zones. Dashed lines denote tc = 2π/λ. In
(e) and (f), the translation parameter is ε = 10−5. The parameters are
K = 1 and φ = −π/6.

results in the linear growth 〈p(t )〉 ≈ −K sin(φ)(t − π/|λ|)
with time, for which the coefficient, i.e., −K sin(φ) is inde-
pendent on λ. The above estimations uncover the mechanism
for the crossover from quadratic-law growth to the linear
growth as time evolves. In addition, our findings of the si-
nusoidal relationship between mean momentum and phase φ

pave the way for Floquet engineering of the directed transport
in non-Hermitian chaotic systems.

To see the change of 〈p(t )〉’s evolution between short and
long time behavior, we investigate the second derivative of
the mean momentum Sp = d2〈p(t )〉/dt2. Note that, in the
following derivation, for brevity, we use I j to replace I j ( λt

2π
)

( j = 0, 1, 2...). The analytical expression takes the form

Sp = − K sin(φ)
λ

2π

[
1 + I2

I0
− 2

(
I1

I0

)2
]

+ K sin(φ)
λ2t

4π2

[
3I1 − I3

4I0
+ 3I1I2

2I2
0

− 2

(
I1

I0

)3
]
. (8)

Taking into account the approximation of I j ( j = 0, 1, 2, 3)
under two different conditions, namely, when λt/2π � 1 and
when λt/2π � 1 (see Appendix), we can derive approximate
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FIG. 3. Momentum distributions for short (a) and long (b) time
evolution with λ = 0.3. In (a), red-solid lines indicate the exponen-
tial fitting |ψ (p)|2 ∼ exp(−|p|/ξ ) with ξ = 2.1 and 3.43 for t = 2
and 10 respectively. In (b), red-solid lines indicate the Gaussian
function fitting |ψ (p)|2 ∼ exp[−(p − pc )2/σ ] with (pc = 500, σ =
3.9 × 104) and (pc = 1500, σ = 1.2 × 105) for t = 1000 and 3000
respectively. (c): Time dependence of the inverse participation ratio

R(t ) = R(t ) − R(t0) for λ = 0.3 (squares), 0.5 (circles), and 1
(triangles). Here, R(t0) denotes the initial value of the inverse par-
ticipation ratio. Red-solid line and cyan dash-dotted lines indicate
the power law growth, i.e., R ∝ tα with α = 2 and 0.5, respectively.
Arrow marks the critical time tc. Other parameters are same as in
Fig. 2(a).

expressions

Sp ≈
{−K sin(φ)λ

2π
, for λt

2π
� 1,

0, for λt
2π

� 1,
(9)

In Fig. 2(b), we have plotted the ratio Sp/λ for various
values of t and λ. Three distinct zones can be observed: (i)
a λ-dependent t2-law zone with Sp/λ = −K sin(φ)/2π for
t � tc = 2π/λ; (ii) a λ-independent t-law zone with Sp = 0
for t � tc; and (iii) a crossover zone for t ∼ tc.

In the λ-dependent t2-law zone, the quantum state
is exponentially localized in momentum space, i.e.,
|ψ (p)|2 ∼ exp(−|p|/ξ ), whose localization length ξ increases
with time [see Fig. 3(a)]. Detailed observations reveal that
this exponentially localized shape of the quantum state is
asymmetric around p = 0. This kind of asymmetric spreading
of the quantum state in momentum space results in the growth
of mean momentum with time. While in the λ-independent
t-law zone, the momentum distribution can be well described

by the Gaussian function |ψ (p)|2 ∼ exp[−(p − pc)2/σ ] [see
Fig. 3(b)]. Interestingly, the comparison of the momentum
distribution in different time demonstrates that the center
momentum pc linearly increases with time, i.e., pc(t ) = Dt
for which the growth rate equal to that of the 〈p(t )〉, i.e.,
D = d〈p(t )〉/dt . Therefore, the linear growth of the mean
momentum for t � tc originates from the directed movement
of the soliton-like wavepacket in momentum space. In
addition, we would like to stress that the width σ of the
Gaussian wavepacket also increases with time.

We numerically investigate the inverse participation ratio
(IPR) R = (

∑
n |ψn|2)2/

∑
n |ψn|4 to measure the localization

property of quantum states [67–69]. Our results show that
for a specific value of λ [e.g., λ = 0.3 in Fig. 3(c)], R in-
creases according to a power law of time, R ∝ tα , with the
exponent being 2 for t � tc and 0.5 for t � tc. Note that,
for exponentially localized wave functions, i.e., |ψ (p)|2 ∼
exp(−|p|/ξ ), the R is proportional to the localization length
ξ . Therefore, our results demonstrate that the localization
length ξ increases quadratically with time for t � tc. On the
other hand, for Gaussian function wavepacket, i.e., |ψ (p)|2 ∼
exp[−(p − pc)2/σ ], straightforward derivation yields the re-
lation R ∝ √

σ . In our model, the quantum states can be
well described by the Gaussian wavepacket after a long-term
evolution, for which the variance is proportional to the C.
The linear increase of C for t � tc [see Fig. 2(c)] results
in the square-root law of the form R ∝ √

t . Our numerical
simulations indicate that the behavior near tc is a crossover
corresponding to a continuous change of the power exponents
from 2 to 0.5.

B. Time dependence of the energy

Figure 2(c) illustrates that the energy of the NQKR model
diffuses in a ballistic way, i.e., 〈p2(t )〉 = Gt2, which is in
perfect agreement with our analytical prediction in Eq. (6).
Interestingly, for t � tc, the diffusion rate G increases with the
non-Hermitian parameter λ, and for t � tc, it becomes inde-
pendent of λ. By approximating both I0(λt/2π ) and I1(λt/2π )
under two different limits, we can derive the approxi-
mate expression for Eq. (6), namely, 〈p2(t )〉 ≈ (K2 + λ2)t2/2
for t � tc and 〈p2(t )〉 ≈ K2 sin2(φ)t2 + 2πt[K2 cos(2φ) +
λ2]/|λ| for t � tc. This confirms the crossover from λ-
dependent behavior to λ-independent behavior. This crossover
can also be observed in the second derivative of the mean
square of momentum, denoted as SE = d2〈p2(t )〉/dt2,

SE = 2K2 sin2(φ) − 2πSp

Kλ sin(φ)
[K2 cos(2φ) + λ2], (10)

which can be approximated as

SE ≈
{

K2 + λ2, for λt
2π

� 1,

2K2 sin2(φ), for λt
2π

� 1.
(11)

In Figure 2(d), we present numerical results of SE based on
Eq. (10), which demonstrates the λ-dependent zone for t � tc,
a crossover zone for t ∼ tc, and the λ-independent zone for
t � tc. Our discovery of the sinusoidal dependence of SE on
phase φ provides a theoretical foundation for engineering the
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time dependence of the energy through non-Hermitian driven
potential.

C. Quantum scrambling

Based on the Taylor expansion e−iεp ≈ 1 − iεp for ε � 1,
we obtain the relations

C(t ) ≈ ε2[〈p2〉 − 〈p〉2]

= K2ε2 sin2(φ)t2

[
1 −

(
I1

I0

)2
]

+ 2πε2t

λ

I1

I0
[K2 cos(2φ) + λ2], (12)

which has two different asymptotic behaviors

C(t ) ≈
⎧⎨
⎩

ε2(K2+λ2 )
2 t2, for λt/2π � 1,

2πε2

|λ|
[ 1+cos(2φ)

2 K2 + λ2
]
t, for λt/2π � 1.

(13)

In Fig. 2(e), we show our numerical results for the time
evolution of C for different λ. It is evident that C exhibits a
quadratic growth with time for t � tc and a linear growth with
time for t � tc, with both behaviors being dependent on λ.
These distinct behaviors are also characterized by the second
derivative SC = d2C(t )/dt2. Straightforward derivation yields
the relation

SC = ε2

[
SE − 2

(
d〈p〉
dt

)2

− 2〈p〉Sp

]
, (14)

with

d〈p〉
dt

= −K sin(φ)

{
λt

4π

[
1 + I2

I0
− 2

(
I1

I0

)2
]

+ I1

I0

}
. (15)

By approximating the terms on the right side of Eq. (14) under
two different limits, we derive the approximate relation

SC ≈
{

ε2(K2 + λ2), for λt/2π � 1,

0, for λt/2π � 1.
(16)

Our numerical results, based on Eq. (14), clearly demon-
strate the λ-dependent quadratic growth zone for t � tc, the
crossover zone for t ∼ tc, and the λ-dependent linear growth
zone for t � tc [see Fig. 2(f)], validating our analytical pre-
diction in Eq. (16).

D. Some remarks on the relation between
phase manipulation and PT symmetry

The dependence of the long-time behavior of the 〈p〉, 〈p2〉,
and C on the phase φ opens the opportunity for the manipu-
lation of both the quantum transport and quantum scrambling
via the relative phase between the real part and the imaginary
part of the kicking potential VK (θ ) = K cos(θ ) + iλ cos(θ +
φ) [see Eq. (2)]. Interestingly, the potential is PT symmetric
when φ = π/2 [70]. In this situation, both directed trans-
port and mean energy reach their maximum values, namely,
〈p〉 ≈ −Kt and 〈p2〉 ≈ K2t2 since 〈p〉 and 〈p2〉 are sinusoidal
functions of φ, signaling the PT -symmetry protected trans-
port behaviors. In contrast, quantum scrambling is minimized,

FIG. 4. Time dependence of 〈p〉 (a), 〈p2〉 (c), and C (e) with λ =
1 for h̄eff = 4π + 
 with 
 = 0 (squares), 10−4 (circles), 10−3 (dia-
monds), 10−2 (triangles), and 10−1 (pentagrams). Arrow in (a) marks
the critical time t∗. (b) The 〈p〉 (circles) and 〈p2〉 (squares) vs φ for

 = 0.1. (d) The C (triangles) vs φ for 
 = 0.1. (f) The 〈p〉 (circles),
〈p2〉 (squares), and C (triangles) vs 
 for φ = −π/6. Red-solid lines
indicate power-law fittings ∝ t−β , with the exponent β being 0.44
for 〈p〉, 0.8 for 〈p2〉, and 0.5 for C. Other parameters are same as in
Fig. 2(a).

i.e., C ≈ 2πε2|λ|t because C behaves as a cosine function of
2φ (see Table I). For φ = π , the NQKR model is a general
non-Hermitian system that does not have PT symmetry, for
which the directed transport is totally suppressed, namely,
〈p〉 = 0, and the mean energy reduces as 〈p2〉 ∝ t . In contrast
the C is maximum C ≈ 2πε2t (K2 + λ2)/|λ| demonstrating
the non-Hermiticity enhanced quantum scrambling.

IV. QUANTUM NONRESONANCE CASE

It is well known that in the Hermitian kicked rotor model,
some interesting things, such as ergodicity breaking and
dynamical localization, occur in the quantum nonresonance
regime [71]. Therefore, we further investigate the dynamics
of momentum current, mean energy, and quantum scrambling
away from the quantum resonance regime, i.e., h̄eff = 4π +

. For a very small 
 [e.g., 
 = 10−4 in Fig. 4(a)], the 〈p〉
follows that of 
 = 0 during finite-time evolution, i.e., t < t∗,
and gradually saturates when t > t∗. Moreover, both the criti-
cal time t∗ and the saturation level decrease with the increase
of 
. It is reasonable to believe that the quantum interfer-
ence effects, which lead to dynamical localization, suppress
the directed transport in momentum space. The appearance
of dynamical localization of mean energy is shown clearly
in Fig. 4(c), where one can see that saturation level of 〈p2〉
decreases with the increase of 
. After a long-term evolution,
the OTOCs for a nonzero value of 
 [e.g., 
 = 10−4 in
Fig. 4(e)] exhibit saturation behavior as well. The saturated
value decreases as 
 increases, indicating the freezing of
quantum scrambling due to dynamical localization.

We numerically investigate the saturation values of the
momentum current, mean energy, and quantum scrambling,
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TABLE I. Symmetry and the long-time behavior of the 〈p〉, 〈p2〉, and C for φ = −π/2 and π .

Phase φ −π/2 π

Symmetry class PT non-PT
Directed transport 〈p(t )〉 ∝ −K sin(φ)t ∝ Kt 0
Mean energy 〈p2(t )〉 ∝ K2 sin2(φ)t2 + 2π[K2 cos(2φ) + λ2]t/|λ| ∝ K2t2 ∝ 2π

|λ| (K2 + λ2)t

Quantum scrambling C(t ) ∝ 2πε2

|λ|
[ 1+cos(2φ)

2 K2 + λ2
]
t ∝ 2πε2λt ∝ 2πε2

|λ| (K2 + λ2)t

denoted by 〈p〉, 〈p2〉, and C, respectively, for different φ [72].
Our results show that 〈p〉 exhibits three different behaviors:
(i) a linear decrease for φ smaller than ≈ π/2; (ii) a linear
increase for φ larger than ≈ π/2 and smaller than ≈3π/2;
and (iii) a linear decrease for φ > 3π/2 [see Fig. 4(b)].
The crossover between these different regimes are sharp,
indicating the occurrence of discontinuities tuned by the non-
Hermitian kicking potential. Interestingly, 〈p2〉 also exhibits
three distinct regimes. With the increase of φ, it increases
monotonically for φ < π/2, decreases continuously to reach
a minimum at φ = π , then increases again for φ < 3π/2, and
finally decreases for φ > 3π/2. The trend of C with respect
to φ shows an opposite behavior compared to 〈p2〉, suggesting
the emergence of discontinuities controlled by φ as well [see
Fig. 4(d)]. We further numerically investigate the asymptotic
values, i.e., 〈p〉, 〈p2〉, and C, for 
 → 0. For a specific φ

[e.g., φ = −π/6 in Fig. 4(f)], they all exhibit a power-law
divergence, i.e., ∝ t−β as 
 → 0.

An interesting issue of quantum chaos is the comparison
of quantum behavior with its classical limit (h̄eff → 0). For
any finite h̄eff, the Hermitian kicked rotor model follows the
classical chaos behavior up to a finite time, i.e., Ehrenfest time
tE , beyond which quantum integrable behavior appears and
the system stops absorbing energy. It has been found that, in
the Hermitian kicked rotor model, the dynamics of OTOCs
CQ = −〈[p(t ), p]2〉 is in good agreement with its classical
counterpart Ccl ≈ h̄2

eff〈〈(
p(t )/
θ (0))2〉〉cl ∝ e2γ t within the
Ehrenfest time, i.e., t < tE [73]. Here, the 〈〈· · · 〉〉cl denotes the
average of the differences of two neighboring trajectories over
the classical phase space. For t > tE , the ergodicity breaking
destroys the classically chaotic behavior of OTOCs and results
in a quadratic increase [73,74]. We further investigate the
OTOCs for very small h̄eff to see if quantum effects affect
chaos also in non-Hermitian case. It is worth noting that the
classical limit of non-Hermitian systems is still an elusive
issue [75,76]. Therefore, we only compare quantum OTOCs
in our non-Hermitian model with the classical OTOCs in the
standard Hermitian kicked rotor model.

Our investigation shows that, for very small λ [e.g., λ =
0.00008 in Fig. 5(a)], the OTOCs follow the classically
chaotic behavior, i.e., CQ ∝ e2γ t for t < tE , indicating the
quantum-classical correspondence. For t > tE , the OTOCs ex-
hibits a crossover to the power-law increase CQ ∝ t3.3, which
is different to the quadratic growth of the Hermitian case
[73,74]. Note that the exponent 3.3 is independent of λ as
long as λ � 0.007. The crossover might be due to the onset
of quantum interference effects resulting in the dynamical
localization. In addition, the CQ increases with the increase
of λ during the time interval t < tE , which demonstrates the
enhancement of scrambling by non-Hermitian driven term. As

a further step, we numerically investigate both the growth rate
γ of CQ and classical Lyapunov exponent γLE of the Hermitian
kicked rotor model for different K . Analytical prediction of
γLE takes the form γLE ≈ 2 ln(K ) for K � 1. The comparison
of γ with γLE demonstrates that the γ for very small λ is larger
than the γLE ≈ ln(K/2) roughly in the order of ln

√
2 [see

Fig. 5(b)], which is consistent with the results in Ref. [73]. It is
worth noting that the γ increases with increasing λ. Therefore,
in the semiclassical limit (i.e., h̄eff → 0), the dynamics of
OTOCs of our model is qualitatively the same as that of the
Hermitian kicked rotor model for t < tE . The influence of
quantum effects in non-Hermitian case is characterized by
the power-law growth of CQ with an exponent ≈3.3 for a
long-term evolution.

V. CONCLUSION AND DISCUSSIONS

One effective strategy for modulating quantum dynamics
involves implementing Floquet driven potentials in systems,
which has been accomplished by state-of-the-art experiments
in both atom optics and optical waveguides. In this paper,
we investigate the interesting problems of the phase modula-
tion of the directed transport, time dependence of the energy,
and quantum scrambling, in a NQKR model with quantum
resonance condition. We uncover a dynamical crossover in
time-dependent behaviors of these phenomena. For short time
interval t � tc, the 〈p〉, 〈p2〉, and C all exhibit quadratic

FIG. 5. (a) The Ccl (empty squares) and CQ vs time for λ =
0.00008 (squares), 0.007 (circles), 0.005 (triangles), and 0.01 (dia-
monds). Solid line and dash-dotted line indicate the fitting function of
the form C ∝ e2γ t and C ∝ t3.3, respectively. Arrow marks the Ehren-
fest time tE . The parameters are K = 8 and h̄eff = 0.003. (b) The
γ and γLE (circles) vs ln(K ). The γLE is evaluated for λ = 0. The
values of non-Hermitian parameter are λ = 0 (squares), 0.00008
(up triangles), 0.0015 (diamonds), 0.005 (pentagrams), 0.007 (down
triangles), and 0.01 (hexagons). Red-solid line indicates the relation
γLE = 2 ln(K ).
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growth with time, and their growth rates depend on λ. Af-
ter sufficiently long time evolution t � tc, the 〈p〉 shows a
linear growth independent of λ, the 〈p2〉 transitions to the
λ-independent quadratic growth with time, and the C exhibits
a linear growth dependent on the λ. These exotic behaviors are
in perfect agreement with our analytical predictions. Based on
the second derivative, namely, Sp, SE , and SC of these observ-
ables, we obtain the phase diagram of the crossover in the
parameter space (t, λ), which clearly presents three distinct
zones for the dynamics of the momentum current, quantum
diffusion, and quantum scrambling. For the quantum nonres-
onance case, i.e., h̄eff = 4π + 
, the 〈p〉, 〈p2〉, and C exhibit
saturation with time evolution, with the saturation levels being
adjusted by φ. In the semiclassical limit, i.e., h̄eff → 0, the CQ

increases exponentially with time, and its growth rate exceeds
the classical Lyapunov exponent by a constant factor.

The kicked rotor model and its variants are paradig-
matic systems in different fields of physics [77,78], involv-
ing interesting topics such as quantum-classical transition
[79,80], dynamical phase transition [22], many-body dynam-
ics [54,55,81], and topologically new phases [57–59]. Our
study will attract interest in the community of people working
in driven systems, such as applying the mapping in Ref. [82]
to see if dynamical localization in the non-Hermitian kicked
rotor might be connected to localization in a non-Hermitian
Anderson model.

Our system in Eq. (1) is achievable in the state-of-the-art
atom-optics experiments. Both the expectation values, such as
〈p〉 and 〈p2〉, and the variance can be detected via time-of-
flight measurement of the probability density in momentum
space [16,22], paving the way for the experimental valida-
tion of our findings. On other aspect, the all-optical systems
also serve as ideal platform to realize our non-Hermitian
Floquet model, owing to the equivalence between the light
propagation equation under paraxial approximation and the
Schrödinger equation [83,84]. In Ref. [70], the author has
proposed an optical setup involving a Fabry-Perot resonator
with flat end mirrors and intracavity phase and loss gratings to
emulate the quantum dynamics of the non-Hermitian kicked
rotor model. In this system, the reflection of light by the
mirrors simulates delta kicking, with the distance between
the intracavity mirrors controlling the value of the effective
Planck constant. The phase of the loss gratings can be pre-
cisely adjusted by etching the surface to different depths [85],
which ensures the implementation of kicking potentials with
all kinds of symmetries. The mean value of observables can
be measured in the frequency domain of optics, enabling the
observation of our findings.
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APPENDIX: PROPERTIES OF THE MODIFIED BESSEL
FUNCTIONS OF THE FIRST KIND

The modified Bessel functions of the first kind are defined
by

Im(x) = 1

2π

∫ 2π

0
e−imθ exp [x cos(θ )]dθ. (A1)

The function Im(x) can be expanded as

Im(x) = ex

√
2πx

[
1 − 4m2 − 1

8x
+ (4m2 − 1)(4m2 − 9)

2!(8x)2

− (4m2 − 1)(4m2 − 9)(4m2 − 25)

3!(8x)3
+ · · ·

]
. (A2)

Our theoretical analysis involves the function Im(x) with 0 �
m � 3. For x � 1, they can be approximated as

I0(x) ≈ 1, I1(x) ≈ x

2
, I2(x) ≈ x2

8
, and I3(x) ≈ x3

48
.

(A3)

For x � 1, the two leading terms in Eq. (A2) contribute sig-
nificantly. Therefore, we have neglected the other terms and
obtained the following relations:

I0(x) ≈ ex

√
2πx

(
1 + 1

8x

)
, (A4)

I1(x) ≈ ex

√
2πx

(
1 − 3

8x

)
, (A5)

I2(x) ≈ ex

√
2πx

(
1 − 15

8x

)
, (A6)

and

I3(x) ≈ ex

√
2πx

(
1 − 35

8x

)
. (A7)
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