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In this paper, we propose a method for denoising experimental density matrices that combines standard
quantum state tomography with an attention-based neural network architecture. The algorithm learns the noise
from the data itself, without a priori knowledge of its sources. Firstly, we show how the proposed protocol can
improve the averaged fidelity of reconstruction over linear inversion and maximum likelihood estimation in the
finite-statistics regime, reducing at least by an order of magnitude the amount of necessary training data. Next, we
demonstrate its use for out-of-distribution data in realistic scenarios. In particular, we consider squeezed states of
few spins in the presence of depolarizing noise and measurement/calibration errors and certify its metrologically
useful entanglement content. The protocol introduced here targets experiments involving few degrees of freedom
and afflicted by a significant amount of unspecified noise. These include NISQ devices and platforms such as
trapped ions or photonic qudits.
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I. INTRODUCTION

Modern quantum technologies are fueled by resources such
as coherence, quantum entanglement, and Bell nonlocality.
Thus, a necessary step to assess the advantage they may
provide is the certification of the above features [1–12]. The
resource content of a preparation is revealed from the statis-
tics (e.g., correlations) the device is able to generate. Within
the quantum formalism, such data is encoded in the density
matrix. In a real-world scenario, the density matrix can be
reconstructed based on finite information from experimentally
available probes, a process known as quantum state tomog-
raphy (QST) [13–23]. Hence, QST is a prerequisite for any
verification task. On the other hand, the second quantum rev-
olution brought new experimental techniques to control and
manipulate quantum systems [24–28], challenging established
QST protocols. Both reasons elicited an extremely active field
of research that over the years offered a plethora of algorith-
mic techniques [17,19,29–38].

Any conventional QST protocol suffers inevitably from a
plethora of noise sources; ranging from measurement calibra-
tion errors, dark counts, losses, or technical noises, to name
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a few. Such effects are eminently challenging to a model
and will eventually decohere the system and wash out any
quantum resource.

In recent years, machine learning (ML), artificial neural
networks, and deep learning have entered the field of quan-
tum technologies [39], offering many new solutions to QST
[40–50]. These approaches learn the noise from the experi-
mental data itself and are unaware of its sources or models
[51–55]. Thus, not only shot noise, which is inherent to the
QST task, but also other disturbances are susceptible to be
mitigated by such methods. As only minimal assumptions
about the system are required, they are especially suited for
the certification task.

Despite their initial success, there are still setbacks in the
application of neural network-based methods for QST. In this
paper, we will focus on two of them: (i) the learning ability
of a network with a reduced training set size [56], and (ii)
the possibility of out-of-distribution (OOD) use of this class
of methods [57]. OOD is a subfield of ML that analyzes how
models perform on new data that do not belong to the train-
ing data distribution, with the latter called the in-distribution
dataset (ID). To this end, we offer a computationally fast
general protocol that combines established QST protocols
and a supervised architecture trained to denoise the density
matrix.

To begin with, we assess the learning and generaliza-
tion abilities of the proposed method with generic states, as
produced, e.g., from a random emitter. Then, we use our
denoising network, trained exclusively on density matrices
affected by shot noise only, to reconstruct new ones obtained
from a simulated real-case scenario. In particular, we consider
squeezed states of few spins under depolarizing and measure-
ment calibration noise, and we certify its entanglement depth
and usefulness for metrology applications.
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Our protocol aims to certify quantum resources in low-
dimensional systems afflicted by a significant level of
unknown noise [51,58,59], where complete tomography is
required.

The paper is organized as follows: In Sec. II, we introduce
the main concepts behind the QST and in Sec. III we introduce
the data generation protocol and neural network architec-
ture, as well as define QST as a denoising task. Section IV
is devoted to benchmarking our method against known ap-
proaches, and we test it on quantum states of physical interest.
In Sec. V, we provide practical instructions to implement our
algorithm in an experimental setting. We conclude in Sec. VI
with several possible future research directions.

II. PRELIMINARIES

Consider the d-dimensional Hilbert space. A set of infor-
mationally complete (IC) measurement operators π̂ = {π̂i},
i = 1, . . . , d2, in principle, allows unequivocally reconstruct-
ing the underlying target quantum state τ̂ ∈ Cd×d within the
limit of an infinite number of ideal measurements [60,61].
After infinitely many measurements, one can infer the mean
values

pi = Tr[τ̂ π̂i], (1)

and construct a valid vector of probabilities p = {pi} for
any proper state τ̂ ∈ S , where by S we denote the set of
d-dimensional quantum states, i.e., containing all unit-trace,
positive semi-definite (PSD) d × d Hermitian matrices. Al-
ternatively, π̂ can form a set of operators that spans the space
of Hermitian matrices. In such a case, p can be evaluated
from multiple measurement settings (e.g., Pauli basis) and
is generally no longer a probability distribution. In any case,
there exists a one-to-one mapping Q from the mean values p
to the target density matrix τ̂ ,

Q : FS −→ S
p �−→ Q[p] = τ̂ , (2)

where FS is the space of accessible probability vectors. In
particular, by inverting the Born’s rule, Eq. (1), elementary
linear algebra allows us to describe the map Q as

Q[p] = pT Ĝ−1π̂, (3)

where Ĝ is the Gram matrix of the measurements settings,
with components Gi j = Tr(π̂iπ̂ j ).

The inference of the mean values p is only perfect in the
limit of an infinite number of measurement shots, N → ∞.

In a realistic scenario, with a finite number of experimental
runs N , we have access to frequencies of relative occurrence
f = { fi := ni/N}, where ni is the number of times the outcome
i is observed. Such counts allow us to estimate p within an
unavoidable error dictated by the shot noise, whose amplitude
typically scales as 1/

√
N [62]. With only frequencies f avail-

able, we can use mapping Q for estimation ρ̂ of the target
density matrix τ̂ , i.e.,

ρ̂ = Q[f]. (4)

In the infinite number of trials N → ∞, fi = pi, and ρ̂ = τ̂ .
Yet, in the finite statistics regime, as considered in this paper,

FIG. 1. Schematic representation of the data pipeline of our QST
hybrid protocol. Panel (a) shows data acquisition from a generic
experimental set-up, during which the frequencies f are collected.
Next, panel (b) presents standard density matrix reconstruction; in
our paper, we test the computationally cheap LI method together
with the expensive MLE, to better analyze the network reconstruc-
tion behavior and ability. Panel (c) depicts the matrix-to-matrix
deep-learning strategy for Cholesky matrices reconstruction. The ar-
chitecture herein considered combines convolutional layers for input
and output and a transformer model in between. Finally, we compare
the reconstructed state ˆ̄ρ with the target τ̂ .

the application of the mapping as defined in Eq. (3) to the fre-
quency vector f will generally lead to nonphysical results (i.e.,
ρ̂ not PSD). In such case, as an example of proper mapping Q
we can consider different methods for standard tomography
tasks, such as linear inversion (LI), or maximum likelihood
estimation (MLE); see Appendix A. As operators π̂, we con-
sider positive operator-valued measures (POVMs) and a more
experimentally appealing Pauli basis (see Appendix B).

III. METHODS

This section describes our density matrix reconstruction
protocol, data generation, neural network training, and in-
ference procedure. In Fig. 1, we show how these elements
interact within the data flow. In the following paragraphs, we
elaborate on the proposed protocol in detail.

The first step in our density matrix reconstruction protocol,
called preprocessing, is a reconstruction of density matrix ρ̂

using finite-statistic QST with frequencies f obtained from
measurement prepared in target state τ̂ . Next, we feed the
reconstructed density matrix ρ̂ through our neural network
acting as a noise filter, which we call this stage postprocessing.
To enforce the positivity of the neural network output, we em-
ploy the Cholesky decomposition of the density matrices, that
is, ρ̂ = CρC†

ρ and τ̂ = CτC†
τ , where Cρ,τ are lower-triangular

matrices. Such decomposition is uniquely provided that ρ̂ and
τ̂ are positive [63]. We treat the Cholesky matrix Cρ obtained
from the finite-statistic QST protocol as a noisy version of
the target Cholesky matrix without noise Cτ calculated from
τ̂ . With these data, we prepare a supervised training for our
architecture.
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A. Data generation

To construct the training data set, we first start with
generating Ntrain Haar-random d-dimensional target density
matrices {τ̂m}, where m = 1, . . . , Ntrain. Next, we simulate
experimental measurement outcomes fm, for each τ̂m, in one
of the two ways:

(1) Directly. When the measurement operators π̂ form an
IC-POVM, we can take into account the noise by simply
simulating the experiment and extracting the corresponding
frequency vector fm = {ni/N}m, where N is the total number
of shots (i.i.d. trials) and the counts {ni}m are sampled from
the multinomial distribution.

(2) Indirectly. As introduced in the preliminaries (Sec. II),
with projective measurements π̂ the pm is no longer a proba-
bility distribution, like the Pauli basis (see Appendix B). So,
we can insert an amount of noise as the direct case, obtaining
fm = pm + δpm, where δpm is sampled from the multinormal
N (0,∼ 1/(2

√
N )) of mean zero and isotropic variance, satu-

rating the shot-noise limit.
Upon preparing the frequency vectors {fm}, we apply QST

by mapping Q, Eq. (4), obtaining the set of reconstructed
density matrices {ρ̂m}. We employ a rudimentary and scalable
method, i.e., linear inversion [64], but other QST methods
can also be used. Finally, we construct the training dataset as
Ntrain pairs { �Cρ, �Cτ }, whereby �C we indicate the vectorization
(flattening) of the Cholesky matrix C (see Appendix C for
definition).

B. Neural network architecture

Our proposed architecture is inspired by other recent
models [55,65,66], combining convolutional layers with a
transformer layer that implements a self-attention mechanism
[67,68]. The convolutional layer extracts local features from
the data, while the transformer seizes global ones. By com-
bining them, we aim at taking the best of both approaches.
The self-attention mechanism utilizes the representation of the
input data as nodes within a graph [69] and aggregates the
relationships between the nodes.

Architecture. The neural network action can be described
as a mapping hθ that transforms the input—vectorized
Cholesky matrix Ĉρ into an output hθ (Ĉρ ). The symbol θ

denotes all the variational parameters as weights and biases
to be optimized during the training phase. The choice of
architecture considered here contains two convolutional layers
hcnn, a transformer layer htr between, and a final linear layer
hl, i.e.,

hθ[ �Cρ] = tanh(hl ) ◦ htr ◦ γ (hcnn)[ �Cρ] , (5)

where γ (y) = 1/2y(1 + Erf(y)/
√

2), y ∈ R, is the Gaussian
error linear unit (GELU) activation function [70], broadly
used in the modern transformers architectures, and tanh(y)
is the hyperbolic tangent, acting elementwise on neural net-
work nodes. A detailed explication of the model is offered in
Appendix D.

C. Neural network training

The neural network training process relies on minimizing
the cost function defined as a mean-squared error (MSE) of

the network output with respect to the target density matrix τ̂ ,

L(θ) = ‖ �Cτ − �Cθ‖2 + Tr[CθC
†
θ
], (6)

with Tr[CθC
†
θ
] a regularization term, cf. Chap. 7 of Ref. [71]

for detail. We train the model with a dataset containing Ntrain

training samples {ρ̂l}. The equivalence between MSE and the
Hilbert-Schmidt (HS) distance is discussed in detail in Ap-
pendix C, where we also demonstrate that the mean-squared
error used in the cost function, Eq. (6), is a natural upper
bound of the quantum fidelity. Hence, the choice of the cost
function, Eq. (6) approximates the target state in a proper
quantum metric.

By minimizing Eq. (6), we obtain the set of optimal param-
eters θ̄ for our model hθ̄ . Finally, the neural network allows for
the reconstruction of the target density matrix τ̂ via Cholesky
matrix Cρ̄ [72], i.e.,

ˆ̄ρ = Cρ̄C†
ρ̄

Tr[Cρ̄C†
ρ̄]

� τ̂ , (7)

where Cρ̄ is reshaped from �Cρ̄ = hθ̄[ �Cρ].

IV. RESULTS AND DISCUSSION

Following the presentation of our QST protocol, we
demonstrate its advantages in scenarios of both computational
and physical interest. To this aim, we consider two examples.

As the first example, we study an idealized random quan-
tum emitter (see e.g., Refs. [73,74] for recent experimental
proposals) that samples high-dimensional mixed states from
the Hilbert-Schmidt distribution. After probing the system
using single-setting square-root POVM, we can show the use-
fulness of our neural network by improving the preprocessed
LI and MLE states. This example enables us to assess the
learning ability and expressivity of the QST neural network
introduced in this paper.

In the second example, we focus on a specific class of
mutiqubit pure states of special physical relevance, i.e., with
metrological resource, as quantified by the quantum Fisher
information (QFI). Such states are generated via one-axis
twisting dynamics (OAT) [75,76]. We simulate realistic data
by considering the experiment in the presence of depolarizing
noise, which mixes the OAT state |�〉 according to

σ̂ = (1 − p)|�〉〈�| + pI

d
, (8)

where I is the identity operator. Furthermore, we reproduce
miscalibration of the measurements by adding a bias error
to the inferred expectation values. This example allows us to
evaluate our protocol with OOD data.

A. Reconstructing high-dimensional random quantum states

Scenario. Let us consider states {τ̂ j} sampled from distri-
bution uniform with respect to the Hilbert-Schmidt measure
(see Appendix E) on the Hilbert space of dimension d = 9.
Each target state τ̂ j is measured Ntrial times using its copies.
This scenario allows us to benchmark our algorithm against
the protocol offered in Ref. [53].

We prepare measurements on each trial state τ̂ j using
information-complete square-root POVM (IC), as defined in
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FIG. 2. Evaluation of the QST reconstruction quality measured by the mean value of the Hilbert-Schmidt distance square D2
HS between

the target and the reconstructed state for different QST protocols, averaged over 1000 target states. In both panels, the best-performing setups
are those that are as far right (better quality) and bottom (less costly) as possible. Panel (a) uses the number of measurements Ntrial to compare
four QST protocols: linear inversion (LI, green dots, neural network enhanced MLE (MLE-NN, orange crosses), neural network enhanced
LI (NN-LI, blue diamonds), and maximal likelihood estimation (MLE, red squares). We add an inset focusing in the undersampled regime,
Ntrial � 5 × 103. Panel (b) shows the quality of reconstruction as a function of product Ntrial × Ntrain for the latter two protocols and the network
model proposed in Ref. [53] (violet triangles). Both panels depict resource costs on horizontal axes in different scenarios: in (a), the cost is
the number of performed measurements, while in (b), the training phase is additionally counted as a cost. Our proposed protocol achieves
competitive averaged HS reconstruction for the size of training data of an order of magnitude smaller than the method proposed in Ref. [53].
During models’ training, we used Ntrain = 2000 random pure states for the MLE-NN protocol, and Ntrain = 5000 for the LI-NN. Lines are to
guide the eye; shadow areas represent one standard deviation.

Eq. (B1). This allows obtaining the state reconstruction ˆ̄ρ j

via two standard QST protocols, i.e., linear inversion (LI)
and maximum likelihood estimation (MLE) algorithms, as
well as by our neural network enhanced protocols denoted
LI-NN and MLE-NN, see Fig. 1. Finally, we evaluate the
quality of the reconstruction using the square of the Hilbert-
Schmidt distance between the target and the reconstructed
state D2

HS( ˆ̄ρ j, τ̂ j ) = Tr[( ˆ̄ρ j − τ̂ j )2].
Benchmarking. Figure 2(a) presents the averaged Hilbert-

Schmidt distance square D2
HS as a function of the number

of trials states Ntrial. To obtain a reconstruction for a given
averaged HS distance, our neural-network-enhanced protocols
require a much lower number of Ntrial copies of states, com-
pared to linear inversion and maximum likelihood estimation
alone. We note that the proposed protocols improve MLE for
the relatively small number of trial states Ntrial < 103 (see
inset), which is important from an experimental point of view.
As expected, the lowest HS distance is obtained for many
trials of the MLE algorithm.

Recently, a state-of-the-art QST neural network protocol
was proposed by Koutný et al. [53]. The authors report better
performance than the MLE and LI algorithms with Ntrain =
8 × 105 training samples for qutrit as well as larger systems,
d � 3. In Fig. 2(b), we show that our protocol requires an
order of magnitude smaller training data, achieving a compa-
rable level of reconstruction.

B. Certifying metrologically useful entanglement
in noisy spin-squeezed states

In this simulation, we reconstruct a class of physi-
cally relevant multiqubit pure states in a realistic scenario.

Specifically, we consider a chain of L = 4 spins-1/2 (Hilbert
space of dimension d = 16). The target quantum states are
dynamically generated during the one-axis twisting (OAT)
protocol [75,76]

|�(t )〉 = e−it Ĵ2
z |+〉⊗L , (9)

where Ĵz is the collective spin operator along z axis and
|+〉⊗L = [(|↑〉 + |↓〉)/

√
2]⊗L is the initial state prepared in

a coherent spin state along x axis (orthogonal to z). The
OAT protocol generates spin-squeezed states useful for high-
precision metrology, allowing to overcome the shot-noise
limit [76–79], as well as many-body entangled and the many-
body Bell correlated states [80–92]. OAT states have been
extensively studied theoretically [75,93–101], and can be real-
ized with a variety of ultra-cold systems, utilizing atom-atom
collisions [102–105], and atom-light interactions [106,107].
The recent theoretical proposals for the OAT simulation with
ultra-cold atoms in optical lattices effectively simulate Hub-
bard and Heisenberg models [98,108–115].

Data preparation. For this task, we generate our data focus-
ing on the experimentally friendly Pauli operators. The state
under consideration are prepared indirectly, with a fidelity
from the target OAT state of ∼85%. Then we simulate the
presence of a noise channel by depolarizing our input state
with a strength factor p = 0.3 according to Eq. (8). Lastly, to
simulate the presence of a calibration defect in the measure-
ment apparatus, a fixed bias of random values of the order
of 10−4 is added to the Born values. After applying all these
noise sources, the LI reconstructions can obtain an average
fidelity of 75.4 ± 1.1%. For the test set, we select 100 OAT
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TABLE I. Comparison of average fidelity and its standard devia-
tion between the reconstructed and the target states of size d = 16 for
various QST methods (rows), with varying size of measurement trials
Ntrial = 106, 105, 104, 103, as indicated by the consecutive columns.
The first row presents the average fidelity reconstruction for linear
inversion QST, averaged over OAT states, evenly sampled from t = 0
to t = π . Employing our neural network presents an enhancement
over the bare LI, as shown in the second row for the same target
set. Finally, the third row also shows data for NN-enhanced LI but
averaged over general Haar-random states. All initial Born values
are calculated by noiseless SIC-POVM.

106 trials 105 trials 104 trials 103 trials

LI-OAT 98.1 ± 0.3 94.3 ± 0.4 86.5 ± 0.1 67.0 ± 2.0
NN-OAT 99.3 ± 0.2 98.6 ± 0.4 97.8 ± 0.5 87.6 ± 4.1
NN-Haar 99.0 ± 0.2 96.9 ± 3.0 94.2 ± 3.3 81.1 ± 4.1

states in evenly spaced times t ∈ (0, π ) and assess the average
reconstruction achieved by our neural network.

The description of the model under consideration can be
found in Table I.

Inferring the quantum Fisher information. Finally, we eval-
uate the metrological usefulness of the reconstructed states
measured by the quantum Fisher information (QFI) FQ[ρ̂, Ĝ].
The QFI is a nonlinear function of the state and quantifies
the sensitivity upon rotations generated by Ĝ. Notwithstand-
ing its usefulness in metrology, it is a highly nontrivial task
to evaluate experimentally because of its great sensitivity to
noise disturbances, with state-of-the-art research only up to
four qubits [116,117]. We refer the reader to Appendix F for
more details.

In this context, we consider the collective spin compo-
nent Ĵv as the generator Ĝ = Ĵv, with the orientation v ∈
R3 selected to achieve maximal sensitivity. Quantum Fisher
information (QFI) related to collective rotations can also
serve to verify quantum entanglement [79], specifically the
entanglement depth k, which is the smallest number of gen-
uinely entangled particles required to describe the state. If
FQ[ρ̂, Ĵv] > kL, then the quantum state ρ̂ possesses an entan-
glement depth of at least k + 1 [118,119]. In particular, for
states with depth k = 1 (i.e., separable), the absence of de-
tected entanglement implies that the metrological capability is
limited to the shot-noise threshold [120]. This limit is reached
by coherent spin states, such as our initial (t = 0) state for the
evolution of the one-axis twisting (OAT), |+〉⊗L.

OOD results. In Fig. 3, we present the evolution of
the QFI (normalized by the coherent limit, L = 4) for
the OAT target states (top of the solid blue lines). For
this numerical experiment, we make full use of the OOD
approach; using a network trained only for tackling
sampling noise, we feed it in inference with a dataset
that also considers the depolarization and measurement
noise. As Fig. 3 shows, for two different realizations of
calibration noise, our network can highly improve the LI
reconstructions obtaining a fidelity of 88.7 ± 2.3% and
91.0 ± 1.9%, on the left and right panel, respectively.
Thereby, we surpass the three-body bound (QFI/L = 3),
thus revealing a genuine four-body entanglement, which is
the highest depth possible in this system (since it is of size

FIG. 3. Two different simulations for out-of-distribution (OOD)
inference. In each panel, we evaluate the normalized quantum Fisher
information (QFI) for 100 four-qubit states as validation metric. The
target, noiseless states are evolved according to the OAT dynamics
given in (9), and depicted by the purple dotted line. For this OOD
tests, the neural network was trained exclusively to learn statistical
sampling noise. During inference, test data are permeated by depo-
larization and measurement (calibration) errors also. The green line
represents the normalized QFI derived from reconstructions via the
Linear Inversion (LI) algorithm; the red line illustrates the enhance-
ment provided by the network when supplemented with LI algorithm
reconstructions, underscoring the robustness of our protocol in miti-
gating noise effects.

L = 4). For example, note that at time t = π/2, the OAT
dynamics generates the cat state, |�(t = π/2)〉 =
(e−iπ/4|+〉⊗4 + e+iπ/4|−〉⊗4)/

√
2, which is genuinely L-body

entangled, and so it is certified. For completeness, two
complexity analyses are offered. First, in Appendix G, an
analysis of the QFI time evolution for OAT states for different
sampling noise values only, using Pauli and tomographically
optimal SIC-POVM operators in data generation. Next, in
Appendix H, a benchmark of our model is shown against two
different convolutional architectures to assess the advantage
offered by our transformer-based model on quantum data.
Lastly, we propose an alternative method to incorporate the
statistical noise as a depolarizing channel in the Appendix I.

V. CONCRETE EXPERIMENTAL IMPLEMENTATION

To recapitulate this contribution, as a complement to Fig. 1
and our repository provided in Ref. [121], we summarize the
practical implementation of the protocol introduced in this
paper.

(1) Scenario. We consider a finite-dimensional quantum
system prepared in a target state τ̂ . Here, our objective is to
verify the preparation of a quantum state τ̂ via QST. To this
end, we set a particular measurement basis π̂ to probe the
system.

(2) Experiment. After a finite number of experimental
runs, we construct the frequency vector f from the countings.

(3) Preprocessed quantum state tomography. From the
frequency vector f and the basis π̂, we infer the first approx-
imation of the state ρ̂ via the desired QST protocol (e.g., one
of those introduced in Appendix A).

(4) Assessing pre-reconstruction. We evaluate the quality
of the reconstruction by, for example, computing D2

HS(τ̂ , ρ̂ ),
quantum fidelity, or any other meaningful quantum metric. To
improve such a score, we resort to our neural network solu-
tion to complete a denoising task. As with any deep-learning
method, training is required.
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(5) Training strategies. Different training strategies can be
implemented:

(1) Train over uniform ensembles (e.g., Haar, HS, Bu-
res etc.) if τ̂ is a typical state or we do not have information
about it.

(2) Train over a subspace of states of interest. For ex-
ample, if we reconstruct OAT states (Sec. IV B), we may
train only in the permutation-invariant sector.

(3) Due to the greater generalization ability demon-
strated when the case of mixed state was considered, we
can perform transfer learning to tailor a pretrained model
on a specific apparatus with less computational resources;
in this way, the model will have knowledge of that spe-
cific apparatus noise. For example, if we have a quantum
random source to characterize (Sec. IV A), an amount of
experimental data corresponding to the 10–15% of the
training dataset can be used to refine the model.
(6) Feeding the neural network. We feed the preprocessed

state ρ̂ into our trained matrix-to-matrix neural network to
recover the enhanced quantum state ˆ̄ρ.

(7) Assessing the neural network. We compute the updated
reconstruction metric on the post-processed state D2

HS(τ̂ , ˆ̄ρ).
Finally, we assess the usefulness of the neural network by
comparing how small such a value is compared to the pre-
processed score D2

HS(τ̂ , ρ̂ ).
The strength of our proposed protocol lies in its broad

applicability, as the choice of the basis π̂ and the QST pre-
processing method is arbitrary.

VI. CONCLUSIONS

We proposed a deep learning protocol that improves stan-
dard quantum state tomography methods, such as linear
inversion and maximum likelihood estimation. Based on a
combination of transformer and convolutional layers, we
greatly reduce the dataset dimension for training, and we can
perform denoising on new unseen data, when also depolar-
ization and measurement noise are accounted for. First, the
proposed method reduces the number of necessary measure-
ments in the target density matrix by at least an order of
magnitude compared to other QST protocols supported by
finite-statistic neural networks.

Secondly, for four-qubits and Bell-correlated few-spin
states generated with OAT, the inference stage was on OOD.
We tested our model, pretrained only for statistical sampling
noise, on data accounting also for depolarization and mea-
surement noise, achieving an average fidelity reconstruction
88.7 ± 2.3% and 91.0 ± 1.9% for two different realizations of
noise in the measurement setup. The superior learning ability
demonstrated for mixed states makes our architecture an opti-
mal candidate for transfer learning, when further refinement is
desired on a pretrained model using fewer experimental data.
On the other hand, the OOD demonstrate the potential of our
protocol for more plug-and-measure applications, given its
high resilience to unknown levels of noise because of different
physical sources. Thus, it paves the way for the use of these
methods in current quantum computers, NISQ devices, and
quantum simulators based on spin arrays [19,122].

Another persistent challenge in this field concerns the
scalability of the algorithms with the number of subsystems.

In this regard, several strategies are proposed based on in-
complete tomography like the well known generative NN
applications [41]. A limitation of the protocol is its scalabil-
ity, which is limited by the use of Cholesky decomposition
in data preprocessing, which limits our method to applica-
tions of modest Hilbert space dimensions. An extension to a
Cholesky-free approach is left for future explorations.

Data and code are available on github [121].
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APPENDIX A: ESTABLISHED APPROACHES
FOR STATE TOMOGRAPHY

We review four of the most well-known approaches to
quantum state reconstruction that could be potentially im-
proved with the protocol proposed in this paper.
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1. Linear inversion (LI)

By inverting Born’s rule Eq. (1) (main text) we can express
the state dependence on the mean values p = {pi},

τ̂ = pT Tr[π̂π̂T ]−1π̂ . (A1)

Note that the inverse of the Gram matrix Tr(π̂π̂T ) exists as
the basis is informationally complete (IC). If it is (informa-
tionally) overcomplete, one needs to replace the inverse with
the pseudoinverse. Finally, if it is undercomplete (only partial
information is available), it will determine the state up to a
linear subspace.

The LI method infers ρ̂ by replacing in Eq. (A1) the ideal
expectation values p with the vector f of the experimental
frequencies (counts). This naive substitution generally leads to
a negative matrix, ρ̂ � 0. An optimal way to tame its negative
eigenvalues was given in [123] by finding the physical state
closest to ρ̂ in the two-norm. The drawback of LI is the fact
that it can be affected by any type of noise.

2. Least-squares estimation (LSE)

Here, the reconstructed state is chosen to minimize the
mean square error between the experimental frequencies f
and the state probability distribution Tr(π̂ρ̂). The resulting
problem can be expressed as

ρ̂LSE = arg min
ρ̂�0

|f − Tr(π̂ρ̂ )|2. (A2)

The problem Eq. (A2) is convex and, in addition, it is a
disciplined convex problem (DCP), i.e., a class of convex
optimizations that are efficiently addressed with commercially
available solvers such as MOSEK [124].

3. Maximum likelihood estimation (MLE)

In this case, the reconstructed state maximizes the like-
lihood of having produced the observed experimental out-
comes,

ρ̂MLE = arg max
ρ̂�0

log P(ρ̂|f ). (A3)

Our counting experiment is modeled as a multinomial. Con-
sequently, the log likelihood is log P(ρ̂|f ) = f · log(Tr[π̂ρ̂)]),
which is a concave function of the state, but the resulting task
is not a DCP. Therefore, solving it can be expensive, especially
for a large Hilbert dimension space d . The MLE is a robust
estimator against noise; however, it is computationally de-
manding, suffering from the exponential scaling of the inputs.

APPENDIX B: INFORMATIONALLY COMPLETE
MEASUREMENT OPERATORS

To obtain our set of initial Born values, we use three
informationally complete (IC) sets of Hermitian operators π

defined on the Hilbert space of d .

1. Square-root POVM

The first set π of measurement operators consists of POVM
generated by the square-root measurements, defined as

πi = Ĥ−1/2|φi〉〈φi|Ĥ−1/2 Ĥ =
∑

i∈[d2]

|φi〉〈φi|, (B1)

with {|φi〉 ∈ H}i∈[d2] are randomly generated Haar distributed
pure states (see Appendix E).

2. SIC-POVM

The second set π of measurement basis operates in an L-
qubit system. The basis consists of the tensor product of local
sic-POVM, constructed by using the local vectors,

s1 = (0, 0, 1),

s2 =
(

2
√

2

3
, 0,−1

3

)
,

s3 =
(

−
√

2

3
,

√
2

3
,−1

3

)
,

s4 =
(

−
√

2

3
,−

√
2

3
,−1

3

)
. (B2)

The space of Hermitian operators acting in the global Hilbert
space H = [C2]⊗L can then be spanned by

π̂ =
⎧⎨
⎩π̂(a,b)∼=i =

⊗
b∈[L]

σ̂0 + sab · σ̂
4

⎫⎬
⎭

{ab}b∈[L]∈[4]L

, (B3)

where σ̂ = (σ̂x, σ̂y, σ̂z ) is the Pauli vector and σ̂0 = I2 is the
identity acting in the local space C2.

Note that for any properly normalized state τ̂ , p := Tr(π̂τ̂ )
constitutes a valid probability distribution

∀i ∈ [22L], pi � 0 and
∑

i∈[22L]

pi = 1. (B4)

This observation is also true for the previous basis (square-
root POVM) that we reviewed.

3. Pauli basis

The last IC basis π̂ in L-qubit systems is the Pauli basis
constructed as

π̂ =
⎧⎨
⎩

⊗
b∈[L]

σ̂ab

⎫⎬
⎭

{ab}b∈[L]∈{0,x,y,z}L

. (B5)

With respect to such a basis, expectation values can be eval-
uated experimentally by rotation of each qubit individually.
This is also true for the SIC-POVM if evaluated with multiple
settings. Such expectation values p no longer form a probabil-
ity distribution (note that, in particular, such mean values can
be negative). The reason why it will not lead to a probability
distribution is that the basis does not form a POVM (that is,
its elements are not PSD and do not sum up to I). However,
it covers the whole space of Hermitian matrices supported in
[C2]⊗L = H as any basis specified in this Appendix.
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APPENDIX C: FROM QUANTUM FIDELITY
TO MEAN-SQUARED ERROR

1. Upper bound on the Bures distance

The Bures distance between two states ρ̂ and τ̂ is defined
as

DB(ρ̂, τ̂ ) = 2 − 2
√

F (ρ̂, τ̂ ), (C1)

where
√

F (ρ̂, τ̂ ) = Tr[
√√

ρ̂τ̂
√

ρ̂], (C2)

is the square root of quantum fidelity between ρ̂, and τ̂ .
The square root of the fidelity

√
F (ρ̂, τ̂ ) can be expressed as

[[125], Eq. (9.30)]√
F (ρ̂, τ̂ ) = max

ρ̂=AA†

τ̂=BB†

Tr[AB† + BA†]/2, (C3)

where the maximization is over the complex amplitudes
{A, B}, which constitute a polar decomposition of {ρ̂, τ̂ } re-
spectively. Equation (C3) is actually the original definition
of quantum fidelity motivated by the concept of transition
probability. In fact, if both states are pure {ρ̂ = |ψ〉〈ψ |, τ̂ =
|φ〉〈φ|}, then {A = |ψ〉, B = |φ〉} and the right-hand side
(RHS) of Eq. (C3) amounts to overlap |〈ψ |φ〉|2. Note that the
decomposition admits a gauge degree of freedom A �→ AU
for U unitary (and similarly for B). Our study resolves redun-
dancy using the Cholesky decomposition defined in the main
text.

From Eq. (C3) we see that for any polar decomposi-
tion (and in particular the Cholesky as canonical one, {ρ̂ =
CρC†

ρ, τ̂ = CτC†
τ }), the following inequality always holds:√
F (ρ̂, τ̂ ) � Tr[CρC†

τ + CτC†
ρ]/2. (C4)

Finally, rewriting 2 as 1 + 1 = Tr(ρ̂ + τ̂ ) = Tr(CρC†
ρ +

CτC†
τ ) we arrive at

DB(ρ̂, τ̂ ) �Tr[CρC†
ρ + CτC†

τ − CρC†
τ − CτC†

ρ]

= Tr[(Cρ − Cτ )(Cρ − Cτ )†]

= D2
HS(Cρ,Cτ ), (C5)

where the HS distance defined in the main text is extended to
complex matrices (not necessarily Hermitian) as

D2
HS(Cρ,Cτ ) = Tr[(Cρ − Cτ )(Cρ − Cτ )†]. (C6)

2. Hilbert-Schmidt distance as mean-squared error (MSE)

In the following we connect the Hilbert-Schmidt distance
[Eq. (C6)] between two Cholesky matrices {Cρ,Cτ } associ-
ated to quantum states {ρ̂, τ̂ }, with the mean-squared error of
the matrix elements.

First, consider a d × d complex matrix K , {Kαβ}α,β∈[d]×[d].
Next, let us introduce the vectorization �K of its matrix ele-
ments as

�K = �K ⊕ �K , (C7)

where K is the flattening of the matrix, i.e., K =
(K11, K12, .., Kdd ), and ⊕ the direct sum of vectors, �v ⊕ �u =
(�v, �u). Since diag(K ) ∈ R is sufficient for neural network

output, the length of the real vector �K is d2 [d for the diagonal
and d (d − 1)/2 × 2 for the lower triangle (×2 for the real and
imaginary part); the remaining elements are zero].

Let K = Cρ − Cτ , then the square HS distance, Eq. (C6),
reads

D2
HS(Cρ,Cτ ) = Tr(KK†) =

∑
α,β

|Kαβ |2 (C8)

=
∑
α,β

�Kαβ
2 + �Kαβ

2 (C9)

= (�K ⊕ �K) · (�K ⊕ �K) (C10)

= || �Cρ − �Cτ ||2 = MSE( �Cρ, �Cτ ). (C11)

Finally, we observe that the MSE is the natural cost function
of a standard feedforward neural network.

APPENDIX D: ARCHITECTURE DETAILS

The first layer hcnn applies a set of K fixed-size train-
able one-dimensional convolutional kernels to �Cρ followed
by a nonlinear activation function, i.e., γ (hcnn( �Cρ )) →
{F1

cnn, . . . , FK
cnn}. During the training process, the convolu-

tional kernels learn different features of the dataset, which
are then fed to the transformer block htr . The transformer
block htr distills the correlations between the features ex-
tracted from the kernels through the self-attention mechanism,
providing a new set of vectors, that is, htr (F1

cnn, . . . , FK
cnn) →

{F1
tr, . . . , FK

tr }. In the last step, the outputs of the convolutional
kernel of the layer hcnn are added and form an output �Cθ ,
tanh(hcnn(F1

tr, . . . , FK
tr )) → �Cθ . The output is combined in Cθ

as in Eq. (7), and a custom cost function η is used to apply the
RElU activation on the diagonal elements of the reconstructed
matrix and the tanh on the off-diagonal elements. The role of
the attention mechanism is explored in Appendix H, where we
benchmark the transformer block against CNNs.

The training data and the considered architecture allow
interpreting the trained neural network as a conditional debi-
aser (for details, see the Appendix J). Although the proposed
protocol cannot improve the predictions of unbiased estima-
tors, any estimator that outputs valid quantum states (e.g.,
LI, MLE) must be biased because of boundary effects. In the
given framework, the task of the neural network is to learn
such skewness and drift the distribution towards the true mean.

Computational details

The architecture is trained on 10 000 data in training and
1500 in validation, with a batch size of 1500. The code is run
on a Nvidia A100 GPU card with 80 GB of memory (Cuda
version 12.1). The total training time amounts to ∼25 minutes.
A similar time can be obtained on a commercially available
GPU virtual machine.

APPENDIX E: SAMPLING RANDOM STATES

We want the algorithm to learn how noise affects generic
states that cover the whole space S of proper quantum states.
In doing so, we will have a flexible solution that can poten-
tially improve any state. To this end, we will train our neural
network with random states sampled from different measures
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that uniformly cover the volume of interest. In particular, for
mixed states, we will use the Hilbert-Schmidt ensemble, while
for pure states, the Haar measure; in the following, we review
how to generate such random states.

1. Hilbert-Schmidt states

The HS measure is defined by the infinitesimal line element

ds2
HS = Tr[(d τ̂HS)2], (E1)

which indeed induces the HS distance DHS, as defined in the
main text, once integrated.

States uniformly distributed in the space endowed with the
corresponding metric, Eq. (E1), may be sampled as

τ̂HS = AA†

Tr[AA†]
, (E2)

where A is a generic complex square matrix whose real and
imaginary matrix elements are i.i.d. sampled normal random
variables N (0, 1).

2. Haar vectors

Such ensemble is defined on the pure-state space τ̂ =
|�〉〈�| and may be used to infer states with high purity, as
the metrologically useful states explored in the main text.
Formally, it takes advantage of the link between states |�〉 ∈
H, and the unitary group. The fundamental property of such
measure is that it is invariant under unitary transformations,
thus making any vector in H equiprobable.

Interestingly, Haar vectors (or equivalently unitaries), can
be drawn again from i.i.d. random normal variables N (0, 1)
[126]. Let A be a complex square matrix sampled as before.
Then, we apply the so-called QR decomposition,

A = QR, (E3)

where Q is unitary and R is upper triangular. Then Q′ = Q�,
where � = diag({Rαα/|Rαα|}α ), is Haar random.

In practice, we use the python package qutip to compute
those. For further information on random states, we refer to
Ref. [125].

APPENDIX F: CAPTURING THE METROLOGICAL
USEFULNESS OF OAT EVOLVED STATES

Given a quantum state ρ̂ with spectral decomposition ρ̂ =∑
k pk|k〉〈k|, we can evaluate its sensitivity upon rotations

generated by Ĝ, ρ̂(θ ) = e−iθĜρ̂e+iθĜ as quantified by the QFI,

FQ[ρ̂, Ĝ] = 2
∑
k,l

pk+pl >0

(pk − pl )2

pk + pl
|〈k|Ĝ|l〉|2. (F1)

In the main text, we consider an ensemble of L spins-1/2,
or two-level atoms. In such system and in the context of
magnetometry (e.g., via Ramsey interferometry), the phase is
encoded the same way in every constituent via the collective
generator Ĵv = ∑

i∈[L] v · σ̂ i where v = (vx, vy, vz ) is the en-
coding orientation.

For a generic state ρ̂, it is not direct to find the optimal
spatial direction v to exploit the maximal sensitivity. However,

for pure states ρ̂ = |�〉〈�| (like the OAT evolution that we
consider), the QFI is (four times) the variance of the gen-
erator, FQ[|�〉, Ĝ] = 4[〈�|Ĝ2|�〉 − 〈�|Ĝ|�〉2] and the best
direction is then yielded by the maximal eigenvalue vmax of
the covariance matrix C,

C =

⎛
⎜⎝

〈Ĵ2
x 〉 Re{〈ĴxĴy〉} Re{〈ĴxĴz〉}

Re{〈Ĵx Ĵy〉} 〈Ĵ2
y 〉 Re{〈ĴyJz〉}

Re{〈Ĵx Ĵz〉} Re{〈ĴyĴz〉} 〈Ĵ2
z 〉

⎞
⎟⎠

−

⎛
⎜⎝

〈Ĵx〉
〈Ĵy〉
〈Ĵz〉

⎞
⎟⎠(〈Ĵx〉 〈Ĵy〉 〈Ĵz〉), (F2)

where the expectation value is taken against pure states, 〈·〉 :=
〈�| · |�〉. The maximal value of the QFI achieved is conse-
quently FQ[|�〉, Jvbest=vmax ] = 4vT

maxCvmax = 4λmax(C), where
λmax indicates maximal eigenvalue. Here, we will introduce
two basic examples of such results:

(i) A coherent spin state pointing along x of length J =
L/2, |+〉⊗L. This initial state was chosen to start OAT dy-
namics, Eq. (9) (in the main text). In such case, the optimal
axis is any orientation orthogonal to x, i.e., contained in the yz
plane. The QFI achieved is exactly L, which is the maximal
value that can be reached by separable states (also known as
shot-noise limit) [120].

(ii) The GHZ or cat state aligned along x, (|+〉⊗L +
eiφ |−〉⊗L )/

√
2, which is realized at time t = π/2 during the

OAT dynamics. Now, the optimal generator points in the x
direction, and the corresponding QFI (variance times four)
is L2. Such value actually is the maximal QFI achievable
within the quantum framework and requires genuine L-partite
entanglement [118,119].

Since the OAT reconstructed states ρ̂ are of high purity, the
same procedure can approximate the optimal orientation v.
However, the QFI results are evaluated exactly as per Eq. (F1).
For further study, we refer the reader to the excellent review
of Ref. [77].

APPENDIX G: OAT STATE ANALYSIS FOR ZERO
CHANNEL AND ZERO MEASUREMENT NOISE

In this section, we consider an optimal scenario, when only
statistical sampling noise is being considered. To prepare our
data, we also consider SIC-POVM operators this time, given
their higher performance in tomography reconstruction tasks.
The quality of reconstruction is shown in Table I. First, we
verify that the neural network can improve substantially for
the OAT states, even though no examples of such states were
given in the training phase, which relied only on Haar-random
states. Moreover, the OAT-averaged reconstruction values ex-
ceed the Haar reconstruction ones. We conjecture that this
stems from the bosonic symmetry exhibited by the OAT states.
This symmetry introduces redundancies in the density matrix,
which might help the neural network detect errors produced
by statistical noise. Finally, let us highlight that the network
also displays good robustness to noise. In fact, when we
feed the same network with states prepared for Ntrial = 103

trials, we increase the fidelity of the reconstruction from 67%
to 87%.
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FIG. 4. Time evolution of the normalized QFI during the OAT
protocol for L = 4 qubits system. Solid blue lines represent QFI cal-
culated for target quantum states. The mean values of QFI calculated
from tomographically reconstructed density matrices are denoted by
green-dashed (reconstruction via LI), and red-dotted lines (recon-
struction via neural network postprocessed LI outputs). Shaded areas
mark one standard deviation after averaging over 10 reconstructions.
Panels (a) and (b) correspond to LI protocol with SIC-POVM data,
whereas (c) and (d) denote LI reconstruction inferred from Pauli
measurements. In the upper row, the left (right) column corresponds
to Ntrial = 103 (104) trials; in the lower row, the left (right) column re-
produces the LI initial fidelity reconstruction of ∼74%(∼ 86%). The
red lines represent the whole setup with neural network postprocess-
ing of data from corresponding green lines, indicating improvement
over the LI method. The neural network advantage over the bare
LI method can be characterized by entanglement depth certification,
as shown by the horizontal lines denoting the entanglement depth
bounds ranging from the separable limit (bottom line, bold) to the
genuine L-body limit (top line). In particular, the presence of entan-
glement, k � 2, is witnessed by QFI > L, as shown by the violation
of the separable bound (bold horizontal line).

APPENDIX H: BENCHMARKING
THE TRANSFORMER LAYER

The transformer architecture represented a breakthrough
in deep learning for sequential learning problems, such as
natural language processing [127]. It has been used for QST
problems that involve an unsupervised approach based on
the POVM ansatz [42], and more complex architectures to
extract diffusion parameters of Brownian motion [66]. Here,
we show the usefulness of the transformer architecture in
improving our QST matrix-to-matrix protocol. This becomes
especially pronounced in the regime of highly correlated,
that is, entangled quantum states, as shown in the latter part
of this Appendix. To test its role, we explore and compare
our transformer model with two different convolutional-only
architectures (CNN) based on their reconstruction ability. In
particular, we benchmark against two setups: (i) a 4-layer
convolutional neural network, where the transformer layer is
replaced with two convolutional ones,

l (4)
θ

[ �Cρ] = (γ (hcnn))◦4[ �Cρ] (H1)

FIG. 5. Comparison of the efficiency of QST reconstruction
schemes evaluated using Hilbert-Schmidt distance square D2

HS for
transformer-based, 2-layer, and 4-layer attention-free CNN models,
averaged in 1000 mixed states. All models share an equivalent num-
ber of training parameters. (a) Average reconstruction values for the
10 different LI preprocessed test datasets. Similarly to Fig. 2, we vary
the number of trials Ntrials to analyze the reconstruction efficiency and
also use states of dimension 9 for a direct comparison. (b) The same
analysis applied to the models trained on the MLE preprocessed data.
To summarize, only for the MLE preprocessed data, the 4-layer CNN
model can outperform the transformer-based for Ntrials = 106, 105,
while for the LI preprocessed our network shows better outcomes.

and (ii) the simplest CNN model consisting of two convolu-
tional layers, represented as

l (2)
θ

[ �Cρ] = (γ (hcnn))◦2[ �Cρ], (H2)

where γ is the GELU activation function in both the cases.
We set an equivalent number of trainable parameters for

all three architectures. We tested the two CNNs for the same
datasets as previously used for mixed- and pure-state recon-
struction. In the following, we analyze the performance of the
models for mixed- and pure-state reconstruction.

1. Mixed state reconstruction

In Fig. 5, we show the reconstruction of mixed states using
the three setups, namely our transformer and the two CNN
architectures. Firstly, as shown in panel (a), for the LI prepro-
cessed data, our transformer-based model outperforms CNNs
by showing a higher expressivity in terms of better reconstruc-
tion ability for a large number of trials Ntrials > 104. However,
the three models are almost equivalent in the undersampled
regime. Next, in panel (b), we show our numerical experi-
ments conducted on the MLE preprocessed dataset, which has
a comparatively lesser amount of noise. We can see that the
three models are almost equivalent.

2. Pure state reconstruction

For Haar-random pure states, using any of the two CNN
models for the QST protocol causes an evident drop of ∼10%
in the fidelity of reconstruction compared to the our attention-
based model for the undersampled regime (Ntrial = 103), as
exemplified in Table II.

Finally, we apply our protocol to the pure-state reconstruc-
tion task generated from one-axis twisting dynamics. In Fig. 6
we present the quantum Fisher information extracted from
the reconstructed states. A significant drop in quantum Fisher
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TABLE II. Values of averaged fidelity and its standard deviation
between the reconstructed and the target Haar pure states of size
d = 16 obtained by the two CNN architectures l (2)

θ , l (4)
θ used inside

our matrix-to-matrix protocol. In the second row, the outcomes we
obtained by applying the transformed-based model. Similar to Fig. 4,
we check for a different number of trials Ntrial = 105, 104, 103 to
analyze the performance of the different architectures. All the initial
Born values are calculated via noiseless SIC-POVM.

105 trials 104 trials 103 trials

CNNs 94.2 ± 3.0% 87 ± 2.2% 68.0 ± 4.0%
Transformer 96.9 ± 3.0% 94.2 ± 3.3% 81.1 ± 4.1%

information reconstruction is observed in using CNN-based
architectures compared to the transformer architecture.

We conclude that our transformer-based architecture works
significantly well compared to the only CNN-based architec-
tures in the case of reconstructing pure OAT states, when the
QFI is considered a figure of merit. In the other case of mixed
states reconstruction, the three architectures are comparable,
and the transformer-based approach works better in the LI-
preprocessed states in the highly sampled regime.

APPENDIX I: IMPROVING THE AVERAGED
MLE IN HS METRIC

The MLE is efficient asymptotically, with a number of
measurements N → ∞. However, for a few measurements,
there is no guarantee that MLE performs best. Such a situation
takes place in the undersampled regime. In terms of the HS
metric, it is usually more convenient to ignore any knowledge
and just take the maximally mixed state I/d as an estimation.
Here, we propose a simple method to interpolate between the
two extreme results by depolarizing the MLE state ρ̂,

ρ̂p = pρ̂ + (1 − p)I/d , (I1)

FIG. 6. Time evolution of the normalized QFI during the OAT
protocol for four qubits. The dotted dark grey line represents the QFI
calculated for the target quantum state, and the light grey dashed line
is the QFI upon LI reconstruction (our minimal threshold). Panels
(a) and (b) correspond to the QFI obtained for the states reconstructed
by the 2-layers and 4-layers CNN respectively. We observe that,
firstly, the transformer-based model outperforms the CNN models
at all times with reconstruction ability very close to the OAT target
states. Secondly, the CNN models perform equivalently irrespective
of the number of layers in the architecture as shown in panels (a) and
(b) for 2-layers and 4-layers respectively when considering QFI as
our reconstruction metric.

FIG. 7. Averaged HS distance of reconstructed MLE from the
HS ensemble with d = 9 as mixed according to Eq. (I1) for different
values of p (coloured lines). We highlight the limiting cases, namely
p = 0 (solid line); the average with respect I/d , and p = 1 (dashed):
the MLE result. The envelope of such a family of lines is marked
with a dotted line. Such bound can be realized with an optimal p∗,
which depends on the number of trials via the reconstructed {ρ̂MLE}.

with 0 � p � 1. The parameter p would then incorporate the
statistical noise inherent to have a finite number of samples.

In Fig. 7 we show the average HS distance as a function of
a number of trials Ntrial, for different values of the parameter p.
The first extreme case (p = 0), i.e., maximally mixed state is
presented as a horizontal solid line, while the second extreme
case (p = 1), i.e., the MLE reconstructed state, is depicted as
a dashed line. All intermediate values of p form an envelope
shape, corresponding to a critical value p∗, outperforming all
other values of p.

To calculate the critical p∗ let us notice that the average
of the squared HS distance with respect to the state Eq. (I1),
D2

p = D2
HS(τ̂ , ρ̂p), can be expressed as

D2
p = D2

0 + (
D2

1 − D2
0 − D2

01

)
p + D2

01 p2 , (I2)

where

D2
0 = D2

HS(τ̂ , I/d ), (I3)

D2
1 = D2

HS(τ̂ , ρ̂MLE), (I4)

D2
01 = D2

HS(I/d, ρ̂MLE). (I5)

The Eq. (I2) is equally valid in average as it is linear in
the D2’s, and we consider p a global parameter. Then, D2

0 can
be related to the average purity Tr(τ̂ 2) as D2

0 = Tr(τ̂ 2) − d−1.
Also, as depicted in Fig. 8, it can be interpreted geometrically
as a triangle of sides’ length {D0, D1, D01} in which we want
to find the point p in the segment 01, which is closer to the
opposed vertex. Minimization of the same equation leads to
the optimal p∗,

p∗ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 D2
01 < D2

1 − D2
0

D2
01+D2

0−D2
1

2D2
01

otherwise

1 D2
01 < D2

0 − D2
1

, (I6)
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FIG. 8. Geometric interpretation of the optimal depolarization of
the MLE state, such as incorporating the statistical noise stemming
from a finite number of experimental runs.

yielding an optimal distance

D2∗ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

D2
0 D2

01 < D2
1 − D2

0

D2
0 − D2

0−D2
1−D2

01

2

4D2
01

otherwise

D2
1 D2

01 < D2
0 − D2

1

, (I7)

In Fig. 9, we observe a realization of the nontrivial solution
(otherwise case), which is better than both D2

0 and D2
1.

Finally, one should check how this method relates to
Bayesian approaches [128]. In particular, how to incorporate
partial information about the ensemble, e.g., by only assuming
as prior knowledge an average purity.

APPENDIX J: INTERPRETATION OF THE NEURAL
NETWORK AS A CONDITIONAL “DEBIASER”

Our neural network takes as input a reconstructed state ρ̂

from the experimental results f through some estimator (e.g.,
LI, MLE), Q[f] = ρ̂. The neural network returns a state ˆ̄ρ that
on average over the realizations (in f) better approximates the
target τ̂ than ρ̂. In the following, we outline the situations in
which we expect a poor performance of our algorithm. From
the above setting, we immediately see that it is useless for the
unbiased estimators.

Observation 1. If the estimator Q is unbiased, i.e., ρ̂ =
τ̂ , no further improvement can be achieved with our ap-
proach. In fact, the mean already provides the best estimation.

FIG. 9. Average reconstruction distance as a function of the mix-
ing parameter p for a given set of number of trials. We verify the
parabola curves of Eq. (I2) and the nontrivial minima.

FIG. 10. Action of the neural network as a conditional debiaser.
(a) Inference of the state τ̂ by many finite-size realization {ρ̂f }f not
necessarily a proper state (i.e., it might be outside S). (b) Disre-
garding the nonphysical realizations results in a skewed conditional
distribution whose mean is displaced from the true state. The action
of the neural network is then to shift back the mean to the target state
by drifting the distribution.

Consequently, if some enhancement is observed, the inference
of the input state must be biased. The bias here comes from
the requirement that ρ̂ must be a proper quantum state.

To observe why it is so, let us focus on the simplest case
of two projective quantum measurements, i.e., spin measure-
ments of an electron in the x and y directions. Although both
measurements belong to the set [−1/2, 1/2], not all pairs of
measurement results are admissible. For example, there are no
valid quantum states for which both measurements yield 1/2
since then the total spin would be larger than 1/2.

Therefore, if we account for the inevitable noise present
for finite statistics, the unphysicality of certain real-world
measurements is unavoidable. There are two general QST
strategies to overcome this obstacle—either discard the un-
physical outcomes (e.g., MLE) or keep them all (e.g., LI). Any
of these methods has its drawbacks, and, for finite statistics,
one cannot have a strategy that satisfies both the linearity and
the physicality of the predicted states [129].

Observation 2. Any estimator Q, which, as required by our
neural network architecture, outputs a valid state ρ̂f for any
physical f ∈ F , is biased.

This phenomenon becomes more prominent for τ̂ close
to the boundary of the quantum set S , i.e., with high purity
[130,131]. By convexity, the boundary of FS is attained by ex-
tremal elements of S . From which we notice that the chance of
nonquantum outcomes is higher and Ef [ρ̂f |ρ̂f ∈ S] becomes
significantly displaced from τ̂ (see sketch Fig. 10). In such
terms, the task of the neural network can be interpreted as
drifting the skewed probability distribution towards the true
mean, by means, however, of only quantum outcomes. In
other words:

From {f ∈ FS}, find ensemble {fNN ∈ FS} such that the
output bias |EfNN (ρ̂fNN ) − τ̂ | is minimal.

As a result, generic mixed states are harder to improve
than pure states. More studies are needed to confirm the said
behavior. In particular, one has to verify that no improvement
is possible if the reconstruction method to obtain ρ̂f already
incorporates the skewness and how performance depends on
the bias of the estimator Q.
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