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Weak ergodicity breaking in optical sensing
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The time-integrated intensity transmitted by a laser-driven resonator obeys Lévy’s arcsine laws [Ramesh et al.,
Phys. Rev. Lett. 132, 133801 (2024)]. Here, we demonstrate the implications of these laws for optical sensing.
We consider the standard goal of resonant optical sensors, namely to report a perturbation to their resonance
frequency. In this context, we quantify the sensing precision attained using a finite-energy budget combined with
time or ensemble averaging of the time-integrated intensity. We find that ensemble averaging outperforms time
averaging for short observation times, but the advantage disappears as the observation time increases. We explain
this behavior in terms of weak ergodicity breaking, which arises when the time for the time-integrated intensity
to explore the entire phase space diverges, while the observation time remains finite. Evidence that the former
time diverges is presented in first passage and return time distributions. Our results are relevant to all types of
sensors, in optics and beyond, where stochastic time-integrated fields or intensities are measured to detect an
event. In particular, choosing the right averaging strategy can improve sensing precision by orders of magnitude
with zero-energy cost.
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I. INTRODUCTION

Optical sensors play a major role in physics research
and technology. They are used to measure nanoparticles
[1–3], single molecules [4,5], chirality [6], weak forces [7],
nanoscale chemical reactions [8], distances [9], fields [10],
and gravitational waves [11], to name a few examples. A
popular type of sensor is a laser-driven resonator, or cavity
as illustrated in Fig. 1(a). A perturbation to its resonance fre-
quency can be detected by measuring its transmitted intensity
and integrating it in time with a photodetector. However, the
noise is also integrated. Consequently, given limited optical
power and observation time, the sensing precision that can be
attained is finite. To maximize this precision, measurements
can be averaged in time or over an ensemble of independent
and identically distributed (iid) samples. The latter can be
achieved by using multiple cavities instead of one, all probing
the same environment. In this context, we are interested in the
following question: Given an energy budget to estimate the
mean time-integrated intensity, will one measurement of dura-
tion τO or m iid measurements of duration τO/m yield a better
estimate? For an ergodic process, time and ensemble averages
are equal and both measurements should give equally precise
estimates. However, as we will show, ergodicity is not a given
in finite-time sensing.
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Ergodicity is defined by the hallmark property of equal
time and ensemble averages. For a more rigorous definition
of ergodicity, and an overview of its history and implica-
tions, interested readers can see Refs. [12,13]. Whether and
how ergodicity holds has been a central problem in statis-
tical mechanics since its inception [12,13], and it continues
to draw great interest in statistical physics and beyond [14].
Ergodicity can be broken in two ways. The first, known as
strong ergodicity breaking, occurs in systems whose phase
space is divided such that it cannot be accessed entirely in
a single trajectory. The second, known as weak ergodicity
breaking (WEB), occurs in systems whose phase space is
unrestricted but the time spent in any region diverges. The
distinction between strong and weak ergodicity breaking was
introduced in the context of spin glasses [15], where it remains
an active research topic [16–18]. In addition, WEB has drawn
interest in various contexts, such as quantum thermalization
[19–24], biological [25–27] and neurological processes [28],
stochastic resetting [29], heterogeneous diffusion [30,31],
quantum emitters [32,33], single particle tracking [34], and
finance [35].

In this paper we demonstrate WEB in optical sensing. We
present experimental and numerical results for a laser-driven
linear optical cavity, which can perform sensing as illustrated
in Fig. 1(a). The time-integrated intensity transmitted by this
system obeys the arcsine laws [36]; WEB can therefore be
expected [37–39]. Indeed, we observe several signatures of
WEB in the time-integrated intensity. These include first pas-
sage time and return time distributions with power-law tails,
implying arbitrarily long times for the time-integrated inten-
sity to explore its entire phase space and thus for ergodicity
to emerge. Next we analyze the sensing precision that can
be attained when time and ensemble averaging of the time-
integrated intensity are performed with a fixed energy budget.
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FIG. 1. (a) A laser-driven optical cavity is used as a sensor.
By measuring the cavity transmission, a perturbation ε to the res-
onance frequency can be detected. (b) Sample trajectory of the
time-integrated intensity I, with the expectation value E[I] [see
Eq. (2c)] subtracted. This trajectory was obtained from our experi-
mental tunable cavity setup as explained in the text.

We identify two distinct ensemble averages to which the time
average can be fairly compared. One uses equal power, the
other uses equal observation time, and both use equal amount
of energy as the time average. We find that the ensemble av-
erage with equal power as the time average is vastly superior
for short observation times. However, as the observation time
increases, differences between the three averages reduce and
ergodicity emerges. Finally, we discuss hardware considera-
tions for utilizing our findings, the generality of our results,
and their relevance to other types of sensors or time-integrated
signals in optics and beyond.

II. SYSTEM AND SIGNALS FOR SENSING

Figure 1(a) illustrates the system under study. It is a single-
mode linear cavity driven by a noisy laser. In a frame rotating
at the laser frequency ω, the intracavity field α satisfies

iα̇ =
(

−� − i
�

2

)
α + i

√
κLA + D√

2
(ζR(t ) + iζI (t )). (1)

� = ω − ω0 is the frequency detuning between the laser and
the cavity resonance ω0. � = γa + κL + κR is total dissipa-
tion rate, with γa the absorption rate and κL,R input-output
rates through the left or right cavity mirror. A is laser am-
plitude, which we assume to be real. ζR(t ) and ζI (t ) are
Gaussian processes imprinting white noise on α. We use a
single pair of stochastic terms ζR,I to effectively account for
two sources of noise in our system, under the reasonable
assumption that both noise sources are additive and Gaussian.
One noise source is the driving laser. The other noise source
is the dissipative interaction of the cavity with its environ-
ment, which results in fluctuations of the intracavity field

according to the fluctuation-dissipation relation. The stochas-
tic terms have mean 〈ζR(t )〉 = 〈ζI (t )〉 = 0 and correlation
〈ζ j (t ′)ζk (t )〉 = δ j,kδ(t ′ − t ). Since ζR,I (t ) are additive noises,
have unit variance, and are multiplied by D/

√
2, the standard

deviation of the effective noise is D.
Equation (1) captures the physics of a single linear optical

mode in diverse systems. We use it to describe a planoconcave
Fabry-Pérot microcavity as previously realized in [40–42].
However, the physics is exactly the same for whispering-
gallery-mode [4], ring [43], photonic crystal [44], or any
type of resonator where one mode is sufficiently well isolated
spectrally and spatially from all other modes. These types of
cavities, or resonators, are widely used for optical sensing.
Typically, the cavity transmission or reflection is monitored
in search for signatures of the object of interest. The object
of interest, which we call “the perturbation”, usually perturbs
the cavity by shifting the spectral lineshape as illustrated in
Fig. 1(a). Thus, the frequency magnitude of the perturbation ε

can be detected by measuring the spectrum.
Since noise is inevitable and measurements always take

finite time, a common approach to detect the perturbation is by
analyzing the time-integrated intensity I = ∫ τO

0 κR|α(t )|2dt ,
with τO the observation time. Then, to improve precision,
three distinct averages of I can be used as signals for sensing,

〈I (t )〉 = 1

m

m∑
j=1

I j (t ), (2a)

I (t ) = 1

t

∫ t

0
I (s)ds, (2b)

E[I] =
∫

IP (I )dI. (2c)

〈I〉 is the ensemble average, obtained from m samples. I is the
time average, obtained from a single measurement of duration
t . E[I] is the expectation value or statistical average of I,
calculated from the stationary probability density function
(PDF) of I, namely P (I ). By writing the time dependence of
〈I (t )〉 and I (t ) explicitly in Eqs. (2a) and (2b) we highlight
that averages are done over finite times. Note that there are
effectively two integrals in going from the intensity to I.
The first integral is over the observation time τO, and the
second one is performed when averaging the time-integrated
intensity over time t . The ensemble average also involves the
first integral over τO, but then the second integral is replaced
by an average over m samples of the time-integrated intensity
measured at time t .

Figure 1(b) illustrates a trajectory of I relative to its ex-
pectation value E[I]. This and all experimental results in
this paper were obtained by periodically modulating the cav-
ity length across a resonance as shown in Fig. 1(a), such
that �(t ) = �(t + T ) with T the period. Consequently, E[I]
is not constant in time. Such a stochastic process, with
time-dependent expectation value, is known as temporally
inhomogeneous.

Notice in Fig. 1(b) that I remains above E[I] throughout
most of its trajectory. This results in an extreme deviation of
I from E[I], quantified by the distance between the green
and black horizontal lines. Such extreme deviations are not
particular to the trajectory we have chosen to display. On the
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FIG. 2. Green and black curves in all panels correspond to the time-integrated intensity when performing time and ensemble averaging,
I(t = τO ) and 〈I〉(t = τO/m) respectively, with m = 10. The expectation value E[I] is subtracted from both averages. (a) Experimental
trajectories as a function of the observation time τO. (b) Probability density functions (PDFs) at τO = 30 ms, indicated by the red dashed line
in (a). Rectangles are experimental data, solid curves are Gaussian fits. (c) Experimental variance vs τO, with linear fits as blue-dashed lines.

contrary, extreme deviations from the expectation value are
likely to occur in stochastic processes governed by the arcsine
laws [45–47], such as I [36]. The arcsine laws hold not only
for a temporally inhomogeneous process, as considered in
this manuscript for generality. As explained in Ref. [36], the
arcsine laws also hold for a temporally homogeneous process
such as the time-integrated intensity obtained when the laser
amplitude A and laser-cavity detuning � are both stationary.
Furthermore, the arcsine laws hold when the coherence of the
laser is substantially degraded, and in the presence of Kerr
nonlinearities (relevant to sensing [48,49]). Time integration
is the key to the arcsine laws. It transforms a Gaussian process
(laser noise) into a Lévy process (stochastic time-integrated
intensity).

III. WEAK ERGODICITY BREAKING
IN THE TIME-INTEGRATED INTENSITY

Let us first illustrate the dynamics and statistical properties
of time and ensemble averages of the time-integrated intensity.
To this end, we use experimental data obtained from our
tunable cavity setup described in the previous section. The
time average I is simply calculated using Eq. (2b), setting
t = τO. For the ensemble average 〈I〉, we leveraged the fact
that the dynamics of I are Markovian, meaning memoryless.
This allows us to partition a trajectory of duration τO into
m trajectories of duration τO/m, and to regard the resulting
parts as m iid samples. Then, for that ensemble, we calculated
〈I〉 using Eq. (2a), setting t = τO/m and m = 10. In this way,
we avoid the cumbersome task of measuring the output of m
distinct cavities.

Figure 2(a) shows several trajectories of I and 〈I〉 as
green and black curves, respectively, both as a function of
the observation time τO. The expectation value E[I] has been
subtracted from both averages for ease of visualization. Al-
ready here we can observe substantial differences between I
and 〈I〉. Note that, since both averages come from the same
experimental data, the laser power relative to the noise is the
same. WEB is the sole origin of the observed effect.

Figure 2(b) compares the PDFs of 〈I〉 and I at τO = 30 ms.
Notice the big difference in the width of the PDFs. In Fig. 2(c)
we quantify these differences by plotting the variances as

a function of τO. Both variances grow linearly with τO, as
expected for a diffusive Lévy process such as I [36]. We
note that the PDFs and variances in Figs. 2(b) and 2(c) were
obtained from a much larger data set than the one presented in
Fig. 2(a) for illustration purposes only.

WEB as observed in Fig. 2 arises from the separation of
two time scales. The observation time τO is finite, but the time
required for the underlying stochastic process to fully explore
its phase space diverges. This separation of time scales van-
ishes for τO → ∞. Consequently, for τO → ∞ ergodicity is
recovered. The asymptotic equivalence of time and ensemble
averages is a feature specific to weak (rather than strong)
ergodicity breaking. WEB in the time-integrated intensity can
be intuitively understood based on the implications of the first
arcsine law [36]. According to the first arcsine law, most tra-
jectories of I evolve far above or far below E[I]. This extreme
behavior arises from the properties of a continuous diffusive
Lévy process, such as the time-integrated intensity. Below, we
present signatures of such a processes in first passage time and
return times distributions. The experimental data we present
was obtained using the same tunable cavity setup giving the
results in Figs. 1 and 2.

In Fig. 3 we analyze first passage times (FPTs) in tra-
jectories of I. Figure 3(a) illustrates how to identify FPTs.
Essentially, the FPT is the time I takes to reach a certain
value. Conversely, this may be interpreted as the waiting
or occupation time within a given boundary. For con-
creteness but without loss of generality, we consider three
values of I − E[I]: 0.8 × 10−4 V s, 1 × 10−4 V s, and
2 × 10−4 V s, indicated by the red, black, and blue dashed hor-
izontal lines in Fig. 3(a), respectively. The noisy black curve
is an arbitrarily selected trajectory of I. For ease of visualiza-
tion, we subtracted the expectation value E[I] from I. Based
on many such trajectories of I, we calculated distributions of
FPTs. The results are shown in Fig. 3(b), using the same color
scheme as in Fig. 3(a). Notice in Fig. 3(b) that the long-time
tails of all FPT distributions are linear in the log-log plot,
meaning they are characterized by a power law. In each case,
we retrieved the corresponding exponents by fitting a power
law to the data. For example, for the intermediate value of I
(black data points) we retrieved an exponent of −1.54; the cor-
responding power law is shown as a dark green line Fig. 3(b),
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FIG. 3. (a) Experimental sample trajectory of the time-integrated
intensity I relative to its expectation value E[I]. (b) Red diamonds,
black squares, and blue circles are distributions of the times taken for
I − E[I] to cross the dashed lines in (a) of the same color. The green
line is a power-law fit with exponent −1.54 to the tail of the black
curve (cutoff at ∼10−3 s). The shaded area is the 95% confidence
interval of the fit.

and the light green shaded region is the 95% confidence inter-
val of the fit. Notice that this power law captures reasonably
well (within the uncertainty) the FPT distribution tails for the
two other values of I we selected. We furthermore verified
that the FPT distribution tail for any value of I is well cap-
tured by such a power law. The exponent that we find, −1.54,
is within the uncertainty of the value −1.5 expected for a
Wiener process, which is a continuous diffusive Lévy process
[50,51].

In Fig. 4 we analyze the distribution of return times (RTs)
of I. The RT is the time I takes to return to the expecta-
tion value E[I]. To illustrate the approach, Fig. 4(a) shows
a different arbitrarily selected trajectory of I, from which
we have again subtracted E[I] for ease of visualisation. The
successive returns of this trajectory to the mean are shown by
black dashed-lines. Based on many of such trajectories, we
calculate the distribution of RTs shown in Fig. 4(b). The dark
green line is a power-law fit of the tail, with cutoff determined
by using the Matlab change point detection algorithm. The
light-green shaded region (barely wider than the line) is the

FIG. 4. (a) Experimental sample trajectory of the time-integrated
intensity I relative to its expectation value E[I]. Dashed lines mark
crossings of E[I]. (b) Probability density function (PDF) of return
times, which are the times between two successive crossings of E[I].
The green line is a power-law fit with exponent −1.5 (cutoff at
∼10−4 s). The light green shaded area is the 95% confidence interval
of the fit.

95% confidence interval of the fit. The fitted exponent is −1.5,
as expected for the tail of distribution of RTs for a Wiener
process [52].

Probability distributions with power-law tails are charac-
terized by a divergent first moment. This means that the mean
FPT and RT are both infinite. From the divergent mean FPT it
follows that I can take arbitrarily long to pass any boundary.
From the divergent mean RT it follows that the relaxation
time of the diffusion process diverges. Together, these results
establish that I will take arbitrarily long to explore its entire
phase space. Consequently, for any finite observation time τO,
I is a nonergodic process with unequal time and ensemble
averages. A corollary to these results is that ergodicity is
recovered in the limit τO → ∞, which allows I to explore
and distribute its occupation time across its entire space.

IV. SENSING PRECISION OF TIME
AND ENSEMBLE AVERAGES

In this section we explore the consequences of WEB for
optical sensing. In Fig. 2 we demonstrated that 〈I〉 has a
smaller variance than I. Therefore, we expect ensemble av-
eraging to outperform time averaging in sensing. To test
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FIG. 5. The two probability density functions (PDFs) in every panel are obtained numerically, by calculating the time-integrated intensity
I for two distinct laser-cavity detunings: � = 0 in black, and � = 0.1� in blue. Rectangles are obtained from numerical simulations, and
solid curves are Gaussian fits. In (a) we calculate the time average I of the time-integrated intensity transmitted by a single cavity up to a
time τO = 10�−1. In (b) and (c) we calculate ensemble averages of the time-integrated intensity transmitted by 10 cavities. In both (b) and (c),
the energy budget (time-power product) is the same as in (a). However, in (b) we consider ensemble averaging with equal laser power as the
time average in (a); we call the resultant quantity the equal power ensemble average 〈I〉P. In (c) we consider ensemble averaging with equal
observation time as the time average in (a); we call the resultant quantity the equal time ensemble average 〈I〉t . σ1 and σ2 are the standard
deviations of the PDFs. Simulation model parameters: D = 2�, A = 10

√
� in (a) and (b), A = √

10� in (c).

this expectation, we performed numerical simulations using
Eq. (1). We first calculated the dynamics of α for an unper-
turbed cavity driven on resonance, such that � = 0. Then,
we set � = 0.1� (a perturbation of strength ε = 0.1� on
the cavity) and simulated the dynamics again. The change
in � results in a shift in E[I], which we aimed to detect by
calculating time and ensemble averages of I.

Recognizing energy as the fundamental resource for sens-
ing, we can identify two distinct ensemble averages to which
the time average can be fairly compared. To see this, suppose
that we determine I using data from one cavity driven with
power A2 during time τO. Suppose that we also have m cavities
at our disposal, all giving iid measurements of I. To keep the
total energy expenditure mτOA2 constant, we can divide the
observation time or the power by m. Therefore, in one scenario
the m cavities are driven with equal power A2 for a reduced
time τO/m. We denote the ensemble average obtained in this
first scenario 〈I〉P, with the “P” standing for equal power. In a
second scenario, the m cavities are driven with reduced power
A2/m for a time τO. We denote the ensemble average obtained
in this second scenario 〈I〉t , with the “t” standing for equal
time. We show below that, while the total energy expenditure
is the same for all three averages, the sensing precision that
can be attained is not.

We quantify the sensing precision χ as follows:

χ = δO√
σ 2

1 + σ 2
2

. (3)

δO is the shift in the observable O because of the object
of interest. In our case, it is the shift in E[I] caused by
the perturbation ε to the laser-cavity detuning divided by the
loss rate �/�. σ1 and σ2 are the standard deviations of the
PDFs of O in the presence and absence of the perturbation,
respectively.

Figure 5 illustrates our approach to determine the sens-
ing precision for each of the three aforementioned averages

based on numerical simulations. The total energy expenditure
mτOA2 is constant. Black and blue bars are PDFs obtained
for the unperturbed and perturbed cavity, respectively. Solid
curves of the same color are Gaussian fits to the numerical
data. Figure 5(a) corresponds to the time average I of the
time-integrated intensity transmitted by a single cavity driven
with power A2 = 100� during time τO = 10�−1. Figures 5(b)
and 5(c) correspond to ensemble averages with equal power
and equal time, 〈I〉P and 〈I〉t respectively, as in the time
average. For all three averages, the small δO and large σ1,2

results in χ < 1. A successful detection strategy can still be
constructed in each case with a judiciously defined thresh-
old in O [53]. However, the probabilities of false alarm and
missed detection will be significantly smaller for 〈I〉P than
for the other two averages. In this sense, the equal power en-
semble average is the superior sensing strategy. Arguably, the
lower precision of 〈I〉t than of 〈I〉P is expected because only
for 〈I〉t we divided the power by m while the noise strength
remained constant. However, this argument is insufficient to
explain the time dependence of χ presented next.

Figure 6 shows χ versus τO for each of the three averages
under consideration. To obtain these results, we used Eq. (3)
with δO and σ1,2 evaluated as in the example in Fig. 5(b).
Again, the total energy expenditure is constant. We first note
that all three averages grow with τO. As expected, longer mea-
surements give greater precision regardless of the averaging
method. However, important differences between the three
averages can be observed for sufficiently small τO. First and
foremost, both ensemble averages outperform the time aver-
age. This could be anticipated based on the lower variance of
the ensemble average at fixed τO, as shown in Fig. 2—a man-
ifestation of the WEB we have discussed. Notice, however,
the vastly different precision of the two ensemble averages at
short times. 〈I〉P outperforms 〈I〉t by more than two orders of
magnitude at τO� = 1. In this case, the advantage is enhanced
by the fact that 〈I〉P uses m times more power than 〈I〉t while
the noise variance remains the same. Differences in precision
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FIG. 6. Sensing precision χ [see Eq. (3)] vs observation time τO,
calculated numerically using the model parameters reported in the
Fig. 5 caption. The solid green curve is obtained by time averaging.
The solid black and dashed red curves are obtained by ensemble
averaging with the equal power and equal time, respectively, as in
time averaging. In all three cases, the energy budget (time-power
product) is the same. (Inset) Zoom-in of the region of small τO,
plotted in linear scale.

reduce as τO increases and the noise is averaged out. Each
average grows at a different rate, and for τO → ∞ ergodicity
emerges.

The main panel of Fig. 6 can give the impression that
〈I〉P saturates to a constant value for τO � 10/�. However,
the effect is merely apparent because of the log-log scale. To
show this more clearly, the inset in Fig. 6 shows the same
data in a linear scale and zooming into the region of small
τO. Notice that there is no saturation of 〈I〉P. A related point
is that the precision attained with all three averages reaches
a nonzero value at the smallest τO we can consider. Here,
the explanation has to do with the finite temporal resolution
of our simulations. Even for the smallest τO we can im-
plement, the nonzero signal δO and variances σ1,2 result in
a nonzero precision. Only for exactly τO = 0 the precision
vanishes. This is not an artefact of our simulations. The same
effect can be expected in any experiment involving a finite
measurement rate.

We now explain the conditions under which 〈I〉P outper-
forms the other two averages for small τO. To this end, we
performed numerical simulations similar to those underlying
the results in Fig. 6, but for four perturbations of different
strength ε. To facilitate the comparison of the results, we
define the precision contrast as follows:

C = χ [〈I〉P] − χ [I]

χ [〈I〉P] + χ [I]
. (4)

χ [〈I〉P] and χ [I] are the sensing precision obtained un-
der constant-power ensemble averaging and time averaging,
respectively, both referring to the time-integrated intensity.
Since χ > 0 for any average, C < 1. Moreover, for C → 1
ergodicity is maximally broken.

Figure 7 shows the precision contrast C versus τO, for
the values of ε indicated in the legend. The results can be

FIG. 7. Precision contrast C [see Eq. (4)] vs observation time τO

for four distinct perturbations of strength ε indicated in the legend.
All data is calculated numerically with model parameters as in the
Fig. 5 caption.

interpreted in two complementary ways. First, keeping τO

constant, we observe that C decreases with ε. This means
that the impact of WEB on sensing is enhanced for weaker
perturbations. Second, keeping C constant, we observe that
the value of τO decreases with ε. This means that the time
for ergodicity to emerge increases for weaker perturbations.
These two complementary observations highlight that WEB
occurs for weak perturbations and at short times. In both of
these conditions, fluctuations are dominant. This observation
connects to the results in Fig. 6. Previously, we noted that
WEB vanishes in the long time limit. However, an equally
valid statement about the results in Fig. 6 is that WEB van-
ishes in the limit of large precision. In that limit, fluctuations
are averaged out and become irrelevant. Thus, the overarching
message of Figs. 6 and 7 is that the effects of WEB are
significant in the regime of strong fluctuations. This is the
most important regime at the frontier of sensing, given that
fluctuations are unavoidable in the quest to quickly detect
small perturbations.

Before concluding, we briefly comment on the practical
implications of exploiting WEB in optical sensing. The av-
erages we have analyzed consume equal amount of energy,
and in that sense their comparison is fair. However, the hard-
ware involved is not the same. For the time average I we
assumed a single cavity driven by a single laser with power
A2. For the ensemble average 〈I〉t with equal time as I,
we assumed that the power A2 of one laser is distributed
equally among m cavities. The power can be distributed using
m − 1 free-space beam splitters, or more conveniently with
a single beam splitter having m output channels in an inte-
grated photonics platform [54]. In addition, m photodetectors
are needed for parallel measurements. This type of measure-
ment multiplexing, already done in integrated photonics for
optical sensing [55], is a typical scenario where our results
on WEB are particularly relevant. We further note that the
success of this multiplexing approach to obtain 〈I〉t relies
on the time-integrated intensity in each cavity experiencing a
different noise realization. That will be the case whenever the
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dissipation-induced fluctuations in each cavity are significant
compared to the fluctuations in the driving laser which are
the same for all cavities. Then, for the ensemble average 〈I〉P

with equal power as I, we would need m photodetectors and
either m lasers with power A2 or a single laser with power mA2

combined with m − 1 beam splitters. We recognize that not
every application justifies these additional hardware require-
ments, but some do. Consider, for example, sensors aimed at
detecting catastrophic failures or short events with important
consequences. In those cases, the benefits of ensemble aver-
aging we have found can be worth the additional hardware
investment. We also note that, if Markovian dynamics can be
rightly assumed, the m resonators are not strictly required to
perform ensemble averaging. One could partition trajectories
as we have done in Fig. 2 with our experimental data from
one cavity, and perform ensemble averaging on those parts.
Such an approach is much simpler to implement, but it will
not benefit from the parallelism of the m resonators to improve
speed.

V. CONCLUSIONS AND PERSPECTIVES

To summarize, we reported signatures of WEB in the time-
integrated intensity I transmitted by a resonant optical sensor.
We compared the sensing precision attained for three distinct
averages of I, all as a function of the observation time. One
is the time average, and the other two are ensemble averages
with either equal power or equal observation time as the time
average. We found that the “equal power” ensemble average
outperforms the other two averages, by orders of magnitude,
for short measurements times. However, this advantage disap-
pears as the observation time increases, fluctuations become
irrelevant, and ergodicity emerges. While we fully focused
on measurements of I, we expect our results to hold when
sensing with other time-integrated observables obeying the
arcsine laws. Examples of such observables include the time-
integrated real and imaginary parts of α [36], which can be
measured using balanced homodyne detection [56]. Similarly,
while the specific sensor we studied in this paper is a single-
mode linear optical cavity with additive noise, we expect
our results to hold for different systems and conditions. For
instance, for a nonlinear cavity and for a linear cavity influ-
enced by multiplicative noise, the arcsine laws hold [36] and
WEB can be expected. Another important extension of our
results is to sensors based on two or more coupled resonators,
which have stimulated an important debate about the effects

of noise on sensing [57–61]. We expect sensing with the
time-integrated fields or intensities of those systems to display
WEB for the following reason. The intensity is the sum of the
squared real and imaginary parts of α. Thus, while our system
is single mode in the optics parlance, we are already dealing
with the sum of two stochastic variables. Furthermore, Eq. (1)
is mathematically equivalent to models of two-dimensional
Brownian motion under the influence of both conservative
and nonconservative forces [62]. That the arcsine laws hold in
such general conditions, in two dimensions, strongly suggests
that our findings about WEB in optical sensing should hold for
higher dimensional systems involving two or more resonators.

Finally, we highlight two perspectives of our study. At
the system level, we think that resonators with memory in
their nonlinear response [63,64] offer interesting opportuni-
ties to explore WEB beyond the domain of the arcsine laws.
The arcsine laws were derived assuming memoryless Marko-
vian dynamics, and are expected to be modified or break
down in non-Markovian systems. However, to what extent
the conclusions of this paper are modified in the presence of
non-Markovian dynamics is an open question. In particular,
it remains unclear whether differences between time and en-
semble averages will be enhanced or reduced when memory
effects become relevant. We anticipate that those differences
will undergo dramatic changes when the observation time
becomes commensurate with the memory time—a condition
that is easy to achieve in thermo-optical nonlinear cavities
[63,64]. However, that remains to be tested.

The second perspective we offer is at the application level.
While our paper focused entirely on sensing, we expect our
findings to be relevant to other information processing tasks
where time-integrated observables are measured. For instance,
nonlinear optical microcavities are under intense investiga-
tion for their potential to solve computational or optimization
problems in a probabilistic way [65–67]. In those cases as
well, understanding the differences between time and ensem-
ble averaging is crucial to make the most precise computation
given an energy budget.
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