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Local-time formula for dissipation in solid ionic electrolytes
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When ions move through solids, they interact with the solid’s constituent atoms and cause them to vibrate
around their equilibrium points. This vibration, in turn, modifies the potential landscape through which the
mobile ions travel. Because the present-time potential depends on past interactions, the coupling is inherently
nonlocal in time, making its numerical and analytical treatment challenging. For sufficiently slow-moving
ions, we linearize the phonon spectrum to show that these nonlocal effects can be ignored, giving rise to a
draglike force. Unlike the more familiar drag coefficient in liquids, the drag takes on a matrix form due to the
crystalline structure of the framework. We numerically simulate trajectories and dissipation rates using both the
time-local and nonlocal formulas to validate our simplification. The time-local formula dramatically reduces the
computational cost of calculating the motion of a mobile particle through a crystalline framework and clearly
connects the properties of the material to the drag experienced by the particle.
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I. INTRODUCTION

Understanding ionic motion through solids [1,2] is essen-
tial to developing high-performance solid-state electrolytes
necessary for the operation of solid-state batteries [3–5],
hydrogen fuel cells [6], electrolysis cells [7], and electrochem-
ical synapses [8]. A substantial fraction of theoretical work
focuses on elucidating the mechanisms behind ionic current
flow [9–16] and how the properties of the solid framework
impact the ionic transport, in particular the ability of the
current-carrying ions to overcome energy barriers within the
host lattice [17–20]. A complementary and equally important
question is how these ions lose energy to the solid frame-
work during their motion. Relating this energy loss and, by
extension, the resistance to the material properties is crucial
for designing application-grade electrolytes. The fundamental
difficulty of predicting material resistivity is that the dynam-
ics of the mobile ion and the framework occur on similar
timescales. As a result, the mobile particle both displaces and
experiences recoil from the framework, which is continuously
responding to the mobile particle’s earlier motion, leading to
equations of motion that are not local in time. In this work,
we develop an approximation scheme to circumvent this dif-
ficulty, so the dissipation is determined from the framework’s
unperturbed potential landscape and its vibrational modes.

Earlier work [21] introduced an analytic formula for dis-
sipation in three-dimensional (3D) crystals using a local-time
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approximation. The results showed that the drag experienced
by the mobile particles depends on the curvature of the po-
tential generated by the lattice. Additionally, the dissipation
rate is inversely proportional to the cube of the speed of
sound in the material and also to the density of the crystal. In
other words, the dissipation is lowest in stiff, dense materials.
Due to the complexity of the problem, these results were not
validated using numerical demonstrations.

Following the analytical work of Ref. [21], dissipation has
been explored in the simplest crystal functioning as a solid
electrolyte: an infinite one-dimensional (1D) chain of identi-
cal masses interacting with a single mobile particle moving
along the chain [22,23]. These studies showed that dissipation
is nonlinear, decreases at high particle speeds, and can also
be nonmonotonic in particle speed depending on the system
parameters. In particular, if the phonon spectrum is gapped
due to the harmonic confinement of the chain masses, the
dissipation is exponentially suppressed at low speeds in the
absence of thermal vibration.

There are three key takeaways from this paper we would
like to highlight. First, by validating the results of Ref. [21]
numerically, we confirm the dependence of dissipation on ma-
terial properties. Second, by obtaining a time-local equation of
motion, we are able to dramatically accelerate simulations of
the ionic motion. This acceleration is useful because ionic
motion is a probabilistic process and the quality of numerical
experiments improves with simulation time. Finally, by start-
ing with a simpler 1D system and gradually building up to
a more complex 3D configuration, we elucidate the features
of the problem that make the time-local treatment possible,
paving the way for our future work, where we will include
thermal motion of the framework.

2643-1564/2024/6(3)/033244(11) 033244-1 Published by the American Physical Society

https://orcid.org/0000-0001-5321-7690
https://orcid.org/0000-0002-6551-6812
https://orcid.org/0000-0001-7865-2357
https://orcid.org/0000-0003-1652-8005
https://orcid.org/0000-0003-1939-7477
https://ror.org/04g9wch13
https://ror.org/01tgyzw49
https://ror.org/01tgyzw49
https://ror.org/013pz1582
https://ror.org/02yrs2n53
https://ror.org/01tgyzw49
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.6.033244&domain=pdf&date_stamp=2024-09-03
https://doi.org/10.1103/PhysRevResearch.6.033244
https://creativecommons.org/licenses/by/4.0/


A. RODIN et al. PHYSICAL REVIEW RESEARCH 6, 033244 (2024)

The results of this paper should not be expected to replace
the existing state-of-the-art methods, such as nudged elas-
tic band (NEB) and ab initio molecular dynamics (AIMD).
Rather, the formalism developed here is a necessary step to-
ward producing a Langevin-like description of ionic motion in
solids, where both the stochastic force and the drag term cap-
ture the microscopic structure of the medium. Although such
a description will likely be unable to compete with AIMD
in terms of precision, reducing the problem to a single-body
form can help extend simulation times from nanoseconds to
scales more appropriate for device operation. These longer
times can facilitate the study of ionic diffusion by improving
the statistics. Additionally, such a description will make it
possible to study the response of current carriers to external
fields without having to set them to exceedingly large values,
as is sometimes done in AIMD due to the simulation time
constraints.

In this paper, we make use of the techniques developed
for 1D systems as the dimensionality constraints are gradu-
ally relaxed in order to validate the local-time approximation
formalism. As the first step, we discuss a general model of
single-particle motion through a crystal in Sec. II. With the
formalism established, readers interested primarily in the final
result can skip directly to Eq. (26) and consult earlier portions
of Sec. IV for clarifications as needed. For readers interested
in the technical aspects of the formalism, we suggest proceed-
ing in order. Starting with a 1D chain whose masses can move
in three dimensions and can support longitudinal and trans-
verse phonon modes, we use numerical and analytical tools to
demonstrate how the system properties determine the energy
dissipation of the mobile ion, with the results given in Sec. III.
By exploring the high- and low-speed limits, we establish the
range of validity for the local-time approximation. Next, by
focusing on a prototypical 3D system in Sec. IV, we show
that, unlike the 1D case, where the dissipation diverges at low
speeds without harmonic confinement, the drag experienced
by slow-moving ions is proportional to their speed. Finally,
we present and validate a time-local formula that connects the
framework potential landscape to the dissipation. We discuss
some of the key choices and assumptions used in this paper
in Sec. V. We propose some avenues for extension to thermal
systems and conclude in Sec. VI.

II. MODEL

Similar to earlier work [21–24], we start with a Lagrangian
describing the motion of a mobile particle of mass M through
a framework of identical masses m:

L = M

2
ṘT Ṙ + m

2
ṙT ṙ − rT V

↔

2
r − U (r, R). (1)

Here, r = ⊕
j=1 r j and R are vectors whose elements are

the displacements of all the framework masses from their
equilibrium locations and the position of the mobile particle,
respectively. The first two terms in Eq. (1) give the kinetic en-
ergy of the system, and rTV

↔
r/2 is the internal potential energy

for the framework using the harmonic approximation. Finally,
U (r, R) describes the interaction between the framework and
mobile particle.

Equation (1) makes two important simplifications. First,
it focuses on a single mobile particle. In real ionic conduc-
tors, there are multiple current-carrying ions interacting with
each other directly (at small separations) and indirectly (by
deforming the framework). At the same time, the number of
framework ions exceeds the number of mobile ions, resulting
in a significant separation between the current-carrying ions.
Hence, Eq. (1) is applicable when the interaction between
mobile ions can be neglected. The second simplification is the
use of the same value m for all framework masses. Naturally,
most materials are composed of multiple atomic types with
different masses. We will demonstrate in Sec. IV, however,
that this simplification, while making the study much more
transparent, does not pose a limitation to our final result,
which depends on the density of the system and not the in-
dividual masses.

For convenience, we express the coupling matrix in terms
of a characteristic spring constant K : V

↔ = K
↔
�, to be deter-

mined at a later stage. We can then introduce a characteristic
frequency � = √

K/m, express masses in terms of m: M =
μ × m, and express the evolution time t of the system in terms
of the number of periods: t = τ × 2π/�. Finally, we can
express all lengths in terms of the quantum oscillator length
associated with �, l = √

h̄/m� so that R = σl and r = ρl .
This rescaling turns the Lagrangian into

L = μ

8π2
σ̇ 2 + 1

8π2
ρ̇2 − ρT

↔
�

2
ρ − �(ρ, σ ), (2)

where we divided both sides of Eq. (1) by the characteristic
energy scale h̄�, defining � = U/h̄�. The corresponding
equations of motion for the mobile particle and the framework
are

μ

4π2
σ̈ = −∇σ�(ρ, σ ), (3)

1

4π2
ρ̈ = −↔

�ρ − ∇ρ�(ρ, σ ), (4)

which can be solved in a variety of ways. In this work, we
numerically solve the equations of motion using a Runge-
Kutta method. To explore the dynamics of the framework
analytically, however, we also find a formal solution to Eq. (4).
Dropping the last term yields an eigenvalue equation

1

4π2
ρ̈ = −ω2

jρ = −↔
�ρ, (5)

with normalized eigenvectors ε j and corresponding eigenval-
ues ω2

j . The general result for ρ becomes ε
↔

ζ(τ ), where ζ(τ )
is a column vector of normal coordinates giving the amplitude
of each mode and ε

↔ = [ε1, ε2, . . . ] is a row of column vectors
ε j . Due to the lattice periodicity, the eigenvector ε j is given by
[eiL1·q j , eiL2·q j , . . . ] ⊗ η j/

√
N . Here, Lk are the coordinates of

the N → ∞ unit cells, q j is the momentum associated with
the jth mode, and η j is a 3n-dimensional vector with n equal
to the number of masses per unit cell.

Using ρ(τ ) = ε
↔

ζ(τ ), Eq. (4) becomes

1

4π2
ζ̈ = −ω

↔2ζ − ε
↔†∇ρ�(ρ, σ ), (6)

where ω
↔2 = ε

↔†
↔
�ε

↔ (using ε
↔−1 = ε

↔†) is a diagonal matrix of
the squared eigenfrequencies. For each ζ j , the equation of
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motion takes the form of a forced harmonic oscillator ζ̈ j =
−4π2ω2

jζ j − 4π2 f j , which can be solved using the Green’s
function

Gj (τ, τ
′) = sin[2πω j (τ − τ ′)]

2πω j
�(τ − τ ′), (7)

to obtain

ζ j (τ ) = ζ H
j (τ ) − 2π

∫ τ

dτ ′ sin[2πω j (τ − τ ′)]
ω j

× ε†
j∇ρ�[ρ(τ ′), σ(τ ′)], (8)

where ζ H
j (τ ) is the homogeneous solution. Finally, from

Eq. (8), we get

ρ(τ ) = ε
↔

ζH (τ ) − 2π

∫ τ

dτ ′
↔

(τ − τ ′)∇ρ�[ρ(τ ′), σ(τ ′)],

(9)


↔

(τ ) =
∑

j

ε jε
†
j

sin(2πω jτ )

ω j
. (10)

Equation (9) gives ρ(τ ) as a combination of a homogeneous
trajectory, determined by the initial conditions, and a “mem-
ory term” originating from the framework’s interaction with
the mobile particle.

As the particle moves through the framework, it loses en-
ergy by doing work on the framework masses. In the absence
of thermal motion, the work done up to time τ is given by [23]

�(τ ) =
∫ τ

dτ ′{−∇ρ�[ρ(τ ′), σ(τ ′)]} · ρ̇(τ ′)

= 2π2
∑

j

∣∣∣∣
∫ τ

dτ ′∇ρ�[ρ(τ ′), σ(τ ′)] · ε je
2π iω jτ

′
∣∣∣∣2

.

(11)

In the first line, the term inside the curly braces is the force
on the framework masses and ρ̇(τ ′) their velocity so that the
product of these two quantities gives the power exerted by
the particle on the framework. The second line is obtained by
substituting the time derivative of the second term in Eq. (9)
for the velocity vector. We stress that Eq. (11) applies for any
kind of solid with vibrational modes, not necessarily a perfect
crystal. Hence, it is possible to employ a statistical approach
to model a disordered or glassy system using Eq. (11). For this
paper, however, we restrict our attention to perfect crystalline
solids to make the discussion as clear as possible. In the
following two sections, we use Eq. (11) as the starting point
to study the analytical form of the dissipation.

III. 1D SYSTEM

To develop intuition for this form of dissipation, we start
with a relatively simple system composed of equally spaced
identical masses arranged in a line, as shown in Fig. 1. At
equilibrium, each mass is confined by a harmonic potential in
all three orthogonal directions. Although the chain’s masses
can move in three dimensions, its vibrational modes are char-
acterized by one-dimensional momentum. This configuration
is distinct from the scenario considered in Refs. [22,23],

FIG. 1. Schematic of 1D model. A single mobile particle of mass
M, confined to motion along the z axis, interacts via a potential U
with a single mass which is part of an infinite periodic 1D chain,
each of mass m. Each chain mass experiences harmonic confinement
along all three directions, with spring constants κx, κy, κz. The chain
masses are also coupled to their nearest neighbors with effective
spring constants kx, ky, kz. In our simulations, the modes are degen-
erate, so κ‖ = κ⊥ and k‖ = k⊥.

where the masses’ motion was restricted to the direction par-
allel to the chain. In this section, unless otherwise stated, “1D
chain” refers to a system as shown in Fig. 1.

Assuming that the 1D chain of masses runs along the z
axis, the force constant in the longitudinal direction is set to κ‖
and for each of the transverse directions to κ⊥. Additionally,
each mass is connected to its immediate neighbors, setting the
force constant for the displacement along (perpendicular to)
the chain to k‖ (k⊥), giving rise to a single longitudinal branch
and two branches of transverse modes. The transverse modes
of the chain are distinct from the flexural modes observed
in systems like graphene, which have a quadratic dispersion
at low momenta. Here, the dispersion for all three branches,
labeled by the index u, is given by

ω2
u, j = κu + 4ku sin2

(
π j

N

)
. (12)

Following earlier work [22–24], the interaction between
the mobile particle and the framework is given by the sum of
pairwise interaction terms, each dependent on the separation
between the mobile particle and individual chain masses. The
mass-particle coupling is set to �(σ − ρ j ) = �0e−|σ−ρ j |2/2λ2

for the purposes of demonstration as this potential form is
easily tractable analytically and allows for an easy adjustment
of the interaction extent and magnitude.

The pairwise interaction and the Gaussian form are ma-
jor simplifications of the much more complicated �(ρ, σ )
in real materials, where ab initio calculations are typically
required to obtain this energy. We discuss the implications
of using the simple Gaussian form for more realistic systems
in Sec. V.

To explore the dissipative behavior of this system, we per-
formed several sets of numerical simulations with different
system parameters. For simplicity, we kept the confining po-
tential and the mass coupling isotropic so that κ = κ⊥ = κ‖
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FIG. 2. Dissipation in 1D. After passing a single framework
mass, the mobile particle, with initial speed σ0, loses energy due to
its interaction with that mass. The analytic data were obtained from
Eq. (14), the numeric results were computed by integrating Eq. (13)
using quadratures, and the simulation was performed as described in
the main text using Eqs. (3) and (4). For all panels, k‖ = k⊥ = 99/4,
the chain length was set to 100 with periodic boundary conditions,
δτ = 10−4, and �0 = 0.01. σ0 = sŷ with s = 0 for the head-on cases
(left column) and s = 1 for the offset cases (right column). In the
top row, κ‖ = κ⊥ = 1; in the bottom row, κ‖ = κ⊥ = 0. For κ 
= 0,
we see that dissipation at low speeds vanishes. Conversely, for the
unconfined chain, � ∝ σ̇−1 at low speeds, leading to flat σ̇� curves.
At high speeds, the dissipation decreases for all configurations.

and k = k⊥ = k‖. As shown in Fig. 1, the mobile particle is
set to interact with a single chain mass. With the framework
initially at rest, we introduced a particle with mass μ = 1 and
speed σ̇ moving in the positive z direction a distance 7λ to the
left of the interacting mass with one of two impact parameters
σ0 = sŷ: s = 0 or 1. We then evolved the system following
Eqs. (3) and (4) using the fifth-order Runge-Kutta method
with time step δτ = 10−4, terminating when the particle was
more than 7λ to the right of the interacting mass’s initial
position. 7λ was chosen as a sufficiently large distance for
the interaction between the two objects to essentially vanish.
We computed the loss � by taking the difference between
the initial and final kinetic energies of the particle, given by
μσ̇ 2/8π2. By repeating the simulation for a range of initial
speeds, we found the speed-dependent loss for a particular set
of framework and interaction parameters, with results shown
in Fig. 2.

We can gain a better understanding of the nontrivial loss
profiles in Fig. 2 by taking advantage of the Gaussian interac-
tion to analyze Eq. (11). Unfortunately, in its present form,
Eq. (11) is not tractable because we need σ(τ ) and ρ(τ ),
which require solving the equations of motion in Eqs. (3) and
(4). However, if we knew the trajectories, we could directly
compute the dissipation. Making Eq. (11) useful requires
several simplifying assumptions. First, we take ρ to be suf-
ficiently small to replace ρ → 0 inside the interaction term

of Eq. (11). Second, we assume the velocity of the particle is
constant during the time window of interest, leading to σ(τ ) =
σ0 + τ σ̇0 = sŷ + σ̇0τ ẑ. This approach was previously used in
Refs. [22,23] in the context of “true” one-dimensional systems
where it was shown that this approximation provides reason-
able results even when the velocity varies substantially. By
extending the time integration limits to (−∞,∞) in Eq. (11)
we obtain the energy transferred to the chain by the uniformly
moving particle due to its interaction with a single chain mass,
as shown in Fig. 1. Taking the time integral in Eq. (11) yields
the “single collision” �,

� = 2π2

N

∑
j

∣∣∣∣ 1

σ̇
η j ·

[
∇⊥ + iẑ

2πω j

σ̇

]
�̃2πω j/σ̇ (σ0)

∣∣∣∣2

= 2π2

N

∑
j

∣∣∣∣∇⊥�̃2πω j/σ̇ (σ0) · η j
1

σ̇

∣∣∣∣2

+ 2π2

N

∑
j

∣∣∣∣�̃2πω j/σ̇ (σ0)
2πω j

σ̇ 2
ẑ · η j

∣∣∣∣2

, (13)

where �̃p(x, y) = ∫
dz eipz�(x, y, z) is the z-coordinate

Fourier transform of �(x, y, z). For the Gaus-
sian interaction considered here, �̃2πω j/σ̇ (σ0) =
�0

√
2πλ exp(− σ 2

0 +4π2ω2
j λ

4/σ̇ 2

2λ2 ), setting ∇⊥ → −σ0/λ
2.

The two terms of Eq. (13) correspond to two dissipation
channels: the first for transverse modes and the second for
longitudinal. The σ0 · η j term in the transverse channel arising
after the replacement of the gradient operator, combined with
the cylindrical symmetry of the system, leads to only the
transverse branch with polarization along σ0 contributing to
dissipation.

Equation (13) can be evaluated numerically by computing
η j and ω j from the trivial diagonal dynamical matrix with
Eq. (12) for each direction on the diagonal. We plot the
numerically computed values in Fig. 2 and see an excellent
agreement with the simulation results. The mild deviation
seen at small speeds is a consequence of the kinetic energy
(≈ 0.05 for the slowest speed considered, σ̇ = 2) becoming
comparable to �0 = 0.01, violating the constant-speed as-
sumption we employed above.

The simplicity of the system allows us to take the integral
in Eq. (13) analytically. Because the system contains a single
mass per unit cell, the polarization vectors η j contain two
0’s and a single 1 corresponding to the polarization direction,
leading to

� = �2�2
0e− σ2

0
λ2

σ 2
0

λ4

∫ π

0
dθ e−�2ω2

⊥(θ )

+ �4

λ2
�2

0e− σ2
0

λ2

∫ π

0
dθ ω2

‖ (θ )e−�2ω2
‖ (θ )

= π�2�2
0e− σ2

0
λ2

σ 2
0

λ4
e−�2(κ⊥+2k⊥ )I0(2�2k⊥)

+ π
�4

λ2
�2

0e− σ2
0

λ2 e−�2(κ‖+2k‖ )

× [(κ‖ + 2k‖)I0(2�2k‖) − 2k‖I1(2�2k‖)], (14)
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where � = 2πλ/σ̇0 and In are modified Bessel functions of
the first kind. Plotting Eq. (14) in Fig. 2, we see an essentially
perfect agreement with the numerical integrals, indicating
good convergence.

At high speeds, � → 0, resulting in

�fast = π
�2

λ2
�2

0e− σ2
0

λ2

[
σ 2

0

λ2
+ �2(κ‖ + 2k‖)

]
, (15)

showing that the dissipation due to the transverse channel
scales as 1/σ̇ 2

0 , while that of the longitudinal channel scales
as 1/σ̇ 4

0 . Naturally, the transverse channel is only possible for

nonzero σ0 and becomes dominant when σ 2
0

λ2 > �2(κ‖ + 2k‖),
corresponding to σ̇ > 2πλ2

√
κ‖ + 2k‖/σ0. The suppression

of � with speed is clearly illustrated by Fig. 2. The transition
to the high-speed limit depends on the interaction width with
smaller λ’s reaching this regime at smaller speeds, as con-
firmed by Fig. 2 with λ = 1/2 demonstrating a power-law-like
decay first, followed by λ = 1.

Physically, the reduction of dissipation with speed for the
transverse channel has to do with inertia, as can be seen from
the absence of k⊥ and κ⊥ in Eq. (15). For a fast-moving
particle, the chain mass simply does not have the time to
respond during the brief interaction period. For the longitu-
dinal channel, there is an additional effect that gives a faster
suppression of � with speed. As the particle passes the chain
mass, the direction of the force on the mass switches, pushing
it back toward its equilibrium position.

Conversely, at low speeds, � → ∞, and

�slow = π�2
0�e− σ2

0
λ2

1

2
√

πλ2

×
[

σ 2
0

λ2

e−�2κ⊥
√

k⊥
+

(
�2κ‖ + 1

2

)
e−�2κ‖√

k‖

]
. (16)

Equation (16) demonstrates a qualitatively different dissipa-
tion behavior depending on whether the masses are confined
(κ > 0) or not. For finite κ , the dissipation becomes expo-
nentially suppressed due to the exp[−(2πλ

√
κ/σ̇ )2] term.

Physically, the time that it takes the particle to pass the chain
mass ∼λ/σ̇ is much greater than the period of the slowest
vibrational modes ∼1/

√
κ . Therefore, there is no coupling to

the chain modes and, consequently, no dissipation.
Without confinement, �slow ∝ σ̇−1. Physically, at κ = 0,

there are zero-frequency modes, corresponding to transla-
tional motion, and the slow particle can couple to them.
Therefore, the particle traveling at a constant speed can be
thought of as “dragging” the entire infinitely long chain along
with itself. This divergence is the consequence of the frame-
work’s low dimensionality: unlike 3D systems, where the
density of states of the zero-frequency modes vanishes, it
remains finite in 1D.

Notably, the dissipation profiles exhibit maxima in the
speed range where the particle’s sufficiently high speed al-
lows it to couple to more modes but before the high-speed
suppression becomes important. For confined chain masses,
these maxima are global due to the exponentially suppressed
dissipation at low speeds. In the unconfined case, on the
other hand, these maxima are local due to the diverging �

at σ̇0 → 0.

We observe that, for the unconfined offset configuration,
there is a nonmonotonic dependence of � on λ at small
speeds. This nonmonotonicity arises as a consequence of
competition between two effects. On the one hand, small λ

decreases the interaction strength for a laterally offset particle.
On the other hand, large λ suppresses the derivative of the
potential in Eq. (13).

For κ = 0, Eq. (14) indicates that the low-speed limit is ap-
plicable when 2�2k � 1, corresponding to 2π2λ2ω2

max/σ̇
2 �

1, where ωmax = 2
√

k is the maximum frequency of the band.
The z-direction Fourier transform of the interaction term also
shows that the particle’s coupling to a mode j is exponentially
suppressed by exp(−2π2λ2ω2

j/σ̇
2). Thus, at slow speeds,

only low-frequency modes contribute to dissipation so that the
actual dispersion of the high-frequency modes is irrelevant,
allowing us to linearize the phonon dispersion. Crucially, it is
the frequency of the modes that determines their importance,
not their momentum. Thus, any high-frequency optical modes
are expected to play a minimal role in the dissipation process
regardless of their wavelength.

Returning to Eq. (11) with the approximation ρ → 0 and
integrating over the linearized spectrum, then taking the
(−∞,∞) time integral yields

� = 2π2

N

∑
j

∑
u=⊥,‖

∫ ∞

−∞
dτ ′dτe2π i(τ ′−τ )2

√
ku

π j
N

× ∂u�[σ(τ ′)]∂u�[σ(τ )]

= 4π3
∑

u=⊥,‖

∫ ∞

−∞
dτ ′dτ∂u�[σ(τ ′)]∂u�[σ(τ )]

× δ[4π2(τ ′ − τ )
√

ku]

=
∑

u=⊥,‖

π√
ku

∫ ∞

−∞
dτ {∂u�[σ(τ )]}2

= π3/2�2
0

e− σ2
0

λ2

λσ̇

(
1

2
√

k‖
+ σ 2

0

λ2

1√
k⊥

)
, (17)

which is identical to Eq. (16) with κ = 0. The penultimate line
in Eq. (17) shows that, for slow particles, the loss expression
becomes local in time. Based on this result, we will linearize
the phonon dispersion for a more complicated 3D system in
the following section. This approach will allow us to bypass
the more complicated path in Eq. (13) to directly obtain a
local-time result for the dissipation.

IV. 3D SYSTEM

Before delving into the details of energy loss by a mobile
particle in 3D, we explore how the system dimensionality im-
pacts dissipation using a set of simulations similar to the ones
performed in Sec. III. To keep our discussion as transparent
as possible, we choose a cubic lattice for the 3D framework.
In the harmonic approximation, the framework masses can be
viewed as connected by springs with natural length equal to
the framework separation at equilibrium. Thus, the pairwise
potential energy arising from the displacement of two masses
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FIG. 3. Schematic of 3D system. We consider four different scenarios for interactions between the mobile ion and the 3D framework,
which is a simple cubic lattice in our simulations. In (a), the ion interacts with a single framework mass, and has impact parameter s = 0. In
(b), the ion interacts with a single framework mass, but has impact parameter s = sx̂. In (c), the ion interacts with four of the framework masses
on a single face of the unit cell perpendicular to the ion’s velocity, and passes through the center of that face. In (d), the ion interacts with all
eight framework masses in a single unit cell, and passes through the center of two opposite faces.

is

Pmn = kmn

2
(D0 − |D0 − ρm + ρn|)2 ≈ kmn

2
[D̂0 · (ρm − ρn)]2, (18)

where D0 is the vector connecting the equilibrium positions of framework masses m and n. The approximation in the second
line holds when D0 � |ρm − ρn|. Assuming that each mass couples only to its first and second nearest neighbors with force
constants k1 and k2, respectively, the dynamical matrix becomes [25]

D(q) = 2k1

⎛
⎜⎝1 − cos qx 0 0

0 1 − cos qy 0
0 0 1 − cos qz

⎞
⎟⎠

+ 2k2

⎛
⎜⎝2 − cos qx cos qy − cos qx cos qz sin qx sin qy sin qx sin qz

sin qy sin qx 2 − cos qy cos qx − cos qy cos qz sin qy sin qz

sin qz sin qx sin qz sin qy 2 − cos qz cos qx − cos qz cos qy

⎞
⎟⎠, (19)

where qx,y,z = 2π [1, 2, . . . , Nx,y,z]/Nx,y,z.
Equation (19) demonstrates why the next-nearest-neighbor

coupling is required: keeping only k1 decouples the Cartesian
coordinates and gives rise to modes with polarization only
along the crystal’s axes, producing degenerate zero-frequency
modes along the X , Y , and Z directions. Introducing k2

eliminates these nodal lines. To keep the energy scales similar
to the 1D case, we set k1 = 15 and k2 = 5. The framework
masses are not confined, resulting in a phonon spectrum that
is not gapped.

Identically to the 1D case, the mobile particle interacts
with a single framework mass via a Gaussian term and is
constrained to move in one dimension, parallel to one of
the framework’s axes, as shown in Figs. 3(a) and 3(b). The
simulation protocol is the same as in Sec. III, with the par-
ticle starting 7λ to the left of the interacting mass and the
Runge-Kutta evolution terminating once the particle reaches
the position 7λ to the right of it. The results of these simula-
tions are shown in Fig. 4.

Just as for the 1D case, the loss decays at high speeds.
A crucial difference occurs at low speeds: �/σ̇0 approaches

a constant, indicating that the dissipation is proportional to
the particle speed, instead of diverging as its reciprocal (as is
the case for 1D). This proportionality to speed is reminiscent
of drag and is a more intuitive outcome than the divergent
behavior for the 1D chain.

We confirm our simulation results with numeric calcu-
lations using Eq. (13), where we computed the eigenstates
using the dynamical matrix in Eq. (19) and integrated over the
Brillouin zone using cubatures. The results of these numeric
calculations are shown as open squares in Fig. 4, and are
nearly identical to the simulation results. They differ only at
very small speeds, where the constant-σ̇ assumption we used
to obtain Eq. (13) is violated.

To explore the low-speed limit, we integrate Eq. (11) by
parts over both time variables assuming that ρ → 0 and that
the mobile particle interacts with a single framework mass:

� = 2π2

N

∑
j

∫ ∞

−∞
dτdτ ′∇�[σ(τ ′)]T η j

× ηT
j ∇�[σ(τ )]e2π iω j (τ ′−τ )
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FIG. 4. Dissipation in 3D with a single interaction. When a mo-
bile ion with initial speed σ̇0 passes through a unit cell of a simple
cubic lattice, as shown in Figs. 3(a) and 3(b), it loses energy due
to interaction with a single mass. We computed numeric results by
integrating Eq. (13) using cubatures and obtained the low-speed
asymptotic behavior from Eq. (23), showing that � ∝ σ̇ at low
speeds. The simulation was performed using Eqs. (3) and (4) with
the details given in the main text. For both panels, the nearest (next-
nearest) neighbor force constant was k1 = 15 (k2 = 5), the system
contains 50 × 50 × 50 masses with periodic boundary conditions,
uses time step δτ = 10−3, and has Gaussian interactions with am-
plitude �0 = 0.01. σ0 = sx̂ with s = 0 for the head-on collisions
and s = 1 for the offset configurations. The low-speed behavior is
captured well by the analytic formula for a range of simulation
parameters.

= 1

N

∑
j

1

2ω2
j

∫ ∞

−∞
dτdτ ′σ̇(τ ′) · H�[σ(τ ′)]η j

× ηT
j H�[σ(τ )] · σ̇(τ )e2π iω j (τ ′−τ ), (20)

where H denotes the Hessian operator.
To perform the summation over modes, we first write the

sum as an integral:

1

2N

∑
j

η jη
T
j

ω2
j

e2π iω jτ = 1

16π3

∫
dq

ηqη
T
q

ω2
q

e2π iωqτ . (21)

Next, we write qx → q cos φ sin θ , qy → q sin φ sin θ , and
qz → q cos θ and linearize the spectrum by expanding the
dynamical matrix D(q) to leading order in q, which is q2, so
that D(q) ≈ q2S (θ, φ). In this limit, the eigenvectors of D(q)
and S (θ, φ) are identical and can be labeled by their branches
and directions: ηu,θ,φ . The frequencies ωq, on the other hand,
are q

√
ku,θ,φ , where ku,θ,φ is the eigenvalue corresponding to

S (θ, φ)’s eigenvector ηu,θ,φ , leading to

1

2N

∑
j

η jη
T
j

ω2
j

e2π iω jτ

=
∑

u

∫ ∞

0
dq

∫ π

0
dθ sin θ

∮
dφ

ηu,θ,φηT
u,θ,φ

16π3ku,θ,φ

e2π i
√

ku,θ,φqτ

=
∑

u

∫ π

0
dθ sin θ

∮
dφ

ηu,θ,φηT
u,θ,φ

16π2ku,θ,φ

δ(2π
√

ku,θ,φτ ).

(22)

Combining Eqs. (20) and (22), we can write the energy loss in
terms of a local-time recoil matrix M:

� =
∫ ∞

−∞
dτ σ̇(τ )︸ ︷︷ ︸

dσ

· H�[σ(τ )]MH�[σ(τ )] · σ̇(τ ),

M =
∑

u

∫ π

0
dθ sin θ

∮
dφ

ηu,θ,φηT
u,θ,φ

4(2π
√

ku,θ,φ )3
. (23)

By writing dτ σ̇ → dσ, we can identify the remaining portion
of the integrand as the dissipative force which is both time-
local and proportional to the particle velocity. For the cubic
lattice, numerical integration over θ and φ yields an M that
is diagonal with identical entries for each nonzero element, as
expected from the system symmetry.

Using this recoil matrix M, we then compute the Hessian
of the potential and, assuming a constant speed so that σ =
σ̇0τ + σ0, take the time integral in Eq. (23) numerically to
give the low-speed loss. The results are plotted as straight lines
in Fig. 4 for each combination of λ and s, demonstrating that,
at low speeds, Eq. (23) agrees very well with the numerical
calculations from Eq. (13).

Our analysis thus far has focused on a rather artificial
scenario, where the particle interacts with only a single frame-
work mass. However, including multiple ion couplings in
Eq. (11) substantially complicates the expression by intro-
ducing a phase prefactor to the vector η, as discussed in
Sec. II. Fortunately, our single-interaction results give an im-
portant hint that leads to a dramatic simplification. As we have
shown, at low particle speeds, the dissipation is dominated by
low-frequency, long-wavelength framework modes. For these
modes, the phase difference between neighboring masses is
small, allowing us to neglect it and use Eq. (23) with an
interaction term � that includes multiple framework masses.

To validate this simplification, we performed two sets of
simulations. For the first set, we initialized the particle nor-
mally incident to one face of a cubic unit cell, and set it to
interact with the four framework masses defining that face,
as shown in Fig. 3(c). As before, the initial position of the
particle was 7λ away from the face of the unit cell and the
particle was constrained to move in one dimension, passing
through the middle of the face. For the second simulation set,
the particle, normally incident to one of the unit cell faces,
traversed the entire unit cell while interacting with all eight
masses at the corners of the unit cell; see the schematic in
Fig. 3(d). In both cases, the simulations terminated once the
particle reached a distance of 7λ from the face containing
the interacting masses, at which point its kinetic energy was
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FIG. 5. Dissipation in 3D lattice with multiple interactions. As a
mobile particle moves through the middle of a unit cell with lattice
constant α = 2, it loses energy due to its interaction with (a) four or
(b) eight masses in a cubic lattice, as shown in Figs. 3(c) and 3(d).
The system parameters are the same as in Fig. 4, but with �0 reduced
to 0.0025. The low-speed asymptotic behavior is given by Eq. (23),
showing that neglecting the phase difference in the phonon modes
of adjacent atoms is valid. �’s nonmonotonicity with λ arises from
a combined effect of two opposing phenomena: narrower potentials
have a greater second derivative (enhancing dissipation) but the par-
ticle spends less time being acted on by the potential (diminishing
dissipation).

calculated and subtracted from the initial value. The results for
the energy losses in these two scenarios are shown in Fig. 5.
In addition to the simulation results, we also computed �

using Eq. (23) for the appropriate form of �, shown as hor-
izontal lines in Fig. 5, demonstrating that the asymptotic limit
does an excellent job of capturing the behavior of � at low
speeds.

Through a series of increasingly realistic interaction
scenarios, we have seen that local-time dynamics of the
framework in response to its interaction with the particle de-
scribe dissipation well. Although these configurations remain
somewhat contrived since the particle moves along a high-
symmetry direction, one should keep in mind that their goal
is to establish the validity of the local-time approach, not to
study realistic particle trajectories. The fact that the local-time
treatment works well regardless of whether the particle passes
through the potential minimum in the middle of the unit cell or
directly through the framework mass demonstrates the robust-
ness of the approach. Additionally, without including thermal
motion of the lattice, which is the subject of our next work,
any choice regarding the particle’s trajectory is bound to be
artificial.

Now that we have confirmed the validity of Eq. (23) at low
speeds, we can explore the implications of a regime where the
force is time-local. To make use of this simplified formula, we
rewrite Eq. (3) for a small framework deflection by expanding
the interaction to leading order in ρ and by using Eq. (9),
leading to

μ

4π2
σ̈(τ ) = − ∇σ

⎡
⎣�[0, σ(τ )] − ∇ρ�[0, σ(τ )] · 2π

∫ τ

dτ ′

×
∑

j

ε jε
†
j

sin[2πω j (τ − τ ′)]
ω j

∇ρ�[0, σ(τ ′)]

⎤
⎦.

(24)

Integrating the last term of Eq. (24) over τ ′ by parts gives∫ τ

dτ ′ sin[2πω j (τ − τ ′)]
ω j

∇ρ�[0, σ(τ ′)]

= 1

2πω2
j

∇ρ�[0, σ(τ )]

−
∫ τ

dτ ′ cos[2πω j (τ − τ ′)]
2πω2

j

∇σ∇ρ�[0, σ(τ ′)] · σ̇(τ ′).

(25)

When reinserted back into Eq. (24), we see that the second
term can be identified as giving rise to the dissipative force due
to its proportionality to the velocity. This allows us to replace
it by the term from the integrand of Eq. (23) multiplying the
velocity. The remaining portion can be combined with the first
term in Eq. (24), resulting in a softened potential so that

μ

4π2
σ̈ = − ∇σ

⎡
⎣�(σ ) − ∇ρ�(0, σ ) ·

∑
j

ε jε
†
j

ω2
j

∇ρ�(0, σ )

⎤
⎦

− H�(σ)MH�(σ ) · σ̇, (26)

which is the main result of this work. In this form, we can see
that the local-time interaction with the framework gives rise to
two phenomena: potential softening and dissipation. Because
both of these terms involve sums ∼ω−2

j , stiff systems (with
large ω j) will be less susceptible to deformation, resulting in
a reduced softening and dissipation. Qualitatively, this result
matches our physical intuition.

We numerically explore this time-local behavior using the
same cubic lattice as in Figs. 4 and 5, but extended to include
100 × 100 × 100 masses. The mobile particle interacts with
eight framework masses in a line with equilibrium positions
α(0, 0, j) for integer 0 � j � 7 and the lattice constant α =
2. We initialize a mobile particle halfway between the 4th
and the 5th masses with speed σ̇ too small to overcome the
energy barrier. We then compute the trajectory of the particle
using the full simulation and Eq. (26), then plot the resulting
position and velocity evolution in Fig. 6. Although a more
physical trajectory would pass through the middle of the unit
cell, similar to the setup in Fig. 5, it would have resulted in
a reduced energy barrier and, thus, a much smaller range of
possible initial speeds. Particles moving at these slow speeds
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FIG. 6. Local-time dissipation. A particle constrained to move
along one of the edges of the unit cell with insufficient energy to
escape the local minimum for λ = 1/2 and �0 = 1. The full solution
from Eqs. (3) and (4) is obtained using the same procedure as all
other simulations. The time-local solution is obtained by integrating
Eq. (26) using the fifth-order Runge-Kutta method with δτ = 10−3.
The amplitude decay is similar for the two solutions, and the phase
difference is related to small displacements of the framework that
are neglected by the time-local approach. The amplitude increase
for the full solution at τ ≈ 25 is a consequence of the finite size of
the system. The calculation times on a single core of a 2020 M1
MacBook Pro for the full solution and the time-local formalism were
about 4 hours and about 9 seconds, respectively.

would rapidly dissipate their energy after only a few ap-
proaches toward the nearby masses. In order to showcase how
nonlocal time effects can be ignored even when the particle
repeatedly interacts with the same masses over an extended
period of time, we chose a less-physical setup.

In Fig. 6, we see that the time-local result, both for position
and speed, agrees well with the full solution. The main
disparity is the phase difference in the two sets of trajectories,
which becomes more pronounced after the particle performs
several oscillations around its minimum and the framework
masses start to move. Despite this phase difference, the
envelope of the decay agrees very well between the two
simulations. The mild disagreement at larger values of τ can
also be attributed, in part, to the finite size of the system: when
we reduced the system size to 80 × 80 × 80, the disagreement
increased. Since these simulations are computationally
costly, we chose not to increase the system size beyond
100 × 100 × 100. Naturally, in a real system, thermal motion
of the framework will prevent the mobile ion from following
such a simple path, so the large-τ effects will be less relevant.

Up to now, we have been working using dimensionless
equations. To connect our results to real materials, we rein-
troduce units to Eq. (26):

MR̈ = − ∇R

⎡
⎣U (R) − ∇rU (0, R) ·

∑
j

1

m

ε jε
†
j

�2
j

∇rU (0, R)

⎤
⎦

− HU (R)

(
2π

m�3
M

)
HU (R) · Ṙ, (27)

with

2π

m�3
M = a3

m

1

(4π )2

∑
u

∫
dS

ηu,θ,φηT
u,θ,φ

(a�
√

ku,θ,φ )3

= 1

ρ

1

(4π )2

∑
u

∫
dS

ηu,θ,φηT
u,θ,φ

v3
u,θ,φ

, (28)

∑
j

1

m

ε jε
†
j

�2
j

= V −1
∑

j

V
ε jε

†
j

m�2
j

= V −1. (29)

Here the integral is taken over the solid angle, a is the lattice
constant, vu,θ,φ is the direction-dependent speed of the acous-
tic branch u, and ρ = m/a3 is the framework density.

To make the physical significance of the softening term
clearer, we start with the equation of motion for the framework
mr̈ = −V r − ∇rU (r, R). Setting the left-hand side to zero,
we obtain the equation which determines r for which the in-
teraction with the particle is balanced by the elastic forces. For
small framework deformation, we get r ≈ −V −1∇rU (0, R).
Thus, the softened potential in Eq. (27) is the leading order
Taylor expansion of the relaxed configuration.

V. DISCUSSION

In the course of our analysis, we have employed a num-
ber of simplifications to make the problem tractable. Having
validated these simplifications numerically, let us now address
their implications in the context of more general systems.

Our use of the Gaussian interaction was driven primarily
by convenience. At first glance, this form might appear highly
artificial because it allows, in principle, for two objects to
have zero separation—an unphysical situation for real systems
where two ions cannot occupy the same position. Neverthe-
less, this choice is less contrived than it might appear as
combinations of Gaussian functions are commonly used to
describe orbitals in molecular simulations [26]. By using a
single Gaussian function, we treat our ions as spherically
symmetric and do not consider “lobes” in their associated
electronic clouds that can arise due to bond formation. Includ-
ing multiple Gaussian functions in � makes the problem more
complex analytically [e.g., by having Eq. (13) contain a sum
of Fourier transforms], but does not change the approach or
the main conclusions.

The cubic geometry was also chosen for its simplicity. Al-
though real systems generally have a more complex structure,
the fact that our approach works well for different dimen-
sionalities supports its robustness. In fact, the only set of
simulations that explicitly reflect the cubic geometry are the
ones given in Fig. 5(b): Fig. 4 describes the particle’s interac-
tion with a single framework mass, while the square described
by the four masses in Fig. 5(a) could belong to a face of a
monoclinic unit cell. Crucially, the local-time formula makes
no reference to the lattice geometry as the dissipation matrix
M depends on the speed of sound and material density, while
the interaction terms are pairwise and fairly short-range, pre-
venting the mobile particle from “seeing” the long-range order
of the lattice.

Finally, although our study focuses on a single mobile
particle, its results are not limited to the case of a single
current-carrying ion in an electrolyte system. Instead, we
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can think of the model as describing a scenario where the
mobile ions are dilute enough so that their interaction can
be neglected. When performing nudged elastic band calcula-
tions, supercells containing a few unit cells in each direction
are required to achieve convergence. Consequently, even sep-
arations of a few unit cells between the mobile ions are
sufficient to view them as independent. The role of con-
certed motion or blocking merits a careful investigation in
follow-up work.

VI. SUMMARY

Starting with a simplified 1D setup, in this work we
demonstrated that for sufficiently slow-moving particles, the
dissipation in solids is dominated by low-frequency, long-
wavelength phonon modes. In this context, “slow-moving”
means that the dispersion of relevant phonons is captured well
by the linearized formula. Taking the characteristic width of
the interaction terms to be similar to the size of the unit cell,
this requirement means that the particle must be slow com-
pared to the speed of sound. Using the 1D result, we derived
a time-local formula for dissipation in 3D solids, where the
dissipative term is proportional to the speed of the moving par-
ticle, reminiscent of drag in liquids. We showed that the drag
depends on the curvature of the potential landscape through
which the mobile particle moves, as well as the stiffness of the
framework lattice. We validated this newly derived formula by
comparing its results to trajectories computed using the full
equations of motion. We observe in Fig. 5 that allowing the
mobile particle to interact with more neighbors improves the
agreement with the time-local formalism. For the parameters
used in our simulations, the speed of sound is ∼50 and the
time-local treatment gives a good dissipation estimate for
particle speeds up to about 50% of the speed of sound for
all interaction widths considered. In real materials, the typi-
cal speed of sound is ∼3000–5000 m/s. Taking the current
carriers to be lithium ions with a typical kinetic energy of
kBT = 0.025 eV at room temperature, we get that the typ-
ical speed is about 830 m/s, which is substantially smaller
than the speed of sound. Therefore, we expect our local-
time treatment to hold for real materials at temperatures of
interest.

Although our formula makes it possible to calculate the
trajectory of an individual mobile particle, its chief utility lies
in its ability to elucidate the key features of a good ionic

electrolyte by doing away with the complexity associated with
time nonlocality. Specifically, because the potential landscape
and speed of sound can be computed using ab initio methods,
our formula can be used as a screening tool for potential
electrolyte materials.

A natural extension of this work would investigate the
role of thermal fluctuations in the time-local regime. In this
work, we assumed that interaction-induced displacements
of the framework are small, allowing us to keep only the
first-order correction when calculating the interactions. In a
framework dominated by thermal vibrations, we suspect that
neglecting higher-order contributions to the interaction-driven
displacements will be an even better approximation. Thermal
vibrations will effectively reduce the memory of the system,
further justifying the local-time approach, but for a more
realistic class of systems.

Additionally, while this model was constructed with an
interstitial migration in mind, the general time-local results
are expected to hold even for vacancy migration. At the same
time, the equation of motion will need to be rewritten to either
include interaction between the mobile ions or reformulated to
describe a “hole-like” vacancy motion. Addressing vacancy
migration is important as a fundamental question and as a
practical one due to the prevalence of this conduction mecha-
nism in ionic electrolytes.

All of our computations were performed using JULIA [27].
The plots were made with the Makie.jl package [28] using a
color scheme designed for colorblind readers [29]. The scripts
used for computing and plotting are available [30].
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