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Non-Markovian collective emission of giant emitters in the Zeno regime
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We explore the collective Zeno dynamics of giant artificial atoms that are coupled, via multiple coupling
points, to a common photonic or acoustic reservoir. In this regime, the establishment of atomic cooperativity and
the revivification of exponential decay are highly intertwined, which is utterly beyond the non-Markovian regime
with only retarded backaction. We reveal that giant atoms build up their collective emission smoothly from the
decay rate of zero to that predicted by Markovian approximation and show great disparity between different
waveguide QED setups. As a comparison, the steplike growth of instantaneous decay rates in the retardation-only
picture has also been shown. All of these theoretical pictures predict the same collective behavior in the long
time limit. From a phenomenological standpoint, we observe that the atomic superradiance exhibits significant
directional property. In addition, the subradiant photons feature prolonged oscillation in the early stage of
collective radiance, where the energy is exchanged remarkably between giant emitters and the field. Our results
might be probed in state-of-art waveguide QED experiments and fundamentally broaden the fields of collective
emission in systems with giant atoms.
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I. INTRODUCTION

Spontaneous emission from an unstable system, as one of
the earliest quantum field theory phenomena, was first pre-
dicted by Einstein and subsequently extended to multiatomic
ensembles in 1953, which is known as Dicke superradiance
[1]. These significant contributions have profoundly solidi-
fied the concept of exponential decay law. However, it is not
the whole physical picture because the realistic spontaneous
emission is generally exposed to a non-Markovian environ-
ment. Indeed, non-Markovianity can have a wealth of physical
origins [2–8] with a hallmark of strong informational back-
flow. Light-matter interactions within such a non-Markovian
bath open new routes for unprecedented phenomena, such as
genuinely non-Markovian steady states [9,10], collective su-
perradiant burst [11,12], and engineered Floquet bound state
[13]. In particular, the retardation induced non-Markovianity
has been demonstrated to endow collective radiation with
a common intuition: each emitter initially undergoes in-
dependent exponential decay, altering its decay behavior
upon interaction with delayed photons emitted by other
emitters [11].

Recently, Zeno regime of spontaneous emission comes to
the fore in the community of waveguide quantum electrody-
namics (QED), revealing how pointlike atoms cooperatively
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modify their decay behavior in the building of collective
emission [14]. In this context, atoms complete their signifi-
cant transition from nonexponential to exponential decay by
exchanging virtual photons in a very short time. This time
scale evaluates the duration of nonexponential decay, i.e., the
Zeno time τZ , during which the atomic survival probability is
quadratic in time [15–18].

Featuring exotic self-interference effects and the nature of
nonlocal couplings [19–21], “giant” artificial atoms (GAs)
have spurred a rapidly growing interest in the emerging area
of waveguide QED. It has been manipulated to interact with
surface acoustic waves (SAWs) [22] or the meandering copla-
nar waveguide (CPW) [23–25] via multiple connecting points
as sketched in Fig. 1. Leveraging the state-of-the-art quantum
device, such a novel designation has recently been extended
to giant ferromagnetic spin ensemble [26,27]. Of particular
interest is the exploration of novel non-Markovian effects
with GAs and considerable effort has been made to mani-
fest a rich variety of intriguing outcomes, including tunable
localization-delocalization quantum phase transition [28], os-
cillating bound states [29–31], enhanced Dicke superradiance
[32], and so on [33–37]. However, it seems that the mecha-
nism of non-negligible time-delayed feedback underlies all of
these efforts. Thus the scenario of collective emission beyond
the retardation, i.e., GAs to Zeno region, is still unexplored.

In this work, we have investigated the collective radiative
dynamics of a linear chain of N GAs coupling to a 1D waveg-
uide and show that it exhibits prominent non-Markovianity
beyond retardation. To incorporate the relaxation dynamics
into the Zeno regime, the array of GAs is designed to guar-
antee τ0 � τZ , where τ0 is the time taken by a single photon
or phonon traveling between adjacent coupling points. On
this occasion, the GAs build up their cooperativity obeying
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FIG. 1. Schematic diagram of theoretical model and experimental implementation for a linear chain of N GAs. Panels (a) and (b) respec-
tively show N two-legged separate and braided superconducting qubits are coupled to a 1D waveguide at multiple connecting points with
the light blue dots denoting the coupling points. The experimental setup in a separate case is depicted accordingly in (c), i.e., N transmon
qubits (superconducting quantum interference devices marked by black circles) are embedded in a surface acoustic waves transmission line.
Each qubit interacts with the propagating phonons via piezoelectric effect utilizing the large interdigital transducers from its two islands. For
the braided case, panel (d) exhibits N X-mon qubits coupled capacitively to a meandering microwave coplanar waveguide with the central
waveguide (dark green line) terminated to 50�.

the combined action of time-delayed feedback and memory
effect of the electromagnetic field. As a consequence, we
find that the non-Markovianity can be enhanced by increasing
the coupling points or modifying the waveguide QED setups.
In contrast to the previous achievements obtained outside
the Zeno region, the full development of collective emission
shows a dominating signature: each emitter grows their in-
stantaneous decay rate smoothly from zero to that predicted
by Markovian theory and predictions from different waveg-
uide QED setups are distinguished by the building speed of
emission and the magnitude of the memory effect. We also
put forward steplike growth of decay rates in the retardation-
only picture for the purpose of comparison. In an anticipated
manner, these predictions can eventually coalesce with each
other at long enough time. To get further insight into the
collective Zeno physics, we have also studied the dynamics
of the field emitted from the array of GAs, during the estab-
lishment of collective radiation. Interestingly, we find that the
chiral radiation occurs when the superradiant development of
GAs is asymmetric. Moreover, a remarkable oscillation can
be captured in the early stage of subradiance, where the atoms
are periodically emitting and absorbing photons.

II. MODEL HAMILTONIAN AND ZENO TIME
OF WAVEGUIDE QED

We consider N GAs interacting with an open 1D waveg-
uide through multiple coupling points and apply a strict
two-level approximation with the ground state |g〉 and the
excited state |e〉. Figures 1(a) and 1(b) illustrate the theoretical
model of two-legged separate (all coupling points of each
atom are outside those of another atom) and braided (part of

the coupling points of each atom is inside those of another
atom) GAs, respectively. The waveguide QED setups with
giant atoms have at least two different experimental platforms
associated with SAWs or superconducting transmission line,
as sketched respectively in Figs. 1(c) and 1(d).

The total Hamiltonian for the GAs + bath system reads
Htot = HA + HB + Hint, where HA = ω0

∑N
n=1 σ †

n σn is the free
Hamiltonian for the GAs of resonance frequency ω0, with the
creation operator of the nth atom being σ †

n = |e〉n〈g|; HB =∫ �

−�
dk
2π

ωka†
kak is the free Hamiltonian for the 1D continuum

of bosonic modes where a†
k is the generation operator of

the waveguide mode with wave number k, satisfying bosonic
commutation relation [ak, a†

k′ ] = 2πδ(k − k′). Here we adopt
a linear dispersion relation ωk = |k|vg with vg being the group
velocity of the field. To isolate the non-Markovian effect stem-
ming from the band edges of the photonic or phononic bath
[38–40], the resonant wave number k0 = ω0/vg is assumed
to be far enough away from the cutoff of the wave number
�. The nonlocal interactions between M-legged GAs and
bosonic field are described by (h̄ = 1)

Hint =−i
N∑

n=1

M∑
m=1

∫ �

−�

dk

2π
gk (σn+σ †

n )akeikxn
m +H.c., (1)

where xn
m denotes the mth coupling point of the nth giant

atom (xn
m1

< xn
m2

if m1 < m2). In the context of waveguide
QED, there are many general choices for the specific form
of coupling strength gk , among which constant and linear
spectral density are frequently considered. The above two
types of coupling formalism are referred to as “const-wQED”
and “lin-wQED” corresponding to gk = √

	0vg/2 and
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gk = √
	0vg|k|/2k0, respectively, with 	0 being the relaxation

rate at a single coupling point. Commonly, the Hamiltonian
Htot cannot be solved exactly and the rotating-wave approxi-
mation (RWA) is usually applied. Instead, the counterrotating
terms in Eq. (1) cannot be neglected in our case, since the time
scale we focused on is extremely short. In order to analyze the
impact of the full Hamiltonian (1) on the short-time collective
dynamics, we employ a polaronlike unitary transform [41–43]
on Htot, i.e., Heff = eiU Htote−iU with

U =
N∑

n=1

M∑
m=1

∫ �

−�

dk

2π

gk

ω0 + ωk
(σn+σ †

n )akeikxn
m +H.c. (2)

The transformed Hamiltonian is given by Heff = HA + HB +
HJC + O(g2

k ), with

HJC = −i
N∑

n=1

M∑
m=1

∫ �

−�

dk

2π
gJC

k σ †
n akeikxn

m +H.c., (3)

where gJC
k = 2ω0gk

ω0+ωk
is the scaled coupling of the Jaynes- Cum-

mings (JC) type interaction; O(g2
k ) contains terms of order

higher than gk and thus can be safely dropped in the limit of
gk � 1.

We now proceed by determining the duration of nonexpo-
nential decay for a single excited giant atom with M legs,
which can be well characterized by the Zeno time τZ . Af-
ter some standard algebra, we obtain the Zeno time τ−2

Z =
2	0ω0

π
M ln(�/k0) for the lin-wQED and the one for the const-

wQED has the form of (see Appendix A for more details)

τ−2
Z = 2	0ω0

π

[
M2 + 2

M−1∑
n=1

nϕ[χn(1 + �)−χn(1)]

]
, (4)

where χn(x)≡ (M − n)[sin(nϕ)Ci(nϕx)−cos(nϕ)Si(nϕx)]
and ϕ ≡ k0d have been introduced for simplicity, with d the
minimal distance between adjacent coupling points. Note that
the distance between two coupling points from a single giant
atom is d for separate two-legged GAs and 3d for braided
two-legged GAs, as we can see from Figs. 1(a) and 1(b). The
integral functions Ci(x) and Si(x) are defined as follows:

Csi(x) ≡ Ci(x) + i Si(x) ≡
∫ ∞

x
dz

eiz

z
. (5)

We note that the results of Zeno time for the two mentioned
waveguide-QED setups are cutoff dependent, arising from the
self-interference effect of an individual giant atom, which is
different from a single “small” atom. The quantity τ−2

Z shows
different behaviors by increasing cutoff wave number �: di-
vergence for lin-wQED and convergence for const-wQED;
hence a more pronounced memory effect of the radiation
field is expected for the latter. Importantly, the collective
radiation can be completely established during the Zeno
time under the assumption of weak atom-field couplings.
More specifically, τZ � d/vg is guaranteed by ω0/	0 �
ln(�/k0) for lin-wQED and ω0/	0 � 1 for const-wQED.
We determine the Zeno time for N GAs in Appendix A for
completeness.

Since the physical realization of giant-atom structure is
facilitated by the superconducting circuits [22–25], we are

now in a position to assess the suitability of the above two se-
tups of waveguide-QED. We first conclude that the lin-wQED
setup is well suited for giant-atom-based waveguide-QED
literature for the following evidences. Under the continuum
limit, the conventional 1D transmission line molded by cou-
pled LC loops [28,44] enables a coupling architecture with
gk ∝ √

ωk ∝ √| sin knδx/2| ∝ √|k|, where δx is an infinites-
imal unit length. For the other model of const-wQED, it is
commonly accepted to replace ωk approximately with atomic
resonance frequency ω0 over a wide frequency range, so that
gk ∝ √

ωk ≈ √
ω0. Such an interaction mechanism could be

implemented by coupling giant atoms to a Josephson photonic
crystal waveguide [45].

III. EQUATIONS OF MOTION AND THEIR SOLUTIONS

In this section, we study the dynamical process of sponta-
neous emission from N GAs into the waveguide, according to
the excitations-conservative Hamiltonian Heff . Assuming that
the dynamics of the total GAs plus field system is limited in
the single excitation subspace, the state at t > 0 is

|ψ (t )〉 =
N∑

n=1

cn(t )σ †
n |G〉 +

∫ �

−�

dk

2π
αk (t )a†

k |G〉, (6)

where cn(t ) and αk (t ) are the amplitudes of probability to find
an excitation populated in the nth giant atom or in propagating
mode with wave number k, respectively, at time t . |G〉 is the
ground state of the total system, where all of the GAs are in
their lower state |g〉, while the waveguide modes are empty.
Utilizing the Schrödinger equation i|ψ̇ (t )〉 = Heff |ψ (t )〉, the
atomic equation of motion (EOM) in the interaction picture is
given by

ċn(t ) = −
N∑

n′=1

M∑
m,m′=1

∫ �

−�

dk

2π

∫ t

0
dτ

∣∣gJC
k

∣∣2cn′ (τ )

× ei(ω0−ωk )(t−τ )eik(xn
m−xn′

m′ ), (7)

with a mathematical form tracing back the whole historical
dynamics of the system. In general, Eq. (7) has no simple
closed form of the analytical description. Here, we present an
exact solution in terms of a convolution integral:

c
const

lin
n (t ) = cn(0) + 2	0i

π

N∑
n′=1

M∑
m,m′=1

∫ t

0
dτ c

const
lin

n′ (τ )

× [
K1

(
ϕnn′

mm′ , φ
) − K2

(
ϕnn′

mm′ , φ
) ∓ 2K3

(
ϕnn′

mm′ , φ
)]

,

(8)

where ϕnn′
mm′ = k0|xn

m − xn′
m′ | is the acquired field phase and

φ = ω0(t − τ ); the expressions for the kernels K1, K2, and
K3 are given in Appendix B. Note that cconst

n (t )/clin
n (t ) denotes

the dynamical solution for const/lin-wQED [the initial state
cn(t = 0) does not depend on the specific choices of waveg-
uide setups].

The non-Markovian dynamics in the regime of non-
negligible time delays can also be derived under several
assumptions in Appendix B and the resulting atomic EOM
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induced merely by retardation is

ċn(t ) = −M

2
	0cn(t ) −

∑
m 
=m′

	0

2
βn

(
τ nn

mm′ , ϕ
nn
mm′

)
�
(
t − τ nn

mm′
)

−
∑
n′ 
=n

M∑
m,m′=1

	0

2
βn′

(
τ nn′

mm′ , ϕ
nn′
mm′

)
�
(
t −τ nn′

mm′
)
, (9)

where βn(τ, ϕ) ≡ cn(t − τ )eiϕ and τ nn′
mm′ = |xn

m − xn′
m′ |/vg is the

time taken by a single photon or phonon traveling between the
mth coupling point of the nth atom and the m′th coupling point
of the n′th atom.

The first term on the right-hand side of Eq. (9) describes
the spontaneous emission processes due to the Markovian dy-
namics. The second term arising from the nature of nonlocal
coupling of a single M-legged giant atom and the remainder
describes the atomic relaxation dynamics mediated by the de-
layed photons released from other GAs. In contrast to Eq. (7),
the time evolution given by Eq. (9) predicts that the atomic
dynamics response at time t depends only on the state of the
system at some specific delay times (this prediction will be
labeled as “retard” in the following). Up to now, the collective
emission phenomena of N GAs with arbitrary configurations
would be readily simulated based on Eqs. (7) and (9).

IV. BUILDING OF NON-MARKOVIAN COOPERATIVITY:
BEYOND RETARDATION

In the Zeno regime, the interference properties of the
field would be modified drastically due to the joint action
of retardation and memory effect of the field. The rich in-
terference between emission from the connected coupling
points may enhance or suppress the decay of collective GAs.
This phenomenon is famous as super/subradiance [46–48],
respectively. Generally speaking, the collective dynamics is
sensitive to the specific configurations of GAs, initial states,
and the acquired propagating phase between neighboring cou-
pling points. The nonexponential decay of a linear chain of
N GAs can be characterized quantitatively by instantaneous
decay rate

	ins = − d

dt
ln Pe(t ), (10)

where Pe(t ) = ∑N
n |cn(t )|2 for the total decay rate of GAs, and

Pe(t ) = |cn(t )|2 for individual decay.

A. Single giant atom: Spontaneous emission

We begin by investigating the spontaneous emission of
a single giant atom with M coupling points. As shown in
Fig. 2(a), we plot 	ins (in units of 	0) versus scaled time ω0t
by increasing the number of coupling points from M = 2 to
M = 4. We show that the decay rates for both of the waveg-
uide QED setups are growing gradually from zero over time
until they reach the critical “radiation burst.” This emerging
burst, for instance, is roughly about 5.46	0 for M = 2, af-
ter which the decay rates will exhibit oscillating behavior
for a while and eventually be stabilized on the Markovian

FIG. 2. Instantaneous decay rate 	ins (in units of 	0) of a single
giant atom as a function of scaled time ω0t . Time evolved decay
rates are depicted by (a) gradually increasing the atomic coupling
points with fixed 	0/ω0 = 10−4 or (b) changing the ratio of 	0/ω0.
In panel (a), we distinguish different coupling points by coloring:
M = 2 (blue), M = 3 (red), M = 4 (green), and the numerical results
obtained from const-wQED (solid lines) or lin-wQED (dotted lines)
have been marked. Also, we utilize gradient color to distinguish
the data under different ratios in panel (b), with the predictions of
const-wQED (solid lines) or lin-wQED (dashed lines) also marked.
Other parameters are �/ω0 = 104 and d = 0.1π/ω0.

decay rate

	Mar,M = 	0
sin2 Mϕ/2

sin2 ϕ/2
(11)

at the long time limit. The non-Markovianity of const- wQED
is more obvious than that of lin-wQED according to the antici-
pation from their Zeno time, i.e., Eq. (4), and can be enhanced
by adding coupling points. Moreover, the influence of ratios
	0/ω0 on the instantaneous decay rates has also been plotted
in Fig. 2(b), implying that the establishment of emission is not
sensitive to this ratio.

B. Many giant atoms: Collective emission

We proceed by considering N GAs bathed in a common
radiation field where the interference behaves constructively.
The considered initial state of the system inherits the analog
of the timed-Dicke state with the concept originated from
the “small” atoms [49]. For illustration purposes, we briefly
describe the preparation mechanism of the initial state.

The interaction between an incident single photon with
wave number k and GAs is

V (t )=−i
N∑

n=1

M∑
m=1

gJC
k σ †

n akeikxn
m−i(ωk−ω0 )t +H.c. (12)

and the corresponding unitary time evolution operator is
U (t ) = T e−i

∫ t
0 V (t ′ )t ′

, where T is the time ordering operator.
When a single resonant photon is incident from the waveg-
uide, the state of the GAs + field system at time t will be
evolved into

U (t )a†
k0
|G〉≈a†

k0
|G〉+gJC

k0
t

N∑
n=1

M∑
m=1

σ †
n eik0xn

m |G〉, (13)
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FIG. 3. Instantaneous decay rate 	ins (in units of 	0) of (a) N = 10 separate GAs (background color: pink) or (b) braided GAs (background
color: pale green), as a function of scaled time ω0t . The panels labeled by “Total” and “No. n” represent the decay rate of the whole GAs or
nth giant atom, respectively. The numerical predictions obtained from const-wQED (blue), lin-wQED (red), or retardation (dark green) have
also been marked. The minimal distance d between adjacent coupling points is taken as d = 0.1π/k0 in panel (a) and d = 0.25π/k0 in panel
(b). Other parameters are M = 2 and 	0/ω0 = 10−6.

where gJC
k0

t is assumed to be very small. Therefore, if we fail
to probe the photon in the output channel, then we conclude
that the total system has been prepared in

|�k0〉 =
(

	0

	Mar,MN

)1/2 N∑
n=1

M∑
m=1

σ †
n eik0xn

m |G〉. (14)

The dynamical descriptions in Sec. III combined with the
specific initial state |�k0〉 enable the whole observation for
the building of collective emission. As shown in Fig. 3, we
plot the instantaneous decay rates 	ins for N = 10 separate
GAs [see Fig. 3(a); background color: pink] and braided GAs
[see Fig. 3(b); background color: pale green], and the spacing
d is taken as 0.1π/k0 and 0.25π/k0, respectively. Here, the
curves of 	ins for total GAs and individual giant atoms have
been labeled as “Total” and “No. n” with n enumerating the
emitters, respectively.

The predictions of the total 	ins from the const-wQED
(blue) and lin-wQED (red) setups feature a continuous
growth, while the one obtained from only retardation (dark
green) gives the steplike increase. These three curves are in-
consistent with each other in the early stage of time evolution,
but eventually tend to be consistent roughly at t > 10/ω0 for
separate GAs and longer time for braided GAs.

For the purpose of further insights of collective behavior
in the Zeno regime, we select five GAs, Nos. 1, 2, 5, 8, and
10, and plot their individual decay rate 	ins. We find that the
GAs in atomic array could exhibit a wide variety of decay
behaviors. First, the stabilized decay rate of individual GAs
tends to increase as they are positioned closer to the right
and the scenario will be the opposite when |�k0〉 → |�−k0〉.
Secondly, the three theory frameworks reveal distinct emis-
sion dynamics. On the one hand, taking atom 1 (No. 1) in
a separate GAs array as an example, the blue curve shows
that the atom quickly enters a long time absorption dynamics
after experiencing a short time radiation; the red curve shows
that the atom persistently emits excitations into the waveguide
while the dark green curve implies two radiation-absorption
cycles. Nevertheless, all three curves would be dominated
by absorption in the case of braided GAs. It can also be

clearly captured by the change on atomic population �Pe(t ) =
Pe(t ) − Pe(0), as shown in Figs. 4(a) and 4(b). On the other
hand, taking atom 10 (No. 10) as an another example, the
dark green curve shows a stable steplike upward trend for the
separated GAs. Instead, it shows an oscillating zigzag upward
trend for braided GAs, with the upper and lower boundaries
of the oscillation being close to blue and red curves period-
ically. Thus the received delay signal enables the decay rate
that is predicted by the retardation-only picture to exchange
faithfully between const-wQED and lin-wQED. Last but not
least, the above three curves agree better at long time for the
middle atom (i.e., No. 5) in atomic array.

We are now in a position to study the subradiant emission
of N GAs where the interference between their emissions
is destructive. In the Markovian approximation, the effective
Hamiltonian for atomic excitations is available by tracing out

FIG. 4. Time evolution of the change on the scaled atomic pop-
ulation �Peω0/	0 for atom 1 in the array of separate GAs (a) and
braided GAs (b). Subradiant instantaneous decay rates (in units
of 	0) for separate GAs (c) and braided GAs (d) with fixed d =
0.1π/k0. Other parameters, legend, and the notations of background
coloring are the same as Fig. 3.
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FIG. 5. Bosonic field density of emissions from two separate
GAs that are prepared initially in (a),(b) |�k0 〉 and (d),(e) |�sub〉,
respectively. Panels labeled by “retard”/“const” are plotted according
to Eq. (16)/Eq. (17). Panels (c) and (f) are the corresponding instan-
taneous decay rates. We have distinguish the numerical results for
atom 1 (solid lines) and atom 2 (dotted lines) in (c) and the blue/dark
green curves are predictions from const-wQED/retardation. Further-
more, the vertical dashed lines plot the positions of coupling points
x/d = xn

m/d , where (x1
1, x1

2, x2
1, x2

2 ) = (−1.5d,−0.5d, 0.5d, 1.5d );
the transverse dashed lines plot the minimal delay time ω0t = k0d .
The spacing d = 0.2π/k0 for (a)–(c) and d = 0.5π/k0 for (d)–(f) are
used. Other parameters are M = 2, 	0/ω0 = 10−6, and �/ω0 = 104.

the waveguide modes [50–52] and has the form of

Heff =
N∑

n,n′=1

⎛
⎝ω0δn,n′ −i	0

N∑
m,m′=1

eik0|xn
m−xn′

m′ |

⎞
⎠σ †

n σn′ . (15)

Numerical diagonalization of Heff in the one-excitation mani-
fold gives N eigenstates. After that the subradiant state |�sub〉
might be found by searching the state with minimal decay rate.

We plot the subradiant decay rates 	ins for N = 10 separate
GAs and braided GAs in Figs. 4(c) and 4(d), respectively. It
shows that the subradiant emission is established by under-
going several radiation-absorption cycles. The instantaneous
decay rates 	ins oscillate around 0 with different ampli-
tudes for three predictions. More concretely, the dark green
curve predicted from the retardation-only picture has the
largest amplitude. Later discussion shows the opposite case
indicating that the const-wQED possesses more strong non-
Markovianity in the building of subradiance [see Fig. 5(f)].
This pronounced revival of atomic survival probability gives
rise to the intriguing phonomenon of oscillating bound states.

V. CHIRAL EMISSION AND OSCILLATING
BOUND STATES

Until now, we have studied the non-Markovian collective
phenomena in a linear chain of N GAs, with the attention
mainly focused on atomic dynamics. The asymmetric super-
radiant behavior in Fig. 3 and the significant memory effect of
subradiance predicted by const-wQED inspire us to explore

the dynamics of bosonic field. Thus a more complete dynami-
cal description of the atom-field quantum system is expected.

An important figure of merit to quantify the dynamics of
the bosonic field in this regard is its bosonic field density
[11,32] I (x, t ) ∝ 〈ψ (t )|E+(x, t )E (x, t )|ψ (t )〉, where E (x, t )
is the electric field operator. The distribution function I (x, t )
describes the probability density at position x and time t to
find a single photon for all possible wave vectors k. After
some algebra presented in Appendix C, we find the exact for-
mula of bosonic field density in the retardation-only picture:

I (x, t )

Iretard
=

∣∣∣∣∣
N∑

n=1

M∑
m=1

∑
p=±

βn
(
t p
s , ϕp

s

)[
�
(
t − t p

s

) − �
( − t p

s

)]∣∣∣∣∣
2

,

(16)

where t±
s ≡ ± x−xn

m
vg

and ϕ
p
s = k0t p

s . Similarly, the distribution
function I (x, t ) for const-wQED is given by

I (x, t )

Iconst
=

∣∣∣∣∣
N∑

n=1

M∑
m=1

∫ t

0
dτ cconst

n (τ )Snm(t − τ )

∣∣∣∣∣
2

, (17)

with the kernel

Snm(t − τ ) = Fnm(φ, 1 + �) − Fnm(φ, 1), (18)

where Fnm(φ, x) ≡ ∑
ζ=± ei(φ+φζ )Csi∗(xφζ ) and φ± = φ ±

k0(x − xn
m) have been introduced for simplicity. Here, Iretard

and Iconst are the normalization constants. One may note
that summation terms in Eq. (16) describe the unidirectional
emission from all possible coupling points. These emissions
collide with each other and modify the interference properties
of the electromagnetic field, which can be shown from their
rich interference patterns.

We plot the bosonic field density I (x, t ) for the fields emit-
ted by two separate GAs when atoms are initially prepared in
|�k0〉, as shown in Figs. 5(a) (retard) and 5(b) (const-wQED).
The corresponding instantaneous decay rates for atom 1 (solid
lines) and atom 2 (dotted lines) are plotted in Fig. 5(c). In this
case, the atom 2 decays faster than atom 1 leading to an asym-
metric distribution of emitted fields. Thus the interference
properties of emissions are strongly modified and eventually
exhibit obvious chirality. As a consequence, most of the en-
ergy is carried away by the right-moving waveguide modes.
Notice that the opposite occurs by replacing |�k0〉 → |�−k0〉.

We proceed by exploring the intriguing interference behav-
iors when the GAs build their subradiance. The pronounced
revival of atomic excitations in Fig. 5(f) at early time implies
that the energy is alternately stored between GAs and the
fields. We plot the bosonic field density I (x, t ) for two separate
GAs in Figs. 5(d) and 5(e) according respectively to Eqs. (16)
and (17), when atoms are prepared initially in |�sub〉. The
corresponding decay rates for total GAs are shown in panel
(f) for comparison purposes. As anticipated, the field intensity
predicted by const-wQED is enhanced/weakened during the
time window of atomic radiation/absorption stages. Such “os-
cillating” behavior of the bound state would vanish when the
system dynamics enters completely the regime of exponential
decay.
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FIG. 6. Bosonic field density of emissions from a single giant
atom that is prepared initially in its excited state. Upper raw: intensity
distributions for a three-legged giant atom with the numerical pre-
dictions are predicted from (a) retardation only or (b) cons-wQED.
Panel (c) plots the corresponding instantaneous decay rates of spon-
taneous emission. The panels in lower raw are the same as that
in upper raw but M = 5 and the distance between adjacent cou-
pling points is d = 0.6641π/k0 for (a)–(c) and d = 0.7985π/k0 for
(d)–(f). Other parameters are 	0/ω0 = 10−6 and �/ω0 = 106.

This oscillating behavior for bound states can also arise
in the scenario of a single giant atom when the dark state is
formed. In order to illustrate it intuitively, we first plot the
intensity distributions of emissions emitted from a M = 3-
legged giant atom according to Eqs. (16) and (17), as shown
respectively in Figs. 6(a) and 6(b). We find the atom period-
ically emits and absorbs photon or phonon in const-wQED,
which can also be witnessed in Fig. 6(c). The similar case
occurs for a 5-legged giant atom [Figs. 6(d)–6(f)] with richer
interference patterns, where photons or phonons bounce back
and forth between certain coupling points. Furthermore, we
stress that the discovered oscillating and long-lived bound
states in [29] are the consequence of coexistence of bound
modes in the picture of retardation only. In our case, the
similar phenomenon appears, but the mechanism based on
the combination of both non-negligible delay feedback and
memory effect of the field only exists in the early stage of
spontaneous emission.

VI. CONCLUSION AND OUTLOOKS

In summary, we have studied the spontaneous radiation
of a linear chain of N M-legged GAs that are coupled to
a 1D waveguide, with arbitrary atomic configurations. We
illustrate the collective emission by comparing three com-
pletely different theoretical formalisms which give rise to

abundant dynamical performance. These predictions enable
us to show how GAs build up their collective emission. In
particular, the time evolution of atomic population features
significant environment memory effect with a highly relaxed
temporal resolution. Moreover, we have also investigated the
dynamics of the emitted field, characterized by their inten-
sity distribution, to give a more complete perspective for
the radiation physics. Interestingly, when prepared in certain
superradiant states, the system allows directional emission
where most of the energy is carried away either by right or left
propagating modes. We also predict a significant oscillating
phenomenon in the development of atomic subradiance. Pos-
sible applications of our results might be efficient protection
of quantum information in the quantum networks with GAs
via dissipation engineering [53,54] or fundamentally useful
for theoretical predictions of Zeno physics [55–57].

Regarding experimental implementations, we provide a de-
tailed analysis of the experimental feasibility for our scheme.
Leveraging the advanced features of the superconducting
quantum device, the highly intertwined process of the devel-
opment for the full collective emission and the transition from
quadratic to exponential decay could be achieved (ω0/2π =
5.23 GHz, 	0/2π = 3.68 MHz so that τZ � d/vg with
negligible nonradiative decay 	nr/2π = 0.03 MHz) [23]. Po-
tential experimental challenges encompass the determination
of 	ins(t ) due to its high requirement in temporal resolution
(�ω−1

0 ), which can be alleviated by considering the dynamics
of Pe(t ) for atomic array [14].

As for future works, it is instructive to explore the many-
body signatures of collective emission [58–61] with GAs in
the Zeno regime. In this case, the system dynamics is no
longer limited to the single excitation space and interesting
multiparticle correlations might emerge. One can also extend
the coupling mechanism to that with the higher dimensional
photonic or phononic bath [62,63]. And interesting physics
may be explored by combining the present results with
platforms pertaining to topological [64] or chiral quantum
optics [65].
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APPENDIX A: CALCULATIONS OF THE ZENO TIME

In this section, we give the derivations of the Zeno time
τZ for a single giant atom and τZ,N for N GAs, with arbitrary
coupling points. The definition of Zeno time is given by the
short-time expansion of the atomic survival probability

|〈ψ0|e−iHJCt |ψ0〉|2 = 1 − t2/τ 2
Z + · · · , (A1)

where |ψ0〉 is the initial state of the emitters+field system.
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1. Zeno time for a single giant atom

We begin by considering an M-legged giant atom initially prepared in |ψ0〉 = σ †|G〉 and then the Zeno time can be obtained
easily according to Eq. (A1)

τ−2
Z = 〈ψ0|H2

JC|ψ0〉 − 〈ψ0|HJC|ψ0〉2

=
M∑

m,m′=1

∫ �

0

dk

π

(
gJC

k

)2
cos

[
k
(
x1

m − x1
m′
)]

. (A2)

We then substitute the coupling strength gJC
k for const-wQED and lin-wQED into Eq. (A2), with the obtained results denoted

respectively as τZconst and τZlin . For the former, we have

τ−2
Zconst

=
M∑

m,m′=1

∫ �

0

dk

π

4	0vg/2

(1 + k/k0)2
cos

(
k
∣∣x1

m − x1
m′
∣∣)

= 2	0ω0

π

{
M2 + 2

M−1∑
n=1

nϕ(M − n)[sin(nϕ)Ci(nϕz) − cos(nϕ)Si(nϕz)]|1+�
1

}
(A3)

and, for the latter, we have

τ−2
Zlin

=
M∑

m,m′=1

∫ �

0

dk

π

2	0vgk/k0

(1 + k/k0)2
cos

(
k
∣∣x1

m − x1
m′
∣∣)

= −τ−2
Zconst

+ 2	0ω0

π

{
M ln(� + 1) + 2

M−1∑
n=1

(M − n)[cos(nϕ)Ci(nzϕ) + sin(nϕ)Si(nzϕ)]
∣∣�+1

1

}

≈ 2	0ω0

π
M ln(� + 1), (A4)

where ϕ = k0d and a short-hand replacement �/k0 → � has been made.

2. Zeno time for many giant atoms

Now we consider giant atoms prepared in a so-called timed-Dicke state

|ψq〉 = N
N∑

n=1

M∑
m=1

eiqxn
mσ †

n |G〉, (A5)

where N = 1√
N

sin(ϕ/2)
sin(Mϕ/2) is the normalization coefficient. Thus the Zeno time τZ,N of state |ψq〉 can be found by inserting Eq. (A5)

into Eq. (A1):

τ−2
Z,N = 〈ψq|H2

JC|ψq〉 − 〈ψq|HJC|ψq〉2

=
⎡
⎣NN 2

∑
mm′

eiq(x1
m−x1

m′ ) −
(

NN 2
∑
mm′

eiq(x1
m−x1

m′ )

)2
⎤
⎦ω2

0 + N 2
N∑

nn′

M∑
mm′

∫ �

−�

dk

2π

(
gJC

k

)2
ei(k−q)(xn′

m′ −xn
m )

= F 2
q

{(
1 − F 2

q

)
ω2

0 + τ−2
Z + 1

N

N∑
n 
=n′

M∑
mm′

M∑
j j′

e−iq(xn′
m′ −xn

m )
∫ �

−�

dk

2π

(
gJC

k

)2
eik(xn′

j′ −xn
j )

}
, (A6)

where Fq = sin2 M
2 qϕ/ sin2 1

2 qϕ and τZ is the Zeno time of a single giant atom, i.e., Eq. (A2). Notice that we have assumed that
each giant atom in atomic array is identical, no matter what the configuration of GAs is.

APPENDIX B: TIME EVOLUTION OF N GIANT ATOMS

We are now in a position to discuss the time evolution of the system composed of N GAs coupling to a 1D waveguide. In the
interaction picture, the system Hamiltonian is

H int
JC = −i

N∑
n=1

M∑
m=1

∫ �

−�

dk

2π
gJC

k σ †
n akei(ω0−ωk )t eikxn

m + H.c. (B1)
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Given the wave function ansatz in the single excitation space

|ψ (t )〉 =
N∑

n=1

cn(t )σ †
n |G〉 +

∫ �

−�

dk

2π
αk (t )a†

k |G〉, (B2)

we can immediately obtain the coupled differential equations of the emitters-field system by applying Schrödinger’s equation
i|ψ̇ (t )〉 = H int

JC |ψ (t )〉, which has the form of

ċn(t ) = −
M∑

m=1

∫ �

−�

dk

2π
gJC

k αk (t )ei(ω0−ωk )t eikxn
m , (B3)

α̇k (t ) =
N∑

n=1

M∑
m=1

g∗JC
k cn(t )e−i(ω0−ωk )t e−ikxn

m . (B4)

The probability amplitudes of bosonic modes can be solved formally as follows:

αk (t ) =
N∑

n=1

M∑
m=1

g∗JC
k

∫ t

0
dτ cn(τ )e−i(ω0−ωk )τ e−ikxn

m . (B5)

Therefore, the atomic equations of motion can be derived by inserting Eq. (B5) into Eq. (B3):

ċn(t ) = −
N∑

n′=1

M∑
m,m′=1

∫ �

−�

dk

2π

∫ t

0
dτ

∣∣gJC
k

∣∣2cn′ (τ )ei(ω0−ωk )(t−τ )eik(xn
m−xn′

m′ ). (B6)

In the following, we will solve numerically Eq. (B6) by considering different waveguide-QED setups.

1. Solutions of equations of motion

The above integro-differential equation (B6) can be transformed to an integral equation

cn(t ) = cn(0) −
N∑

n′=1

M∑
m,m′=1

∫ t

0
dt ′

∫ �/k0

0

dz

π

∫ t ′

0
dτ k0

∣∣gJC
k0z

∣∣2cn′ (τ )eiω0(1−z)(t ′−τ ) cos
(
zϕnn′

mm′
)

= cn(0) +
N∑

n′=1

M∑
m,m′=1

∫ t

0
dτ cn′ (τ )

∫ �

0
dz

cos(zϕnn′,mm′ )
∣∣gJC

k0z

∣∣2k0(1 − eiω0(1−z)(t−τ ) )

π i(1 − z)ω0
, (B7)

where we have defined ϕnn′
mm′ ≡ k0|xn

m − xn′
m′ | for simplicity. We then proceed by plugging the coupling strength of const-wQED

gk = √
	0vg/2 into Eq. (B7), with the obtained solution given by

cconst
n (t ) = cn(0) + 2	0i

π

N∑
n′=1

M∑
m,m′=1

∫ t

0
dτ cconst

n′ (τ )
∫ �

0
dz

cos
(
xϕnn′

mm′
)

(1 + z)2

1 − eiω0(1−z)(t−τ )

z − 1

= cn(0) + 2	0i

π

N∑
n′=1

M∑
m,m′=1

∫ t

0
dτ cconst

n′ (τ )
[
K1

(
ϕnn′

mm′ , φ
) − K2

(
ϕnn′

mm′ , φ
) − 2K3

(
ϕnn′

mm′ , φ
)]

, (B8)

where φ = ω0(t − τ ), and the kernels in Eq. (B8) given by

K1
(
ϕnn′

mm′ , φ
) = 1

4

[
cos

(
ϕnn′

mm′
)
Ci

(
zϕnn′

mm′
) − sin

(
ϕnn′

mm′
)
Si
(
zϕnn′

mm′
) − eiϕnn′

mm′

2
Csi

(
zϕnn′−

mm′
) − e−iϕnn′

mm′

2
Csi∗

(
zϕnn′+

mm′
)]∣∣∣∣

�−1

−1

,

K2
(
ϕnn′

mm′ , φ
) = 1

4

[
cos

(
ϕnn′

mm′
)
Ci

(
zϕnn′

mm′
) + sin

(
ϕnn′

mm′
)
Si
(
zϕnn′

mm′
) − ei(φ−ϕnn′−

mm′ )

2
Csi

(
zϕnn′−

mm′
) − ei(φ+ϕnn′+

mm′ )

2
Csi∗

(
zϕnn′+

mm′
)]∣∣∣∣

�+1

1

,

K3
(
ϕnn′

mm′ , φ
) = 1

4

cos
(
�ϕnn′

mm′
)

� + 1
[e−i(�−1)φ − 1] + 1 − eiφ −

{
ϕnn′

mm′
[

cos
(
ϕnn′

mm′
)
Si
(
zϕnn′

mm′
) − sin

(
ϕnn′

mm′
)
Ci

(
zϕnn′

mm′
)]

+ i

2
ϕnn′−

mm′ ei(2φ−ϕnn′
mm′ )Csi

(
zϕnn′−

mm′
) − i

2
ϕnn′+

mm′ ei(2φ+ϕnn′
mm′ )Csi

(
zϕnn′+

mm′
)}∣∣∣∣

�+1

1

, (B9)
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where ϕnn′±
mm′ ≡ ϕnn′

mm′ ± φ is introduced. Following similar procedures, we can easily obtain the time evolution of atomic
population for lin-wQED, which is given by

clin
n (t ) = cn(0) + 2	0i

π

N∑
n′=1

M∑
m,m′=1

∫ t

0
dτ clin

n′ (τ )
[
K1

(
ϕnn′

mm′ , φ
) − K2

(
ϕnn′

mm′ , φ
) + 2K3

(
ϕnn′

mm′ , φ
)]

. (B10)

As the dynamics controlled by Eq. (B1) conserves the total number of excitations, thus the normalization of atomic probability
amplitudes obtained in Eqs. (B8) and (B10) should be done by making a transformation cn(t ) → cn(t )/

√
|cn(t )|2 + NB(t ). Here,

NB(t ) = ∫ �

−�
dk
2π

|αk (t )|2 is the number of excitations in the 1D waveguide. After some algebra, the expression of NB(t ) has the
form of

NB(t ) =
N∑

n,n′=1

M∑
m,m′=1

∫ t

0
dτ

∫ t

0
dτ ′cn(τ )cn′ (τ ′)Bnn′;mm′ (τ − τ ′), (B11)

where the kernel Bnn′;mm′ is given by

Bconst
nn′;mm′ (τ − τ ′) = 2	0ω0

π
e−iφ

[
−cos

(
zϕnn′

mm′
)

1 + z
eiφz

∣∣∣∣
�

0

+
∑
s=±

i

2
φse

−iφs Csi(zφs)

∣∣∣∣
�+1

1

]
(B12)

for const-wQED, and

Blin
nn′;mm′ (τ − τ ′) = 	0ω0

π
e−iφ

∑
s=±

e−iφs Csi(zφs)
∣∣�+1

1 − Bconst
nn′;mm′ (τ − τ ′) (B13)

for lin-wQED, where φ± = φ ± ϕnn′
mm′ is introduced. Up to now, the exact solutions for atomic time evolution are found for both

the waveguide setups, as shown in Eq. (8) in the main text.

2. Non-Markovian dynamics in the retardation-only picture

In order to obtain the equations of motion considering only the retardation, one can rewrite Eq. (B6) in the limit of � → ∞
as follows:

ċn(t ) = −
N∑

n′=1

M∑
m,m′=1

∫ ∞

−∞

dk

2π

∫ t

0
dτ

∣∣gJC
k

∣∣2cn′ (τ )ei(ω0−ωk )(t−τ )eik(xn
m−xn′

m′ )

= −
N∑

n′=1

M∑
m,m′=1

∫ ∞

0

dωk

2πvg

∣∣gJC
k

∣∣2 ∫ t

0
dτ cn′ (τ )

[
eiω0(t−τ )eiωk

(xn
m−xn′

m′ )

vg
−(t−τ ) + eiω0(t−τ )eiωk

(−xn
m+xn′

m′ )

vg
−(t−τ )

]

≈ −
∣∣gJC

k0

∣∣2
vg

[
2M

∫ t

0
dτ cn(τ )δ(t − τ ) +

∑
m 
=m′

∫ t

0
dτ cn(τ )δ

(
t − |xn

m − xn
m′ |

vg
− τ

)
eik0|xn

nm−xn
m′ |
]

−
N∑

n′ 
=n

M∑
m,m′=1

	0

2
cn′

(
t −

∣∣xn
m − xn′

m′
∣∣

vg

)
eik0|xn

m−xn′
m′ |�

(
t −

∣∣xn
m − xn′

m′
∣∣

vg

)

= −M

2
	0cn(t ) −

∑
m 
=m′

	0

2
cn

(
t − ϕnn

mm′

ω0

)
eiϕnn

mm′ �

(
t − ϕnn

mm′

ω0

)
−

N∑
n′ 
=n

M∑
m,m′=1

	0

2
cn′

(
t − ϕnn′

mm′

ω0

)
eiϕnn′

mm′ �

(
t − ϕnn′

mm′

ω0

)

= −M

2
	0cn(t ) −

∑
m 
=m′

	0

2
βn

(
τ nn

mm′ , ϕ
nn
mm′

)
�
(
t − τ nn

mm′
) −

∑
n′ 
=n

M∑
m,m′=1

	0

2
βn′

(
τ nn′

mm′ , ϕ
nn′
mm′

)
�
(
t − τ nn′

mm′
)
, (B14)

which is exactly Eq. (9) in the main text, and �(•) is the Heaviside step function. Such a simplified equation of motion for GAs
indicates that the time evolution of atom n at time t is decided only by the historical dynamics at certain instants τ nn′

mm′ . As a
consequence, it shows great discrepancy from that predicted from const-wQED and lin-wQED.

APPENDIX C: DETAILED CALCULATIONS OF FIELD INTENSITY DISTRIBUTION

We now turn to focus on the dynamical properties of the bosonic field emitted from the coupled GAs, which can be
characterized by its field intensity distribution

I (x, t ) = ε0vg

2
〈ψ (t )|E†(x, t )E (x, t )|ψ (t )〉, (C1)
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where E (x, t ) is the electric field operator at position x and time t with a general form

E (x, t ) =
∫ �

0
dk Ek[eikxaR(k) + e−ikxaL(k)]e−iωkt . (C2)

Here, aR/L(k) is the annihilation operator of the right-/left-moving mode with frequency ωk and Ek is assumed to be a constant
Ek0 for all k. Combined with Eq. (B5) and Eq. (C2), the field density distribution I (x, t ) for const-wQED can be calculated as
follows:

I (x, t ) = ε0vg|Ek0

∣∣2
2

∣∣∣∣∣〈G|
∫ �

0
dk[eikxaR(k) + e−ikxaL(k)]e−iωkt |ψ (t )〉

∣∣∣∣∣
2

= 8	0vgI0

∣∣∣∣∣
N∑

n=1

M∑
m=1

∫ t

0
dτ

∫ �

0
dk

1

1 + k/k0
cn(τ ) cos

[
k
(
x − xn

m

)]
e−i(ωk−ω0 )(t−τ )

∣∣∣∣∣
2

= 2	0vgI0

∣∣∣∣∣
N∑

n=1

M∑
m=1

∫ t

0
dτ cn(τ )

∫ 1+�/k0

1
dz

k0

z
[ei(rnm−φ)zei(2φ−rnm ) + e−i(rnm+φ)zei(2φ+rnm )]

∣∣∣∣∣
2

= 2	0vgI0

∣∣∣∣∣
N∑

n=1

M∑
m=1

∫ t

0
dτ cn(τ )Snm(t − τ )

∣∣∣∣∣
2

, (C3)

which is exactly Eq. (17) in the main text, where I0 = ε0vg|Ek0 |2
2 , rnm = k0(x − xn

m), and the atomic probability amplitude cn(τ ) is
given by Eq. (B8). The kernel Snm(t − τ ) in Eq. (C3) reads

Snm(t − τ ) = Fnm(φ, 1 + �) − Fnm(φ, 1). (C4)

Here, we have introduced the notation Fnm(φ, x) ≡ ∑
ζ=± ei(φ+φζ )Csi∗(xφζ ) for simplicity.

We proceed by calculating the field intensity of the emitted field in the retardation-only picture. In the limit of large enough
� → ∞, we have

I (x, t ) = ε0vg|Ek0 |2
2

∣∣∣∣∣〈G|
∫ ∞

0
dk[eikxaR(k) + e−ikxaL(k)]e−iωkt |ψ (t )〉

∣∣∣∣∣
2

= I0	0

2vg

∣∣∣∣∣
∫ ∞

−∞
dz

∫ t

0
dτ

N∑
n=1

M∑
m=1

cn(τ )
[
eiz( x−xn

m
vg

+τ−t )eiω0( x−xn
m

vg
−t ) + e−iz( x−xn

m
vg

−τ+t )e−iω0( x−xn
m

vg
+t )

]∣∣∣∣∣
2

= 2π2I0	0

vg

∣∣∣∣∣
N∑

n=1

M∑
m=1

{
cn
(
t − xn

m/vg + x/vg
)
eiω0(xn

m−x)/vg

[
�

(
− xn

m − x

vg

)
− �

(
t − xn

m − x

vg

)]

+ cn(t + xn
m/vg − x/vg)e−iω0(xn

m−x)/vg

[
�

(
xn

m − x

vg

)
− �

(
t + xn

m − x

vg

)]}∣∣∣∣∣
2

= 2π2I0	0

vg

∣∣∣∣∣
N∑

n=1

M∑
m=1

∑
p=±

cn

(
t − p

x − xn
m

vg

)
eiω0 p x−xn

m
vg

[
�

(
t − p

x − xn
m

vg

)
− �

(
− p

x − xn
m

vg

)]∣∣∣∣∣
2

, (C5)

which is exactly Eq. (16) in the main text. Therefore, the calculations of the field intensity distribution for const-wQED and the
one with only retardation are completed.
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