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Relaxation and fluctuations of a mass- and dipole-conserving stochastic lattice gas
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Han et al. [Phys. Rev. Lett. 132, 137102 (2024)] have recently introduced a classical stochastic lattice gas
model which, in addition to particle conservation, also conserves the particles’ dipole moment. Because of its
intrinsic nonlinearity this model exhibits unusual macroscopic scaling behaviors, different from those of lattice
gases that conserve only the number of particles. Here we investigate some basic relaxation and fluctuation
properties of this model at large scales and at long times. These properties crucially depend on whether the
total number of particles is infinite or finite. We find similarity solutions, describing relaxation of the dipole-
conserving gas (DCG) in several standard settings. A major part of our effort is an extension to this model of the
macroscopic fluctuation theory (MFT), previously developed for lattice gases where only the number of particles
is conserved. We apply the MFT to the calculation of the variance of nonequilibrium fluctuations of the excess
number of particles on the positive semi-axis when starting from an (either deterministic, or random) constant
density at t = 0. Using the MFT, we also identify the equilibrium Boltzmann-Gibbs distribution for the DCG.
Finally, based on these results, we determine the probability distribution of, and the most probable density history
leading to, a large deviation in the form of a macroscopic void of a given size in an initially uniform DCG at
equilibrium.
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I. INTRODUCTION

Lattice gases, composed of particles undergoing symmetric
random hopping, exhibit diffusive behavior at large scales and
long times [1–4]. As these models conserve the number of
particles locally, the gas density ρ(x, t ) at large scales and at
long times obeys the continuity equation

∂tρ + ∇ · J = 0 (1)

with the diffusion current

J = −D(ρ)∇ρ. (2)

For a limited class of models–generically for the so called
gradient lattice gases [1,3,5]–the diffusion coefficient D(ρ)
can be calculated from the microscopic model exactly. In
simple cases, which include noninteracting random walkers,
D(ρ) is independent of the density, and Eqs. (1) and (2) reduce
to the simple (linear) diffusion equation

∂tρ = D�ρ, (3)

where � is the Laplacian operator.
How is the simple diffusion model modified if the lattice

gas is constrained to satisfy additional local conservation laws
(besides the conservation of the number of particles)? Sys-
tems with additional conservation laws have attracted much
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interest in recent years. Many studies concerned quantum
systems with infinitely many conservation laws, specifically
integrable systems in one spatial dimension. The correspond-
ing generalized hydrodynamics is an active research area, see
Refs. [6,7] for reviews. The generalized hydrodynamics was
also used for the description of the hydrodynamic behavior in
classical integrable systems in one spatial dimension [8–10].
Quantum higher-moment conserving models attracted much
attention in the context of fractons [11–17]; see Refs. [18–22]
for a sample of articles about the emerging ‘fracton hydro-
dynamics’. Lattice gases with additional conservation laws
provide a convenient and flexible theoretical platform for a
systematic derivation (rather than a postulation) of a ‘fracton
hydrodynamics’.

Han et al. [23] have recently introduced an interesting
stochastic lattice gas model which manifestly conserves, in
addition to the number of particles, their dipole moment. The
microscopic model of Han et al. involves a continuous-time
lattice gas, where a randomly chosen pair of neighboring
particles randomly hop in opposite directions in pairs, so
that their center of mass is conserved. Han et al. obtained
the continuum limit of this model via a standard derivative
expansion of the deterministic rate equation for the particle
densities on each site. In one spatial dimension, the resulting
large-scale deterministic description is given by a nonlinear
partial differential equation (PDE) of fourth order [23]:

∂tρ = −D∂2
x

[
ρ∂2

x ρ − (∂xρ)2
]

= −D∂2
x

(
ρ2∂2

x ln ρ
)

= −D
[
ρ∂4

x ρ − (
∂2

x ρ
)2]

. (4)
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As one can see, here the simple first-order continuity equation
(1) gives way to the second-order equation [12]

∂tρ + ∂2
x J = 0, (5)

with the current

J = Dρ2∂2
x ln ρ. (6)

Equation (4) can be generalized to an arbitrary spatial dimen-
sion [23]:

∂tρ = −D[ρ�2ρ − (�ρ)2], (7)

where � ≡ ∇2 is the Laplace’s operator. The transport co-
efficient D comes from the microscopic model, and it has
the units of lengthd+4/time, where d is the dimension of
space [24].

Because of an interplay of the nonlinearity and the fourth-
order spatial derivative, Eqs. (4) and (7) exhibit unusual
macroscopic scaling behaviors [23]. Here we will further
explore these scaling behaviors by deriving some similarity
solutions to these equations, which describe relaxation of the
dipole-conserving gas (DCG) in several standard settings. As
we will see, the scaling properties of the relaxation dynamics
crucially depend on whether the total number of particles is
infinite or finite.

The main focus of this work, however, is on large-scale
fluctuations in the DCG. A study of fluctuations obviously
requires going beyond the deterministic limit, described by
Eqs. (4) and (7). Han et al. [23] have already made this impor-
tant step by deriving, from a microscopic lattice gas model,
a Langevin equation for this system, see Eq. (19) below. In
addition to the terms present in the deterministic equation (4),
this stochastic PDE also includes a noise term. A similar-in-
spirit Langevin description of the mass-only conserving lattice
gases is known by the name of ‘fluctuational hydrodynamics’
[1–4]. Starting from the Langevin equation (19), here we
develop a macroscopic fluctuation theory (MFT), which is
suitable for studying large deviations of different fluctuating
quantities in the DCG. In the mass-only conserving lattice
gases the corresponding MFT was developed by Jona-Lasinio
et al., see Ref. [25] for a review, and it has been employed and
further developed in numerous subsequent works.

Here we use the MFT to establish the form of the
Boltzmann-Gibbs distribution for the DCG at equilibrium.
We also apply the MFT to the calculation of the variance
of nonequilibrium fluctuations of the excess number of par-
ticles on the positive semi-axis when starting from a (either
deterministic, or random) constant density at t = 0. Finally,
we determine the probability distribution of, and the most
probable density history leading to, a large deviation in the
form of void of a given size in an initially uniform DCG at
equilibrium.

Here is the plan of the remainder of this paper. In Sec. II we
present some similarity solutions of the deterministic Eqs. (4)
and (7), which involve infinite and finite mass, and discuss
their properties. Sections III and IV deal with fluctuations
in the DCG. Starting from fluctuational hydrodynamics, as
described by the Langevin equation (19), we introduce in
Sec. III the problem of full statistics of the excess number of
particles on the positive semi-axis. Using this setting as an ex-
ample, we formulate the MFT of large deviations in the DCG

and calculate the variance of the excess number of particles.
Section IV is devoted to the MFT at equilibrium. Here we
introduce the free energy density of the DCG at equilibrium
and determine the probability distribution of, and the most
probable density history leading to, the formation of a void in
an initially uniform gas. Section V presents a brief summary
and discussion of our main results. Some technical details of
the derivation of the MFT equations and boundary conditions
are relegated to Appendix A. In Appendix B we present an
independent calculation of the variance of the particle excess
directly from the Langevin equation (19).

II. DETERMINISTIC RELAXATION

A. Infinite-mass scaling

To start with, let us study expansion of the DCG into
vacuum. Suppose that the initial gas density has the form of a
stepfunction:

ρ(x, t = 0) = ρ0θ (−x). (8)

The relaxation of this system is described by the following
similarity solution of Eq. (4):

ρ(x, t ) = ρ0 R

[
x

(ρ0Dt )1/4

]
. (9)

In this case the dynamical exponent 4 is the same as in the
linear fourth-order equation ∂t u = −D0∂

4
x u originally studied

in the context of surface diffusion [26].
The dimensionless scaling function R(ξ ) obeys an ordinary

differential equation (ODE),

1

4
ξR′(ξ ) = d2

dξ 2
[RR′′ − (R′)2]. (10)

The boundary conditions are R(−∞) = 1, R′(−∞) = 0, and
R(+∞) = R′(+∞) = 0. The scaling function R(ξ ) can be
obtained by solving Eq. (10) with these boundary conditions
numerically. Alternatively, we can solve numerically the full
time-dependent PDE (4) after bringing it to a dimensionless
form by rescaling ρ0x → x, ρ5

0 Dt → t , and ρ/ρ0 → ρ. Fig-
ure 1 gives an example of such a time-dependent solution for
the rescaled initial condition ρ(x, t = 0) = 1 − tanh(15 x).
The top panel shows this initial condition and the resulting
density profiles at rescaled times t = 5, 10 and 15. The bot-
tom panel shows the same three density profiles, but plotted
against the similarity coordinate ξ . As one can see, the profiles
collapse into a single curve, which describes the scaling func-
tion R(ξ ). Salient features of this similarity solution are its
oscillatory decay at x → −∞ and its semicompact support:
the solution is defined for −∞ < ξ < ξ∗ � 2.5. The asymp-
totic of the solution near the edge is R(ξ ) � (ξ∗/48)(ξ∗ − ξ )3,
so that the first and second derivatives of R vanish at ξ = ξ∗
alongside with R.

B. Finite-mass scaling

The long-time evolution of a system with a finite number
N of particles is described by the similarity solution

ρ(x, t ) = N4/5

(Dt )1/5
R

[
x

(NDt )1/5

]
, (11)
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FIG. 1. Top panel: Numerical solution of Eq. (4) at t = 1, 5
and 15 and ρ(x, 0) = ρ0[1 − tanh(15 x)]. Bottom panel: The scaling
function R(ξ ) obtained by plotting the same three profiles against the
similarity coordinate ξ .

which exhibits a different dynamical exponent 5 [23]. The
dimensionless scaling function R(ξ ) obeys the normalization
condition ∫ ∞

−∞
R(ξ ) dξ = 1, (12)

following from the conservation of the total number of parti-
cles. The form (11) is exact if the system starts from the initial
condition

ρ(x, t = 0) = Nδ(x). (13)

Otherwise, Eq. (11) describes a long-time asymptotic of the
solution [27]. For the scaling function R(ξ ) we obtain an ODE

1

5

d

dξ
(ξ R) = d2

dξ 2
[RR′′ − (R′)2]. (14)

Integrating once, we obtain

1

5
ξ R = d

dξ
[RR′′ − (R′)2] = RR′′′ − R′R′′, (15)

while the integration constant must be zero. Since R(ξ ) is an
even function, we can solve Eq. (15) on the half-line ξ > 0
with the boundary conditions

R(0) = a > 0, R′(0) = 0, R(ξ → ∞) = 0. (16)

The solution must be non-negative, and the a priori unknown
constant a is to be determined from the normalization condi-
tion (12). The non-negativity of the solution and the boundary
condition R(ξ → ∞) = 0 demand that the solution have a

FIG. 2. The scaling function R(ξ ) of the similarity solution (11)
found by numerically solving the problem (15) and (16) (solid line)
and the full time-dependent PDE (4) with a localized initial condition
(dashed line). Only the positive-ξ region is shown.

compact support. At the edges of support both R(ξ ) and
R′(ξ ) must vanish, thus providing continuity of the flux, see
Eq. (15).

As one can check, the ODE (15) remains invariant under
rescaling ξ → C−1/4ξ and R → C−1R, where C > 0. There-
fore, once we have found the solution R1(ξ ) of the problem
(15) and (16) for a = 1, we can find the solution Ra(ξ ) for
arbitrary a by the rescaling transformation

Ra(ξ ) = aR1

(
ξ

a1/4

)
. (17)

Using Eqs. (12) and (17), we obtain

a =
[

2
∫ ∞

0
R1(ξ ) dξ

]−4/5

, (18)

so what remains is to find R1(ξ ). This can be achieved nu-
merically by the shooting method. We set a = 1 and trade the
boundary condition at infinity R1(∞) = 0 for the condition
R′′(0) = γ , where γ < 0 serves as the shooting parame-
ter. Having found R1(ξ ) and employing Eqs. (17) and (18),
we obtained the numerical solution shown in Fig. 2. Here
a = 0.356 . . . , while the edges of support are at |ξ | = ξ∗ =
3.140 . . . . (The proximity of the latter number to π raises
curiosity but is most likely coincidental.) The asymptotic of
R(ξ ) near the edges is R(ξ ) � (ξ∗/60)(ξ∗ − |ξ |)3, so that the
first and second derivatives of R vanish alongside with R at
|ξ | = ξ∗ similarly to the step-like solution of the previous
subsection.

III. MACROSCOPIC FLUCTUATION THEORY.
FLUCTUATIONS OF EXCESS NUMBER OF PARTICLES

Fluctuation hydrodynamics of the DCG is described by
the Langevin equation which has been recently derived in
Ref. [23]:

∂tρ = −D∂2
x

[
ρ∂2

x ρ − (∂xρ)2] +
√

2D ∂2
x [ρη(x, t )], (19)

where η(x, t ) is a white Gaussian noise, 〈η(x1, t1)η(x2, t2)〉 =
δ(x1 − x2)δ(t1 − t2), and we confine ourselves to one spatial
dimension.
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As we will show in Sec. IV, the equilibrium state of the
DCG can be described by the Boltzmann-Gibbs distribution
with a well-defined free-energy density F (ρ). That is, when
the gas is in equilibrium at density ρ0, the probability density
of observing an arbitrary density profile ρ∗(x) is given by
− lnP[ρ∗(x)] � Seq, where

Seq �
∫ ∞

−∞
dx[F (ρ∗(x)) − F (ρ0) − F ′(ρ0)(ρ∗(x) − ρ0)].

(20)
Remarkably, the free energy density of this gas,

F (ρ) = ρ ln ρ − ρ, (21)

coincides with that of the lattice gas of noninteracting random
walkers (RWs). The latter is described by the more familiar
second-order Langevin equation [1]

∂tρ = ∂x
[
D∂xρ +

√
2Dρ η(x, t )

]
. (22)

Plugging Eq. (21) for F (ρ) into Eq. (20), we obtain

Seq =
∫ ∞

−∞
dx

[
ρ∗(x) ln

ρ∗(x)

ρ0
+ ρ0 − ρ∗(x)

]
, (23)

which coincides with the corresponding expression for the gas
of noninteracting RWs.

Large deviations in the DCG can be described by the MFT
[25]. The MFT is a weak-noise theory which is based on
the Langevin equation (19) and relies on a problem-specific
small parameter, that we identify below. When such a pa-
rameter is present, the probability distribution of interest can
be approximately determined via a saddle-point evaluation
of the exact path integral corresponding to Eq. (19) and the
problem-specific constraints.

We will introduce the MFT for the DCG on the example
of the statistics of the excess number of particles K on the
positive semi-axis at specified time T . One can consider two
different settings. In the first of them we start from a constant
gas density ρ0 and condition the process on the value of the
integral ∫ ∞

0
[ρ(x, T ) − ρ0] dx = K (24)

at time T . This setting corresponds to infinite total mass of the
system.

In the second setting (a finite total mass) there is a large
but finite number of particles, N � 1, in the system. Here the
particle excess condition at t = T is∫ ∞

0
ρ(x, T ) dx − N

2
= K, (25)

where −N/2 � K � N/2.
As we will see shortly, the scaling behavior of the parti-

cle excess statistics in the two settings is quite different. In
the infinite-mass setting the result also depends on whether
the initial condition is quenched: that is, deterministically
prepared, or annealed: that is, randomly sampled from the
equilibrium distribution of the gas at density ρ0.

A. Infinite-mass scaling

Let us rescale the variables: t/T → t , x/(ρ0DT )1/4 → x,
and ρ/ρ0 → ρ. In the new variables Eqs. (19) and (24)

become

∂tρ = −∂2
x

(
ρ2∂2

x ln ρ
) +

√
2

(
ρ5

0 DT
)−1/8

∂2
x [ρη(x, t )] (26)

and ∫ ∞

0
[ρ(x, 1) − 1] dx = j ≡ K(

ρ5
0 DT

)1/4 , (27)

respectively. At long time the noise becomes effectively weak.
The presence of a large parameter (ρ5

0 DT )1/4 � 1, which is a
typical number of particles within a region with the length
scale (ρ0DT )1/4, makes it possible to develop the MFT, that is
to perform a saddle-point evaluation of the exact path integral
for Eq. (26) with account of the constraint (27). The calcula-
tion boils down to minimization of the action functional (see
Appendix A for details) and leads to the following Hamilton’s
equations that describe the optimal (that is, the most likely)
path of the system conditioned on Eq. (27):

∂tρ = ∂2
x

[−ρ∂2
x ρ + (∂xρ)2 + 2ρ2v

]
, (28)

∂tv = ∂2
x

[
v∂2

x ρ + ∂2
x (vρ) + 2∂x(v∂xρ) − 2v2ρ

]
. (29)

The boundary condition at the observation time t = 1 is

v(x, 1) = λ δ′(x), (30)

where λ is a Lagrange multiplier, introduced when accommo-
dating the constraint (27), and δ′(x) is the x-derivative of the
delta function. The quenched initial condition is

ρ(x, 0) = 1. (31)

The annealed initial condition is introduced shortly.
Once the optimal path is found, the probability distribution

is given, up to a pre-exponent, by the action along the optimal
path: − lnP (K, T, ρ0) � S, where

S = (
ρ5

0 DT
)1/4

s( j), (32)

where

s( j) =
∫ 1

0
dt

∫ ∞

−∞
dx ρ2(x, t )v2(x, t ). (33)

The rescaled excess of the number of particles j is defined in
Eq. (27).

For the annealed initial condition with average rescaled
density 1 the full action includes the cost of creating the
optimal initial condition ρ(x, 0): Sannealed = S + S0, where S
is the dynamical action, described by Eqs. (32) and (33), and

S0 =
∫ ∞

−∞
dx{F [ρ(x, 0)] − F (1) − F ′(1)[ρ(x, 0) − 1]}.

(34)
As a result, Eq. (31) gives way to a different condition [28],
which describes a relation between the a priori unknown
ρ(x, 0) and v(x, 0):

v(x, 0) − d2

dx2
ln ρ(x, 0) = λδ′(x). (35)
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B. Finite-mass scaling

In this case the parameter ρ0 is absent, and the rescaling of
variables is different:

t

T
→ t,

x

(NDT )1/5
→ x and

(DT )1/5ρ

N4/5
→ ρ. (36)

Notice that the infinite-mass dynamical exponent 4 gives way
to the finite-mass exponent 5. The rescaled Eqs. (19) and (25)
become

∂tρ = −∂2
x

(
ρ2∂2

x ln ρ
) +

√
2

N
∂2

x [ρη(x, t )], (37)

and ∫ ∞

0
ρ(x, 1) dx − 1

2
= K

N
≡ j, (38)

where | j| � 1/2. Here the saddle-point expansion, leading to
the MFT, relies on the large parameter N � 1.

The rescaled MFT equations coincide with Eqs. (28) and
(29). The boundary condition (30) is also the same, but
Eq. (31) gives way to the condition

ρ(x, 0) = δ(x). (39)

Here the probability distribution of the number of particles,
transferred to the right, is independent of the observation time
T : − lnP (K, N ) � S, where

S = Ns( j), (40)

and s( j) is again described by Eq. (33).

C. Variance of particle excess

The statistics of typical (that is small) fluctuations of the
excess number of particles K is Gaussian, and its variance
scales as a characteristic number of particles involved. In
the infinite-mass case this is the typical number of particles
over the dynamical length scale (ρ0DT )1/4, that is varK ∼
(ρ5

0 DT )1/4. In the finite-mass case it is simply varK ∼ N .
Essentially, the role of theory (a first-order perturbation theory
in |λ| � 1, developed in Ref. [29]) is to provide the numerical
coefficients O(1) in these expressions.

For the infinite-mass case the calculations are straight-
forward. Upon linearization with respect to λ, the MFT
equations (28) and (29) become

∂tρ = −ρ0∂
4
x δρ + ρ2

0∂2
x v, (41)

∂tv = ∂4
x v. (42)

We can solve Eq. (42) backward in time with the “initial
condition” (30). The solution can be obtained by differen-
tiating with respect to x the previously known solution for
the initial condition in the form of a delta-function (see, e.g.,
Ref. [30] and Eq. (B6) in Appendix B below). The result has
the similarity form

v(x, t ) = λ

(1 − t )1/2
V

[
x

(1 − t )1/4

]
. (43)

The scaling function V (z) can be expressed via the
hypergeometric function 0F2:

V (z) = −
z�

(
3
4

)
0F2

(
5
4 , 3

2 ; z4

256

)
4π

+
z3�

(
5
4

)
0F2

(
3
2 , 7

4 ; z4

256

)
24π

−
z5�

(
3
4

)
0F2

(
9
4 , 5

2 ; z4

256

)
960π

. (44)

Now we can evaluate the rescaled dynamical action (33) in
terms of λ. Within the linear theory in λ, we should replace
the density ρ(x, t ) in Eq. (33) by 1. We obtain

s(λ) =
∫ 1

0
dt

∫ ∞

−∞
dx v2(x, t )

= λ2
∫ 1

0

dt

(1 − t )3/4

∫ ∞

−∞
dz V 2(z). (45)

The integral over t gives 4. The integral over z can be evalu-
ated numerically:

∫ ∞
−∞ V 2(z) dz = α = 0.05798 . . . . Overall,

we obtain s = 4αλ2.

1. Quenched initial condition

For the quenched setting, the formula s = 4αλ2 suffices for
expressing the action in terms of j. Indeed, using the “shortcut
relation” ds/d j = λ (see, e.g., Ref. [31]), we obtain

ds

dλ

dλ

d j
= 2αλ

dλ

d j
= λ, (46)

which gives λ = j/(8α). As a result,

s = 4αλ2 = j2

16α
. (47)

Back to the dimensional variables, we obtain the variance of
the typical fluctuations of K :

varK = 8α
(
ρ5

0 DT
)1/4

. (48)

Exactly the same result (48) for the quenched initial con-
dition can be obtained directly from the linearized version of
the Langevin equation (26). This calculation is presented in
Appendix B. The MFT, however, also enables one to calculate
the variance for the annealed initial condition, where a direct
calculation with the linearized Langevin equation does not
seem to be available.

2. Annealed initial condition

In the annealed setting one should also take into account
(the small-λ expansions of) Eqs. (34) and (35), which are the
following:

s0 = 1

2

∫ ∞

−∞
δρ2(x, t = 0) dx (49)

and

v(x, t = 0) − d2

dx2
δρ(x, t = 0) = λδ′(x), (50)
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respectively, where δρ(x, t = 0) is the a priori unknown
small perturbation on the background of the constant density
ρ = ρ0, and v(x, t = 0) is also small.

Evaluating Eq. (43) at t = 0, plugging the result into
Eq. (50) and integrating the latter equation twice over x,
we determine the optimal initial density field ρ(x, 0) � 1 +
δρ(x, 0), where

δρ(x, 0) = λ

[∫ x

−∞
dy

∫ y

−∞
dz F (z) − θ (x)

]
, (51)

and θ (x) is the stepfunction. The double integral in this ex-
pression can be evaluated with “Mathematica” analytically,
but the result is too cumbersome to present it here. Plugging it
into Eq. (49) and evaluating the resulting integral numerically,
we obtain

s0 = β λ2, (52)

where β = 0.1581 . . . . The total annealed action is, therefore,

s(λ) = (4α + β )λ2 = j2

4(4α + β )
, (53)

where α = 0.05798 . . . , as obtained above, and we have again
used the shortcut relation ds/d j = λ to express the action
through j.

At given j, the annealed action (53) is smaller than the
quenched action (47). Back in the original variables, the vari-
ance of the typical fluctuations of K in the annealed case,

varK = (8α + 2β )
(
ρ5

0 DT
)1/4

, (54)

is larger than that in the quenched case [see Eq. (48)], as to be
expected on physical grounds.

IV. MFT OF LARGE DEVIATIONS AT EQUILIBRIUM

Now we suppose that the DCG is at equilibrium and, using
the MFT, evaluate the probability density of observing a spec-
ified density profile ρ∗(x). Importantly, the Hamiltonian MFT
equations are still Eqs. (28) and (29) (where we return to the
dimensional variables except setting D = 1). The boundary
conditions in time, however, become ρ(x, t = −∞) = ρ0 and
ρ(x, t = 0) = ρ∗(x) [29,32].

At the microscopic level, the DCG obeys detailed balance.
At the macroscopic level the detailed balance manifests itself
as the Onsager-Machlup reversibility principle [33]. In partic-
ular, the optimal activation path ρ(x, t ), leading from ρ(x, t =
−∞) = ρ0 to ρ(x, t = 0) = ρ∗(x), must coincide with the
time-reversed relaxation path from ρ(x, t = −∞) = ρ∗(x) to
ρ(x, t = ∞) = ρ0. That is, the optimal path must obey the
equation

∂tρ = ∂2
x

(
ρ2∂2

x ln ρ
)
. (55)

Combining this equation with Eq. (28), we obtain the impor-
tant relation

v(x, t ) = ∂2
x ln ρ(x, t ), (56)

which describes the equilibrium manifold of this system.
The relation (56) brings about two important consequences.
Firstly, as one can check by a direct substitution, Eq. (29) is

FIG. 3. The optimal path of void formation at t = 0 and ρ0 =
L = D = 1. Shown is the optimal density profile at times t = −∞
(black), −6 (blue), −2 (brown), −1/5 (magenta), and 0 (red).

now obeyed automatically. Secondly, the mechanical action
can be calculated as follows:

S =
∫ 0

−∞
dt

∫ ∞

−∞
dx ρ2(x, t )v2(x, t )

=
∫ 0

−∞
dt

∫ ∞

−∞
dx ρ2(x, t )

(
∂2

x ln ρ
)2

. (57)

After two integrations by part over x, this expression becomes

S =
∫ 0

−∞
dt

∫ ∞

−∞
dx ln ρ ∂2

x

(
ρ2∂2

x ln ρ
)
. (58)

By virtue of Eq. (55), this expression can be recast as

S =
∫ ∞

−∞
dx

∫ 0

−∞
dt ln ρ ∂tρ

=
∫ ∞

−∞
dx

∫ 0

−∞
dt ∂t (ρ ln ρ − ρ). (59)

Performing the integration over time, we arrive at the an-
nounced Boltzmann-Gibbs relation (23).

As a simple but instructive example, let us evaluate the
probability distribution Pvoid of observing a void of size 2L
in a uniform gas at equilibrium:

ρ∗(x) =
{

0, |x| < L,

ρ0, |x| > L.
(60)

Using Eq. (23), we obtain Pvoid ∼ exp(−2ρ0L), as in the gas
of noninteracting RWs [32]. The optimal path of the system
toward the void formation, ρ(x, t ) is obtained by the time
reversal of the relaxation dynamics of the void, see Eq. (55).
We computed this optimal path numerically, and the results
are shown in Fig. 3. Noticeable are spatial oscillations of
the density, which are absent in the optimal path of the void
formation in the gas of noninteracting RWs, see Ref. [32].

V. SUMMARY AND DISCUSSION

We have considered some basic macroscopic relaxation
and fluctuation properties of the mass- and dipole-conserving
stochastic lattice gas. We have extended the MFT approach
to this system. Using some carefully selected examples, we
have demonstrated how one can apply the MFT both to typical
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fluctuations of the DPG, and to its large deviations. We hope
that the MFT formalism will find additional applications to
particular settings relevant to experiments.

We would like to conclude this work with a fascinating ob-
servation. Let us briefly recall one basic property of diffusive
lattice gases that conserve only the number of particles. The
fluctuational hydrodynamics of such gases is described by the
Langevin equation [1]

∂tρ = ∂x
[
D(ρ)∂xρ +

√
σ (ρ) η(x, t )

]
, (61)

which generalizes Eq. (22) to a broad class of diffusive lattice
gases. The free energy density F (ρ) of this class of gases is
determined by the diffusion coefficient D(ρ) and the mobility
σ (ρ) via the Einstein relation [1]

F ′′(ρ) = 2D(ρ)

σ (ρ)
. (62)

In the particular case of noninteracting RWs, see Eq. (22),
one has D(ρ) = D = const, and σ (ρ) = 2Dρ. Then Eq. (62)
yields the free energy density F (ρ) = ρ ln ρ − ρ. The re-
markable coincidence of this expression with the free energy
density (21) for the DCG may suggest the validity of the
Einstein relation (62) for dipole-conserving gases at the level
of the Langevin equation (26). Indeed, if, by analogy with
Eq. (61), we identify the functions D(ρ) = Dρ (which enters
the highest-derivative term) and σ (ρ) = 2Dρ2, then Eq. (62)
correctly reproduces the free energy density (21). This obser-
vation hints at possible additional surprises in the studies of
the dipole-conserving lattice gases.
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APPENDIX A: DERIVATION OF EQS. (28) AND (29) AND BOUNDARY CONDITIONS

Our starting point is Eq. (26). One way to deal with the second derivative in the noise term is to define the “second-order
potential” ψ (x, t ) by the relation ρ(x, t ) = ∂2

x ψ (x, t ) and rewrite Eq. (26) in terms of ψ (x, t ):

∂tψ = −∂2
x ψ ∂4

x ψ + (
∂3

x ψ
)2 +

√
2ε ∂2

x ψ η(x, t ), (A1)

where ε = (ρ5
0 DT )−1/4 � 1. The probability density of a realization of the (dimensionless) Gaussian white noise η(x, t ) is

P[η] ∼ exp

(
−

∫ 1

0
dt

∫ ∞

−∞
dx

η2

2

)
. (A2)

Expressing ξ through ψ and its derivatives from Eq. (A1), we obtain

P[ψ (x, t )] ∼ exp

{
− 1

4ε

∫ 1

0
dt

∫ ∞

−∞
dx

[
∂tψ + ∂2

x ψ ∂4
x ψ − (

∂3
x ψ

)2]2

(
∂2

x ψ
)2

}
. (A3)

Employing the small parameter ε � 1, we can apply the saddle-point approximation. The calculations boil down to a minimiza-
tion of the action functional

sλ[ψ (x, t )] = 1

4

∫ 1

0
dt

∫ ∞

−∞
dx

[
∂tψ + ∂2

x ψ ∂4
x ψ − (

∂3
x ψ

)2]2

(
∂2

x ψ
)2 − λ

∫ ∞

−∞
θ (x)

[
∂2

x ψ (x, 1) − ∂2
x ψ (x, 0)

]
dx, (A4)

where the constraint (27) is incorporated with the help of a Lagrange multiplier λ. Let us introduce the second derivative ∂2
x p of

the canonical momentum density p(x, t ) by differentiating the Lagrangian of the action functional (A4) with respect to ψt [34].
We obtain

∂2
x p = ∂tψ + ∂2

x ψ ∂4
x ψ − (

∂3
x ψ

)2

2
(
∂2

x ψ
)2 . (A5)

Denoting ∂2
x p(x, t ) ≡ v(x, t ) and going back from ψ (x, t ) to the density ρ(x, t ), we obtain Eq. (28).

The Hamiltonian H , corresponding to the first term of the action functional (A4), is the following [34]:

H =
∫ ∞

−∞
dx

[
v2∂2

x ψ − v∂2
x ψ ∂4

x ψ + v
(
∂3

x ψ
)2]

. (A6)

Equation (29) can be obtained by taking the minus variational derivative of this Hamiltonian with respect to ψ , and then going
back from ψ to ρ.

This derivation, however, ignores possible boundary terms at t = 0 and t = 1, arising when calculating the linear variation of
the constrained action sλ[ψ (x, t )]. One boundary term at t = 1 comes from the term proportional to λ in Eq. (A4). An additional
term at t = 1 results from integration by parts of the term that includes ∂tδψ (x, t ), where δψ (x, t ) is the linear variation of
ψ (x, t ). These two terms yield the boundary condition (30).

For the quenched initial condition (31) there are no boundary terms at t = 0. In the annealed setting there are two boundary
terms at t = 0. One of them arises from integration by parts of the term that includes ∂tδψ (x, t ), while the other comes from
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the variation of the term proportional to λ in Eq. (A4). (Indeed, the initial optimal density ρ(x, t = 0) in this case is a priori
unknown.) These two terms lead to the annealed initial condition (35).

Finally, the action (33) is given by the first term in Eq. (A4), rewritten in terms of ρ and v.

APPENDIX B: VARIANCE OF PARTICLE EXCESS NUMBER FROM THE LANGEVIN EQUATION

Typical, small fluctuations of K are caused by typical, small fluctuations of the density profile ρ(x, t ). In order to account for
such fluctuation, one can linearize the Langevin equation (26) around the equilibrium state ρ = 1: ρ(x, t ) = 1 + u(x, t ), where
|u| � 1 [29]. The linearized equation is

∂t u(x, t ) = −∂4
x u(x, t ) +

√
2ε ∂2

x η(x, t ), (B1)

where ε = (ρ5
0 DT )−1/4 � 1. The rescaled particle excess number at t = 1, see Eq. (27), becomes

j ≡ εK =
∫ ∞

0
u(x, 1) dx. (B2)

Using the new variable,

ψ (x, t ) =
∫ x

−∞
dy

∫ y

−∞
dz u(z, t ), (B3)

we can rewrite Eq. (B1) as

∂tψ (x, t ) = −∂4
x ψ (x, t ) +

√
2ε η(x, t ), (B4)

and formally solve it for a given realization of noise η(x, t ) and the quenched initial condition ψ (x, t = 0) = 0. In particular, at
rescaled time t = 1 we obtain

ψ (x, t = 1) =
√

2ε

∫ 1

0
dt

∫ ∞

−∞
dy η(y, t )G(x − y, 1 − t ), (B5)

where G(z, τ ) is the Green’s function of the homogeneous equation, corresponding to Eq. (B1). That is, G(z, τ ) solves the
equation ∂τ G(z, τ ) = −∂4

z G(z, τ ) with the initial condition G(z, τ = 0) = δ(z). The explicit form of G(z, τ ) is the following:

G(z, τ ) =
�

(
5
4

)
0F2

(
1
2 , 3

4 ; z4

256τ

)
πτ 1/4

−
z2�

(
3
4

)
0F2

(
5
4 , 3

2 ; z4

256τ

)
8πτ 3/4

. (B6)

Plugging Eq. (B5) into the constraint (B2) and performing the integration over x, we obtain the fluctuating particle excess number
at t = 1: j = −∂xψ (x = 0, t = 1). The variance of these fluctuations is

VarK = 〈[∂xψ (0, 1)]2〉 = 2ε

∫ 1

0
dt1

∫ 1

0
dt2

∫ ∞

−∞
dy1

∫ ∞

−∞
dy2〈η(y1, t1)η(y2, t2)〉∂G(y1, 1 − t1)

∂y1
× ∂G(y2, 1 − t2)

∂y2
. (B7)

Since 〈η(y1, t1)η(y2, t2)〉 = δ(y1 − y2)δ(t1 − t2), Eq. (B7) simplifies to

VarK = 2ε

∫ 1

0
dt

∫ ∞

−∞
dx

[
∂G(x, 1 − t )

∂x

]2

. (B8)

Up to a constant factor, this double integral is exactly the same as in the linearized MFT calculation, see Eq. (45). Equation (B8)
gives VarK = 8αε (where α = 0.05798 . . . ), which perfectly coincides with our MFT result (48).
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