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Resonant-force-induced symmetry breaking in a quantum parametric oscillator
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A parametrically modulated oscillator has two opposite-phase vibrational states at half the modulation
frequency. An extra force at the vibration frequency breaks the symmetry of the states. The effect can be
extremely strong due to the interplay between the force and the quantum fluctuations resulting from the coupling
of the oscillator to a thermal bath. The force changes the rates of the fluctuation-induced walk over the quantum
states of the oscillator. If the number of the states is large, then the effect accumulates to an exponentially large
factor in the rate of switching between the vibrational states. We find the factor and analyze it in the limiting
cases, including the prebifurcation regime where the system is close but not too close to the bifurcation point.
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I. INTRODUCTION

Quantum dynamics of parametric oscillators has been
attracting increasing interest from both theoretical and exper-
imental perspectives [1–16]. To an extent, this interest comes
from new applications of parametric oscillators, in particular,
in quantum information. In a broader context, such oscillators
provide a versatile platform for studying quantum dynam-
ics far from thermal equilibrium and revealing its hitherto
unknown aspects, with new features of tunneling and new
collective phenomena being examples. One of the features of
the dynamics, which is a part of the motivation of the present
paper, is the occurrence and the signatures of detailed balance
in a multistate quantum system.

To a large extent, the importance of parametric oscilla-
tors is a consequence of their symmetry. Such oscillators are
vibrational systems with periodically modulated parameters
(like the eigenfrequency) that display vibrations at half the
modulation frequency ωp. Classically, the vibrational states
have equal amplitudes and opposite phases [17], presenting a
basic example of period doubling. Quantum mechanically, the
vibrational states can be thought of as generalized coherent
states of opposite sign [18]. The Floquet eigenstates are sym-
metric and antisymmetric combinations of vibrational states
at frequency ωp/2.

Generally, using parametric oscillators in quantum infor-
mation requires operations that would break their symmetry,
cf. Ref. [19]. The symmetry breaking can be implemented
by applying an extra force at frequency ωp/2. Classically,
the effect of such force can be understood from Fig. 1(a).
Because the vibrational states have opposite phases, the force
can be in phase with one of the two states, increasing its
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amplitude, while being in counter-phase with the other state
and decreasing its amplitude. The states symmetry is thus
broken. However, for a weak force this effect is small.

In the present paper we study the effect of a weak extra
force at frequency ωp/2 on a quantum parametric oscillator.
The quantum effect is nonperturbative, in some sense, as it
changes the nomenclature of the quantum states. Instead of the
Floquet states with the eigenvalues defined modulo h̄ωp [20],
in the presence of the extra force the eigenvalues are defined
modulo h̄ωp/2, and even a weak force can strongly change
coherent quantum dynamics. As we show, the force can have a
strong effect in the presence of dissipation, too. We study this
effect where the dynamics involves multiple oscillator states,
in which case it is exponentially strong. Also, we consider the
case where the oscillator eigenfrequency ω0 is close to ωp/2,
so that the parametric modulation at frequency ωp that excites
the vibrations can be relatively weak.

Besides the discreteness of the eigenvalue spectrum, a
qualitative distinction between the quantum and classical
dynamics comes from the nature of the fluctuations associ-
ated with the coupling of the oscillator to a thermal bath.
Along with classical thermal fluctuations, the coupling leads
to quantum fluctuations. In quantum terms, oscillator relax-
ation comes from transitions between the oscillator states
with emission of excitations into the bath. The emission rate
determines the relaxation rate, but the very emission events
happen at random, leading to noise. In a modulated oscillator,
such noise is present even if the bath temperature is T = 0.

Quantum and classical fluctuations can strongly enhance
the effect of the symmetry breaking by a force at frequency
ωp/2. The effect is ultimately determined by the relation
between the appropriately scaled force amplitude and the
fluctuation intensity. To provide intuition, we draw an analogy
with a Brownian particle in a bistable potential, cf. Fig. 1(b).
Such analogy is seen if one looks at the vibrating oscillator
in the frame rotating at ωp/2. Here the dynamics is char-
acterized by the scaled vibration quadratures Q and P, i.e.,
the amplitudes of the vibrational components cos(ωpt/2) and
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(a) (b)

FIG. 1. (a) Top panel: Sketch of the modulation (dotted line) and
the additive extra force (red solid line). Lower panel: Sketch of the
vibrating coordinate for the two vibrational states of the oscillator
for no extra force (dotted line), the vibrations with the phase close to
the phase of the extra force (light blue line), and the vibrations in the
counterphase with the force (dark blue line). (b) The cross-section of
the scaled Hamiltonian function of the oscillator in the rotating frame
g(Q, P) as a function of the quadrature Q for P = 0. For no extra
force g(Q, P) is symmetric, g(Q, P) = g(−Q, −P) (dotted line). The
extra force breaks the symmetry, making one well of g(Q, P) deeper
and the other well shallower (magenta line).

sin(ωpt/2). These variables can be associated with the scaled
coordinate and momentum of the oscillator in the rotating
frame.

With no force at ωp/2, the rotating-frame Hamiltonian is
even in {Q, P} by symmetry: both cos(ωpt/2) and sin(ωpt/2)
change sign for t → t + 2π/ωp, whereas the modulation, and
thus the Hamiltonian, do not change. The Hamiltonian be-
comes time-independent in the rotating wave approximation
(RWA). Its cross-section by the plane P = 0 is sketched in
Fig. 1(b). It has the form of a double-well potential. The min-
ima correspond to the stable vibrational states, in the presence
of weak dissipation [21,22].

A force at frequency ωp/2 is seen in the rotating frame as a
static bias. It breaks the symmetry of the Hamiltonian. The ef-
fect is reminiscent of the effect of bias on a Brownian particle
in a symmetric double-well potential. With no bias, the poten-
tial wells are equally populated. If the bias changes the well
depths by δU , then the rates of thermal-noise-induced inter-
well switching change [23]. As a consequence, the stationary
ratio of the well populations changes by exp(2δU/kBT ). This
factor can be large for small temperature even where δU is
small compared to the height of the barrier separating the
wells.

Similar to a static bias for a Brownian particle, a force
at ωp/2 can exponentially strongly affect the rates of noise-
induced switching between the vibrational states of a classical
parametric oscillator [24]. As a result, the stationary popula-
tions of the states are also strongly changed. The population
change was observed for a parametrically modulated mode
of a micromechanical resonator by Mahboob et al. [25]. Mi-
cromechanical resonators were also used by Han et al. [26]
to demonstrate a strong characteristic change of the switching
rates.

On the quantum side, of major interest for applications is
the regime of comparatively large vibration amplitudes, in
which the overlap of the wave functions of the coexisting
vibrational states is exponentially small. It corresponds to
having many quantum states inside the wells of the scaled

(a)

(b)

FIG. 2. (a) Scaled quasienergy levels of the oscillator for the
parameters μ = 0.2, λ = 0.02, αd = 0.055, and ϕd = π/2; see
Eqs. (4)–(6). W↑ and W↓ indicate transitions due to the coupling
to a thermal bath; the transitions are not limited to the nearest
quasienergy levels. The rate of transitions down is higher than the
rate of transitions up. The states at the bottom of the wells of g(Q, 0)
correspond to the stable vibrational states. (b) The strong change of
the switching rate Wsw with the varying scaled amplitude of the extra
force αd compared to the rate W (0)

sw for αd = 0. The plot shows the
ratio W shallow

sw /W (0)
sw for the shallow well. For the deeper well the ratio

is inversed. The data refers to three values of the scaled difference
μ between the oscillator eigenfrequency and half the modulation
frequency; λ is the scaled Planck constant and the oscillator thermal
occupation number is n̄ = 0.2.

RWA Hamiltonian g(Q, P) in Fig. 2. In this case, similar to the
classical regime, oscillator relaxation is characterized by two
strongly different rates. One is the decay rate in the absence of
modulation which, for a modulated oscillator, determines the
time it takes to approach a stable vibrational state at one of the
minima of g(Q, P). The other is the rate of switching between
the stable vibrational states due to classical and quantum fluc-
tuations, which is exponentially smaller for low fluctuation
intensity [22].

It is the rate of switching between the vibrational states
of a quantum oscillator that can be strongly modified by a
weak force at frequency ωp/2. The effect has generic aspects,
which go beyond the model of the parametric oscillator. They
manifest most clearly where the decay rate is small, so that
the spacing of the intrawell levels of the RWA Hamiltonian
significantly exceeds their width. In this regime, a major effect
of the coupling to a thermal bath is transitions between the
RWA states, see Fig. 2(a). The transitions are not limited to
the neighboring RWA states even where the relaxation is due
to transitions between the neighboring Fock states. Transitions
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down to the bottom of the well of the RWA Hamiltonian are
more likely then toward the barrier top, the rates W↓ are larger
than W↑. Therefore, the oscillator is mostly localized near one
or the other minimum of the well [27]. However, since W↑
is nonzero, the oscillator essentially performs a random walk
over the intrawell states. In the course of this walk it can
reach the barrier top and then switch to the other well with
probability ∼1/2.

We note the difference between the rates of transitions
between the quantum intrawell states sketched in Fig. 2(a) and
the rate of switching between the stable vibrational states. We
use the term “switching” to describe transitions between the
wells of the RWA Hamiltonian. We find that, in the quantum
domain, the change of the switching rates is also exponential
in the amplitude of the force at frequency ωp/2, with the
exponent determined by the ratio of the change of the effective
“potential well” to the Planck constant.

To set the scene, in Sec. II we introduce the Hamiltonian of
the parametrically modulated nonlinear oscillator. We show
that the Hamiltonian has two wells and discuss the intrawell
dynamics in the presence of a weak force. In Sec. III we
present the master equation, which describes the effect of the
coupling to a thermal bath on the oscillator dynamics. We
reduce this equation to the balance equation for the popula-
tions of the intrawell states in the weak-damping limit. We
explain how this balance equation can be solved within the
WKB approximation and how the interwell switching rates
are found from this solution. Section IV is technical: we use
the methods of nonlinear dynamics to develop a perturbation
theory that allows us to find corrections to the transition rates,
which are linear in the amplitude of the extra force. The
result is used in Sec. V to find the corrections to the intrawell
state populations and to the switching rate. The change of the
logarithm of the switching rate is linear in the extra force
amplitude. We find the corresponding logarithmic suscepti-
bility and its dependence on n̄ and the oscillator parameters.
The explicit expressions are obtained for comparatively high
temperatures and close to the bifurcation point where there
emerge period-2 vibrations; in particular, we consider the
prebifurcation scaling where the motion near the bifurcation
point is still underdamped. Section VI contains concluding
remarks.

The extra force exponentially increases the ratio of the
switching rates from the wells it makes shallower and deeper,
W shallow

sw /W deep
sw . We have W shallow

sw /W (0)
sw ≈ W (0)

sw /W deep
sw , where

W (0)
sw is the switching rate in the absence of the extra force.

For concreteness, we calculate the change of the switching
rate from the deeper well.

II. THE HAMILTONIAN IN THE ROTATING
WAVE APPROXIMATION

If the decay rate of the oscillator � is small compared to its
eigenfrequency ω0, then even a comparatively small periodic
modulation of ω0 at frequency ωp close to 2ω0 can lead to
bistability. The onset of stable states requires that the oscil-
lator be nonlinear [28]. Classically, the vibration frequency
of a nonlinear oscillator depends on its amplitude. There-
fore, as the amplitude of the parametrically excited vibrations
increases, the vibration frequency moves away from ωp/2,

weakening the resonance with the modulation and stabilizing
the vibrations.

A simple nonlinearity of the oscillator potential that leads
to the stabilization in the lowest order of the perturbation
theory is the Duffing (Kerr) nonlinearity. It is relevant to many
physical systems and is described by the quartic term in the os-
cillator coordinate q0. The Hamiltonian of the parametrically
modulated Duffing oscillator has the form

H (0) = 1
2 p2

0 + 1
2 q2

0

[
ω2

0 + Fp cos(ωpt )
] + 1

4γ q4
0, (1)

where q0 and p0 are the oscillator coordinate and momentum,
Fp is the modulation amplitude, γ is the nonlinearity parame-
ter, and we have set the oscillator mass equal to unity.

In the presence of an additional linear force at half the
modulation frequency the Hamiltonian becomes

H = H (0) − q0Ad cos(ωpt/2 + ϕd ), (2)

where Ad and ϕd are the amplitude and phase of the force.
The oscillator dynamics is conveniently described by

switching to the rotating frame with the unitary transforma-
tion Û = exp[−iâ†â(ωpt/2)], where â† and â are the ladder
operators, â = (h̄ωp)−1/2(i p̂0 + ωpq̂0/2). In the rotating wave
approximation (RWA) the von Neumann equation for the os-
cillator density matrix ρ̂ in the rotating frame reads

d ρ̂/dτ = iλ−1[ρ̂, ĝ], τ = tF/2ωp. (3)

Here ĝ is the scaled RWA Hamiltonian,

ĝ ≡ ĝ(Q, P) = ĝ(0) + αd ĝ(1),

ĝ(0) = 1
4 (Q2 + P2)2 + 1

2 (1 − μ)P2 − 1
2 (1 + μ)Q2,

ĝ(1) = −[P cos ϕd + Q sin ϕd ]. (4)

In Eqs. (3) and (4) Q and P are (the operators of) the di-
mensionless coordinate and momentum, τ = tF/2ωp is the

dimensionless time, and αd = Ad

√
6γ /F 3

p is the scaled ampli-

tude of the extra additive force. Here and in what follows we
use the superscripts 0 and 1 to indicate the parameters of the
oscillator unperturbed by the extra force and the perturbation,
respectively. For a weak extra force that we consider αd � 1.

In terms of the ladder operators in the rotating frame

Q̂ = i(λ/2)1/2(â − â†), P̂ = (λ/2)1/2(â + â†),

ĝ = λ2(â†â + 1/2)2 + λ

2
(â2 + â†2

) − μλâ†â

− αd

√
λ

2
(âeiϕd + c.c.), (5)

where λ = 3γ h̄/Fpωp is the scaled Planck constant, [Q̂, P̂] =
iλ. In the absence of the extra force the Hamiltonian ĝ(Q, P)
depends only on one parameter, the scaled detuning

μ = 2ωpδω/Fp, δω = ωp/2 − ω0. (6)

We note that, since we switched to the rotating frame
at half the modulation frequency, in the absence of extra
additive force ∝ Ad the Hamiltonian ĝ(0)(Q, P) is not the
Floquet (quasienergy) Hamiltonian. To avoid confusion we
call ĝ the RWA Hamiltonian, and its eigenvalues the RWA
energy values.
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A. Intrawell dynamics

The unperturbed RWA Hamiltonian ĝ(0)(Q, P) is a sym-
metric function of Q and P. For −1 < μ < 1 it has two
minima. They lie on the Q-axis at Q(0)

± = ±√
1 + μ. At

the minima g(0)(Q(0)
± , P = 0) ≡ g(0)

min = −(1 + μ)2/4. In the
laboratory frame, the minima correspond to parametrically ex-
cited vibrations with opposite phases; the coordinate q0(t ) is
∝ −Q(0)

± sin(ωpt/2).
The minima are separated by a saddle point at Q = P = 0.

Classical Hamiltonian dynamics inside the symmetric wells
of the function g(0)(Q, P) is well understood [22]. The oscil-
lator moves along closed intrawell trajectories with constant
RWA-energy, g(0)(Q, P) = g. The trajectories in the opposite
wells are mirror-symmetric and, for a given g, have the same
frequency ω(0)(g).

We now consider the effect of the force ∝ αd on the
classical trajectories inside the wells. The force breaks the
symmetry of g(Q, P), as it tilts it. The direction of the tilt
is determined by the phase ϕd . For a weak force, αd �
1, the function g(Q, P) still has two wells, which are now
asymmetric and may have different depths. For the phase
ϕd = (2k + 1)π/2 with integer k the tilt is along the Q axis.
The minimum of one well shifts towards the origin and the
well depth decreases, while the other well shifts away from
the origin and its depth increases. For ϕd = kπ the wells are
shifted along the P axis. In the general case, to the first order
in αd the values of g(Q, P) at the minima are

gmin = g(0)
min ± αd g(1)

min, g(1)
min = −

√
1 + μ sin ϕd . (7)

where the signs “+” and “–” refer to the wells at Q >

0 and Q < 0, respectively. The saddle point of g(Q, P)
shifts from Q = P = 0 to Q = −αd sin ϕd/(1 + μ) and P =
−αd cos ϕd/(1 − μ). The value gsaddle of g(Q, P) at the saddle
point does not change, to the first order in αd .

The change of g(Q, P) due to the force ∝ αd leads to a
change of the Hamiltonian intrawell trajectories. Generally,
we expect the frequency ω(g) to change, too. The frequency
can be found by calculating the action variable I f as a function
of the RWA energy g,

ω−1(g) = ∂I f (g)

∂g
, I f (g) = 1

2π

∮
P(Q|g)dQ,

where the integral is taken over the trajectory with a given g
inside the well; P(Q|g) is given by the equation g(Q, P) = g.
We use the subscript f to indicate that I f refers to the full
Hamiltonian function g = g(0) + αd g(1). In Appendix A we
show that, to the first order in αd , the actions in the two wells
change by ±αd I (1)

f = ±αd sin(ϕd )/2. Remarkably this change
is independent of g, see Fig. 3(b). Then, to the first order in
αd , the frequency of intrawell classical motion is not changed
by the linear force. This has interesting consequences for the
energy spectrum of the RWA Hamiltonian.

B. RWA energy levels

For the dimensionless RWA Hamiltonian ĝ, the distance
between the eigenvalues, i.e., between the RWA energy levels,
is proportional to the dimensionless effective Planck constant
λ. As indicated earlier, of interest for quantum information

(a) (b)

FIG. 3. (a) Classical Hamiltonian trajectories g = const. inside
the well of the RWA Hamiltonian g(Q, P) at Q > 0 for g = −0.6.
(b) The dependence of the action variable on the RWA energy g. Both
panels refer to μ = 0.7 and ϕd = π/6.

and for many other physics problems is the case where there
are many quantum states |n〉 inside the wells of the function
g(Q, P). This implies that λ � 1. Moreover, we will be inter-
ested in the regime where the extra force, although weak, is
still “quantum strong,” that is the force-induced shift of the
RWA energy levels is larger than the level spacing, which
implies that λ � αd . Respectively, the shift of the minima
|αd g(1)

min| significantly exceeds the spacing of the levels as well.
Since for αd = 0 the wells of g(Q, P) are symmetric

and intrawell states of different wells are in resonance, the
eigenstates of ĝ are given by the tunnel split symmetric and
antisymmetric combinations of the intrawell states. As αd

increases, the levels in different wells shift away from each
other and resonant tunneling is suppressed. The eigenstates
|n〉 of ĝ are well-localized intrawell states,

ĝ |n〉 = gn |n〉 ,

where gn are the intawell RWA energies.
We note that a part of the states in different wells may

become resonant again for certain values of αd . In the semi-
classical limit, the distance between the intrawell levels gn

is λω(g). Therefore, given that ω(g) is not changed by the
force, for such αd , simultaneously, all levels in the shallow
well come to resonance with the levels in the deeper well.

III. QUANTUM ACTIVATION

Coupling the oscillator to a thermal bath leads to dissipa-
tion. In the absence of modulation, dissipation is associated
with transitions between the Fock states of the oscillator (i.e.,
the eigenstates of the Hamiltonian H (0) for Fp = 0), which are
accompanied by emission and absorption of excitations of the
bath. A major dissipation process is associated with transi-
tions between neighboring Fock states, with energy exchange
≈ h̄ω0. Classically, it leads to a viscous-type friction force
−2�q̇0. We will assume that the coupling is weak, so that
the friction coefficient � is small compared to the oscillator
eigenfrequency ω0. If certain well-understood conditions are
met, then the oscillator dynamics is Markovian on the time
scale slow compared to ω−1

0 [29].
Resonant parametric modulation does not open new dissi-

pation channels, to the leading order in Fp. However, now the
state nomenclature is changed: dissipative transitions between
the Fock states of the oscillator translate to transitions between
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the RWA states, since the latter states are linear combinations
of the former states. Because the overlapping of the RWA
states in different wells is exponentially small for small λ, of
primary importance are transitions between the states within
the same well. It is characteristic that the transitions between
neighboring Fock states are projected onto transitions between
not only neighboring, but also remote RWA states. In the
absence of an extra force, the rates Wnn′ of transitions between
intrawell states |n〉 → |n′〉 were calculated earlier [22].

If the rates Wnn′ are small compared to the levels spacing
λω(g), then the dynamics of the parametric oscillator in slow
time τ , Eq. (3), can be described by the balance equation for
the intrawell state populations ρn = 〈n| ρ |n〉,

∂ρn

∂τ
= −

∑
n′

(Wnn′ρn − Wn′nρn′ ),

Wnn′ = W (e)
nn′ + W (abs)

nn′ , W (abs)
nn′ = 2κ n̄|〈n | â | n′〉|2,

W (e)
nn′ = 2κ (n̄ + 1)|〈n | â† | n′〉|2. (8)

Here, n̄ = [exp h̄ωp/2kBT − 1]−1 is the oscillator thermal
occupation number; κ is the scaled friction coefficient,
κ = 2�ωp/Fp. We omitted the indices that label the wells.

In the semiclassical approximation, where n, n′ � 1 and
|n − n′| is not too large, we can express the matrix elements
in Eq. (8) by the Fourier transforms of the complex amplitudes
of intrawell vibrations [17],

〈n + m|â|n〉 ≈ am(gn),

am(g) = 1

2π

∫ 2π

0
dφ a(τ, g)e−imφ, (9)

where φ = ω(g)τ and a(τ, g) = (2λ)−1/2[P(τ, g) − iQ(τ, g)];
Q(τ, g) and P(τ, g) are the solution of the Hamiltonian
equations of motion for the Hamiltonian in Eq. (4). The ex-
pressions for the transition rates in terms of am(g) have the
form

W (e)
n+m n = 2κ (n̄ + 1)|a−m(gn)|2,

W (abs)
n+m n = 2κ n̄|am(gn)|2. (10)

An explicit calculation of the matrix elements 〈n|â|n′〉
shows [22] that, in the absence of the extra force, the transition
rates Wnn′ satisfy the condition Wnn′ > Wn′n for n > n′, if we
use the convention that the states |n〉 are counted off from the
bottom of the well of g(Q, P). This strong inequality cannot
be broken by a weak extra force. It means that the oscillator
is more likely to go down towards the bottom of the well than
going up away from it. This corresponds to relaxation to a
classically stable state, in quantum terms.

The transition probabilities have two contributions corre-
sponding to absorption and emission of excitations of the heat
bath. Importantly, even in the regime where the thermal occu-
pation number n̄ can be assumed to be zero and only emission
processes are relevant, transitions away from the bottom of
the well still have nonzero probability, populating excited
intrawell states. This effect was termed quantum heating [30]
and was directly observed in the experiment [31]. In the ran-
dom walk over intrawell states, once the oscillator makes a
transition away from the bottom of the well, it is more likely
to go back down, but it still can go further up. Ultimately, if it

reaches the top of the well, where g(Q, P) = 0, it can switch to
another well. Such switching is similar to thermal activation in
equilibrium systems and has been called quantum activation.

Discrete WKB approximation

To calculate the rate Wsw of interwell switching we in-
vestigate the quasistationary distribution over intrawell states
described by Eq. (8) in which we set ∂ρn/∂τ = 0. Such ap-
proach is justified by the strong inequality Wsw � κ and is
similar to the analysis of the switching rate in thermal equilib-
rium systems [23]. To find the quasistationary distribution in
the semiclassical range, where the number of intrawell states
is large, we use the ansatz

ρn = exp[−R(gn)/λ] (11)

and use that (i) R(g) is a smooth function of g and that (ii)
Wn+m n ≈ Wn n−m. The latter condition is based on the fact that
the rates Wn n+m fall off exponentially with the increasing |m|
and that the typical n are much larger than the typical |m|.
Then Eq. (8) is reduced to a set of equations for R′(g),∑

m

Wn+m n
(
1 − ξm

n

) = 0,

ξn = exp[−ω(gn)R′(gn)],

R′(g) = dR(g)/dg, (12)

where we used gn+m − gn ≈ mλω(gn). The quasistationary
distribution (11) inside a well is determined by the function

R(g) =
∫ g

gmin

R′(x) dx.

The rate of switching from a well Wsw is approximately
given by the probability per unit time to reach a state with g
close to the saddle-point energy gsaddle,

Wsw = Csw × exp(−RA/λ), RA = R(gsaddle ). (13)

To the first order in the amplitude of the extra force, gsaddle =
0. The prefactor Csw in Eq. (13) is proportional to the decay
rate in the absence of modulation κ .

IV. EFFECT OF THE EXTRA FORCE
ON THE TRANSITION RATES

We emphasize again that we consider the dynamics in
one of the wells of g(Q, P). The extra force not only shifts
the RWA energies of the intrawell states, but also modifies
the transitions rates Wn n+m by changing the matrix elements
am(gn) = 〈n + m|â|n〉. We calculate the corrections to am(g)
in Eq. (9) assuming that the perturbation is classically weak,
αd � 1.

Where there is no extra force, the classical trajectories
Q(τ, g), P(τ, g) can be expressed in terms of the Jacobi ellip-
tic functions, leading to simple expressions for their Fourier
components [22]; see Appendix A. The force changes the
trajectories, and we have not found analytical expressions for
them. Examples of the trajectories with and without a weak
extra force are shown in Fig. 3(a).
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A. Action-angle variables

It is convenient to find the force-induced corrections to
am(g) by switching to the action-angle variables I, ψ of
the unperturbed system. Formally, we proceed by consider-
ing a system with the coordinate q, momentum p, and the
Hamiltonian function g(0)(q, p) and make a standard canon-
ical transformation

p = ∂S(q, I )/∂q, ψ = ∂S(q, I )/∂I,

I (g) = 1

2π

∮
p(q|g)dq, g(0)(q, p) = g,

q(I; ψ + 2π ) = q(I; ψ ), p(I; ψ + 2π ) = p(I; ψ ), (14)

where the generating function S is the action calculated for
the unperturbed Hamiltonian g(0) and p(q|g) is the momentum
calculated from the equation g(0)(q, p) = g. The explicit rela-
tion between (q, p) and (I, ψ ) can be found from the Fourier
components of q, p calculated for the Hamiltonian g(0); see
Appendix A. The function I (g) satisfies the equation

dI/dg = 1/ω(0)(g), g = g(0)(q(I; ψ ), p(I; ψ )) = g(0)(I ),

where ω(0)(g) is the frequency of intrawell vibrations in the
absence of the extra force; it is given in Appendix A. The
above equation gives the Hamiltonian function g(0) as a func-
tion of the action, g(0)(I; ψ ) ≡ g(0)(I ).

In what follows we will consider the coordinate and mo-
mentum of the oscillator Q, P in the presence of the extra force
as functions of I, ψ . We define their functional form as

Q(I; ψ ) = q(I; ψ ), P(I, ψ ) = p(I; ψ );

g(0)(Q, P) = g(0)(I ).

We distinguish between the functions Q(τ, g) and Q(I; ψ ) by
making use of the semicolon. The same convention is used for
P(I; ψ ).

The full RWA Hamiltonian is time-independent. However,
since I and ψ are defined with respect to g(0), in the presence
of the extra force the action I depends on time and the time
dependence of ψ is changed compared to the case where there
is no extra force. To find the time dependence of I, ψ one has
to express the Hamiltonian function g = g(0) + αd g(1) in terms
of I, ψ . To emphasize this form of the Hamiltonian we write
it as G(I; ψ ) = G(0)(I; ψ ) + αd G(1)(I; ψ ), where

G(α)(I; ψ ) = g(α)(Q(I; ψ ), P(I; ψ )), α = 0, 1.

Since G(0) and G(1) are obtained from Eq. (4) by substituting
Q = Q(I; ψ ), P = P(I; ψ ), they are periodic in ψ . The equa-
tions of motion for I, ψ read

dI

dτ
= − ∂G

∂ψ
,

dψ

dτ
= ∂G

∂I
,

G ≡ G(I; ψ ) = G(0) + αd G(1) = G(I; ψ + 2π ). (15)

These are Hamiltonian equations describing trajectories with
a constant RWA energy G(I; ψ ) = g. By construction

G(0)(I; ψ ) =
∫ I

0
dI ′ �(0)(I ′) + g(0)

min,

�(0)(I ) ≡ ω(0)(g(0)(I )). (16)

The frequency �(0)(I ) is the vibration frequency for the un-
perturbed system as a function of the action I .

To find the extra-force induced corrections to the Fourier
components am(g), we will seek corrections to I and ψ for a
given RWA energy g = G(0) + αd G(1). Because ultimately we
need corrections to the Fourier components of the variables
Q, P, the analysis is slightly different from the conventional
analysis of nonlinear dynamics [32].

From Eq. (15), to the first order in αd

I (τ ) = I (0) + αd I (1)(τ ),

ψ (τ ) = �(0)(Ī )τ + αdψ
(1)(τ ). (17)

Here and in what follows the overline means period averaging.
Both I (1) and ψ (1) are periodic functions of time, as they are
determined by G(1). In particular, ψ (1)(τ ) comes from inte-
grating over time the term ∂G(1)/∂I in Eq. (15) for dψ/dτ , but
this is not the only first-order correction to ψ (τ ), as explained
below.

B. Vibration frequency for a given intrawell energy

The vibration frequency inside a well of g(Q, P) is de-
termined by the secular term ∝ τ in ψ (τ ). There are two
extra-force induced contributions to this term. One comes
from the difference between Ī and I (0) in the term ∝ �(0)(Ī )
in Eq, (17). To the first order in αd , the value of Ī for a given g
has to be found from the equation G(0)(Ī ) + αd Ḡ(1) = g. From
this equation we find Ī = I (0) + αd Ī (1) with Ī (1) = −Ḡ(1)/�(0)

(both Ḡ(1) and �(0) here are calculated for I = I (0)).
The second secular contribution is contained in ψ (1)(τ )

and comes from the term ∂Ḡ(1)/∂I in Eq. (15) for dψ/dτ .
From Eqs. (A5) and (A6), Ḡ(1) = C̄�(0)(I (0) ), where C̄ is in-
dependent of I . Therefore, the secular term in ψ (1) cancels the
secular correction ∝ Ī (1) in ψ (τ ). Indeed, (d�(0)/dI )Ī (1) +
(dḠ(1)/dI ) = 0. As a result, to the first order in αd , the secular
term in ψ (τ ) is ω(0)(g)τ , and therefore the oscillating terms
are ∝ exp[inω(0)(g)τ ] with integer |n| > 0,

ψ (τ ) = ω(0)(g)τ + αd

∑
n �=0

ψ (1)
n exp[inω(0)(g)τ ], (18)

where ψ (1)
n ≡ ψ (1)

n (g) are the Fourier components of ψ (1). To
the same order of the perturbation theory, I (1)(τ ) is a sum of
terms ∝ exp[inω(0)(g)τ ] with n �= 0. They, as well as ψ (1)

n , are
immediately expressed in terms of the Fourier components of
G(1); see Appendix B.

We can now calculate the corrections to the Fourier com-
ponents am(g) to the first order in αd . We write

a(τ, g) ≡ a(I; ψ ) = [P(I; ψ ) − iQ(I; ψ )]/
√

2λ.

The functions Q(I; ψ ) and P(I; ψ ) are periodic functions of
ψ , while I ≡ I (τ ) and ψ ≡ ψ (τ ) are periodic functions of
time with frequency ω(0)(g). The Fourier components

am(g) = 1

2π

∫ 2π

0
dφ a(τ, g) exp(−imφ)

with φ = ω(0)(g)τ are determined by the Fourier components
of a(I; ψ ). To find am(g) we expand a(I; ψ ) to the first order in
I (1), ψ (1), and use the Fourier series for I (1), ψ (1), cf. Eq. (18).

033240-6



RESONANT-FORCE-INDUCED SYMMETRY BREAKING … PHYSICAL REVIEW RESEARCH 6, 033240 (2024)

This gives

am(g) ≈ a(0)
m (g) + αd a(1)

m (g),

a(1)
m =

∑
k

[
Jmka(0)

m−k + Lmk
(
da(0)

m−k/dg
)]

. (19)

Explicit expressions for the parameters Jmk ≡ Jmk (g) and
Lmk ≡ Lmk (g) follow from Eq. (B6) in Appendix B. They ap-
ply in the range g > max{gmin, g(0)

min}. It is straightforward also
to find higher-order corrections to I, ψ and then to a(I; ψ ). We
note that the vibration frequency will be shifted from ω(0)(g)
in the second order in αd .

C. Transition rates

Corrections to the emission and absorption transition rates
W (e)

nn′ and W (abs)
nn′ are found by inserting the expansion for

am(gn) into Eq. (10). This gives the rates in the form of
perturbation series

Wn+m n = W (0)
n+m n + αdW (1)

n+m n + . . . ,

(
W (e)

n+m n

)(1) = 4κ (n̄ + 1) Re
[
a(0)

−m
∗(gn)a(1)

−m(gn)
]
,

(
W (abs)

n+m n

)(1) = 4κ n̄ Re
[
a(0)

m
∗(gn)a(1)

m (gn)
]
. (20)

In turn, this allows finding corrections to the populations of
the intrawell states ρn and the rate Wsw of interwell switching.

An important feature of the rates W (1) is their specific
dependence on the phase of the extra force. We find that
W (1)

n+m n ∝ sin ϕd . This is in spite of a(1)
m (g) being a linear com-

bination of cos ϕd and sin ϕd . Formally, this is a consequence
of a(0)

m being purely imaginary, see Eq. (A4), whereas the term
∝ cos ϕd in a(1)

m is real, as shown in Appendix B, see also
Appendix C, and drops out from Re [(a(0)

m )∗ a(1)
m ]. We note that

the fact that cos ϕd does not affect the quantum dynamics is a
consequence of the approximation of slow relaxation, where
the dynamics is described by the balance equation for the state
populations (8).

V. LOGARITHMIC SUSCEPTIBILITY

The number of intrawell states of the oscillator is ∼1/λ �
1. Therefore, corrections to the rates of interstate transitions
accumulate to exponentially large changes of the populations
of highly excited states and to a change of the quantum ac-
tivation energy RA of the interwell switching. In particular,
RA acquires a linear in αd correction, so that the switching
rate Wsw ∝ exp(−RA/λ) changes exponentially strongly for
αd � λ even where the force is weak, αd � 1. The factor
multiplying Ad ∝ αd in the expression for RA ∝ λ| logWsw| is
the logarithmic susceptibility (the concept of the logarithmic
susceptibility applies also in a more general case [24,33],
in particular, where the frequency of the extra force differs
from ωp/2).

In the absence of an extra force the oscillator displays
qualitatively different dynamics depending on the thermal
occupation number n̄ [22]. For n̄ = 0 the rates of transitions
between the states are determined by emission of excita-
tions of the medium, Wn+m n = W (e)

n+m n, and the oscillator
has detailed balance. In contrast, interstate transitions due to

absorption of excitations of the medium, whose rates are ∝ n̄,
break the detailed balance. Concurrently, beyond a narrow
range of n̄ that goes to zero as λ → 0, the occupation of highly
excited intrawell states is exponentially increased due to the
absorption-induced transitions. We focus on the regime where
detailed balance is broken due to a finite n̄.

Direct perturbation theory allows us to find the driving-
induced corrections to the function R(g) that gives the
quasistationary intrawell probability distribution (11). Plug-
ging Eq. (20) into Eq. (12) gives the derivative R′(g) to the
first order in αd ,

R′(g) ≈ R′(0)(g) + αd R′(1)(g), R′(0)(g) = − log(ξ (0) )

ω(g)
,

R′(1)(gn) = −
∑

m W (1)
n+m n(1 − (ξ (0))m)

ω(g)
∑

m mW (0)
n+m n(ξ (0) )m

. (21)

Here ξ (0) ≡ ξ (0)(g) = exp[−ω(g)R′(0)(g)] is the solution of
Eq. (12) in the absence of an extra force. Equation (21) applies
if g is larger than g(0)

min and the corrected value gmin, Eq. (7), in
the considered well. If gmin < g(0)

min, then R′(g) in the range
g ∈ (gmin, g(0)

min ) can be found by noting that the motion of
the oscillator is harmonic vibrations about the minimum of
g(Q, P).

The correction to the function R(g) is found by integrating
R′(g) over g inside the well, with the boundary condition
R(gmin) = 0. There are two regions of integration: from g(0)

min

to g = 0 and from gmin to g(0)
min. In the first region R′(g) =

R′(0) + αd R′(1), to the first order in αd . The second region is a
narrow range with width αd |g(1)

min|, and here one can disregard
the term R′(1) and use for R′(g) its value R′(0)

min ≡ R′(0)(g(0)
min ) at

the bottom of the unperturbed well of g(Q, P),

R′(0)
min = 1

2
(1 + μ)−1/2 log

(
(μ + 2)(2n̄ + 1) + 2

√
1 + μ

(μ + 2)(2n̄ + 1) − 2
√

1 + μ

)

(22)

(cf. Ref. [22]). Then in the whole range g > max{gmin, g(0)
min},

R(g) ≈ R(0)(g) + αd R(1)(g), R(0)(g) =
∫ g

g(0)
min

R′(0)(g),

R(1)(g) =
∫ g

g(0)
min

R′(1)(g)dg + α−1
d

(
g(0)

min − gmin
)
R′(0)

min. (23)

Since the corrections W (1)
n+m n and the shift of the well minimum

±αd g(1)
min are proportional to sin ϕd , the change R(1)(g) is also

proportional to sin ϕd .
The correction to the activation energy RA is given by

αd R(1)
A = αd R(1)(g = 0), (24)

where we used that, to the first order in the linear force, the
saddle point of g(Q, P) remains at g = 0. As a result, the
switching rate has an additional exponential factor

Wsw = W (0)
sw × exp

( − αd R(1)
A /λ

)
. (25)

Here W (0)
sw is the switching rate in the absence of the extra

force. The exponent in the ratio Wsw/W (0)
sw is proportional to

the ratio αd/λ. For αd � λ a weak extra force leads to an
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FIG. 4. The scaled addition to the quantum activation energy
R(1)

A due to an extra force as given by Eq. (24). The plot refers to
switching from the stable state at Q > 0 and to the phase of the extra
force ϕd = π/2; n̄ is the thermal occupation number of the parametric
oscillator, and μ = ωp(ωp − 2ω0)/Fp.

exponentially strong change of the switching rate, with the
exponent linear in the force amplitude. The change of the
switching rate is thus described by the logarithmic suscepti-
bility, which is given by (αd/Ad )R(1)

A and is independent of
the amplitude Ad of the extra force.

One can see that W (1)
n+m n, and thus R′(1), have opposite signs

in the wells of g(Q, P) with Q > 0 and Q < 0. Therefore,
the quantum activation energy R(1)

A ∝ sin ϕd also has oppo-
site signs for these wells, i.e., for the parametrically excited
vibrations with the coordinate in the laboratory frame q0(t ) ∝
− sin(ωpt/2) and q0(t ) ∝ sin(ωpt/2), respectively. The dif-
ference of the switching rates from different wells is most
pronounced for the phase of the extra field ϕd = ±π/2. The
same dependence on ϕd holds in the classical regime [24].

For 0 < ϕd < π the well at Q > 0 is the deeper well of
g(Q, P), as seen from Eq. (7), and R(1)

A > 0 for this well. Re-
spectively, the rate of switching from this well Wsw ≡ W deeper

sw

is smaller than W (0)
sw by the factor exp(−αd R(1)

A /λ). The rate
of switching from the shallow well is larger than W (0)

sw by the
inverse of this factor. For concreteness we will consider R(1)

A
for the well at Q > 0.

The exponent R(1)
A for ϕd = π/2 depends on two parame-

ters: the thermal occupation number n̄ and the scaled detuning
μ of half of the parametric modulation frequency ωp from
the oscillator eigenfrequency ω0. The dependence of R(1)

A on
μ in the range −1 < μ < 1, where the only stable state of
the oscillator are period-two vibrational states, is shown in
Fig. 4. The function R(1)

A goes to zero near the bifurcation point
μ = −1 where the period-two states emerge, see Appendix E.
Overall, the dependence on μ is nonmonotonic, with a max-
imum near μ = −0.5. Interestingly, the dependence on n̄ is
close to 1/(2n̄ + 1). In the limit n̄ � 1 the result approaches
the result obtained for the classical regime [24].

The difference of the switching rates due to the extra
force leads to a difference in the stationary populations of
the period-two states of the oscillator. For a classical paramet-
rically modulated micromechanical resonator the population
difference and its periodic dependence on ϕd was observed in
Ref. [25].

A. High-temperature limit

It is seen from Eq. (10) that, for a large thermal occupa-
tion number n̄, the transition probabilities become symmetric,
|Wn+m n − Wn−m n| � Wn+m n. Then, from Eq. (12), the deriva-
tive of the activation energy becomes small, and we can
expand ξ ≈ 1 − ω(g)R′(g) + [ω(g)R′(g)]2/2. Inserting this
expansion into Eq. (12) gives

R′(gn) = 2ω−1(g)
∑

m

mWn+m n

/ ∑
m

m2Wn+m n. (26)

Using the relation between the transition rates and the Fourier
components of a(τ, g) [22], the above ratio for the well of
g(Q, P) at Q > 0 can be written as

R′(g) = 2

2n̄ + 1

M(g)

N (g)
, M(g) =

∫∫
A(g)

dQdP,

N (g) = 1

2

∫∫
A(g)

dQdP
(
∂2

Q + ∂2
P

)
g(Q, P), (27)

where the integrals run over the interior A(g) of the well
limited by the contour g(Q, P) = g. The relation (27) was
derived in Ref. [22] in the absence of an extra force at half
the modulation frequency, but it applies also in the presence
of such force.

The correction αd R′(1) to R′(g) is determined by the correc-
tions αd M (1)(g) and αd N (1)(g) to M(g) and N (g), respectively,

R′(1)(g) = 2

2n̄ + 1

[
M (1)(g)

N (0)(g)
− M (0)(g)

N (0)2(g)
N (1)(g)

]
. (28)

To find these corrections we note first that M = 2π I f , where
I f is the full action of the intrawell motion, see Sec. II A and
Appendix A 1. Then from Eq. (A6),

M (1) = π sin ϕd . (29)

Using, as in Appendix A 1 that, on the trajectory with a given
g = g(0) + αd g(1) and a given Q, the correction αd P(1)(Q|g) to
the momentum is equal to αd P(1) = −αd g(1)/∂Pg(0), one finds

N (1) = π (μ + 2) sin ϕd . (30)

Equations (29) and (30) give the correction R′(1) in the explicit
form.

An important aspect of the calculation of R′(1)(g) in the
limit n̄ � 1 is that it can be done using in Eq. (26) the
general expressions for the corrections to the transition rates
W (1)

nn′ . Comparing the fairly cumbersome expressions for these
corrections to the calculation in terms of M (1) and N (1) pro-
vides a way to independently check them. The calculation
in Appendix D shows that the expressions obtained by two
different approaches coincide.

The change of the activation energy for switching from the
well at Q > 0 is αd R(1)

A with

R(1)
A =

∫ 0

g(0)
min

R′(1)(g)dg + 2 sin ϕd
√

1 + μ

(2n̄ + 1)(2 + μ)
. (31)

The last term in the above expression is obtained from Eq. (27)
by taking into account that the minimum of the Q > 0-well

033240-8



RESONANT-FORCE-INDUCED SYMMETRY BREAKING … PHYSICAL REVIEW RESEARCH 6, 033240 (2024)

is shifted from g(0)
min by −√

1 + μ sin ϕd and R′(0)(g(0)
min ) ≈

2[(2 + μ)(2n̄ + 1)]−1.
For large n̄ we have 2/λ(2n̄ + 1) ≈ Fω2

p/6γ kT . The
Planck constant has dropped out from this expression. The
result for RA coincides with the expression derived within a
classical formulation [24], except that the analytic expression
for M (1) and N (1) were not obtained in Ref. [24].

B. Prebifurcation regime

Explicit expressions for R′ and for RA in the presence of
an extra force can be also obtained near the bifurcation point
where there emerge the period-two states of the parametrically
modulated oscillator. In the absence of dissipation and an
extra force, the bifurcation point is μ = −1: for μ + 1 > 0
the Hamiltonian function g(0)(Q, P) has two minima that cor-
respond to period-two states, whereas for μ < −1 it has one
minimum at Q = P = 0.

Dissipation shifts the position of the bifurcation point, and
in a close vicinity to the bifurcation point the oscillator motion
is overdamped. The dynamics is controlled by a soft mode, a
single dynamical variable that, in the quantum regime, satis-
fies a first-order Langevin equation with the noise intensity
∝ (2n̄ + 1) [34]. We show in Appendix E that this approach
applies also in the presence of an extra force and allows
describing the effect of such force on the activation energy
of interwell switching.

For weak damping there exists a regime where the oscilla-
tor is close, but not too close to the bifurcation point. In the
corresponding parameter range the motion is underdamped,
on the one hand, but, on the other hand, the switching rate and
the effect of an extra force on this rate display a characteristic
scaling with the distance to the bifurcation point. We call
this a prebifurcation regime, and the corresponding parameter
range can be called the prebifurcation range. Where there is
no extra force, this range is easy to find by noting that the
dimensionless frequency of vibrations about the minimum
of g(0)(Q, P) is ω(0)(g(0)

min ) = 2(μ + 1)1/2. The prebifurcation
range is where this frequency is small, ω(0)(g(0)

min ) � 1, yet it
is much larger than the dimensionless decay rate κ .

For ω(g) � 1, one can expand exp[−ω(g)R′(g)] in
Eq. (12), which results in Eq. (26) for R′(g) and ultimately
in the expressions (27)–(31) for R′(g) and for the corrections
to R′ and RA due to the extra force. We emphasize that these
expressions apply even where n̄ < 1, the only condition is that
the system is close to the bifurcation point. It is easy to show
that in the prebifurcation range N (0)(g) ≈ M (0)(g). Taking into
account that g(0)

min = −(μ + 1)2/4 we obtain from Eq. (27)
R(0)

A ≈ (μ + 1)2/2(2n̄ + 1) [22], whereas from Eqs. (29)–(31)
for the well with Q > 0,

R(1)
A ≈ 2 sin ϕd

2n̄ + 1

√
μ + 1, μ + 1 � 1. (32)

Interestingly, the correction to the switching rate (32) falls
off with the decreasing distance to the bifurcation point μ + 1
much slower than the leading term R(0)

A . This shows that the
range of applicability of the perturbation theory shrinks down
as the system approaches the bifurcation point. We note that
both R(0)

A and R(1)
A depend on n̄ in the same way, ∝ 1/(2n̄ + 1).

It is also interesting that the difference of the values of
R(1)

A for the wells with Q > 0 and Q < 0 comes only from the
difference of their depths. The regions where the RWA energy
g in the both wells is the same give equal contributions to R(1)

A .

VI. CONCLUSION

The results of this paper reveal important aspects of
quantum fluctuations in parametric oscillators. The model
is well-known and broadly used in quantum and classical
physics: a weakly nonlinear oscillator, which is parametrically
modulated at frequency ωp close to twice the eigenfrequency
and additionally driven by a weak force at the frequency
ωp/2. Without this force, the oscillator dynamics in the
frame rotating at frequency ωp/2 is described by a symmetric
double-well Hamiltonian, with the symmetry related to the
time shift by the modulation period 2π/ωp. The force with
twice this period lifts the symmetry. It thus suppresses the
tunneling between the symmetric states. One might expect
that this would localize the oscillator inside the wells.

The physical picture is qualitatively different in the pres-
ence of relaxation. The coupling of the oscillator to a thermal
bath leads to dissipation and also to quantum fluctuations.
In turn, these fluctuations lead to the interwell switching in
which the oscillator goes over the barrier that separates the
wells. This is reminiscent of thermal activation, except that
the activation can be caused by quantum fluctuations and can
occur for T = 0.

Our results show that the force at frequency ωp/2 can
exponentially increase the switching rate. This may be thought
of as a reduction of the barrier height. However, the actual
process is more delicate, as the system is far from thermal
equilibrium and the conventional picture of quasi-Boltzmann
distribution over the intrawell states is inadequate.

Our analysis refers to the case where the wells of the
Hamiltonian contain many states, but the decay rate of the
oscillator is small, so that the level spacing largely exceeds
the level widths. In this case, as we show, the major effect
of the extra force is the change of the rates of transitions
between the intrawell states. It can be thought of as the change
of the random walk over the intrawell states due to quantum
fluctuations. Ultimately, this change results in a change of the
probability to reach the top of the barrier that separates the
wells and then to switch to another well. Because there are
many states involved and the effect of the change accumulates,
the change of the rate of interwell switching is exponential in
the force amplitude.

In the exponent of the switching rate, the amplitude of
the extra force is effectively multiplied by the number of
the intrawell states. We find the relevant factor. The general
expression simplifies for comparatively large thermal occu-
pation number of the oscillator n̄, in which case the above
factor is ∝ (2n̄ + 1)−1. It also simplifies near a bifurcation
point, where the factor is shown to scale as the distance to
the bifurcation point to the power 1/2.

The strong effect of the extra force on the rate of switching
between the vibrational states of a quantum oscillator suggests
a way of an efficient control of such switching. In particular,
the possibility to increase the switching rate is important for
applications. Our results also provide the means for analyzing
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the dynamics of networks of coupled quantum parametric
oscillators. A major effect of the coupling is the force that
vibrations of the coupled oscillators exert on each other. If
the oscillators are not identical, then such a network presents
a quantum nonreciprocal system, since the forces between
different oscillators are unbalanced: The force exerted by an
oscillator with a larger amplitude on a neighboring oscillator
with a smaller amplitude is generally larger than the force
exerted back.

One of the most interesting types of quantum parametric
oscillators are vibrational modes in superconducting micro-
cavities with Josephson junctions, which make the cavities
nonlinear. Such modes have been intensely studied in the con-
text of cat qubits based on the vibrational states of parametric
oscillators, cf. the recent papers [14,35,36] and references
therein. Of importance for suppressing bit-flip errors in the
qubits is driving the oscillators to sufficiently large ampli-
tudes, the regime studied in the present paper. An extra force
at half the modulation frequency provides a means for con-
trolling the qubits. Thus these qubits are a natural platform
for studying the extremely strong and unexpected effects of
such force described in this paper.
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APPENDIX A: CLASSICAL MOTION

We calculate the matrix elements am(gn) = 〈n + m|â|n〉 in
the semiclassical approximation. To this end, we consider the
classical motion inside the wells. This is a periodic motion
with frequency ω(g) that depends on the RWA energy g. It is
described by the Hamiltonian equations

dQ

dτ
= ∂g

∂P
,

dP

dτ
= − ∂g

∂Q
. (A1)

In the absence of extra force the Hamiltonian of the system
is g(0), and we write it as a function of the coordinate q
and momentum p, i.e., as g(0)(q, p). The Hamiltonian equa-
tions for q, p have the form of Eq. (A1) with g replaced
with g(0),

dq/dτ = ∂pg(0), d p/dτ = −∂qg(0). (A2)

The solution of these equations for the well at q > 0 is ex-
pressed in terms of the Jacobi elliptic functions [22],

q(τ, g) = 23/2|g|1/2dn(τ ′|mJ )

κ+ + κ−cn(τ ′|mJ )
,

p(τ, g) = κ+κ−|g|1/4sn(τ ′|mJ )

κ+ + κ−cn(τ ′|mJ )
, (A3)

where

κ± = (1 + μ ± 2|g|1/2)1/2, τ ′ = 23/2|g|1/4τ,

mJ ≡ mJ (g, μ) = (μ + 1 − 2|g|1/2)(μ − 1 + 2|g|1/2)

8|g|1/2

(here we use κ± insetad of κ± used in Ref. [22] to avoid
confusion with the relaxation rate parameter κ).

The Jacobi elliptic functions are double-periodic. The real
period is τ (1)

p = 21/2|g|−1/4K (mJ ), whereas the second pe-
riod is complex, τ (2)

p = i21/2|g|−1/4K (1 − mJ ); here mJ ≡
mJ (g, μ) is the modulus and K (mJ ) is the complete elliptic
integral of the first kind. The frequency of the classical mo-
tion in the absence of an extra force is ω(0)(g) = 2π/τ (1)

p .
The double-periodicity of the Jacobi elliptic functions al-
lows finding the Fourier components a(0)

m (g) of a(0)(τ, g) =
[p(τ, g) − iq(τ, g)]/

√
2λ, i.e., the Fourier components am(g)

in the absence of the extra force,

a(0)
m (g) = −i(2λ)−1/2ω(0)(g)

exp(−imφ∗)

1 + exp(−imφ0)
,

φ0 = π
(
1 + τ (2)

p /τ (1)
p

)
, (A4)

with φ∗ given by the equation

cn(2Kφ∗/π |mJ ) = −
(

1 + μ + 2|g|1/2

1 + μ − 2|g|1/2

)1/2

.

Frequency of intrawell vibrations

An extra force at ωp/2 changes the shape of the wells of
g(Q, P) and the frequency of the intrawell vibrations. The
reciprocal frequency as function of the energy g is given by the
derivative of the action I f (g) = (2π )−1

∮
P(Q|g) dQ over g,

where P(Q|g) is the momentum on the Hamiltonian trajectory
(A1) with a given g. The action I f and the momentum P refer
to the full time-independent RWA Hamiltonian. Therefore, I f

is independent of time, in contrast to the action variable I (τ )
defined for the Hamiltonian g(0).

To the first order in αd , the action I f is deter-
mined by the linear in αd correction to the momentum,
P(Q|g) ≈ P(0)(Q|g) + αd P(1)(Q|g). Since the zeroth-order
term P(0)(Q|g) is given by the equation g(0)(Q, P(0) ) = g, from
Eq. (4) we find I f ≈ I (0)

f + αd I (1)
f with

I (1)
f (g) = − 1

2π

∮
dQ

g(1)(Q, P(0)(Q|g))

∂Pg(0)
,

= 1

2π

∫ 2π/ω(0) (g)

0
[P(0)(τ, g) cos ϕd

+ Q(0)(τ, g) sin ϕd ]dτ, (A5)

where Q(0)(τ, g) = q(τ, g) and P(0)(τ, g) = p(τ, g) are the dy-
namical variables in the absence of the extra force described
by Eq. (A3). Since p(τ, g) = −p(−τ, g), the first term in
the second line of Eq. (A5) is zero. The integral over τ of
q(τ, g) can be evaluated using the explicit expressions (A3).
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Alternatively, one can write

I (1)
f (g) = 1

π

∫
q dq/∂pg(0)(q, p),

change from integration over q to integration over X =√
4(g + q2) + (μ − 1)2, and use that, with this change, p2 +

q2 − (μ − 1) = X whereas q dq = X dX/4. Both methods
immediately show that, surprisingly, the integral is indepen-
dent of g and μ, so that the first-order correction to the
action is

I (1)
f = sgn(Qmin) sin(ϕd )/2. (A6)

where Qmin is the position of the minimum of the considered
well of g(Q, P).

From Eq. (A6), dI (1)
f /dg = 0, and therefore the frequency

of intrawell vibrations with a given g is not changed by the ex-
tra force, to the first order in the force amplitude. We note that
for g(Q, P) = gmin, the overall action is zero. The perturbation
theory breaks down for |ω(0)(g(0)

min )(g − g(0)
min )| ∼ αd .

APPENDIX B: CORRECTIONS
TO THE FOURIER COMPONENTS am

In the semiclassical approximation, finding corrections
to the transition rates Wnn′ is reduced to finding correc-
tions to the Fourier components of the functions a(τ, g) =
(2λ)−1/2[P(τ, g) − iQ(τ, g)]. We calculate these corrections
perturbatively using the action-angle variables (I, ψ ) of the
system in the absence of the extra force. This system has
the coordinate and momentum q and p and the Hamiltonian
function g(0)(q, p). The transformation to (I, ψ ) is given by
Eq. (14), which defines for this system q(I; ψ ), p(I; ψ ), and
g(0)(I; ψ ) ≡ g(0)(q(I; ψ ), p(I; ψ )) ≡ g(0)(I ) in terms of I and
ψ . In the presence of the extra force, we defined the coordi-
nate and momentum of the oscillator as functions of I, ψ as
Q(I; ψ ) ≡ q(I; ψ ), P(I; ψ ) ≡ p(I; ψ ). The function a(I; ψ )
is expressed in terms of the Fourier components a(0)

m as

a(I; ψ ) =
∑

m

a(0)
m (g(0)(I )) exp(imψ ). (B1)

We remind that we use the notation G(0)(I; ψ ) ≡ G(0)(I ) for
g(0)(Q, P) expressed in terms of I, ψ , cf. Eq. (16).

The extra force changes the time evolution of I (τ )
and ψ (τ ). We find this change from the Hamiltonian
equations of motion (15) for the Hamiltonian G(I; ψ ) =
G(0)(I ) + αd G(1)(I; ψ ). The perturbation G(1)(I; ψ ) is given
by g(1)(Q(I; ψ ), P(I; ψ )) in Eq. (4). Since by construction
Q(I, ψ ) and P(I, ψ ) are periodic in ψ , the Hamiltonian G(1)

is also periodic in ψ . To the leading order in αd ,

G(1)(I; ψ ) =
∑

m

G(1)
m (I (0) ) exp(imψ ),

G(1)
m (I ) = −

√
λ/2

[
a(0)

m (g(0)(I ))eiϕd

+ (
a(0)

−m(g(0)(I ))
)∗

e−iϕd
]
. (B2)

Here I (0) ≡ I (0)(g) is given by the equation

G(0)(I (0) ) = g;

this is the value of I for a given g for αd = 0.

To the first order in αd , the action I has smooth and oscil-
lating terms. To find the smooth term Ī for a given energy g,
following the method of averaging [32], we set g equal to the
full period-averaged Hamiltonian G(I, ψ ),

g = G(0)(Ī ) + αd Ḡ(1),

where the bar denotes period averaging, cf. Sec. V, so that
Ḡ(1) = G(1)

0 (I (0) ). From this equation we find

Ī (g) = I (0)(g) − αd

ω(0)(g)
G(1)

0 (I (0) ). (B3)

Here we used dG(0)/dI = ω(0)(g) for I = I (0)(g).
With the account taken of Eq. (B3), the solution of the

equations of motion (15) for I, ψ to the first order in αd for
G(I, ψ ) = g reads

I = Ī (g) − αd
1

ω(0)(g)

∑
k �=0

G(1)
k eikω(0) (g)τ , (B4)

and

ψ = ω(0)(g)τ + αd

∑
k �=0

1

ikω(0)(g)
eikω(0) (g)τ

×
[

dG(1)
k

dI
− dω(0)(g)

dg
G(1)

k

]
. (B5)

Here G(1)
k (I ) and its derivatives are evaluated for I = I (0).

In deriving the expression for ψ (τ ) we took into account
that the term dG(0)/dI in Eq. (15) for dψ/dτ has to be
calculated for the action given by Eq. (B4), to the first order
in αd . As explained in Sec. V, the resulting correction ∝ αd

compensates the term dG(1)
0 /dI in dψ/dτ , so that the secular

term in ψ (τ ) is ω(0)(g)τ . Therefore, I (τ ) and ψ (τ ) oscillate
at frequency ω(0)(g), to the first order in αd .

Inserting Eqs. (B4) and (B5) into a(I; ψ ), we find a(τ, g)
and then the m �= 0 -Fourier components am to the first order
in αd ,

am(g) = ω(0)(g)

2π

∫ 2π/ω(0)

0
dτe−imω(0)τ a(τ, g)

≈ a(0)
m (g) + αd a(1)

m (g),

with

a(1)
m (g) = −

∑
k

G(1)
k

da(0)
m−k

dg

+
∑
k �=0

a(0)
m−k

m − k

k

[
dG(1)

k

dg
− dω(0)

dg

1

ω(0)
G(1)

k

]
.

(B6)

This expression is used in the main text to find the rates of
transitions between the intrawell states of the Hamiltonian
g(Q, P).

When only the first-order corrections in αd are taken into
account in the transition rates, one should keep in G(1)

m only
the term ∝ sin ϕd , as discussed in the main text. Then, since
a(0)

m
∗ = −a(0)

m , we have

G(1)
m → −i

√
λ/2 sin ϕd

(
a(0)

m + a(0)
−m

)
.
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This simplifies the numerical calculation of the rates W (1)
n+m n in

Eq. (20).

APPENDIX C: QUANTUM PERTURBATION THEORY

If the force were weak, with the scaled amplitude αd � λ,
then corrections to the matrix elements 〈n + m|â|n〉 ≈ am(gn)
could be found by direct perturbation theory. To the first order
in αd ,

|n〉 ≈ |n〉(0) + αd |n〉(1),

|n〉(1) = −
∑
k �=0

(0)〈n + k|g(1)|n〉(0)

λkω(gn)
|n + k〉(0) , (C1)

where |n〉(0) is the unperturbed wave function of the nth
intrawell state. Since the intrawell wave functions are non-
degenerate, they can be made real functions of Q. This
is why, since â = (P̂ − iQ̂)/

√
2λ and P̂ = −iλ∂Q, the ma-

trix elements a(0)
m = 〈n + m|â|n〉(0) are purely imaginary, cf.

Eq. (A4).
The term ∝ cos ϕd in |n〉(1) comes from the term ∝ P̂ =

−iλ∂Q in ĝ(1) and therefore is purely imaginary. As a result
the corrections a(1)

m (gn) to the matrix elements of â that come
from this term are real and drop out when the real part of the
product a(0)

m
∗(gn)a(1)

m (gn) is calculated.
As the analysis of Appendix B shows, this symmetry prop-

erty holds even where the perturbation is quantum-strong,
αd � λ.

APPENDIX D: LOGARITHMIC SUSCEPTIBILITY
FOR CLOSE RATES OF TRANSITIONS
UP AND DOWN THE QUASIENERGY

In Sec. V we investigate the high temperature regime and
the prebifurcation regime. In these regimes the calculation of
the switching rates can be mapped to the classical case [24]
where the activation energy is given in terms of the integrals
M(g) and N (g); see Eq. (27). The logarithmic susceptibility is
then found in terms of the corrections to these integrals from
the extra force. This calculation does not rely on the explicit
expression for the matrix elements am. However, as we show
here, one can find the change of the activation energy directly
from the corrections to the matrix elements a(1)

m and recover
the same result. As indicated in the main text, this provides
an important test of the perturbation theory developed in the
main text and in Appendix B.

We start by seeking the solution of Eq. (12) with the same
expansion as in the main text,

R′(g) = R′(0)(g) + αd R′(1)(g).

With that R′(1)(g) is given by Eq. (21). In both, the high tem-
perature (n̄ � 1) and the prebifurcation regime (κ � (μ +
1)1/2 � 1) the transition rates in the absence of the extra force
become almost symmetric, |Wn+m,n − Wn−m,n| � Wn+m,n, that
is, the rates of transitions to the states with larger and lower
quasienergy are close to each other.

The variable ξ (0), given by the solution of Eq. (12)
in the absence of the extra force, approaches unity
as ω(0)(g)R′(0)(g) goes to zero. We use the expansion

ξ (0) ≈ 1 − ω(0)R′(0) + (ω(0)R′(0) )2/2, in Eqs. (12) and (21),
respectively, to find

R′(0)(gn) = 2

ω(0)

∑
m

mW (0)
n+m n

/ ∑
m

m2W (0)
n+m n, (D1)

R′(1)(gn) = 2

ω(0)

[ ∑
m mW (1)

n+m n∑
m m2W (0)

n+m n

−
∑

m m2W (1)
n+m n

∑
k kW (0)

n+k n(∑
m m2W (0)

n+m n

)2

]
. (D2)

The sums involving W (0)
n+m n have been found in Ref. [22] as

∑
m

mW (0)
n+m,n = 2κ

2λπ
M (0)(gn),

∑
m

m2W (0)
n+m,n = 2κ

2n̄ + 1

2λπω(0)(g)
N (0)(gn).

Here, M (0)(g) and N (0)(g) are expressed in terms of the inte-
grals over the region of q, p limited by the contour g(0)(q, p) =
g in a given well; see Eq. (27).

The correction R′(1) contains two contributions that are
proportional to the two sums, S1 and S2:∑

m

mW (1)
n+m m = 4κS1(gn),

∑
m

m2W (1)
n+m m = 4κ (2n̄ + 1)S2(gn),

S1(g) =
∑

m

m Re
[
a(0)

−m
∗(g)a(1)

−m(g)
]
,

S2(g) =
∑

m

m2 Re
[
a(0)

−m
∗(g)a(1)

−m(g)
]
. (D3)

We evaluate them by explicitly writing

Re
[
a(0)

m
∗a(1)

m

] = − i
√

λ/2 sin(ϕd )a(0)
m

×
[ ∑

k

da(0)
m−k

dg

(
a(0)

k + a(0)
−k

)

+
∑
k �=0

dω(0)(g)

dg

1

ω(0)

m − k

k
a(0)

m−k

(
a(0)

k + a(0)
−k

)

−
∑
k �=0

m − k

k
a(0)

m−k

(
da(0)

k

dg
+ da(0)

−k

dg

)]
.

(D4)

With that, S1 and S2 are expressed in terms of three double
sums.

1. Evaluating S1

In S1, the two sums with k �= 0 change signs if the in-
dices of summation are changed as m → m + k and k → −k.
Therefore,

S1 = i
√

λ/2 sin(ϕd )
∑
m,k

ma(0)
m

da(0)
m−k

dg

(
a(0)

k + a(0)
−k

)
. (D5)
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The matrix elements in this expression are given by the
Fourier integrals,

a(0)
� = 1

2π

∫ 2π

0
a(0)(τ (φ), g)e−i�φdφ, (D6)

where a(0)(τ, g) is defined in Appendix A and φ = ω(0)τ .
Substituting this expression into Eq. (D5) and using that∑

m eimφ = 2πδ(φ) we obtain

S1 = 1

4πλ
sin(ϕd )

∫ 2π

0

q(τ (φ), g)

ω(0)(g)
dφ, (D7)

where we used that q(τ, g) = (λ/2)1/2[a(τ, g) + a∗(τ, g)]; we
remind that q is the coordinate of the oscillator with the
Hamiltonian function g(0)(q, p). The integral (D7) can ei-
ther be evaluated directly as described in Appendix D 3 or
by performing the change of variables that is described in
Appendix A 1. With that,

S1 = 1

4πλ
M (1),

∑
m

mW (1)
n+m n = 2κ

2πλ
M (1), (D8)

where M (1) is given by Eq. (D12).

2. Evaluating S2

To evaluate S2 we again use Eq. (D4). We note that for an
arbitrary function gk that satisfies gk = g−k∑

m

∑
k �=0

m2 m − k

k
a(0)

m−ka(0)
m gk

= 1

2

∑
m

∑
k �=0

(m − k)ma(0)
m a(0)

m−kgk .

This allows us to rearrange the sums in S2 where the k = 0
term is not included by setting gk = a(0)

k + a(0)
−k or the deriva-

tive of this expression with respect to g, respectively. In this
form the k = 0 contribution is well defined and turns out to be
the same for the both sums, except for the sign. This allows us
to write

S2 = − i
√

λ/2 sin(ϕd )
∑
m,k

[
m2a(0)

m

da(0)
m−k

dg

(
a(0)

k + a(0)
−k

)

− m(m − k)

2
a(0)

m a(0)
m−k

(
da(0)

k

dg
+ da(0)

−k

g

)

+ m(m − k)

2ω(0)

dω(0)

dg
a(0)

m a(0)
m−k

(
a(0)

k + a(0)
−k

)]
.

We insert Eq. (D6) into these expressions and use partial
integration to absorb any prefactors that are proportional to k
or m. Using again

∑
m eimφ = 2πδ(φ), we find the sums and

obtain S2 in the form

S2 = − sin ϕd

8πλ

[ ∫ 2π

0

(
∂2 p

∂φ2

∂ p

∂g
+ ∂2q

∂φ2

∂q

∂g

)
2qdφ

+
∫ 2π

0

((
∂ p

∂φ

)2

+
(

∂q

∂φ

)2)
ω(0)(g)∂g

(
q(τ, g)

ω(0)(g)

)
dφ

]
.

This expression can be further simplified by repeatedly using
the relation

∂ p

∂φ
= − 1

ω(0)

∂g(0)(q, p)

∂q
,

∂q

∂φ
= 1

ω(0)

∂g(0)(q, p)

∂ p
, (D9)

and calculating the second derivatives using explicit forms of
the right hand side of Eq. (D9). This reduces the calculation
to the integrals∫ 2π

0
q(q2 + p2)dφ = ω(0)π (1 + μ),

∫ 2π

0
qp2dφ = ω(0) π

8
[(1 + μ)2 + 4g],

which are calculated directly using either the expressions
Eq. (A3) or the change of variables described in Ap-
pendix A 1. This gives

S2 = 1

4πλω(0)
N (1) = sin(ϕd )

2 + μ

4λω(0)
, (D10)

∑
m

m2W (1)
n+m n = 2κ (2n̄ + 1)

2πλω(0)
N (1)(gn). (D11)

With that Eq. (D2) is equivalent to Eq. (28).

3. Integral M (1)

We can evaluate the appearing integrals explicitly using the
solutions of the classical equations. As a simple example we
consider∫ 2π

0

q(τ (φ), g)

ω(0)(g)
dφ

= 2
∫ qmax

qmin

dq
q

|∂pg(0)| = 2
∫ τ (1)

p /2

0
q(τ, g)dτ

= 2(−g)1/4
∫ 2K

0

dn(t )

κ+ + κ−cn(t )
dt

= 2(−g)1/4
∫ −1

1
(−1)

1

κ+ + κ−z

1√
1 − z2

dz

= 2 arctan

(
2(−g)1/4z

−κ+ − κ−z

)∣∣∣∣
−1

1

= π,

where t = 23/2(−g)1/4τ and z = cn(t ). With that

M (1) = π sin ϕd . (D12)

In a similar way also the integrals appearing in Appendix D 2
can be evaluated.

APPENDIX E: NEAR VICINITY
OF THE BIFURCATION POINT

At μ = −1 the two wells of g(0)(Q, P) merge into a sin-
gle well with a minimum at Q = P = 0. Classically, this is
a bifurcation point. The vibration frequency at the bottom
of the wells of g(0) scales as ω(0)(g(0)

min ) = 2
√

1 + μ for μ

approaching −1 from above. It goes to zero as the system
approaches the bifurcation point. Eventually the condition of
the smallness of the decay rate κ � ω(0)(g), which is used in
the main body of the paper, breaks down, and off-diagonal
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elements of the density matrix may no longer be disregarded.
In this regime we employ a method based on the evolution
equation for the Wigner function.

For a parametrically modulated oscillator in the absence of
an extra force, the escape rate close to the bifurcation point
was analyzed in Ref. [34]. The effect on the escape rate of
the effective extra force that models the coupling of paramet-
rically modulated oscillators to each other was considered in
Ref. [7]. Here, we consider the effect of a directly applied
extra force at half the modulation frequency and use a method
different from that used in Ref. [7].

Near the bifurcation point the time evolution of the Wigner
distribution ρW ≡ ρW (Q, P) is described by the equation

∂ρW

∂τ
≈ −∇(KρW ) + D∇2ρW , (E1)

ρW (Q, P) =
∫

dζeiζP/λρ(Q + ζ/2, Q − ζ/2). (E2)

Here we use vector notations, the components of the vec-
tors are along the Q and P axes, ∇ ≡ (∂Q, ∂P ). The function
ρ(Q1, Q2) = 〈Q1|ρ̂|Q2〉 is the matrix element of the density
matrix on the wave functions in the coordinate representation,
|Q1〉 = δ(Q − Q1). Equation (E1) is obtained for a parametric
oscillator in the RWA approximation using the RWA Hamil-
tonian (4) and the same model of relaxation as in Eq. (8). In
this model the diffusion constant is

D = λκ (n̄ + 1/2)

(cf. Ref. [18]). The drift coefficients are

KQ = ∂g(Q, P)

∂P
− κQ, KP = −∂g(Q, P)

∂Q
− κP. (E3)

In deriving Eq. (E1) we took into account that, near a bifur-
cation point, one of the dynamical variables of the system
is “soft.” The distribution over this variable is comparatively
broad. This allowed us to drop the term ∝ λ2 that contains
higher-order derivatives of ρW over Q, P, cf. Ref. [34].

The term ∝ D describes the effect of quantum and clas-
sical fluctuations. The bifurcation point is found from the
condition that, in the absence of fluctuations, the number of
stationary states changes. The positions of the stationary states
on the (Q, P) plane are given by the roots of the equations
KQ = KP = 0, and it is the number of the real roots of these
equations that changes. It is easy to see that, for αd = 0, the
value of μ at the bifurcation point is

μB = −
√

1 − κ2.

Here we take into account dissipation, which is not small in
the near vicinity of the bifurcation point, where

√
1 + μ � κ ,

and leads to a shift of the bifurcation point from the κ = 0-
value. For αd = 0 the bifurcation point is located at Q = P =
0, this is the so-called pitchfork bifurcation.

For αd = 0, to analyze the dynamics near the bifurcation
point, where |μ − μB| � κ , we rotate the coordinate system
in the (Q, P) plane from (Q, P) to (Q′, P′). The rotation angle
δ is given by the relations sin 2δ = κ and cos 2δ = μB [24].
In the rotated frame, the drift coefficient for the Q′ variable,

KQ′ , does not have a linear term ∝ Q′. This shows that Q′ is
the “soft” mode that slowly varies in time. The variable P′
adiabatically follows this slow variable. One can then follow
the general approach [37] in which one seeks the solution
of Eq. (E1) on the time scale τ � 1/κ in the form of a
Gaussian distribution over the “fast” variable P′ for a given
Q′. Integration over P′ reduces Eq. (E1) to an equation for
the distribution ρ̃(Q′) that depends on the single dynamical
variable Q′.

It is easy to see that the method directly extends to the case
where the parametric oscillator is driven by an extra force at
frequency ωp/2, provided αd � κ . The equation for ρ̃ in this
case reads

∂ρ̃

∂τ
= ∂Q′ [ρ̃∂Q′U (Q′) + D∂Q′ ρ̃],

U (Q′) = |μB|
4κ3

Q′4 − |μB|
2κ

(μ − μB)Q′2

+ Q′αd cos(δ + ϕd ). (E4)

For αd = 0 the potential U (Q′) depends on the single
parameter μ − μB, which is the distance to the bifurcation
point along the μ-axis. For μ − μB > 0 it is a symmetric
double-well potential. The rate of interwell switching is [34]

W (0)
sw = |μB|ε√

2κπ
exp

( − R(0)
A /λ

)
, R(0)

A = |μB|ε2

2(2n̄ + 1)
. (E5)

Note that the switching is due to both classical and quantum
fluctuations, the switching rate is nonzero for n̄ = 0. The
activation energy R(0)

A is just the height of the barrier between
the wells of the potential U (Q′).

The term ∝ αd tilts the potential. Strictly speaking, for
αd > 0 instead of a pitchfork bifurcation the oscillator dis-
plays a saddle-node bifurcation. We consider the range αd �
|μB|(μ − μB)3/2. Here the oscillator is still far away from the
saddle-node bifurcation and has two stable states of paramet-
rically excited vibrations, which correspond to the minima of
U (Q′). The activation energy of switching from a given state
is again given by the height of the barrier that separates this
state from the other state. To the first order in αd , the change
of this height αd R(1)

A has opposite signs for the two wells of
U (Q′). For the well at Q > 0,

R(1)
A = −2

√
μ − μB

2n̄ + 1
cos(δ + ϕd ). (E6)

For vanishing κ the angle δ → π/2 and Eq. (E6) coincides
with Eq. (32) found in Sec. V B.

For larger values of αd the change of the activation energy
is no longer linear in αd . As long as the barrier height is
large compared to D, one can still use the Kramers picture
of escape from a potential well. As αd further increases,
this picture becomes inapplicable and effectively one can no
longer say that the oscillator has two stable vibrational states:
the relaxation time of approaching one of these state becomes
indistinguishable from the time of escaping from this state.
Importantly, and in distinction from the Kramers analysis, the
escape can be due to purely quantum fluctuations.
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