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Thermodynamically optimal information gain in finite-time measurement
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The tradeoff relation between speed and cost is a central issue in designing fast and efficient information
processing devices. We derive an achievable bound on thermodynamic cost for obtaining information through
finite-time (non-quasi-static) measurements. Our proof is based on optimal transport theory, which enables us to
identify the explicit protocol to achieve the obtained bound. Moreover, we demonstrate that the optimal protocol
can be approximately implemented by an experimentally feasible setup with quantum dots. Our results would
lead to design principles of high-speed and low-energy-cost information processing.
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I. INTRODUCTION

Thermodynamics of information has revealed the funda-
mental bounds on energy cost for information processing such
as measurement, feedback, and information erasure [1–9],
which has been applied to a variety of systems, including
biological systems [10–12] and CMOS devices [13,14]. The
fundamental thermodynamic bounds can be achieved in the
quasistatic limit, which requires an infinitely long operation
time. Then, a crucial problem lies in determining the fun-
damental bound on the thermodynamic cost of finite-time
information processing [15–20], which is significant for de-
signing fast and low-power consumption computers.

The thermodynamic cost of finite-time processes has been
evaluated by the inequalities called the speed limits [21–28].
Among them, optimal transport theory [29] provides the
achievable bounds [21,30–43], by determining the optimal
transport plan which minimizes the thermodynamic cost (i.e.,
entropy production) for transporting one distribution to an-
other. In a broader context, optimal transport theory has a wide
range of applications including image processing [44], ma-
chine learning [45], and biology [46]. The key concept in this
theory is the Wasserstein distance quantifying the distance be-
tween probability distributions, which gives the lower bound
on the thermodynamic cost when applied to thermodynamics.

As shown later (see also Ref. [18]), the fundamental bound
on the thermodynamic cost � for obtaining mutual informa-
tion I in finite operation time τ is given by the form

� � I + W f

(W
Dτ

)
, (1)

where W represents the Wasserstein distance, D is the fixed
timescale of the time evolution, and f (x) is an increasing func-
tion which is determined by the particular choice of timescale
D. For example, f (x) = x when we choose time-averaged
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mobility as D, while f (x) = 2 tanh−1(x) when we choose
time-averaged activity as D (see Appendix A for rigorous
definitions of mobility and activity). The second term on
the right-hand side, which represents the finite-time effect,
vanishes in the limit of τ → ∞. In this limit, inequality (1)
reduces to the fundamental bounds obtained in Refs. [3,5].
Here, it is crucial that the information I and the distance W
are not independent, and thus the minimization problem for
W under given I is yet to be solved. In other words, the
fundamental thermodynamic cost is not determined solely by
inequality (1).

In this paper, we solve this problem; we derive the achiev-
able lower bound on W under given I and identify the explicit
protocol to achieve the bound. This provides the achievable
speed limit for finite-time measurement processes. To put
it another way, we derive the achievable upper bound of I
under given W , which is the mathematically most nontrivial
result of this paper. This determines the truly fundamen-
tal cost required for finite-time measurement. Moreover, we
demonstrate that the optimal protocol can be approximately
implemented by tuning experimentally accessible parameters
of two interacting quantum dots. These results push forward
finite-time information thermodynamics and would serve as
a design principle that makes high-speed compatible with
high-energy efficiency in information processing.

The organization of this paper is as follows. In Sec. II,
we describe our setup along with the review of stochastic
thermodynamics and speed limits. In Sec. III, we present the
main results of this paper. We describe the main mathemati-
cal theorem, and then derive its physical consequences: two
fundamental bounds on the energy cost of measurement. In
Sec. IV, we introduce a system of coupled quantum dots as
an implementation for our results, and give the approximately
optimal measurement protocol. In Sec. V, we summarize the
results of this paper and discuss future prospects.

II. SETUP

A. Stochastic thermodynamics

We consider classical discrete-state systems denoted as
X and Y . The entire system is attached to a heat bath at
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inverse temperature β, and its time evolution is described by a
Markov jump process. Y plays the role of memory and stores
information about system X through a measurement from time
t = 0 to τ .

Let x ∈ X := {1, 2, · · · , nX } and y ∈ Y := {1, 2, · · · , nY }
represent the possible states that X and Y can take, respec-
tively. The joint probability of finding the entire system in
state (x, y) at time t is denoted as pXY

t (x, y), and the marginal
probability of state x for X (respectively, y for Y ) is denoted as
pX

t (x) = ∑
y pXY

t (x, y) [respectively, pY
t (y) = ∑

x pXY
t (x, y)].

Memory Y is initialized to take the value y = 1 with proba-
bility 1 at t = 0. We also assume that the transition of X does
not occur during the measurement, namely, for any different x′
and x, the transition from state (x′, y′) to (x, y) does not occur.
This assumption of ignoring the back action of measurement
is a standard assumption for classical measurements, because
there is no fundamental disturbance on the measured system
in the classical case. For example, if the timescale of the
measurement process is sufficiently shorter than that of X , or
if there are potential walls that inhibit transitions between the
states of X (as is the case for the Szilard engine), then the
measurement back action is irrelevant. In this case, pX

t (x) is
fixed to a constant probability pX (x).

The time evolution of the entire system can be
expressed as [6]

d

dt
pXY

t (x, y) =
∑

y′:(y′,y)∈Nx

[
Rt (y, y′|x)pXY

t (x, y′)

− Rt (y
′, y|x)pXY

t (x, y)
]
.

(2)

Here, Rt (y, y′|x) represents the transition rate from state (x, y′)
to (x, y), and Nx is the set of pairs of distinct states (y′, y)
between which the transition under x is allowed. We assume
that the possibility of transitions is undirected, so that if
(y′, y) ∈ Nx, then (y, y′) ∈ Nx. Let QY

t (y, y′|x) represent the
stochastic heat absorbed by Y during the transition from (x, y′)
to (x, y) at time t , where we assume the local detailed balance
condition

ln
Rt (y, y′|x)

Rt (y′, y|x)
= −βQY

t (y, y′|x). (3)

We next introduce mutual information which characterizes
the amount of information that Y obtains from X through the
measurement. In general, the Shannon entropy of a probability
distribution p = {p(i)}i is given by S(p) := −∑i p(i) ln p(i),
which defines the mutual information between X and Y at time
τ as

IX :Y
τ := S

(
pX

τ

)+ S
(
pY

τ

)− S
(
pXY

τ

)
. (4)

If X and Y are uncorrelated, then IX :Y
τ = 0. Otherwise,

IX :Y
τ > 0.

We introduce the entropy production, which quantifies the
dissipation due to irreversibility of the process, as

�XY
τ := S

(
pXY

τ

)− S
(
pXY

0

)− βQY
τ . (5)

Here, QY
τ := ∫ τ

0

∑
x,y,y′ QY

t (y, y′|x)Rt (y, y′|x)pXY
t (x, y′)dt de-

notes the total heat absorbed by Y until time τ . We note
that QY

τ equals the total heat absorbed by the entire system,
because the transitions of X do not occur during the mea-
surement. Using the entropy production, the second law of

thermodynamics is given by �XY
τ � 0, which is equivalent

to the conventional second law of stochastic thermodynamics
[47]. We can also introduce the thermodynamic cost for the
memory Y as �Y

τ := S(pY
τ ) − S(pY

0 ) − βQY
τ . Equivalently, �Y

τ

can be expressed as �Y
τ = β(W Y − �FY ), where W Y is the

work done on Y , and �FY is the change in nonequilibrium
free energy of Y [48], implying that the second law gives the
fundamental bounds on the energy cost. Using �Y

τ and IX :Y
τ ,

the entropy production can be decomposed as [3]

�XY
τ = �Y

τ − IX :Y
τ . (6)

This decomposition and the second law lead to �Y
τ � IX :Y

τ ,
which is equivalent to inequality (1) in the limit of τ → ∞.

B. Wasserstein distance and speed limit

We introduce the Wasserstein distance between probability
distributions pXY

0 and pXY
τ (hereafter in this paragraph, we

abbreviate the superscript XY ), defined as [43]

W (p0, pτ ) := min
π∈�(p0,pτ )

∑
x,y,y′

d (y, y′|x)π [(x, y), (x, y′)]. (7)

Here, π [(x, y), (x, y′)] (� 0) can be interpreted as the amount
of probability sent from state (x, y′) to (x, y) in a transport
plan π , and �(p0, pτ ) is the set of all transport plans from
p0 to pτ satisfying

∑
y∈Y π [(x, y), (x, y′)] = p0(x, y′) and∑

y′∈Y π [(x, y), (x, y′)] = pτ (x, y). The coefficient d (y, y′|x)
represents the minimum number of transitions required to go
from state (x, y′) to (x, y), defining the transport cost of the
distribution.

When pXY
0 is transformed into pXY

τ obeying Eq. (2), the
entropy production is bounded as [43]

�XY
τ � W

(
pXY

0 , pXY
τ

)
f

(
W
(
pXY

0 , pXY
τ

)
Dτ

)
, (8)

where f (x) = x if D is time-averaged mobility 〈m〉τ , and
f (x) = 2 tanh−1(x) if D is time-averaged activity 〈a〉τ . There
exist protocols {Rt (y, y′|x)} that achieve the equalities for each
choice of D, but the construction methods are different. When
D = 〈m〉τ , the optimal protocol {Rt (y, y′|x)} is determined
by the condition that probabilities are transported under a
uniform and constant thermodynamic force along the optimal
transport plan from pXY

0 to pXY
τ . For D = 〈a〉τ , the natural

optimal protocol is to transport probabilities under uniform
and constant activity and probability current along the optimal
transport plan.

By substituting the decomposition of Eq. (6) into inequality
(8), we obtain inequality (1) by identifying � = �Y

τ , I = IX :Y
τ ,

and W = W (pXY
0 , pXY

τ ). We note that pXY
τ is fixed and thus

mutual information IX :Y
τ is fixed in the present setup. There-

fore, the optimization of �Y
τ is equivalent to the optimization

of �XY
τ , which is achieved by a certain protocol {Rt (y′, y|x)}.

We can then achieve the equality of inequality (1) by the
same protocol. In this sense, the right-hand side of inequality
(1), which is expressed as the function of mutual information
and Wasserstein distance, provides the minimum energy cost
required to transform a fixed initial distribution into the fixed
final distribution through measurement processes. We note
that the Wasserstein distance in this work is the Wasserstein-1
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FIG. 1. (a) The histogram of pX . (b) The histogram of pX
↓ obtained by rearranging pX in the descending order. (c) The construction of qX

W .
The gray bars represent the histogram of pX

↓ , and the green bars represent that of qX
W . (d) The construction of p̃X

W . The green dots show the
histogram of qX

W , and the green bars are that of p̃X
W , obtained by multiplying each component of qX

W by 1/(1 − W ). (e) Illustration of the
optimal distribution pXY

τ and pX . The horizontal axes represent the states, and the vertical axis represents the probability. The thick dashed lines
indicate equal probabilities.

distance, while a bound similar to inequality (1) has been
obtained in Ref. [18] by using Wasserstein-2 distance.

III. FUNDAMENTAL BOUND ON THE ENERGY COST

A. Main theorem

As mentioned before, the fundamental bounds on the en-
ergy cost for obtaining a certain amount of information cannot
be determined solely from inequality (1). Therefore, we first
solve the dual problem that reveals the upper bound on IX :Y

τ

under fixed W (pXY
0 , pXY

τ ). This is the most nontrivial part of
our study and can be summarized in the following theorem.

Theorem. For any fixed W = W (pXY
0 , pXY

τ ), there exists
a probability distribution p̃X

W (explicitly defined below) such
that

IX :Y
τ � S(pX ) − (1 − W )S

(
p̃X
W
) =: IpX (W ). (9)

We can graphically define p̃X
W starting from the histogram

of probability distribution pX which is shown in Fig. 1(a)
(see Appendix A for the fully rigorous definition of p̃X

W and
the proof of the theorem). First, let pX

↓ be the probability
distribution obtained by rearranging pX in the descending
order pX

↓ (1) � pX
↓ (2) � · · · � pX

↓ (nX ) [Fig. 1(b)]. Next, con-
struct the distribution qX

W by extracting probabilities from the
distribution pX

↓ in descending order until their total sums up
to 1 − W [Fig. 1(c)]. Here, we define N (W ) as the minimal
x such that qX

W (x) < pX
↓ (x). Finally, we obtain the probabil-

ity distribution p̃X
W by multiplying each component of qX

W
by 1/(1 − W ) [Fig. 1(d)]. We define p̃X

W as p̃X
W (1) = 1 for

W � 1.
From this definition, it can be seen that as W increases, the

nonzero components of p̃X
W concentrate on smaller values of

x. Since the Shannon entropy takes smaller value for skewed
probability distribution, it can be intuitively understood that
S( p̃X

W ) is a decreasing function of W (for a rigorous proof,
see Appendix A). Therefore, the right-hand side IpX (W ) of

inequality (9) is an increasing function of W , indicating that a
larger Wasserstein distance W allows Y to obtain more mutual
information from X .

B. Conditions for achieving our bound

We next discuss the optimal protocol that achieves the
equality in inequality (9). First, The conditions that memory Y
should satisfy for achieving the equality is listed as follows:

(C1) nY − 1 � nX − N (W ) + 1,
(C2) For any x and y ( 	= 1), the direct transition from

(x, 1) to (x, y) is allowed (i.e., (1, y) ∈ Nx).
We can then achieve the equality by setting the final dis-

tribution pXY
τ to an optimal distribution. We here only focus

on describing the construction protocol itself; the proof for its
optimality is given in Appendix A.

As preparation, we define some notations. First, denote
the permutation that rearranges the states x in descending
order according to the probability distribution pX as σpX .
σpX (x) = n implies that x has the nth largest value of pX (x).
Next, define XW as the set of states x that come after the
N (W )th position when sorted in descending order of pX , i.e.,
XW := {x|N (W ) � σpX (x) � nX }. Finally, for each x ∈ XW ,
select a corresponding yx from the set {y|y 	= 1}, ensuring that
each yx has one-to-one correspondence with each x.

Then, the optimal final distribution is given by

pXY
τ (x, y)=

⎧⎪⎨
⎪⎩

qX
W
(
σpX (x)

)
, y = 1,

pX
(
σpX (x)

)− qX
W
(
σpX (x)

)
, y = yx, x ∈ XW ,

0, otherwise.

(10)

This distribution is illustrated in Fig. 1(e). From Eq. (10) and
Fig. 1(e), it is understood that the optimal final distribution is
constructed by extracting probabilities from the largest values
of pX (x) in sequence until the total reaches W , assigning these
probabilities to different yx for each x, and arranging the rest
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along y = 1. We here note that condition (C1) ensures the one-
to-one correspondence between x ∈ XW and y ∈ {y|y 	= 1}.
Condition (C2) ensures d (y, 1|x) = 1, which means that there
is no increase in the Wasserstein distance due to the passage of
additional states during the transport from pXY

0 to the optimal
distribution pXY

τ .

C. Speed limit for fixed mobility

From the main theorem, we can obtain the fundamental
bound on the thermodynamic cost �Y

τ for obtaining mutual in-
formation IX :Y

τ in the measurement process. We first note that
IpX (W ) is strictly monotonically increasing for 0 � W � 1 −
pX

↓ (1) and takes a constant value S(pX ) for W � 1 − pX
↓ (1)

(see Appendix A for the proof). Thus, we can define the
inverse function WpX : [0, S(pX )] → [0, 1 − pX

↓ (1)] for the
fixed pX as IpX (WpX (I )) = I . From this and inequality (1) [or
equivalently, inequality (8)], we obtain the speed limit of the
measurement process for fixed mobility

�Y
τ � IX :Y

τ + WpX

(
IX :Y
τ

)2

τ 〈m〉τ , (11)

which gives a lower bound on the thermodynamic cost for
obtaining a given amount of information IX :Y

τ . Inequality (11)
specifies the optimal value of W depending on IX :Y

τ .
The equality in inequality (11) can be achieved with finite

operation time τ by simultaneously achieving the equalities in
inequalities (9) and (8). This is possible as follows. First, the
equality in inequality (9) can be achieved by preparing a mem-
ory Y that satisfies conditions (C1) and (C2) and setting pXY

τ

according to Eq. (10). We can then construct {Rt (y, y′|x)} that
achieves the equality in inequality (8) for the fixed pXY

0 and
pXY

τ by transporting probabilities under uniform and constant
thermodynamic force along the optimal transport plan.

D. Speed limit for fixed activity

When we choose time-averaged activity 〈a〉τ as D, the
second term of the right-hand side of inequality (1) becomes
2W tanh−1[W/(τ 〈a〉τ )], which is an increasing function of W
for any fixed 〈a〉τ and τ . Therefore, we can also apply the main
theorem to this case and obtain another speed limit

�Y
τ � IX :Y

τ + 2WpX

(
IX :Y
τ

)
tanh−1 WpX

(
IX :Y
τ

)
τ 〈a〉τ , (12)

which gives the lower bound on the thermodynamic cost for
obtaining information IX :Y

τ for fixed activity 〈a〉τ .
The equality in inequality (12) can be achieved with finite

operation time τ by simultaneously achieving the equalities
in inequalities (9) and (8), i.e., by preparing a memory Y that
satisfies conditions (C1) and (C2), setting pXY

τ according to
Eq. (10), and transporting probabilities under uniform and
constant activity and probability current along the optimal
transport plan from pXY

0 to pXY
τ .

IV. EXAMPLE: DOUBLE QUANTUM DOTS

A. Setup

We next give an experimentally feasible setup that approx-
imately achieves the minimum energy cost determined by
inequality (11). We consider two coupled single-level quan-
tum dots attached to reservoirs [49–52] [Fig. 2(a)]. One is

FIG. 2. (a) A schematic illustration of quantum dots coupled by
the Coulomb energy. During the measurement, The measured dot X
is not attached to a reservoir, while the measuring dot Y is in contact
with a reservoir. (b) Energy diagram of the total system. In addition
to energy levels of each dot, the interaction term U appears when
both dots are occupied.

the memory Y with energy εY
t at time t , and the other is

the measured system X with energy εX
t at time t . X (re-

spectively, Y ) takes states x = 1, 2 (respectively, y = 1, 2)
corresponding to the unoccupied and occupied states, respec-
tively. Coulomb energy U takes place when both dots are
occupied [see Fig. 2(b)].

To prevent transitions of X , let X not be in contact with
a reservoir during the measurement, while Y attaches to the
reservoir at inverse temperature β and chemical potential
μY with coupling strength 
Y , whose Fermi distribution is
denoted as f Y (ε) := [1 + eβ(ε−μY )]−1. It is possible to effec-
tively prevent transitions of system X caused by the reservoir
without physically detaching X from the reservoir, but by ad-
justing the coupling strength 
X that depends on the tunneling
rate between the reservoir and the quantum dot. Since the
tunneling rate can be tuned by adjusting the gate voltage of the
reservoir, it is feasible to make 
X significantly smaller than

Y . The dynamics of the total system obeys Eq. (2), where the
transition rates are given by

Rt (2, 1|x) = 
Y f Y
(
εY

t + δx,2U
)
,

Rt (1, 2|x) = 
Y
[
1 − f Y

(
εY

t + δx,2U
)]

. (13)

Equality (13) satisfies the local detailed balance condition (3).
We next consider the conditions (C1) and (C2). First,

in inequality (11), W ∈ [0, 1 − pX
↓ (1)] holds, implying

N (W ) � 2. Therefore, condition (C1) is satisfied if nY � nX ,
which is true in this example because nX = nY = 2. The con-
dition (C2) is also satisfied because the transitions between
y = 1 and 2 are allowed regardless of x.

B. Approximately optimal measurement protocol
for fixed mobility

First, we consider the case where the mobility 〈m〉τ is fixed.
We fix pX (1) = p (� 1/2) and pX (2) = 1 − p, and measure
the states of X in finite time τ by the memory Y which
initially takes y = 1. Denoting the probability distribution pXY

t
by a matrix [pXY

t (x, y)]x,y, for W ∈ [0, 1 − pX
↓ (1)] = [0, p],

the initial and final optimal distributions are given by

pXY
0 =

[
p 1 − p
0 0

]
, pXY

τ =
[

p − W 1 − p
W 0

]
. (14)

These probability distributions achieve the equality in in-
equality (9). Then, the minimum energy cost determined
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FIG. 3. Numerical results on the example with two quantum dots. The parameters are set to βU = 20, F = 4, μY = 0, and 
Y = 2, � =
0.001. (a) The optimal protocol εY

t scaled by β, which is obtained by numerically solving the condition for maintaining constant thermodynamic
force F . (b) Comparison of the left- and right-hand side of inequality (11). We see that the protocol shown in panel (a) approximately (but
almost exactly) achieves the equality in inequality (11) for any time t .

by inequality (11) is achieved by the optimal protocol
{Rt (y, y′|x)} that achieves the equality of inequality (8) for pXY

0
and pXY

τ .
In this example, we can approximately implement the op-

timal protocol as follows. First, let βU be sufficiently large to
prevent the transition from state (2,1) to (2,2) [corresponding
to the second columns of Eq. (14)]. Then, wait for a positive
probability p� to be stored in the state (1,2). This process
requires nonoptimal energy cost, which can be made arbitrar-
ily small by setting � to arbitrarily small value. Finally, send
the required probability from state (1,1) to (1,2) with constant
thermodynamic force F by manipulating the energy εY

t [corre-
sponding to the first columns of Eq. (14)]. See Appendix C for
the detailed protocol. We here note that we cannot construct
such a protocol when W = p, but we can set W arbitrarily
close to p. The approximately optimal protocol converges to
the exactly optimal one in the limits βU → ∞ and � → 0.

The numerical demonstration of the control protocol of εY
t

for p = 0.25 and W = 0.999p is shown in Figs. 3(a) and 3(b)
compares the energy cost �Y

t at time t with the right-hand side
of inequality (11) for τ = t . Figure 3(b) shows that the equal-
ity in inequality (11) is approximately (but almost exactly)
achieved at any time t , and thus this example can be regarded
as the optimal information gain in finite time.

C. Approximately optimal measurement protocol
for fixed activity

We next consider the case where the activity 〈a〉τ is fixed.
In this case, by varying not only εY

t but also 
Y = 
Y
t over

time t , we can approximately construct an optimal measure-
ment protocol as follows. As a preparation, set the initial and
final distributions as Eq. (14) and let βU be sufficiently large.
Then, wait for a positive probability p� to be stored in the
state (1, 2), which accompanies nonoptimal energy cost which
can be made arbitrarily small by setting � to arbitrarily small
value. These parts are the same as the case for fixed mobility.

Starting from the distribution pXY
t (1, 2) = p�(> 0), we

can transport probability from state (1,2) to (2,2) under
constant activity a and probability current J by properly
controlling εY

t and 
Y
t (the explicit protocol is provided in

Appendix C). In this protocol, it is not possible to set
pXY

τ (1, 2) = 0. Therefore, we cannot completely optimize the

final distribution for W = p. Nevertheless, by adjusting pa-
rameters, it is possible to set the final distribution to one
arbitrarily close to the optimal distribution in the case W = p.
This approximately optimal protocol also converges to the
exactly optimal protocol in the limits βU → ∞ and � → 0.

The numerical demonstration of the control protocols of εY
t

and 
Y
t for p = 0.25 and W = 0.999p are shown in Figs. 4(a)

and 4(b), respectively, and Fig. 4(c) compares the energy
cost �Y

t at time t with the right-hand side of inequality (12)
for τ = t . It is shown that the equality in inequality (12) is
approximately (but almost exactly) achieved at any time t .

V. DISCUSSION

In this study, we revealed the fundamental bound on the
thermodynamic cost for obtaining a given amount of informa-
tion in finite time, and a specific protocol for achieving it. The
main theorem is inequality (9) derived from optimal transport
theory, which leads to the speed limits (11) and (12). The
equalities can be achieved by properly designing memory and
protocols. Moreover, we showed that such an optimal protocol
can be approximately implemented by the coupled quantum
dots system.

The optimal measurement protocol proposed in this study
is general and model-independent, and therefore would lead
to fast and cost-effective information gain in a wide range of
information processing, possibly including calculations using
CMOS devices [13,14,53]. Our result would also be regarded
as a step toward clarifying the finite-time effects on thermody-
namics in various information processing in terms of optimal
transport theory.

As future perspectives, it might be possible to generalize
our result to discrete infinite cases, but there should be math-
ematical subtle points to be considered. It is also noteworthy
that the generalization to the Langevin case is nontrivial and
important future issue, as the behavior of the Wasserstein-2
distance in continuous systems is significantly different from
that of the Wasserstein-1 distance in discrete systems [43].
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0.005. (a) The optimal protocol εY

t scaled by β, which is obtained by numerically solving the condition for maintaining constant activity a and
probability current J . (b) The optimal protocol 
Y

t . (c) Comparison of the left- and right-hand side of inequality (12). We see that the protocols
shown in panels (a) and (b) approximately (but almost exactly) achieves the equality in inequality (12) for any time t .

insightful comments on the manuscript. R.N. is supported
by the World-leading Innovative Graduate Study Program
for Materials Research, Industry, and Technology (MERIT-
WINGS) of the University of Tokyo. T.S. is supported by
JSPS KAKENHI Grant No. JP19H05796, JST, CREST Grant
No. JPMJCR20C1 and JST ERATO-FS Grant No. JPM-
JER2204. N.Y. and T.S. are also supported by the Institute of
AI and Beyond of the University of Tokyo and JST ERATO
Grant No. JPMJER2302, Japan.

APPENDIX A: DERIVATION OF THE MAIN THEOREM
AND THE SPEED LIMIT IN THE MAIN TEXT

1. Majorization

First, we introduce the majorization, which will be used
to obtain an upper bound on the mutual information. Let pX

and qX be probability distributions on X . We state that pX

majorizes qX , denoted as qX ≺ pX , if

∀x ∈ X ,

x∑
x′=1

qX
↓ (x′) �

x∑
x′=1

pX
↓ (x′) (A1)

holds [55], where pX
↓ and qX

↓ are the probability distribu-
tions obtained by rearranging pX and qX in descending order
pX

↓ (1) � pX
↓ (2) � · · · � pX

↓ (nX ) and qX
↓ (1) � qX

↓ (2) � · · · �
qX

↓ (nX ), respectively. The statement that pX majorizes qX

implies that qX is more randomly (or uniformly) distributed
than pX .

If qX ≺ pX , for any convex function f , then∑
x∈X

f (qX (x)) �
∑
x∈X

f (pX (x)) (A2)

holds. By choosing f (x) = x ln x, we obtain the monotonicity
of the Shannon entropy

qX ≺ pX ⇒ S(qX ) � S(pX ). (A3)

2. Lower bound on the Wasserstein distance

The Wasserstein distance between probability distributions
pXY

0 and pXY
τ is defined as

W
(
pXY

0 , pXY
t

) = min
π∈�(pXY

0 ,pXY
t )

∑
x,y,y′

d[(x, y), (x, y′)]π [(x, y), (x, y′)], (A4)

where

�
(
pXY

0 , pXY
t

) =
⎧⎨
⎩π ∈ RnX nY ×nX nY

�0

∣∣∣∣∣∣
∑
y∈Y

π [(x, y), (x, y′)] = pXY
0 (x, y′),

∑
y′∈Y

π [(x, y), (x, y′)] = pXY
t (x, y)

⎫⎬
⎭. (A5)
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Taking the initial distribution pXY
0 = pX (x)δy,1,

∑
y π [(x, y),

(x, y′)] = pXY
0 (x, y′) = pX (x)δy′,1 = 0 holds for y 	= 1, which

implies that

∀y 	= 1, π [(x, y), (x, y′)] = 0. (A6)

Therefore, we obtain

pXY
t (x, y) =

∑
y′

π [(x, y), (x, y′)] = π [(x, y), (x, 1)]. (A7)

By substituting Eqs. (A6) and (A7) into Eq. (A4), we obtain

W
(
pXY

0 , pXY
t

)
= min

π∈�

(
pXY

0 ,pXY
t

)∑
x,y

d[(x, y), (x, 1)]π [(x, y), (x, 1)]

=
∑
x,y

d[(x, y), (x, 1)]pXY
t (x, y), (A8)

which means that the Wasserstein distance is obtained only
from Eqs. (A6) and (A7) without directly solving the mini-
mization problem. We note that

d[(x, y), (x, 1)]

{= 0, y = 1,

� 1, y 	= 1,
(A9)

which yields the following lower bound on the Wasserstein
distance:

W
(
pXY

0 , pXY
t

)
�

∑
x,y:y 	=1

pXY
t (x, y)

=
∑
y( 	=1)

pY
t (y)

= 1 − pY
t (1)

=: Vt , (A10)

where the equality is achieved if d[(x, y), (x, 1)] = 1 holds for
all y 	= 1. This condition is equivalent to the condition (C1).

3. Upper bound on the mutual information by Vτ

In this subsection, we only consider the distributions at t =
τ . Let σpX : X → X be the permutation defined as

∀x ∈ X , pX (x) = pX
↓ (σpX (x)), (A11)

which rearranges indices x in the descending order of
pX . We note that the inverse permutation of σpX satis-
fies pX (σpX

−1(x)) = pX
↓ (x). Then, we obtain the following

Proposition.
Proposition 1. For any fixed V = Vτ , there exists a proba-

bility distribution p̃X
V such that

IX :Y
τ � S(pX ) − (1 − V )S

(
p̃X
V
) =: IpX (V ). (A12)

Here, p̃X
V can be defined as follows. First, let N (V ) be the

minimum integer such that 1 − V <
∑N

x=1 pX
↓ (x) for V > 0,

and N (0) := nX for V = 0. Then, we define p̃X
V (x) := δσpX (x),1

for N (V ) = 1 and

p̃X
V (x) :=

⎧⎪⎨
⎪⎩

pX (x)/(1 − V ), σpX (x) < N (V ),

1 −∑N (V )−1
σpX (x)=1 p̃X

V (x), σpX (x) = N (V ),

0, otherwise

(A13)

for N (V ) > 1. This definition is equivalent to the graphical
definition of p̃X

W given in the main text.
Proof. We introduce the conditional probability distribu-

tion of X given y ∈ Y at time t = τ denoted as pX |y
τ and the

conditional entropy of X given Y at time t = τ denotes as
S(pX |Y

τ ):

pX |y
τ (x) := pXY

τ (x, y)

pY
τ (y)

, S
(
pX |Y

τ

)
:=
∑
y∈Y

pY
τ (y)S

(
pX |y

τ

)
.

(A14)

Then, S(pX |Y
τ ) = S(pXY

τ ) − S(pY
τ ) holds, which yields

IX :Y
τ = S(pX ) − S

(
pX |Y

τ

)
(A15)

= S(pX ) −
∑
y∈Y

pY
τ (y)S

(
pX |y

τ

)
(A16)

� S(pX ) − pY
τ (1)S

(
pX |1

τ

)
, (A17)

where the equality holds if S(pX |y
τ ) = 0 for all y 	= 1. If

pY
τ (1) = 0, then the right-hand side of inequality (A17) is

S(pX ). Next, we consider the case pY
τ (1) 	= 0. Since

pX (x) =
∑

y

pY
τ (y)pX |y

τ (x)

= (1 − V )pX |1
τ (x) +

∑
y( 	=1)

pY
τ (y)pX |y

τ (x) (A18)

holds, the conditional probability pX |1
τ (x) satisfies

0 � pX |1
τ (x) � pX (x)

1 − V . (A19)

We now prove pX |1
τ ≺ p̃X

V by contradiction. Suppose that

∃x ∈ X ,

x∑
x′=1

pX |1
τ

(
σ−1

pX |1
τ

(x′)
)

>

x∑
x′=1

p̃X
V
(
σ−1

p̃X
V

(x′)
)
, (A20)

and let x∗ be such x. If x∗ < N (V ), then it contradicts the
inequality obtained by summing inequality (A19) over x in
the range σpX |1 (x) � x∗:

x∗∑
x=1

pX |1
τ

(
σ−1

pX |1
τ

(x)
)
�

x∗∑
x=1

pX
(
σ−1

pX |1
τ

(x)
)

1 − V

�
x∗∑

x=1

pX
(
σ−1

pX (x)
)

1 − V

=
x∗∑

x=1

pX
(
σ−1

p̃X
V

(x)
)

1 − V

=
x∗∑

x=1

p̃X
V
(
σ−1

p̃X
V

(x)
)
, (A21)
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where we used σp̃X
V

= σpX , which follows from the definition
of p̃X

V . If x∗ � N (V ), then we obtain

x∗∑
x=1

pX |1
τ

(
σ−1

pX |1
τ

(x)
)

>

x∗∑
x=1

p̃X
V
(
σ−1

p̃X
V

(x)
)

=
N (V )∑
x=1

p̃X
V
(
σ−1

p̃X
V

(x)
)

= 1, (A22)

which contradicts
∑

x∈X pX |1
τ (x) = 1. Therefore, the negation

of Eq. (A20)

∀x ∈ X ,

x∑
x′=1

pX |1
τ

(
σ−1

pX |1
τ

(x′)
)
�

x∑
x′=1

p̃X
V
(
σ−1

p̃X
V

(x′)
)

(A23)

is true, which implies pX |1
τ ≺ p̃X

V . Finally, from the monotonic-
ity of the Shannon entropy (A3), we obtain S(pX |1

τ ) � S( p̃X
V ).

Then, substituting this and pY
τ (1) = 1 − V into inequality

(A17) leads to inequality (A12). �

4. Monotonicity of IpX (V ) and the proof of the main theorem

Although V was restricted to V ∈ [0, 1] in the previous
subsection, we can apply the definitions of N (V ) and p̃X

V
in the previous subsection to the case V > 1, and define
IpX (V ) for any nonnegative real number V . Then, for V >

1, N (V ) = 1 holds, which implies p̃X
V (x) = δσpX (x),1. Thus,

IpX (V ) takes constant value IpX (V ) = S(pX ) − (1 − V ) · 0 =
S(pX ) for V > 1. We then obtain the following Lemma.

Lemma 1. IpX (V ) is monotonically increasing for V � 0,
and strictly monotonically increasing for 0 � V � 1 − pX

↓ (1).
Proof. Let V and V ′ satisfy

0 � V < V ′ < 1 − pX
↓ (1), (A24)

which implies N (V ′) � 2. From this and the definition of p̃X
V ,

for x ∈ X such that σpX (x) = 1,

p̃X
V ′ (x) = pX (x)

1 − V ′ ∈ (0, 1) (A25)

holds, which leads to S( p̃X
V ′ ) > 0. Next, we show p̃X

V ≺ p̃X
V ′ .

From the definition of N (V ), N (V ) � N (V ′) holds for V < V ′.
Therefore, for x < N (V ′), we obtain

x∑
x′=1

p̃X
V ′
(
σ−1

p̃X
V ′

(x′)
)−

x∑
x′=1

p̃X
V
(
σ−1

p̃X
V

(x′)
)

=
x∑

x′=1

pX
(
σpX (x′)

)
1 − V ′ −

x∑
x′=1

pX
(
σpX (x′)

)
1 − V � 0. (A26)

For x � N (V ′), we get
∑x

x′=1 p̃X
V ′ (σ−1

p̃X
V ′

(x′)) = 1, which yields

x∑
x′=1

p̃X
V ′
(
σ−1

p̃X
V ′

(x′)
)−

x∑
x′=1

p̃X
V
(
σ−1

p̃X
V

(x′)
)

= 1 −
x∑

x′=1

p̃X
V
(
σ−1

p̃X
V

(x′)
)
� 0. (A27)

From Eqs. (A26) and (A27), we obtain p̃X
V ≺ p̃X

V ′ . This im-
plies S( p̃X

V ) � S( p̃X
V ′ ). From this and S( p̃X

V ′ ) > 0, we get

IpX (V ′) − IpX (V ) = (1 − V )S
(
p̃X
V
)− (1 − V ′)S

(
p̃X
V ′
)

� (V ′ − V )S( p̃X
V ′ )

> 0. (A28)

Thus, IpX (V ) is strictly monotonically increasing for 0 � V <

1 − pX
↓ (1). Furthermore,

lim
V↗1−pX

↓ (1)
IpX (V )

= S(pX ) − lim
V↗1−pX

↓ (1)
(1 − V )S

(
p̃X
V
)

(A29)

= S(pX ) + lim
V↗1−pX

↓ (1)

[
pX

↓ (1) ln
pX

↓ (1)

1 − V

+(1 − V − pX
↓ (1)) ln

1 − V − pX
↓ (1)

1 − V

]

(A30)

= S(pX ) (A31)

= IpX (1 − pX
↓ (1)) (A32)

holds, which implies that IpX (V ) is strictly monotoni-
cally increasing for 0 � V � 1 − pX

↓ (1). For V � 1 − pX
↓ (1),

N (V ) = 1 holds, and thus IpX (V ) takes the constant value
S(pX ). Therefore, IpX (V ) is monotonically increasing for V �
0. �

We now give the proof of the main theorem in the main
text. By setting t = τ in W (pXY

0 , pXY
t ) � 1 − pY

t (1) = Vt

shown in the Sec. A 3, and using Proposition 1 and Lemma
1, we obtain

IXY
τ � IpX (W ) = S(pX ) − (1 − W )S

(
p̃X
W
)
, (A33)

which is equivalent to the main theorem [inequality (9)] in
the main text. Now, we define pXY

τ by Eq. (10) in the main
text. From Eq. (10), we obtain S(pX |y

τ ) = 0 for y 	= 1, pY
τ (1) =

1 − W , and S(pX |1
τ ) = S( p̃X

W ). Therefore,

IX :Y
τ = S(pX ) − pY

τ (1)S
(
pX |1)

= S(pX ) − (1 − W )S
(
p̃X
W
)

(A34)

holds, which verifies the optimality of pXY
τ defined by

Eq. (10).

5. Proof of the speed limits

From Lemma 1, the restriction of IpX to [0, 1 − pX
↓ (1)] is

an injective mapping. Therefore, we can define an inverse
function WpX : [0, S(pX )] → [0, 1 − pX

↓ (1)] for the fixed
pX as

IpX

(
WpX (I )

) = I. (A35)

The graphical construction of the inverse function is illus-
trated in Fig. 5. Since IpX is monotonically increasing, WpX is
also monotonically increasing. Then, from the main theorem,
we obtain

WpX

(
IXY
τ

)
� WpX

(
IpX (W )

) = W, (A36)
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FIG. 5. Construction of the inverse functionWpX of IpX . For I ∈
[0, S(pX )], we define WpX (I ) ∈ [0, 1 − pX

↓ (1)] as I = IpX (WpX (I )).

where W = W (pXY
0 , pXY

τ ). From inequalities (A36) and (8)
in the main text, we get the speed limits [inequalities (11) and
(12)] in the main text.

6. Formalism by Lorenz curve

We can also visually define p̃X
W by the Lorenz curve

[54,55]. The Lorenz curve is a polygonal line constructed
as follows. First, let pX

↓ be the probability distribution ob-
tained by rearranging pX in the descending order pX

↓ (1) �
pX

↓ (2) � · · · � pX
↓ (nX ). Then, plot the cumulative probabili-

ties
∑x

x′=1 pX
↓ (x′) as a function of x, which gives the Lorenz

curve of pX [Fig. 6(a)]. The Lorenz curve visualizes how uni-
formly probabilities are distributed among the states; Shannon
entropy S(pX ) increases as the Lorentz curve of pX is located
lower.

Now, by using the Lorenz curve, p̃X
W can be defined as

a probability distribution which corresponds to the green
Lorenz curve in Fig. 6(b), when W < 1. Here, we define
N (W ) ∈ X as depicted in Fig. 6(b). When W � 1, we define
N (W ) as 1, and p̃X

W as a probability distribution correspond-
ing to the green Lorenz cure in Fig. 6(c). This definition is
equivalent to the definition of N (W ) given in the main text.

We can also intuitively understand the meaning of inequal-
ity (9). As shown in Fig. 6(d), the Lorentz curve of p̃X

W moves
upward as W increases, resulting in a decrease in S( p̃X

W ).
Therefore, IpX (W ) is an increasing function of W , indicating
that a larger Wasserstein distance W allows Y to obtain more
mutual information from X .

APPENDIX B: PROPERTY OF THE RATIO

We here derive the following proposition as a property of
the fundamental bound obtained in this paper.

Proposition 2. The ratio

IpX (W )

W2/(τ 〈m〉τ )
=: τ 〈m〉τ g(W ) (B1)

obtained by dividing the upper bound on mutual informa-
tion IpX (W ) by the minimized entropy production min �Y

τ =
W2/(τ 〈m〉τ ) for the fixed time-averaged mobility 〈m〉τ is a
decreasing function of W .

Proof. We show that the function g(W ) = IpX (W )/(W2)
is decreasing. For W � 1 − pX

↓ (1), g(W ) = S(pX )/(W2)
is decreasing. Then, we consider the case where 0 <

W < 1 − pX
↓ (1). From the definition of p̃X

W , S( p̃X
W ) is

differentiable function of W for W 	= Wn := ∑nX
x=n pX

↓ (x)

FIG. 6. (a) The Lorenz curve of pX . (b) Definition of p̃X
W and N (W ) for W < 1. First, we obtain a polygonal line (green dashed line) by

truncating the Lorenz curve of pX by the value 1 − W . Then, we define p̃X
W as a probability distribution corresponding to the Lorenz curve

obtained by scaling the green dashed line by a factor of 1/(1 − W ) (green solid line). N (W ) is defined as the minimum value of x which
satisfies

∑x
x′=1 pX

↓ (x′) > 1 − W (if W = 0, N (W ) := nX ). (c) Definition of p̃X
W and N (W ) for W � 1. (d) Comparison of Lorenz curves of

p̃X
W and p̃X

W ′ when W ′ > W . The Lorenz curve of p̃X
W ′ lies above that of p̃X

W .
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(n = 2, · · · , nX ), and the derivative is given by

d

dW S
(
p̃X
W
) = d

dW

⎡
⎣−

N (W )−1∑
x=1

pX (x)

1 − W ln
pX (x)

1 − W −
⎛
⎝1 −

N (W )−1∑
x=1

pX (x)

1 − W

⎞
⎠ ln

⎛
⎝1 −

N (W )−1∑
x=1

pX (x)

1 − W

⎞
⎠
⎤
⎦

= −
N (W )−1∑

x=1

pX (x)

(1 − W )2

[
ln

pX (x)

1 − W + 1

]
+

N (W )−1∑
x=1

pX (x)

(1 − W )2

⎡
⎣ln

⎛
⎝1 −

N (W )−1∑
x=1

pX (x)

1 − W

⎞
⎠+ 1

⎤
⎦

= S
(
p̃X
W
)+ ln p̃X

W (N (W ))

1 − W . (B2)

By using this, we get

d

dW g(W ) = d

dW

[
S(pX )

W2
+ 1 − W

W2
S
(
p̃X
W
)]

= −2
S(pX )

W3
+
[
− 2

W3
+ 1

W2

]
S
(
p̃X
W
)+ 1

W2

[
S
(
p̃X
W
)+ ln p̃X

W (N (W ))
]

= −2
S(pX )

W3
− 2

1 − W
W3

S
(
p̃X
W
)+ 1

W2
ln p̃X

W (N (W ))

� 0 (B3)

for W 	= Wn (n = 2, · · · , nX ). Here, for n = 2, 3, · · · , nX ,

lim
W↗Wn

S
(
p̃X
W
) = lim

W↗Wn

[
−

n−1∑
x=1

pX (x)

1 − W ln
pX (x)

1 − W −
(

1 −
n−1∑
x=1

pX (x)

1 − W

)
ln

(
1 −

n−1∑
x=1

pX (x)

1 − W

)]

= −
n−1∑
x=1

pX (x)

1 − Wn
ln

pX (x)

1 − Wn

= S
(
p̃X
Wn

)
(B4)

holds, which implies that S( p̃X
W ) is continuous at W = Wn (n = 2, · · · , nX ). Thus, g(W ) is a decreasing function of W . �

Proposition 3. The ratio

IpX (W )

2W tanh−1 (W/(τ 〈a〉τ ))
=: h(W ) (B5)

obtained by dividing the upper bound on mutual information IpX (W ) by the minimized entropy production min �Y
τ =

2W tanh−1(W/(τ 〈a〉τ )) for the fixed time-averaged activity 〈a〉τ is a decreasing function of W .
Proof. In the same way as Proposition 2, it suffices to show that the derivative of h(W ) is nonpositive for W 	= Wn. Since

tanh−1(x) = ln 1+x
1−x , we get

d

dx
tanh−1(x) = 2

(1 + x)(1 − x)
. (B6)

Therefore, by setting A := τ 〈a〉τ , the derivative of h(W ) can be calculated as

dh(W )

dW = d

dW

[
S(pX ) + (1 − W )S

(
p̃X
W
)

2W tanh−1 W
A

]

= −
tanh−1 W

A + 2AW
(A+W )(A−W )

2
[
W tanh−1 W

A
]2 S(pX ) − AW (1 − W )S

(
p̃X
W
)

(A + W )(A − W )
[
W tanh−1 W

A
]2 − (1 − W )S

(
p̃X
W
)+ W ln p̃X

W (N (W ))

2W2 tanh−1 W
A

(B7)

� 0, (B8)
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where we used the fact that W/A is in the domain of
tanh−1(x), which yields A > W . �

Since the upper bound on mutual information IpX (W ) is
an increasing function of W , Propositions 2 and 3 imply
that the mutual information obtained per dissipation decreases
as IX :Y

τ increases. This suggests that incomplete information
gain (i.e., the case where IX :Y

τ is small) might make sense to
increase the average information gain per dissipation.

APPENDIX C: THE APPROXIMATELY OPTIMAL
PROTOCOL FOR COUPLED QUANTUM DOTS

1. Condition for achieving the equality in the inequality (8)

In this subsection, we apply the discussions in Ref. [43]
to the setup of this paper. Considering the case where the
transitions are induced by the difference in energy levels and
there are no nonconservative forces, the stochastic heat can
be expressed as QY

t (y, y′|x) = EXY
t (x, y) − EXY

t (x, y′), where
EXY

t (x, y) denotes the instantaneous energy level of the state
(x, y) at time t . In this case, the entropy production rate
σ XY

t := d�XY
t /dt is given by

σ XY
t = d

dt
S
(
pXY

t

)− β
d

dt
QXY

t (C1)

=
∑
x,y

ṗXY
t (x, y)

[− ln pXY
t (x, y) − βEXY

t (x, y)
]

(C2)

=
∑

x,y,y′:y 	=y′
[At (y, y′|x) − At (y

′, y|x)] ln
e−βEXY

t (x,y)

pXY
t (x, y)

(C3)

=
∑

x,y,y′:y 	=y′
At (y, y′|x) ln

e−βEXY
t (x,y) pXY

t (x, y′)
e−βEXY

t (x,y′ ) pXY
t (x, y)

(C4)

=
∑

x,y,y′:y 	=y′
At (y, y′|x)Ft (y, y′|x) (C5)

=
∑

x,y,y′:y>y′
Jt (y, y′|x)Ft (y, y′|x), (C6)

where we defined the frequency of transitions A(y, y′|x), ther-
modynamic force F (y, y′|x), and probability current J (y, y′|x)
from the state (x, y′) to (x, y) as

At (y, y′|x) := Rt (y, y′|x)pXY
t (x, y′), (C7)

Ft (y, y′|x) := ln
At (y, y′|x)

At (y′, y|x)
, (C8)

Jt (y, y′|x) := At (y, y′|x) − At (y
′, y|x). (C9)

We here explain the condition for achieving the equality in
inequality (8) in the main text. We define the dynamical state
mobility as

mt :=
∑

x,y,y′:y>y′

Jt (y, y′|x)

Ft (y, y′|x)
, (C10)

which characterizes the sum of the responses of the prob-
ability currents against the thermodynamic forces over all
transitions, and we denote the time-averaged mobility as
〈m〉τ := (1/τ )

∫ τ

0 mt dt . By applying Cauchy-Schwarz in-

equality, we obtain√
�XY

τ τ 〈m〉τ �
∫ τ

0

√
σ XY

t
√

mt dt

�
∫ τ

0

∑
x,y,y′:y>y′

|Jt (y, y′|x)|dt, (C11)

where the equalities holds if thermodynamic force Ft (y, y′|x)
is constant for all x, y, y′, and t with nonzero probability
currents Jt (y, y′|x). Here, we have∫ τ

0

∑
x,y,y′:y>y′

|Jt (y, y′|x)|dt � W
(
pXY

0 , pXY
τ

)
, (C12)

where the equality is achieved by transporting probabilities
according to the optimal transport plan, which is the solu-
tion for the minimization problem in the definition of the
Wasserstein distance (for more details, see Ref. [43]). Com-
bining inequalities (C11) and (C12), we obtain inequality (8)
in the main text. The condition for achieving the equality in
inequality (8) can be summarized as transporting probabili-
ties according to the optimal transport plan under a uniform
constant thermodynamic force.

For fixed activity, the condition for achieving inequality (8)
in the main text is as follows. First, we define local activity
at (y, y′|x) and total activity at at time t as

at (y, y′|x) := At (y, y′|x) + At (y
′, y|x), (C13)

at :=
∑

x,y,y′:y>y′
at (y, y′|x). (C14)

We denote its time-averaged value as 〈a〉τ := (1/τ )
∫ τ

0 at dt .
By defining local entropy production rate as σ XY

t (y, y′|x) :=
Jt (y, y′|x)Ft (y, y′|x), we can obtain

σ XY
t (y, y′|x) = 2Jt (y, y′|x) tanh−1 Jt (y, y′|x)

at (y, y′|x)
. (C15)

Since x tanh−1(x/y) is a convex function for any x, y which
satisfy 0 � x < y, y > 0 and an increasing function of x, we
can apply Jensen’s inequality and inequality (C12) and get

�τ � 2W
(
pXY

0 , pXY
τ

)
tanh−1 W

(
pXY

0 , pXY
τ

)
τ 〈a〉τ , (C16)

which is equivalent to inequality (8) in the main text for
f (x) = 2 tanh−1(x). The condition for achieving the Jensen’s
inequality is keeping local activity at (y, y′|x) and probability
current Jt (y, y′|x) constant for all x, y, y′ and t . To sum up, the
equality in inequality (C16) can be achieved by transporting
probabilities under uniform constant activity and probability
current along the optimal transport plan from pXY

0 to pXY
τ .

2. Protocol for fixed mobility

In this subsection, we explicitly describe how to construct
the approximately optimal protocol for coupled quantum dots,
and give the derivation of it. The equality in inequality (11)
in the main text is achieved by simultaneously achieving
equalities in inequalities (8) and (9) in the main text. Denoting
the probability distribution by the matrix [pXY

t (x, y)]x,y, when
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0 � W � 1 − pX
↓ (1) = p, the initial and the optimal final dis-

tributions are given by

pXY
0 =

[
p 1 − p
0 0

]
, pXY

τ =
[

p − W 1 − p
W 0

]
, (C17)

by which the equality in inequality (9) is achieved. Since the
second column representing x = 2 is invariant, the transport
between the states (2,1) and (2,2) does not occur in the opti-
mal transport plan, which implies Jt (2, 1|2) = 0 at any time
t ∈ [0, τ ]. This can be asymptotically achieved in the limit
βU → ∞. This condition can be interpreted as setting the
interaction between two quantum dots to be sufficiently larger
than the thermal fluctuation to make the probability to find
the system in the state (2,2) sufficiently small. This statement
can be rigorously shown as follows. From pXY

0 (2, 2) = 0 and
Rt (2, 1|2) = 
Y [1 + eβ(εY

t +U−μY )]−1, we have

pXY
t (2, 2) =

∫ t

0

d

dt
pXY

t ′ (2, 2)dt ′

�
∫ t

0
Rt ′ (2, 1|2)pXY

t ′ (2, 2)dt ′

�
∫ t

0


Y

1 + eβ(εY
t ′ +U−μY )

dt ′

−−−−→
βU→∞

0, (C18)

which implies pXY
t (2, 2) → 0 as βU → ∞. Therefore, we get

|Jt (2, 1|2)|
� Rt (2, 1|2)pXY

t (2, 1) + Rt (1, 2|2)pXY
t (2, 1)

= 
Y pXY
t (2, 1)

1 + eβ(εY
t +U−μY )

+ 
Y eβ(εY
t +U−μY )

1 + eβ(εY
t +U−μY )

pXY
t (2, 2)

−−−−→
βU→∞

0. (C19)

When Jt (2, 1|2) = 0, the condition for achieving the equality
in inequality (8) is transporting the probability from state (1,1)
to (1,2) under a constant thermodynamic force Ft (2, 1|1) = F .

We next derive the control protocol {εY
t } achieving

this condition. We consider the limit βU → ∞, where
Rt (2, 1|2) = Rt (1, 2|2) = 0 and pXY

t (1, 2) = p − pXY
t (1, 1)

holds. From this and Eq. (13) in the main text, the equation
Ft (2, 1|1) = F is transformed into

εY
t = μY − kBT

[
F + ln

p − pXY
t (1, 1)

pXY
t (1, 1)

]
, (C20)

where kB is Boltzmann constant and T is the temperature of
the reservoir. By substituting Eq. (C20) into Eq. (13) in the
main text and setting r = eF , we get

Rt (2, 1|1) = 
Y r[p − pXY
t (1, 1)]

r[p − pXY
t (1, 1)] + pXY

t (1, 1)
,

Rt (1, 2|1) = 
Y pXY
t (1, 1)

r[p − pXY
t (1, 1)] + pXY

t (1, 1)
. (C21)

From this and the time evolution (2) in the main text, we have

ṗXY
t (1, 1) = −
Y (r − 1)

pXY
t (1, 1)

[
p − pXY

t (1, 1)
]

r[p − pXY
t (1, 1)] + pXY

t (1, 1)
,

(C22)

which leads to

d

dt
ln

pXY
t (1, 1)r

p − pXY
t (1, 1)

= −
Y (r − 1). (C23)

By using the function φp,r (x) := ln[xr/(p − x)], the solution
for the differential equation (C23) can be expressed as

φp,r
(
pXY

t (1, 1)
)− φp,r

(
pXY

t0 (1, 1)
) = −
Y (r − 1)t, (C24)

given an initial value pXY
t0 (1, 1) at time t = t0. By substituting

pXY
t (1, 1) determined by Eq. (C24) into Eq. (C20), we obtain

the protocol to transport the probability from the state (1,1) to
(1,2) under the constant thermodynamic force F .

We here note that this protocol is only asymptotically
applicable to the initial and final distributions in Eq. (C17).
Since φp,r is a decreasing function on (0, p) which satisfies
limx→0 φp,r (x) = +∞ and limx→p φp,r (x) = −∞, we cannot
set t0 = 0 (i.e., pXY

t0 (1, 1) = p) in Eq. (C24). Instead, we must
wait for pXY

t (1, 1) to be pXY
t0 (1, 1) = p(1 − �) for some � ∈

(0, 1), then implement the dynamics determined by Eq. (C24).
The explicit protocol is as follows.

(1) Let � ∈ (0, 1/(1 + r)). For 0 � t � t0, where t0 is
defined according to � later, set

εY
t = μY − kBT

[
F + ln

�

1 − �

]
. (C25)

This is obtained by substituting pXY
t (1, 1) = p(1 − �) into

Eq. (C20). Then, we have

Rt (2, 1|1) = 
Y r�

r� + 1 − �
, Rt (1, 2|1) = 
Y (1 − �)

r� + 1 − �
,

(C26)

which yields

pXY
t (1, 1) = p exp

(
−1 − � − r�

1 − � + r�

Y t

)
. (C27)

Here, t0 is defined by the condition pXY
t0 (1, 1) = p(1 − �),

which is transformed into

t0 = −1 − � + r�

1 − � − r�

ln(1 − �)


Y
, (C28)

which vanishes in the limit � → 0. This process is accompa-
nied by the nonoptimal entropy production calculated as

�XY
t0 = S

(
pXY

t0

)− S
(
pXY

0

)− βQY
t0 (C29)

= −p(1 − �) ln[p(1 − �)] − p� ln(p�)

+ p ln p + p� ln
r�

1 − �
(C30)

= −p ln(1 − �) + p� ln r, (C31)

which also vanishes in the limit � → 0.
(2) For t0 � t � τ , set εY

t as Eq. (C20), where pXY
t (1, 1)

satisfies Eq. (C24). Since pXY
t0 (1, 1) = p(1 − �) and

pXY
τ (1, 1) = p − W , the end time τ is determined by

τ = φp,r (p − W ) − φp,r (p(1 − �))


Y (r − 1)
. (C32)

We can modify τ by adjusting 
Y . We here note that the pro-
tocol for W = p cannot be implemented in this way because
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limW→p φp,r (p − W ) = +∞. However, we can set W to be
arbitrarily close to p.

3. Protocol for fixed activity

In this subsection, we explicitly describe how to construct
the approximately optimal protocol for coupled quantum dots
in the case where activity is fixed. The equality in inequality
(13) in the main text is achieved by simultaneously achieving
equalities in inequalities (8) and (9) in the main text. Denot-
ing the probability distribution by the matrix [pXY

t (x, y)]x,y,
when 0 � W � 1 − pX

↓ (1) = p, the initial and the optimal
final distributions are given by (C17) by which the equality
in inequality (9) is achieved.

In this case, the condition for achieving the equality in
inequality (13) is keeping constant activity at (2, 1|1) = a and
probability current Jt (2, 1|1) = J = W/τ . This conditions
are transformed as

Rt (2, 1|1) =
(

a + W
τ

)
1

2pXY
t (1, 1)

, (C33)

Rt (1, 2|1) =
(

a − W
τ

)
1

2pXY
t (1, 2)

, (C34)

from which we can obtain

εY
t = μY + kBT ln

[
(aτ − W )pXY

t (1, 1)

(aτ + W )pXY
t (1, 2)

]
, (C35)


Y
t = (aτ − W )pXY

t (1, 1) + (aτ + W )pXY
t (1, 2)

2pXY
t (1, 1)pXY

t (1, 2)
a. (C36)

Here, when the initial time is set to t0 = 0, pXY
t0 (1, 2) = 0

is required, which implies εY
t → ∞ and 
Y

t → ∞ at t = t0.
Therefore, it is necessary to wait until t = t0(> 0) for a posi-
tive probability � to be stored in the state (1,2). the rigorous
protocol is as follows:

(I) Let � > 0 be sufficiently small constant. From time
t = 0 to t = t0 which is determined below, set εY

t and 
Y
t to

constant values

εY
t = μY + kBT ln

(aτ − W )(1 − �)

(aτ + W )�
, (C37)


Y
t = 
Y = (aτ − W )(1 − �) + (aτ + W )�

2p(1 − �)�
a, (C38)

which implies

Rt (2, 1|1) = a + W
τ

2p(1 − �)
, RY |1

t (1, 2) = a − W
τ

2p�
(C39)

and

pXY
t (1, 1) = pe−
Y t + p�

(
1 − e−
Y t

)
. (C40)

Therefore, by substituting pXY
t0 (1, 1) = p(1 − �), the waiting

time t0 is determined by

t0 = 1


Y
ln

p − p�

p(1 − �) − p�

, (C41)

which converges to 0 in the limit � → 0. This waiting process
accompanies nonoptimal energy cost

�XY
t0 = S

(
pXY

t0

)− S
(
pXY

0

)− βQY
t0 (C42)

= −p(1 − �) ln[p(1 − �)] − p� ln(p�)

+ p ln p − p� ln
(aτ − W )(1 − �)

(aτ + W )�
(C43)

= −p ln(1 − �) + p� ln
aτ + W
aτ − W , (C44)

which also converges to 0 in the limit � → 0.
(II) For t0 � t � τ , let εY

t and 
Y
t satisfy Eqs. (C35)

and (C36).

4. Comparison between the optimal and nonoptimal protocols
for inequality (11)

Here we see an example of a nonoptimal protocol, in par-
ticular, the protocol that approximately achieves the equality
in inequality (1) but does not achieve the equality in inequal-
ity (11). In other words, although the minimum energy cost for
the transformation from pXY

0 to pXY
τ is almost achieved, pXY

τ

is not the optimal distribution for given IX :Y
τ . The probability

distribution pX is set to be pX (0) = p (� 1/2) and pX (1) =
1 − p. In this case, the initial distribution pXY

0 and a nonop-
timal distribution pXY

τ which satisfies W (pXY
0 , pXY

τ ) = W are
given by

pXY
0 =

[
p 1 − p
0 0

]
, pXY

τ =
[

p 1 − p − W
0 W

]
. (C45)

While the transformation determined by Eq. (C17) transports
the probability for x = 1, the transformation determined by
Eq. (C48) transports the probability for x = 2. However, since
the interaction between X and Y is repulsive in this setting,
the transformation that transfers the probability from state
(2,1) to (2,2) while keeping pXY

t (1, 1) > pXY
t (1, 2) cannot be

implemented. Therefore, we change the initial distribution
of memory Y from pY

0 (1) = 1 to pY
0 (2) = 1. This change is

allowed because the main result of this paper does not depend
on the choice of the state that Y initially takes with probability
1. In this case, the initial and final distributions are given by

pXY
0 =

[
0 0
p 1 − p

]
, pXY

τ =
[

0 W
p 1 − p − W

]
. (C46)

Considering the symmetry, the control protocol for this trans-
formation under the constant thermodynamic force F is
approximately given by applying the transformation

p → 1 − p,
εY

t → 2μY − U − εY
t ,

x = 1 ↔ x = 2,

y = 1 ↔ y = 2,

(C47)

to the protocol determined by (I) and (II) in the previous sub-
section in the limit βU → ∞ and � → 0. For p = 0.25 and
W = 0.999p, the numerical simulation for the nonoptimal
protocol is shown in Fig. 7(a), and the comparison between
the lower bound by inequality (1) and the lower bound by in-
equality (11) is shown in Fig. 7(b). This shows that the energy
cost in this process almost achieves the minimum energy cost
determined by inequality (1), but does not achieve the min-
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FIG. 7. Numerical results on the example with two quantum dots. The parameters are set to βU = 20, F = 4, μY = 0, 
Y = 2, and
� = 0.001. (a) The nonoptimal protocol εY

t scaled by β. (b) Comparison of the left- and right-hand side of inequalities (1) and (11). We see
that the protocol shown in panel (a) approximately (but almost exactly) achieves the equality in Eq. (1) (gray dashed line), but it does not
achieve the equality in Eq. (11) (green dash-dot-dash line).

imum energy cost determined by inequality (11). Therefore,
this example is not an optimal measurement for obtaining a
given amount of mutual information.

5. Comparison between the optimal and nonoptimal protocols
for inequality (12)

Here, we consider a nonoptimal protocol that approxi-
mately achieves the equality in Eq. (1) but does not satisfy the
equality in Eq. (12). As well as the previous subsection, we
consider the case where the transformation from pXY

0 to pXY
τ

approximately minimizes the energy cost, while pXY
τ itself

is not the optimal distribution for given IX :Y
τ . Assume that

pX is fixed to pX (0) = p (p � 1/2) and pX (1) = 1 − p. The
established pXY

0 and the nonoptimal pXY
τ , whose Wasserstein

distance from the initial distribution pXY
0 is W , are given by

pXY
0 =

[
p 0

1 − p 0

]
, pXY

τ =
[

p 0
1 − p − W W

]
. (C48)

In contrast to the optimal distribution given by Eq. (10), which
transfers probability W from y = 2 to y = 1, the distribu-
tion defined by Eq. (C48) transfers W from y = 1 to y = 2.
However, due to the repulsive interaction between X and Y
in this setup, we cannot implement the transformation that
moves probability from state (1,2) to (2,2) while keeping the
probability of state (1,1). Therefore, we change the initial
distribution of memory Y from pY

0 (1) = 1 to pY
0 (2) = 1, as

done in the previous section. The modified initial and final
distributions are given by

pXY
0 =

[
0 0
p 1 − p

]
, pXY

τ =
[

0 W
p 1 − p − W

]
. (C49)

FIG. 8. Numerical results on the example with two quantum dots. The parameters are set to βU = 20, A = 0.1, τ = 10, μY = 0, and
� = 0.005. (a) The nonoptimal protocol εY

t scaled by β. (b) (a) The nonoptimal protocol 
Y
t . (c) Comparison of the left- and right-hand side

of inequalities (1) and (12). We see that the protocol shown in panel (a) approximately (but almost exactly) achieves the equality in Eq. (1)
(gray dashed line), but it does not achieve the equality in Eq. (13) (green dash-dot-dash line).
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The optimal transport between these distributions can be ap-
proximately achieved by applying the transformation

p → 1 − p,
εY

t → 2μY − U − εY
t ,

x = 1 ↔ x = 2,

y = 1 ↔ y = 2

(C50)

to the protocol determined by (I) and (II) in the previous
subsection in the limit βU → ∞ and � → 0. This nonop-
timal protocol is illustrated in Figs. 8(a) and 8(b), and the
energy cost �Y

τ is compared with the lower bounds provided
by inequalities (1) and (12) in Fig. 8(c).
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