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Landau levels are the eigenstates of a charged particle in two dimensions under a magnetic field and are at
the heart of the integer and fractional quantum Hall effects, which are two prototypical phenomena showing
topological features. Following recent discoveries of fractional quantum Hall phases in van der Waals materials,
there is a rapid progress in understanding of the precise condition under which the fractional quantum Hall
phases can be stabilized. It is now understood that the key to obtaining the fractional quantum Hall phases is the
energy band whose eigenstates are holomorphic functions in both real and momentum space coordinates. Landau
levels are indeed examples of such energy bands with an additional special property of having flat geometrical
features. In this paper, we prove that, in fact, the only energy eigenstates having holomorphic wave functions
with a flat geometry are the Landau levels and their higher Chern number analogs. Since it has been known that
any holomorphic eigenstates can be constructed from the ones with a flat geometry such as the Landau levels, our
uniqueness proof of the Landau levels allows one to construct any possible holomorphic eigenstate with which
the fractional quantum Hall phases can be stabilized.
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I. INTRODUCTION

There is an increasing interest in topological flat bands.
Here, the adjective flat may refer not only to the energy
dispersion but also to the geometrical properties in momentum
space such as the Berry curvature and the quantum metric. The
lowest Landau level is an example of such an energetically and
geometrically flat band. Additionally, the lowest Landau level
has a special property that the wave function can be taken as a
holomorphic function both in real and momentum space [1,2].
It has been known that when bands fulfill the holomorphicity
condition and the Berry curvature is flat, their projected den-
sity operators obey the Girvin-MacDonald-Platzman (GMP)
algebra [3], which implies that a fractional topological phase
can be stabilized under short-range interactions [4]. Recently,
it has been found that the holomorphicity is the key to obtain-
ing the fractional topological phases, and the strict flatness of
the Berry curvature is not necessary [5]. It is known that any
holomorphic state can be constructed by modifying holomor-
phic wave functions with uniform Berry curvature. Twisted
bilayer graphene in the chiral limit [6–12] provides an exam-
ple of such a holomorphic state. With the recent discovery
of fractional quantum Hall states in bilayer graphene [13,14]
and fractional quantum anomalous Hall states in twisted moiré
lattices [15–19], it is of urgent interest to identify the class of
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wave functions where the fractional topological phases can be
stabilized.

In this paper, we show that the lowest Landau level is not
just an example of geometrically flat bands fulfilling the holo-
morphicity condition, but rather they are the only possibility
of such an isotropic flat band in two dimensions with unit
Chern number. We also show that geometrically flat bands
with higher Chern numbers, such as those constructed in
[20], are also uniquely determined once one fixes the Chern
number and one parameter governing the anisotropy called the
modular parameter. Finally we provide explicit expressions
of those wave functions. On the one hand, our result places
a strict constraint on the types of wave functions one can
consider in exploring bands fulfilling the GMP algebra. On
the other hand, our explicit expressions of the desired wave
functions, which are exhaustive due to the uniqueness, can
provide a solid basis to further study fractional topological
physics in such bands.

This paper is structured as follows. In Sec. II we present
our results. We begin by recalling and discussing the recently
introduced concept of Kähler bands in Sec. II A, then we
present our main theorem in Sec. II B, and in Sec. II C we
present its proof. In Sec. III we discuss our results. In Sec. IV
we present some technical results used in the proof of the main
theorem.

II. RESULTS

A. Kähler bands

Before stating our main theorem and presenting its proof,
we first introduce the basic terminology of Bloch bands and
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the concept of Kähler band which will be used in the discus-
sion to follow. We focus on two spatial dimensions.

Energy bands of a particle in a periodic potential are char-
acterized, via Bloch’s theorem, by the quasimomentum k,
a parameter which is taken from a two-torus known as the
Brillouin zone BZ2. For a given k, an eigenstate for a given
band is described by a Bloch wave function |uk〉 which takes
values in a suitable Hilbert space H. Since multiplying |uk〉
by a nonzero complex number defines the same quantum
state, a quantum state is specified by a one-dimensional vector
subspace of H, i.e., a point in a complex projective space. A
Bloch band thus defines a map from the Brillouin zone to a
complex projective space.

In Refs. [21–23], we have introduced the concept of a
(anti)-Kähler band, a Bloch band for which the associated
map from the Brillouin zone to the space of quantum states,
regarded appropriately as a map between complex manifolds,
is a (anti)holomorphic map with nonvanishing derivative
[mathematically, the map is a (anti)holomorphic immersion].
For (anti)-Kähler bands, the quantum metric g and Berry
curvature F are connected by a complex structure J , a tensor
which squares to −1, giving BZ2 the structure of a (anti)-
Kähler manifold. In the periodic coordinates k = (kx, ky) of
the BZ2 [24], denoting the two-by-two matrices represent-
ing g, F and J , respectively, by the same letters g(k) =
[gi j]1�i, j�2, F (k) = [Fi j]1�i, j�2 and J (k) = [Ji j]1�i, j�2, the
condition that a Kähler band must satisfy is equivalent to the
matrix equation

g(k) = − i

2
F (k)J (k), (1)

which taking determinants gives the quantum metric-Berry
curvature relation √

det(g(k)) = |F12(k)|
2

. (2)

(Note that we use the convention that the Berry curvature F
is purely imaginary.) In Ref. [21], the lowest Landau level
appears as a special case of a Kähler band with C = 1 for
which the quantum geometry of the Brillouin zone is indepen-
dent of k, i.e., it is invariant under the full translation group
R2 of the Brillouin zone—we refer to these Bloch bands as
geometrically flat Kähler bands [25].

B. Main theorem

The main result of this paper is the following theorem:
Theorem 1 (Uniqueness of geometrically flat Kähler

bands). Geometrically flat (anti-)Kähler bands, i.e., bands in
which the equality Eq. (1) holds and g is independent of k, are
unique up to a gauge choice, given the Chern number C ∈ Z�=0

and the constant complex structure J .
Some remarks are in order. The cases C > 0 corresponds to

Kähler bands, while C < 0 corresponds to anti-Kähler bands.
Below we assume C > 0, but the uniqueness proof holds for
C < 0 mutatis mutandis; in particular, one obtains the wave
function for C < 0 by taking the complex conjugate of the
wave function for C > 0.

The assumption that g is constant, together with Eq. (2),
implies that F is also constant in momentum space. Be-
sides, from Eq. (1), one sees that J is also constant. Such a

Kähler band is thus translation-invariant in momentum space.
Translation-invariant complex structures J in the Brillouin
zone BZ2 can be conveniently parametrized in terms of a
modular parameter τ ∈ H as J = 1

Im(τ ) (−Re(τ ) −|τ |2
1 Re(τ )), where

H = {τ ∈ C : Im(τ ) > 0} is the upper half of the complex
plane [23]. We then parametrize momentum space by the com-
plex coordinate zτ = kx + τky. Note that the Brillouin zone
equipped with this complex coordinate becomes a complex
torus C/�τ , where �τ = Z + τZ.

We will see that one cannot obtain a geometrically flat
Kähler band with a finite number of total bands—a result
which was already alternatively proved in Refs. [23,26].

The outline of the proof of the Theorem is the following.
We first consider Kähler bands with constant J and show that
Bloch wave functions must be written as a linear combination
of θ functions with characteristics. We then assume that g, and
hence F , are constant and, via the Stone-von Neumann theo-
rem, show that only one possible combination of θ functions
is allowed.

C. Proof

1. Kähler bands for translation-invariant J

We describe the Bloch wave function [27] in two spatial
dimensions by a collection of nonvanishing vectors |uk〉 ∈ H
smoothly parametrized by k ∈ R2 where R2 is the universal
cover of BZ2, and H is a fixed Hilbert space which can be
finite or infinite dimensional. We need |uk〉 and |uk+G〉 for
arbitrary G in the reciprocal lattice to define the same quan-
tum state. If the momentum space Hamiltonian Hk obeys the
periodicity Hk+G = Hk, |uk〉 and |uk+G〉 differ, in general, by
multiplication by a nonvanishing complex number eG(k):

|uk+G〉 = |uk〉eG(k). (3)

By associativity of the sum [see Eq. (6)], one can show that
the functions eG(k) satisfy a cocycle condition

eG1+G2 (k) = eG1 (k + G2)eG2 (k). (4)

The family of functions then defines what is called a system
of multipliers for a line bundle L → BZ2 (see, for example,
Refs. [28,29]). There is a gauge degree of freedom in defining
the Bloch wave function |uk〉 because a state in quantum
mechanics is a one-dimensional subspace of the Hilbert space.
Below, we will indeed frequently use nonnormalized vectors
because it is convenient in the holomorphic setting. Con-
cretely, we are free to multiply |uk〉 by g(k) ∈ GL(1;C) = C∗
depending smoothly on k ∈ R2. This changes the multipliers
to g(k+G)

g(k) eG(k), which does not change the isomorphism class
of L [29]. We assume that this line bundle has Chern number
C, which is nothing but the Chern number of the band under
consideration.

More generally, the momentum-space Hamiltonian can
transform as Hk+G = VGHkV −1

G , where, as a consequence of
Wigner’s theorem [30], VG is either a unitary or antiunitary
transformation corresponding to a projective representation of
the symmetry group consisting of the reciprocal lattice Z2.
Physically, VG is determined by the spatial structure within
a unit cell, which can affect the resulting quantum geome-
try [31]. Therefore, there can be a collection of unitary or
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antiunitary transformations VG of H, G ∈ Z2, such that

|uk+G〉 = (VG|uk〉)eG(k), (5)

and such that VG1+G2 equals to VG1VG2 up to a phase factor
which depends on G1 and G2. These matrices can not de-
pend on k otherwise the Berry curvature and quantum metric,
which are tensors in the Brillouin zone, would not be periodic
in k with respect to reciprocal lattice translations. Since an
antiunitary VG would necessarily change the sign of the Berry
curvature implying the existence of zero of the Berry curva-
ture, contradicting with the assumption [32], the projective
representation must be unitary. Additionally, we note that, by
associativity of the sum,

|uk+(G1+G2 )〉 = (VG1+G2 |uk〉)eG1+G2 (k)

= |u(k+G2 )+G1〉
= (VG1VG2 |uk〉)eG1 (k + G2)eG2 (k). (6)

Since this condition holds for every k, we may assume, in
what concerns the Bloch wave function, VG1+G2 = VG1VG2 ,
i.e., we have a unitary representation of Z2. We can then
split VG into unitary irreducibles, which are parameterized in
terms of real unit cell positions r: e−2π iG·r, with r and r + R,
for R ∈ Z2, determining the same irreducible representation.
This decomposition gives us uk(r) ∈ Hr, where Hr is a di-
rect summand in the decomposition of the representation into
irreducibles and it has the property that for each G ∈ Z2:
VGuk(r) = e−2π iG·ruk(r). We note that uk(r) can be a spinor
containing multiple components. If H is a finite dimensional
Hilbert space, r takes values in a discrete subset of the real
space unit cell, otherwise it may be the whole of the unit
cell—the decomposition is then a direct-integral decomposi-
tion. This discussion allows us to derive the relation

uk+G(r) = eG(k)e−2π iG·ruk(r), (7)

namely uk(r) behaves as a smooth section of a line bundle
Lr → BZ2 whose multipliers are eG(k)e−2π iG·r. We point out
that L is the “basic line” bundle over the Brillouin zone re-
sponsible for the topological twist of |uk〉 and the line bundles
Lr, all of them topologically isomorphic to L, carry infor-
mation about the real-space unit cell through the variable r.
Unlike earlier works [2,5], we do not assume spatial periodic-
ity of uk(r), but rather allow a more general quasi-periodicity
condition, where uk(r) translated by a lattice vector acquires
a phase compatible with a possible net magnetic field present
in a unit cell. We see that such a phase factor is necessary
to obtain Landau levels, as explicitly derived in Eq. (39) of
Sec. IV.

Now we fix a translation-invariant complex structure on
BZ2 described by the complex coordinate zτ = kx + τky. The
condition for |uk〉 to determine a Kähler band is [22]

∂

∂ z̄τ

|uk〉 −
〈uk| ∂

∂ z̄τ
|uk〉

〈uk|uk〉 |uk〉 = 0, (8)

which essentially says that |uk〉 is holomorphic up to an over-
all nonholomorphic nonvanishing multiplicative factor and so,
after going to a holomorphic gauge so that the Berry gauge

field is represented by a (1,0)-form (〈uk| ∂
∂ z̄τ

|uk〉 = 0),

∂

∂ z̄τ

|uk〉 = 0, (9)

which is simply the requirement of holomorphicity of |uk〉.
This holomorphicity condition in turn implies, upon

appropriate gauge choice, that the multipliers eG(k) are holo-
morphic in zτ and that L → BZ2 and, as a matter of fact,
all of the Lr → BZ2, for r running in the real space unit
cell, are holomorphic line bundles. Because holomorphic
line bundles over complex tori, i.e., R2/Z2 equipped with
a translation-invariant complex structure J , are determined,
up to isomorphism, by the holomorphic line bundles whose
spaces of holomorphic sections are described by θ functions
[28,33] the form of |uk〉 is already heavily constrained. This
is because this condition together with Eq. (7) tells us that
uk(r) behaves as a holomorphic section of Lr. The space
of such sections is a finite dimensional vector space, de-
noted H0(C/�τ , Lr ) and whose dimension equals, by the
Riemann-Roch theorem [34,35], C = deg(Lr ). Moreover, we
can describe H0(C/�τ , Lr ) quite explicitly in terms of θ

functions. Namely, we may assume that [29], after multipli-
cation of |uk〉 by a suitable global nonvanishing holomorphic
function g(k) (in the universal cover R2)

eG(k) = e−iπτCm2
y −2π iCmyzτ , with G = (mx, my) ∈ Z2,

(10)

and then this forces the components of uk(r) ∈ Hr, once a
basis for Hr is chosen, to be linear combinations with possibly
r-dependent coefficients of the θ functions

θr,α (zτ ) := ϑ

[
α
C − x

C
y

]
(Czτ , Cτ ), α = 0, . . . , C − 1, (11)

where ϑ[
a
b
](zτ , τ ) = ∑

n∈Z eiπτ (n+a)2+2π i(n+a)(zτ +b) is known

as the θ function with characteristics prescribed by a, b ∈ R.

2. Uniqueness of flat Kähler bands

We now require the quantum metric to be flat and derive
a much more restrictive condition on |uk〉. Because a Kähler
band is essentially a holomorphic immersion of a complex
torus in a projective space, the translation-invariance of the
quantum geometry implies that, after fixing one reference
quasimomentum, say the zero vector, each translation vec-
tor k ∈ R2 lifts to a quantum symmetry—a symmetry of
the target projective space equipped with the Fubini-Study
metric—relating |u0〉 and |uk〉. Once again, due to Wigner’s
theorem, quantum symmetries are realized by a projective
representation of the symmetry group in question, where the
transformations are either unitary or antiunitary. The key step
now is to note that there exist some unitary or antiunitary
operators Uk, k ∈ R2, such that, in a suitable gauge,

|uk〉 = Uk|u0〉, for k ∈ R2, (12)

which is a consequence of Calabi’s rigidity theorem [36]; see
Sec. IV for a proof of the above result. We cannot allow Uk
to be antiunitary, because, if so, the Berry curvature at k and
0 would change sign contradicting the fact that it is assumed
to be constant. Hence, we are lead to looking at projective

033238-3



BRUNO MERA AND TOMOKI OZAWA PHYSICAL REVIEW RESEARCH 6, 033238 (2024)

unitary representations of R2. What this means is that for all
k1, k2 ∈ R2 we have

Uk1Uk2 = Uk1+k2ψ (k1, k2), (13)

for ψ (k1, k2) a U(1)-valued 2-cocycle, i.e., ψ (k1, k2) are
phases satisfying

ψ (k1, k2 + k3)ψ (k2, k3) = ψ (k1, k2)ψ (k1 + k2, k3). (14)

We note that UG = VG for reciprocal lattice vectors G. Pro-
jective unitary representations of R2 are equivalent to certain
unitary representations of central extensions G of R2 by U(1).
Mathematically this means there exists a short exact sequence
of groups

1 −→ U(1) −→ G −→ R2 −→ 0, (15)

where each arrow is a group homomorphism and the kernel of
each arrow is the image of the previous one. The group G as
a set is just the Cartesian product R2 × U(1). As a group, we
equip it with the product law

(k1, λ1) · (k2, λ2) = (k1 + k2, λ1λ2ψ (k1, k2)). (16)

It is then not hard to see that U (g) := Ukλ with g = (k, λ) ∈
G satisfies U (g1)U (g2) = U (g1 · g2) for all g1, g2 ∈ G and
hence gives a unitary representation of G. It is useful to de-
fine the commutator s(k1, k2) = ψ (k1, k2)/ψ (k2, k1) which
satisfies, see Ref. [37],

(1) Antisymmetry: s(k1, k2) = s−1(k2, k1)
(2) Alternating: s(k, k) = 1
(3) Bimultiplicativity: s(k1+k2, k3) = s(k1, k3)s(k2, k3)
s(k1, k2+k3) = s(k1, k2)s(k1, k3).
The three properties imply existence of an antisymmetric

bilinear form ω in R2 with the property s(k1, k2) = eiω(k1,k2 ),
where ω(k1, k2) := Dk1 × k2, for some D ∈ R and k1 ×
k2 = kt ( 0 1

−1 0)k2 = k1,xk2,y − k1,yk2,x.
Theorem 1 of Ref. [37] (see also Refs. [33,38] for more on

Heisenberg groups and central extensions) implies that G is,
up to isomorphism, uniquely determined by s(k1, k2). When
ω is nondegenerate, i.e., for D �= 0, then G is referred to as a
Heisenberg group. A particular realization of G for a given D
is determined by setting

ψ (k1, k2) = eiDk1,xk2,y . (17)

All other realizations are obtained in terms of non-
vanishing U(1)-valued functions g(k) as ψ ′(k1, k2) =
g(k1+k2 )
g(k1 )g(k2 )ψ (k1, k2) (note that s(k1, k2) is invariant under this
change). Observe that with this realization of the central ex-
tension G, D = 0 corresponds to a trivial central extension
where G is really the direct product of groups R2 × U(1).
This last case will not be relevant to us as we shall see below,
because C �= 0.

Now the Stone-von Neumann theorem [33], states that
the Heisenberg group G has, up to unitary isomorphism, a
unique unitary irreducible representation for which U(1) acts
as (0, λ) · ψ = λ · ψ, (0, λ) ∈ U(1) ⊂ G and ψ ∈ H. We will
later see that this unitary degree of freedom corresponds
to unitary gauge transformations. This irrep is the familiar
Hilbert space of square-integrable functions H = L2(R) of
one variable q, where we have the commutation relation
[q, p] = i/D, with p = 1

iD
∂
∂q . At this point, the variable q

describes an abstract coordinate, but we derive how one can
transform from q to the more physical position coordinate r
in Sec. IV. Then,

Ukψ (q) = eiDky pe−iDkxxψ (q)

= e−iDkx(q+ky )ψ (q + ky). (18)

Indeed, it is easy to see that Uk1Uk2 = Uk1+k2ψ (k1, k2). Note
that D takes, in L2(R), the role of the inverse of Planck’s
constant. We note that it is this step which requires that the
number of bands, which is the dimension of the Hilbert space
H, must be infinite.

We can write, using the Baker-Campbell-Hausdorff
formula,

Uk = eiD(ky p−kxq)e
i
2 Dkxky . (19)

Using zτ = kx + τky, we can then write

i
(
ky p − kxq

) = 1

2τ2
[zτ (τ̄q + p) − z̄τ (τq + p)]. (20)

Now observe that, because q and p are self-adjoint, τ̄q + p is
the adjoint to τq + p and that

[τ̄q + p, τq + p] = i
τ̄

D
− i

τ

D
= 2τ2

D
. (21)

It is then convenient to introduce bosonic creation and annihi-
lation operators

aτ :=
√

D

2τ2
(τq + p) and a†

τ :=
√

D

2τ2
(τ̄q + p), (22)

which satisfy the canonical commutation relations [aτ , a†
τ ] =

1 and we may write

Uk = ei D
2 kxky e

1√
2Dτ2

(zτ a†
τ −z̄τ aτ )

= ei D
2 kxky e− 1

4τ2D |zτ |2 e
1√

2Dτ2
zτ a†

τ e
− 1√

2Dτ2
z̄τ aτ

. (23)

It is then clear that, after changing gauge, canceling
all nonholomorphic nonvanishing multiplicative factors, we
see that to have a holomorphic |uk〉 we must have
∂

∂ z̄τ
(e

− 1√
2Dτ2

z̄τ aτ |u0〉) = 0 ⇐⇒ aτ |u0〉 = 0. Now the condi-
tion aτ |u0〉 = 0 is just the statement that |u0〉 is the groundstate
of the bosonic mode aτ . The only solution, up to an overall
constant, is

u0(q) = e− iDτ
2 q2

, (24)

which is in L2(R) iff D < 0. So a holomorphic state exists
iff D < 0. This does not preclude us from considering other
representations of G that are not irreducible. However, due
to the above finding that |u0〉 ∈ H is unique (up to rescale)
this actually implies that the resulting Kähler band is unique
in a precise sense. The reason is as follows. Suppose Uk
was reducible. Then the Hilbert space assumes the form
H ⊕ · · · ⊕ H ∼= H ⊗ Cl , where H is the unique irrep of G
and l is the number of times it appears (l may not be finite,
but this does not change the argument). The group G then
acts only on the left factor in H ⊗ Cl . Due to there existing
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only one possible choice (up to rescale) for |u0〉 in H that
we can take in Eq. (12), this then implies that the augmented
state in H ⊗ Cl will necessarily be of the form |uk〉 ⊗ |c〉 for
some constant nonzero vector |c〉 ∈ Cl and |uk〉 ∈ H as in
Eq. (12). This just corresponds to taking the same Bloch band
and introducing a new degree of freedom, such as spin, which
decouples and hence the resulting Bloch band has a definite
“spin polarization.”

Finally, we use the condition Eq. (5) to find the value of D.
Note that

|uk+G〉 = ψ−1(G, k)UGUk|u0〉 = ψ−1(G, k)UG|uk〉. (25)

Then, eG(k) := ψ−1(G, k) should be unitary (since Uk is
unitary) multipliers for a line bundle over BZ2, and thus

eG(k) = e−iDmxky with G = (mx, my) ∈ Z2. (26)

A connection on the line bundle L is determined by a one-
form that is compatible with the system of multipliers:

A(k + G) = A(k) + eG(k)de−1
G (k) = A(k) + iDmxdky.

(27)

One possible choice is A = iDkxdky. We then see that the
Chern number of L being equal to C forces D = −2πC. This
concludes the proof of the Theorem, as the Kähler band we
are looking for is precisely |uk〉 = Uk|u0〉 for the Heisenberg
group determined by the Chern number C and |u0〉 such that
aτ |u0〉 = 0. Please note how C enters in G and fixes the Uk’s
and H, τ fixes what |u0〉 must be.

We now proceed to give an explicit expression of uk(r) in
terms of θ functions—hence using the particular realization of
G. We refer the reader to Sec. IV, where we show that Hr

∼=
CC , corresponding to the internal “color” degree of freedom,
and

uk(r) = e2π iCkxky eiπCτk2
y (θr,0(zτ ), . . . , θr,C−1(zτ )). (28)

For the particular case C = 1 and τ = i, this is exactly the
lowest Landau level Bloch wave function in the Landau
gauge—see Sec. IV for a detailed derivation of this fact, while
for higher C is the color-entangled lowest Landau level Bloch
wave function previously considered in the literature [5,20].

We remark that the fact that the unitary irrep of G is unique
up to unitary isomorphism corresponds to the freedom of
gauge choice. Indeed, since the isomorphism intertwines the
action of G, it must, in particular, preserve the quantum num-
ber associated to reciprocal lattice translations r. It implies
that we are allowed to perform U(C)-gauge transformations
to uk(r). We note that this is also equivalent to choosing
a different orthogonal basis of θ functions consistent with
the Chern number C and the irrep of the reciprocal lattice
associated with r. In summary, in Eq. (28), we have two kinds
of gauge degrees of freedom:

(i) U(C) real space gauge transformations uk(r) �→
S(r)uk(r), for S(r) ∈ U(C);

(ii) C∗ momentum space gauge transformations uk(r) �→
g(k)uk(r), for g(k) ∈ C∗.

In more physical terms, the transformation (i) corresponds,
for example in the case of lowest Landau levels, to go
from the Landau gauge to the symmetric gauge, whereas the

transformation (ii) corresponds to choosing the normalization
and phase of the Bloch wave function at each momentum.

III. DISCUSSION

We have shown the uniqueness of the geometrically flat
Kähler bands for given Chern number and modular param-
eter. In previous works, the effect of the modular parameter
τ is little explored; the situation τ �= i can arise when the
effective mass of a particle is anisotropic, cf. Ref. [39] where
the Galilean metric includes the information of τ . Our re-
sult shows that there is a continuous family of geometrically
flat Kähler bands parameterized by τ , which provides novel
degrees of freedom to explore fractional topological physics
with flat Kähler bands.

It is known that any holomorphic wave function with a
constant J , known also as ideal Chern bands or ideal Kähler
bands, can be obtained by modulating geometrically flat Käh-
ler bands [5]. The GMP algebra of density operators crucial
in obtaining stable Abelian fractional quantum Hall phases
has been shown to be recovered for such ideal Kähler bands.
A tower of higher Landau level analogs, which can support
non-Abelian fractionalized states, has also be constructed
starting from ideal Kähler bands [40]. Thus, the uniqueness
of the geometrically flat Kähler bands proved in this work
allows one to write down all possible wave functions which
serve as building blocks for these fractional quantum Hall
phases.

IV. TECHNICAL RESULTS

A. Proof of existence of the projective unitary representation
of the translation group under the flatness assumption

We wish to proof existence of Uq as in Eq. (12) in
the main text. The proof is based on Calabi’s rigidity the-
orem. As we will see, we can only determine the action
of Uq on the minimal linear subspace (subspace obtained
by projectivization of a vector subspace of Cn+1) of CPn

which contains the immersed submanifold determined by |uk〉
(concretely, span{|uk〉 : k ∈ R2} ⊂ Cn+1). But this linear sub-
space of CPn is generally much larger than just the individual
one-dimensional subspaces associated to the occupied bands.
(For example, for a Chern insulator, even if we consider one
band with nonzero Chern number to be occupied, we should
take multiple bands whose sum of the Chern numbers is
zero.) Thus, Uq determines a projective representation once
we restrict our Bloch wave function so that CPn in the target
coincides with the minimal linear subspace we need to con-
sider. In physical terms, if we add “trivial unoccupied bands,”
we cannot determine how Uq acts on these bands, which is
very reasonable, and we restrict ourselves to the situation
where such trivial bands are excluded.

Theorem 2 (Rigidity theorem (Calabi) [36,41]). Let M be
a connected Kähler manifold and let f : M → CPn and f ′ :
M → CPn′

be Kähler immersions (i.e., holomorphic immer-
sions of M whose Kähler structure coincides with the induced
Kähler structure) so that their images do not lie in any proper
linear subspace of the projective space (i.e., a subspace of
the projective space obtained by projectivization of a vector
subspace). Then n = n′ and there exists a unitary operator
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U ∈ U(n + 1) such that U ◦ f = f ′, where, by abuse of nota-
tion, we have also denoted by U the induced diffeomorphism
in CPn.

We remark that the dimension n in the above Theorem 2
and also below can be infinity. The assumption that the images
do not lie in any proper linear subspace of the projective
space implies that we have excluded benign trivial bands from
consideration as we commented above.

Proposition 1. Suppose we have a a Kähler immersion
f : R2 → CPn with respect to some complex structure j in
the plane. Suppose also that the image f (R2) does not lie in
any proper linear subspace of CPn. Suppose φ : R2 → R2 is
a biholomorphism, with respect to j, preserving the pullback
under f of the Fubini-Study metric f ∗gFS , i.e., a holomorphic
isometry of f ∗gFS . Then there exists a unitary operator Uφ ∈
U(n + 1), unique up to a phase, such that f ◦ φ = Uφ ◦ f ,
where we have also denoted by Uφ the induced diffeomor-
phism in CPn.

Proof. By assumption, the maps f ◦ φ : R2 → CPn and
f : R2 → CPn are both Kähler immersions. It follows from
Theorem 2 that there exists Uφ ∈ U(n + 1) such that f ◦ φ =
Uφ ◦ f . We now prove the uniqueness of Uφ up to a phase,
following the arguments given in the proof of Theorem 4.3 in
Ref. [42], which we briefly reproduce here. Let us assume that
two unitary matrices Uφ,U ′

φ ∈ U(n + 1) satisfy Uφ ◦ f = f ◦
φ and U ′

φ ◦ f = f ◦ φ. Then it follows that ((U ′
φ )−1Uφ ) ◦ f =

f . Let us define U := (U ′
φ )−1Uφ ∈ U(n + 1) and show that U

is just a phase, which implies that Uφ and U ′
φ differ only by a

phase.
We choose choose an orthogonal basis of Cn+1 where

U is diagonalized, for which U is given by the diagonal
matrix diag(α1, . . . , α1, . . . , αr, . . . , αr ) with each eigenvalue
αi, having, possibly, some multiplicity. Now observe that if
v ∈ Cn+1 is an eigenvector of U , it follows that the one-
dimensional subspace of CPn generated by v, denoted by

v ∈ CPn, is a fixed point of the induced map U : CPn →
CPn, i.e., U (
v ) = 
v . It follows that the set of fixed points of
the isometry U : CPn → CPn is given by the disjoint union∐r

i=1 S(αi ) with S(αi ) being the image of the eigenspace as-
sociated with the eigenvalue αi under the quotient map π :
Cn+1 − {0} → CPn, i = 1, . . . , r. Since in f (R2) the map
induced by the unitary U is the identity and because f (R2)
is connected (R2 is connected and f is continuous), it follows
that f (R2) ⊂ S(αi ), for some i. However, each S(αi ) is a linear
subspace of CPn By the assumption that f (R2) does not lie
in any proper linear subspace of CPn it follows that r = 1 and
S(α1) = CPn. Therefore, U is just a multiple of the identity
by a phase factor, as we wanted to show. �

Theorem 3. Suppose we have a Kähler immersion f :
R2 → CPn with respect to some complex structure j in the
plane. Suppose also that the image f (R2) does not lie in any
proper linear subspace of CPn. Suppose a group G acts in
R2 by holomorphic isometries, φg : R2 → R2 for g ∈ G, of
f ∗gFS . Then there exists a projective unitary representation
U : G → PU(n + 1) with the property f ◦ φg = U (g) ◦ f .

Proof. For each g ∈ G, φg is a holomorphic isometry of
f ∗gFS . Therefore, by Proposition 1 there exists a Ug := Uφg ∈
U(n + 1) uniquely defined up to a phase such that f ◦ φg =

Ug ◦ f . Furthermore, by assumption, we have φg1g2 = φg1 ◦
φg2 and this implies

(Ug1 ◦ Ug2 ) ◦ f = Ug1g2 ◦ f . (29)

The previous equation implies, using the same arguments
as in the proof of Proposition 1 to show uniqueness of Uφ

up to phase, that Ug1Ug2 = Ug1g2 holds projectively, implying
that the assignment g �→ Ug determines a projective unitary
representation of G. �

Letting f : R2 → CPn be the map induced by the Bloch
wave function |uk〉, letting G be the translation group
R2 which acts by holomorphic isometries in R2 equipped
with a translation-invariant metric and complex structure—
translation-invariant quantum geometry—the existence of the
projective representation Uq follows from Theorem 3.

The discussion above does not give a concrete form of the
Uq’s, rather it just guarantees their existence. The projective
representation is determined up to isomorphism of projec-
tive representations. Essentially this means that one can take
U ′

q = Uqg−1(q), with g(q) a phase factor—because this does
not change 〈uk+q|uk+q〉. This means that if

Uq1Uq2 = Uq1+q2ψ (q1, q2), (30)

then

U ′
q1

U ′
q2

= U ′
q1+q2

ψ (q1, q2)
g(q1 + q2)

g(q1)g(q2)
, (31)

and we see that ψ (q1, q2) and ψ (q1, q2) g(q1+q2 )
g(q1 )g(q2 ) differ by

an exact cocycle. Later in the maintext, it is found that this
cocycle is canonically specified by the Chern number C.

The explicit construction of Uq then comes from the ar-
gument of uniqueness of the representation (where the phase
factors act in the standard way) of the central extension of
the translation group by U(1) which is the content of the
Stone-von Neumann theorem.

B. Obtaining the lowest Landau level type wave functions
from an explicit realization of the Heisenberg group G

We derive an explicit expression of uk(r) in terms of θ

functions—this will allow us to recover the lowest Landau
level wave function and the color-entangled wave functions.
To do this, we need to extract the component uk(r) cor-
responding to the irreducible representation of Z2 labeled
by r. Hence, the defining property of uk(r) is UGuk(r) =
e−2π iG·ruk(r) for all G ∈ Z2. This can be done through the
Bloch-Zak transform which takes |uk〉 ∈ H = L2(R) to

uk(r) =
∑

G∈Z2

e2π ir·GUG|uk〉, (32)

and provides a Hilbert space isomorphism L2(R) ∼=∫ ⊕
u.c. d2r Hr where u.c. stands for the real space unit cell

labeling irreps of the reciprocal lattice Z2. For the transform
to be an isomorphism we need to define the inner product
in Hr appropriately. For a general element | f 〉 ∈ L2(R),
let us denote its value at a point q ∈ R by f (q). The
Bloch-Zak transform determines an element f (r) ∈ Hr
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from | f 〉 ∈ L2(R), which evaluated at a point q ∈ R reads

( f (r))(q) =
∑

G∈Z2

e2π ir·GUG f (q)

=
∑

mx,my∈Z2

e2π iCmx(q+my )+2π ixmx+2π iymy f (q + my)

=
∑

mx,my∈Z2

e2π i(Cq+x)mx+2π iymy f (q + my), (33)

where we wrote G = (mx, my) and r = (x, y) and used Eq. (18) of the main text. One can easily check that the inverse transfor-
mation is | f 〉 = ∫

u.c. d2r f (r). Using an expression of the series expansion of the Dirac comb,
∑

p∈Z δ(t − p) = ∑
m∈Z e2π itm,

we obtain

( f (r))(q) =
∑

my∈Z

∑
p∈Z

δ(Cq + x − p)e2π iymy f (q + my)

=
∑

my∈Z

∑
p∈Z

δ(Cq + x − p)e2π iymy f
(
− x

C + p

C + my

)
. (34)

We now write p = α + p̃C, where α ∈ {0, . . . , C − 1} and p̃ ∈ Z so that
∑

p∈Z = ∑C−1
α=0

∑
p̃∈Z. Then,

( f (r))(q) =
∑

my∈Z

C−1∑
α=0

∑
p̃∈Z

δ(Cq + x − α − C p̃)e2π iymy f
(
− x

C + α

C + my + p̃
)

=
∑

my∈Z

C−1∑
α=0

∑
p̃∈Z

δ(Cq + x − α − C p̃)e2π iy(my−p̃) f
(
− x

C + α

C + my

)

=
C−1∑
α=0

⎛
⎝ ∑

my∈Z
f
(
− x

C + α

C + my

)
e2π i 1

C y(−x+α+Cmy )

⎞
⎠

⎛
⎝∑

p̃∈Z
δ(Cq + x − α − C p̃)e−2π i 1

C y(−x+α+C p̃)

⎞
⎠

≡
C−1∑
α=0

fα (r)δr
α (q), (35)

where we defined

δr
α (q) : =

∑
p∈Z

δ(Cq + x − α − Cp)e−2π i 1
C y(−x+α+Cp), (36)

fα (r) : =
∑

my∈Z
f
(
− x

C + α

C + my

)
e2π i 1

C y(−x+α+Cmy ). (37)

We can regard the vector space Hr to be the span of the distributions δr
α (q). We see that periodicity f (r + R) = f (r) holds

because δr
α (q) and fα (r) transform in the opposite ways; for R = (ax, ay) ∈ Z2,

δr+R
α (q) = e−2π i 1

C ay (−x+ax+α)δr
α−ax

(q) and δr
α+C = δr

α, α = 0, . . . , C − 1, (38)

fα (r + R) = e2π i 1
C ay (−x+ax+α) fα−ax (r) and fα+C (r) = fα (r), α = 0, . . . , C − 1. (39)

This periodicity is consistent with the requirement of the
periodicity of the Hilbert space, Hr+R = Hr coming from
e−2π iG·(r+R) = e−2π iG·r, which holds for any G in the recip-
rocal lattice.

If we define a Hilbert space structure by declaring

〈
δr
α, δr

β

〉 = 1

C δαβ, (40)

then we get the desired Hilbert space isomorphism L2(R) ∼=∫ ⊕
u.c. d2r Hr, where the right-hand side can be interpreted as

the space of square-integrable sections of a Hilbert bundle
over the real space unit cell torus, obtained by identifying r ∼
r + R with R ∈ Z2, and whose fiber is Hr. A section of this
Hilbert bundle is identified with a collection of smooth func-
tions f0(r), . . . , fC−1(r) satisfying the conditions in Eq. (39).
The collection {δr

α}C−1
α=0 can then be interpreted as a global
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multivalued orthogonal frame field for this Hilbert bundle. To
see that it is indeed a Hilbert space isomorphism, one shows
that for f , g ∈ L2(R), we have

1

C

C−1∑
α=0

∫
u.c.

d2r fα (r)gα (r)

= 1

C

C−1∑
α=0

∫ 1

0
dx

∑
my∈Z

f
(
− x

C + α

C + my

)
g
(
− x

C + α

C + my

)

=
∫
R

dq f (q)g(q) = 〈 f |g〉, (41)

where we have used
∫ 1

0 dy e2π iy(m−n) = δm,n for m, n ∈ Z. We
also refer to ( f0(r), . . . , fC−1(r)) as the Bloch-Zak transform
of | f 〉—we are explicitly using the isomorphism Hr

∼= CC

provided by the orthogonal basis determined by the δr
α’s.

Physically, these C degrees of freedom can be spins, orbitals,
or other internal degrees of freedom.

Now we explicitly evaluate the Bloch-Zak transform for
| f 〉 = |uk〉. First note that, From Eqs. (18) and (24) of the main
text,

uk(q) = Uku0(q) = eiπCτ (q+ky )2+2π iCkx(q+ky ). (42)

Then we find,

fα (r) =
∑

my∈Z
uk

(
− x

C + α

C + my

)
e2π i 1

C y(−x+α+Cmy ) (43)

=
∑

my∈Z
eiπCτ (− x

C + α
C +ky+my )2+2π iCkx(− x

C + α
C +ky+my )

+2π i 1
C y(−x+α+Cmy )

= e2π iCkxky eiπCτk2
y ϑ

[
α
C − x

C
y

]
(Czτ , Cτ ), (44)

where zτ = kx + τky, and we have introduced the θ functions
with characteristics a, b ∈ R as

ϑ

[
a
b

]
(z, τ ) :=

∑
n∈Z

eiπτ (n+a)2+2π i(n+a)(z+b), (45)

for z ∈ C. Therefore, the real-space representation of the
Bloch state |uk〉 is thus given by a C-component wave function
of the following form:

uk(r) = e2π iCkxky eiπCτk2
y

(
ϑ

[− x
C

y

]
(Czτ , Cτ ), . . . , ϑ

×
[C−1

C − x
C

y

]
(Czτ , Cτ )

)
. (46)

Since the overall normalization of the wave function can
be chosen arbitrarily, the k-dependent exponential factors in
front of the θ functions can be removed if one wishes. This
degree of freedom corresponds to choosing Uk and the nor-
malization of u0(q) different from ones we used in Eq. (42).
Furthermore, as noted in the main text, there is a U (C) real-
space gauge degree freedom; this is to multiply uk(r) by an
element of U (C), which can depend on r.

For the particular case C = 1 and τ = i, the wave function
uk(r) is just the lowest Landau level Bloch wave function
(in the Landau gauge), while for higher C is the so-called
color-entangled lowest Landau level Bloch wave function.
Since the Landau level wave function expressed in terms
of θ functions may not be familiar to some readers, we in-
clude, for completeness, its derivation in the Supplemental
Material [44].
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