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We investigate the thermodynamic constraints on the pivotal task of entanglement generation using out-of-
equilibrium states through a model-independent framework with minimal assumptions. We establish a necessary
and sufficient condition for a thermal process to generate bipartite qubit entanglement, starting from an initially
separable state. Consequently, we identify the set of system states that cannot be entangled, when no external
work is invested. In the regime of infinite temperature, we analytically construct this set; while for finite
temperature, we provide a simple criterion to verify whether any given initial state is or is not entangleable.
Furthermore, we provide an explicit construction of the future thermal cone of entanglement—the set of
entangled states that a given separable state can thermodynamically evolve to. We offer a detailed discussion
on the properties of this cone, focusing on the interplay between entanglement and its volumetric properties. We
conclude with several key remarks on the generation of entanglement beyond two-qubit systems, and discuss its
dynamics in the presence of dissipation.
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I. INTRODUCTION

Quantum dynamics and thermodynamics have been bur-
geoning areas of study, particularly in the domain of
quantum information science [1–5]. Upon moving from
the macroscopic world to the quantum realm, it is natu-
ral to ask how thermodynamics affects quantum information
processing [6–9]. A thermodynamics-inspired paradigm for
quantifying quantum correlations has led to the conclusion
that one cannot extract the maximum work from an entan-
gled state when it is shared by two separated parties [6,10].
Conversely, correlations shared between quantum systems
allow for optimal work storage [9]. In tandem with these
inquiries, the fundamental energetic limitations on creating
both classical and quantum correlations have been thoroughly
investigated [8,11–13], assuming closed system dynamics.

The task of correlation engineering becomes increasingly
interesting in the more realistic scenario where quantum sys-
tems interact with a thermal environment, exchanging energy
and entropy. Counterintuitively, it has been shown that entan-
glement can be induced by a single-mode heat environment
[14] and that steady-state entanglement can be gener-
ated [15–18] even when no external agents are involved [19].
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In particular, one can generate a maximally entangled steady
state between two qubits deterministically using a third ancil-
lary qubit [20]. These results suggest a paradigm shift where
certain dissipative processes, rather than being detrimental to
quantum correlations, might harness environment interactions
for thermodynamically stable entanglement generation. As
a result, a natural question arises: What are the thermody-
namic limitations for quantum correlation and entanglement
generation?

A powerful toolkit for answering this question is the
resource-theoretic approach [21,22]. One may initially think
that the entanglement resource theory of local operations
and classical communication (LOCC) should be the relevant
framework for the entanglement manipulation problem. How-
ever, LOCC operations are naturally motivated only after
entanglement has been distributed; if one is instead at the
preparation phase in a local laboratory, prior to entangle-
ment distribution, then it is more reasonable to consider a
resource theory that contains entangling operations. If entan-
gling operations are allowed, the main limiting factor must
come from quantum control and energetics [23–26], which
leads us to the resource theory of quantum thermodynamics.
This model-independent framework allows one to investigate
general thermodynamic processes by relying solely on the
assumptions of total energy conservation and thermality of en-
vironments. Its broad scope has allowed us to establish bounds
on the size of the bath required for the thermalization of a
many-body system [27], bridge the gap between Markovian
and non-Markovian thermal processes [28,29], and uncover
optimal heat-bath algorithmic cooling strategies [30], among
other significant results (see Refs. [26,31] for recent reviews).
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In this work, we systematically probe the capability of
using thermal processes to generate entanglement when given
access to some initial state. In the particular case of two
qubits, we derive necessary and sufficient conditions for the
existence of a thermal process that transforms a given sep-
arable initial state into a final state that is entangled. These
conditions depend only on the energetic populations of the
two-qubit system. A key insight that led to this finding, is the
observation that a generic entangling strategy can be decom-
posed into two independent procedures: one that is explicitly
achieved by open system dynamics (interaction with heat bath
that results in changes of energetic population), and another
closed unitary operation, i.e., an optimal rotation within the
global energy subspace. The consistency of our results is
confirmed by the problem addressed in Refs. [11,13], where
the authors investigate two-qubit mixed states and determine
unconstrained global unitary operations that generate maxi-
mal entanglement. We approach the considered problem with
additional restrictions on the allowed operations, motivated by
cornerstone findings on thermodynamic resource theories. To
be specific, we assume that entangling operations must fall
into the set of thermal operations [23,32].

Using the above framework we provide an explicit con-
struction of the set of separable states that can become
entangled. The degree of entanglement in this set can be
assessed either by the volume of the set or by their negativity.
In this regard, our results show that a Bell pair can always
be thermodynamically produced at any temperature regime,
provided that the system is initialized in its pure excited state.
We also discuss the generation of entanglement in the pres-
ence of dissipation, examining the behavior of the volume
of the future thermal cone of entanglement under Markovian
thermal processes, and comparing it with the closed dynamics
case. Finally, we offer some remarks on how our results can
be extended to systems beyond two qubits.

The paper is organized as follows. We start by motivating
how thermal resources can be used to generate entanglement
in Sec. II, using an experimentally relevant example involving
two spins interacting with a cavity mode. After this warmup,
we set the scene in Sec. III by recalling the resource-theoretic
approach to quantum thermodynamics. In Sec. IV, we rig-
orously define the main quantifiers used for entanglement
generation under thermal operations in arbitrary dimensions.
Section V focuses on the two-qubit system, and we derive
necessary and sufficient conditions for entanglement prepara-
tion, and proceeds to quantify the entanglement generated and
discuss its applicability. We discuss in Sec. VI how the task of
entanglement generation changes for continuous-time thermal
processes and high-dimensional systems, and conclude with
an outlook in Sec. VII.

II. MOTIVATING EXAMPLES

Let us begin with a warmup example that gives a flavor
of the main investigation. Consider two qubits A and B, with
the former prepared in the ground state and the latter in the
excited state. The joint state of the composite system is given
by ρAB = |01〉〈01|. Furthermore, assume that each qubit is
described by the Hamiltonian H0 = E |1〉〈1|, the composite
AB is described by a Hamiltonian H = H0 ⊗ 1 + 1 ⊗ H0.

This Hamiltonian gives rise to the degenerate energy subspace
VE = span{|01〉, |10〉}, associated with energy E . Then any
unitary acting nontrivially only on VE is energy preserving,
including

U = 1√
2

(
1 1
1 −1

)
⊕ 1H\VE , (1)

that maps product states |01〉 and |10〉 into Bell states |φ+〉 and
|φ−〉, where |φ±〉 = 1√

2
(|01〉 ± |10〉). In particular, when the

initial state is either |01〉 or |10〉, this transformation can be
implemented with Jaynes-Cummings interactions only [33]

HJC = σ+
A(B) ⊗ aR + σ−

A(B) ⊗ a†
R, (2)

albeit indirectly by introducing a mediating bosonic mode
R [34]. We use the notation σ+ = |1〉〈0| and σ− = |0〉〈1| for
each qubit A or B, while aR and a†

R are the annihilation and
creation operators for the bosonic mode.

Suppose now that both qubits are prepared in the ground
state, ρAB = |00〉〈00|. Then, it is impossible to entangle them
using Eq. (1), or any other energy-preserving unitary acting
on the composite AB, as ρAB has no support in VE . However,
in the presence of a thermal bath, the populations of the
composite system can be modified, thereby enabling the gen-
eration of entanglement. A simple yet experimentally relevant
example illustrating this effect involves a two-step proto-
col. First, assume access to a bosonic mode with a resonant
Hamiltonian HR = Ea†

RaR, thermalized with respect to an
inverse temperature β. Qubit B interacts with the bosonic
mode for a finite time, which creates nonzero support of the
composite state in VE. Second, apply the unitary given in
Eq. (1). This two-step protocol transforms ρAB into

σAB = f (βE )|00〉〈00| + [1 − f (βE )]|φ+〉〈φ+|. (3)

The ground-state population f (βE ) depends on the inter-
action Hamiltonian and the duration of the interaction, in
addition to the temperature and the energy gap. Let us assume
that we apply Jaynes-Cummings interaction in Eq. (2) and
optimize the time duration to minimize f (βE ). It turns out
that this optimized quantity decreases monotonically as βE
decreases. Hence, by additionally allowing the initial state
ρAB = |00〉〈00| to interact with a thermal bath, one can gener-
ate entangled states; higher amounts of entanglement can be
observed at higher temperatures as well as with smaller energy
gaps. The same protocol can be applied when both spins are
excited. However, for this initial state, contrary to the previous
example, f (βE ) is the smallest, and thus the final state is more
entangled, when the ambient temperature is lower. In Fig. 1,
we quantify the optimal amount of entanglement produced in
these two cases, measured via the negativity, as a function of
the inverse temperature of the bosonic mode.

In the above discussion, we have constructed specific
thermal processes that precondition the composite state into
entangleable ones, by using a simple bosonic mode and the
Jaynes-Cummings interaction. A natural question follows:
What is the ultimate bound of the entanglement genera-
tion, for the most generic, all-encompassing set of thermal
processes?
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FIG. 1. Negativity as a function of βE . Preprocessing the spin
system by coupling to a thermal bath opens up the possibility of
generating entanglement through energy-preserving unitaries that
encode the laws of thermodynamics. We plotted the maximal neg-
ativity [35] [defined in Eq. (31)] obtainable by a two-step process
(i) transforming one of the spins via Jaynes-Cummings interaction
with a thermal bosonic mode and (ii) applying the entangling unitary,
Eq. (1). The x axis is the product of inverse environment temperature
β and energy gap E . The black solid curve represents the resulting
negativity from a state initially prepared in the ground state, while
the purple dashed curve is that of the initially fully excited state.

III. SETTING THE SCENE

We investigate entanglement generation in an N-partite
system whose initial state and the noninteracting Hamiltonian
are given as

ρ ∈ conv

(
N⊗

i=1

ρi

)
and H =

N∑
i=1

1⊗(i−1) ⊗ Hi ⊗ 1⊗(N−i).

(4)
The assumption that the Hamiltonian is noninteracting is nat-
ural, and excludes the trivial scenario of entangling simply
via a fully thermalizing process. The Hilbert space of the
composite system is denoted by H = ⊗N

i=1 Hi. The energy
level structure creates a natural division of the full Hilbert
space into energy-degenerate subspaces VE ,

H =
⊕

E

VE , (5)

where VE = span{|ψ〉 ∈ H : H |ψ〉 = E |ψ〉}. Note that
energy-preserving unitaries acting on H are those that can
be written as U = ⊕

E UE , where each unitary UE acts on
VE . In other words, they do not mix states from different
energy subspaces—an essential feature for subsequent
considerations.

A. Thermal operations

The multipartite system interacts with the thermal environ-
ment that is initialized in a Gibbs state

γR = e−βHR

Tr(e−βHR )
, (6)

with a Hamiltonian HR and an inverse temperature β. We
make minimal assumptions on the joint system-bath dynam-
ics: the composite system is closed and thus evolves unitarily;
in addition, this unitary evolution is energy preserving. For-
mally, this leads to a set of operations known as thermal

operations (TOs) [23], which transform the state ρ as follows:

E (ρ) = TrR[U (ρ ⊗ γR)U †], (7)

where U is a joint unitary that commutes with the total
Hamiltonian of the system and the bath

[U, H ⊗ 1R + 1 ⊗ HR] = 0, (8)

and the environment Hamiltonian HR can be chosen arbi-
trarily. Given that there are no further constraints on U , the
system and the bath can develop arbitrarily strong correlations
(including entanglement).

B. State transformation conditions

We focus on energy-incoherent states ρ, which means that
each partition is (block) diagonal in the energy eigenbasis,
resulting in an output state that is also (block) diagonal.
Mathematically, the multipartite state ρ commutes with the
Hamiltonian, i.e., [ρ, H] = 0. Under this assumption, the state
ρ can be fully represented by a probability vector p consisting
of the eigenvalues of ρ, which correspond to populations
in the energy eigenbasis, ρ = ∑

i pi|Ei〉〈Ei|. We henceforth
directly refer to p = (p1, . . . , pd ) as energy-incoherent states,
which live within the probability simplex

�d =
{

p = (p1, . . . , pd ) ∈ Rd
�0 :

∑
i

pi = 1

}
. (9)

Analogously, the thermal equilibrium state of the system,
Eq. (6) with HR replaced by H , can be represented by a vector
of thermal populations, denoted as γ .

When considering transformations between different
energy-incoherent states under thermal operations, an impor-
tant aspect of a state is its associated β order, a permutation
which arranges populations, rescaled with respect to the Gibbs
state, in a nonincreasing order.

Definition 1 (β ordering). Suppose that population vectors
p and γ , corresponding to a d-dimensional system state and its
Gibbs state with respect to the ambient temperature 1/β, are
given. The β ordering of p is given as a permutation πp ∈ Sd

of energy levels within the symmetric group Sd , such that the
elementwise ratio between p and γ is nonincreasing, i.e.,

p(πp)i

γ(πp)i
�

p(πp) j

γ(πp) j

, for all i � j. (10)

For simplicity, we also denote a β ordering π as a vector
π = [π (1), π (2), · · · , π (d )] in the rest of the paper. For the
specific case of d = 4, we denote the β ordering (2,1,3,4) as
π
, since it plays a special role in entanglement generation,
which will become clear in Sec. IV (Theorem 1).

Finally, the set of states T+(p) that can be achieved via
thermal operations from a given initial state p is called the
future thermal cone [36,37]. This set is a convex polytope
comprising at most d! extreme points, each corresponding to
different β orderings π [36,37]. Mathematically, it is repre-
sented by:

T+(p) = conv[pπ,π ∈ Sd ], (11)

where pπ are extreme points characterized by thermoma-
jorization [38] (see Lemma 2, Appendix A). Again, for d = 4,

033236-3



DE OLIVEIRA JUNIOR, SON, CZARTOWSKI, AND NG PHYSICAL REVIEW RESEARCH 6, 033236 (2024)

we denote the extreme point corresponding to the ordering π


as p
.
Although not explicitly stated, it is important to mention

that the existence of a thermal operation that induces the
transition between incoherent states p → p′ is equivalent to
the existence of a Gibbs-preserving (GP) stochastic matrix
mapping between these states [23]. Therefore, when studying
the thermodynamic interconversion problem between block
diagonal states, one can focus on stochastic matrices and prob-
ability vectors instead of CPTP maps and density matrices.
Nonetheless, our forthcoming discussion will primarily center
on the concept of thermal cones, rather than on GP matrices
or thermal operations.

IV. ENTANGELABILITY UNDER THERMAL OPERATIONS

In this section, we introduce the main definitions that will
enable us to derive the necessary and sufficient conditions for
entangling a separable state under thermal operations. At first
glance, this might appear abstract due to its generality, but
these notions will be applied to a specific case in Sec. V.

We begin by defining a subset of unitary operations that
preserve the energy of the system and keep the energy level
structure intact. Note that this is motivated by capturing the
thermodynamic constraints in producing entanglement when
the system is closed, i.e., when the unitary dynamics satisfy
energy conservation. We refer to this subset as energy sub-
space unitaries, denoted by Usubs. Formally, this set is given
by

Usubs =
{

Usubs =
⊕

E

UE

}
, (12)

where UE acts on VE subspace of definite energy E . Conse-
quently, any unitary operation from this set is an admissible
operation within the framework of thermal operations.

Let us note that the existence of energy-degenerate
subspaces containing entangled states is necessary for our ap-
proach to entanglement generation using thermal operations.
If there are no such subspaces, all entangled states require
coherence between eigenstates corresponding to different en-
ergies, which cannot be generated via thermal operations [39].
Alternatively, one can consider slightly different set of opera-
tions that can create the coherence, such as Gibbs-preserving
operations [40] or quantify the entanglement generation cost
by incorporating batteries in the picture.

Next, we introduce an entanglement measure M, which
is non-negative for all separable states, M(ρsep) � 0. One
such entanglement measure which we focus on is derived
from the famous Horodecki-Peres positive partial transpose
(PPT) criterion [41,42], which states that separable states
have positive partial transpose, ρTA � 0; using this, we define
M(ρ) := min|ψ〉〈ψ |ρTA |ψ〉 = λ− as the minimal eigenvalue
of the partial transpose. Therefore, the quantity

f (p) := min
U∈Usubs

M(UρU †) (13)

is a good witness for the thermodynamic capacity of creating
entanglement from p via closed, energy-conserving system
dynamics.

Definition 2 [Subspace (non)entangleable set]. Given a
state p ∈ �d , the subspace nonentangleable set is defined as
the set of states that remain PPT under subspace rotations, i.e.,

NE := {p | f (p) � 0}. (14)

The function f acts as an entanglement witness, i.e., f (p) � 0
implies the possibility of creating entanglement. Furthermore,
the subspace entangleable set is defined as the complement of
NE, i.e., E := �d\NE.

This definition can be extended by employing multiple
entanglement measures M1, . . . ,MM , resulting in multiple
witnesses f1, . . . , fM , and requiring that all these functions
yield positive values.

It is important to note that states in the set E are entan-
gleable even when neither heat or work exchange are allowed.
Notably, when thermal resources are available, i.e., under
thermal operations, the set of entangleable states expand.

Definition 3 (Future thermal cone of entanglement). The
future thermal cone of entanglement of a state p is defined as

T ENT
+ (p) := {q | f (q) < 0, q ∈ T+(p)} = T+(p) ∩ E. (15)

Now we introduce the primary object of this paper: the
set of states that cannot become entangled under thermal
operations.

Definition 4 (Thermally nonentangleable set). Given the
ambient temperature β−1, the thermally nonentangleable set
is defined as

TNE(β ) =
{

p | min
q∈T+(p)

f (q) � 0

}
, (16)

with the entanglement measure M. Analogous to E, we
also define the set of thermally entangleable states TE(β ) :=
�d\TNE(β ).

By definition, p is thermally nonentangleable if and only if
its future cone of entanglement is empty, i.e.,

p /∈ TNE(β ) ⇐⇒ T ENT
+ (p) = ∅. (17)

We can then characterize TNE(β ) with the following propo-
sition. Hereafter, we drop the explicit dependence on β in
TNE and TE when there is no concern for confusion.

Proposition 1 (Thermally nonentangleable set). Suppose
that the entanglement measure M is a concave function. Then
the set TNE can be written as

TNE = {p | ∀π f (pπ ) � 0}. (18)

When βE = 0, the above expression simplifies to

TNE =
⋂

π∈Sd

{p | f (�p) � 0} =:
⋂

π∈Sd

π, (19)

where � represents a permutation matrix corresponding to
π ∈ Sd ; in particular, for π = id we have id = NE.

Definition 3 also allows us to quantify the entanglement
generation power using geometric measures. The volume of
the future thermal cone of entanglement can gauge how useful
an initial state is for producing entangled states. Given a state
p, this quantity is defined as

VENT
TO (p) := V [T ENT

+ (p)]

V (�d )
, (20)
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where V is the volume measured using the Euclidean metric.
Likewise, the volume of (non)entangleable sets, defined in
Definitions 2 and 4, are denoted as

VX := V (X)

V (�d )
, X = NE, E, TNE. (21)

V. TWO-QUBIT SYSTEMS

Let us now apply the general framework we developed to
a specific scenario: two-qubit entanglement. In this section,
we find an efficient criterion for determining whether a two-
qubit state p is thermally nonentangleable, which only checks
if p
 is subspace nonentangleable. We also study the geometry
of the future thermal cone of entanglement and the thermally
nonentangleable set for different ambient temperatures.

A. Subspace entangleable set for two qubits

Assume that Alice and Bob share a pair of qubits that are
initially prepared in a separable state ρAB. Each of them is
described by a local Hamiltonian HA = HB = E |1〉〈1|, and
they are allowed to interact with a single heat bath via thermal
operations. If there exists a thermal operation that maps ρAB
to σAB, where [ρAB, H] = 0 and [σAB, H] = 0, then σAB can
be expressed as

σAB = q1|00〉〈00| + q2|ψ〉〈ψ | + q3|ψ⊥〉〈ψ⊥| + q4|11〉〈11|,
(22)

where |ψ〉, |ψ⊥〉 ∈ VE and 〈ψ |ψ⊥〉 = 0. This observation fol-
lows from the fact that one can freely rotate the populations
within the degenerate energy subspace. The unitary that con-
nects |ψ〉 = U |10〉 and |ψ⊥〉 = U |01〉 can be written with two
parameters θ, φ ∈ [0, 2π ]

U =
(

cos θ sin θeiφ

− sin θe−iφ cos θ

)
⊕ 1H\VE , (23)

apart from an irrelevant phase factor, global to VE . Then the
final state σ reads

σ=

⎛
⎜⎜⎜⎝

q1 0 0 0
0 q2 cos2 θ + q3 sin2 θ

(q3−q2 )
2 sin 2θeiφ 0

0 (q3−q2 )
2 sin 2θe−iφ q2 sin2 θ + q3 cos2 θ 0

0 0 0 q4

⎞
⎟⎟⎟⎠.

(24)
For a two-qubit system, separability can be fully de-

termined by the positive partial transposition (PPT) crite-
rion [41,42]. When the partial transposition is applied to the
state σ in Eq. (24), its smallest eigenvalue is

λ− = 1
2

[
(q1 + q4) −

√
[(q2 − q3)2 sin2 2θ + (q1 − q4)2]

]
,

(25)
which is minimized when sin2 2θ = 1.1 Thus, λ− can become
negative if and only if

4q1q4 < (q2 − q3)2. (26)

In other words, a state with population vector
q = (q1, q2, q3, q4) is subspace entangleable if and only

1This minimum value coincides with the case where we diagonalize
the energy degenerate subspace in Bell basis, i.e., |ψ〉, |ψ⊥〉 = |�±〉.

FIG. 2. Subspace entangleable set E. Geometry of the set of
states that can get entangled via energy-preserving unitaries acting on
the degenerate energy subspace. Note that the set E consists of two
disjoints sets each on the opposite side of the plane p2 = p3 colored
in blue.

if Eq. (26) is true. We will refer to this inequality as the
entanglement constraint or criterion. In addition, we define an
associated entanglement measure

f (q) := 4q1q4 − (q2 − q3)2, (27)

which detects entanglement whenever f (q) < 0.
Figure 2 depicts the subspace entangleable set E (see

Fig. 11 in Appendix B for its complement NE). States in E
can become entangled by some energy-preserving unitary of
the form Eq. (23).

The sets NE and E are independent of the ambient tem-
perature and their volume can be calculated by numerical
methods or direct integration. Remarkably, the normalized
volume of E is approximately VE ≈ 21/62; much less than
half of the states in �4 are subspace entangleable. In con-
trast, as we note in Sec. V C, the future thermal cone of
entanglement of the highest excited state p = (0, 0, 0, 1) is
precisely E, as this state can achieve any other state in the
probability simplex, regardless of the ambient temperature.
Hence, the full volume VE can be achieved via thermal op-
erations. Furthermore, we prove the convexity of the subspace
nonentangleable set, find its extreme points, and identify a
continuous family of boundary points (Appendix B).

B. Thermally entangleable states

We now construct the set of states that can generate en-
tanglement with the help of a thermal environment. In the
simple case of βE = 0, its complement, the set of thermally
nonentangleable states TNE, can be immediately constructed
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FIG. 3. Thermally nonentangleable states TNE for βE = 0. States that belong to the colored geometrical shape cannot get entangled
under thermal operations when βE = 0.

from Proposition 1. The resulting set is convex and occu-
pies approximately one third of the probability simplex (see
Fig. 3). However, the structure of this set becomes more in-
tricate when βE �= 0. Nevertheless, we simplify the problem
by showing that the task of determining whether p ∈ TNE,
defined by Eq. (16) as including a nontrivial minimization, is
reduced to verifying if p
 ∈ NE, which only requires check-
ing a single inequality f (p
) � 0.

Theorem 1 (Criterion for determining p ∈ TE). Let p be
a two-qubit state in TE. Then p
, the extreme point of T+(p)
corresponding to the β ordering π
 = (2, 1, 3, 4), is in E.

The full proof is detailed in Appendix C, and consists in
two main steps. First, we identify π
 as a special β order-
ing for subspace entangleability: whenever p ∈ TNE, there
exists a state q ∈ T ENT

+ (p) with the ordering π
 (Theorem
6). Next, we use a geometric argument (Proposition 7) to
prove that whenever there exists such q, the extreme point
p
 is also subspace entangleable, i.e. p
 ∈ T ENT

+ (p). It is,
however, important to note that Theorem 1 does not imply
that the minimum of f (q) over q ∈ T+(p) is always achieved
when q = p
. For a simple counterexample, consider a state
p = (ε, 1 − ε − ε2, 0, ε2) with ε � e−2βE . The state p has
a β ordering (2, 1, 4, 3), yet a smaller f value f (p) < f (p
)
compared to p
.

The interplay between the temperature β−1 of the immedi-
ate environment and the ability to entangle a system manifests
in Theorem 1 through the β ordering. We numerically quan-
tify the volume of the thermally nonentangleable state set
TNE in Fig. 4. For any finite temperature regime β > 0,
determining all states that are thermally nonentangleable is
not straightforward. We devise a computationally efficient
algorithm, using Theorem 1 and the vacuum-packing-inspired
procedure, that approximates TNE for given β:

(1) Generate a regular grid on the surface of the probabil-
ity simplex �3.

(2) Select a point p(0)
o from the grid and the Gibbs state

p(0)
i = γ . With this choice, we are guaranteed to have p(0)

o ∈
TE and p(0)

i ∈ TNE.2

(3) In the jth step of the procedure we define mid-
point p( j)

m = 1
2 (p( j)

i + p( j)
o ) and, based on Theorem 1, decide

2Except for a single case p(0)
o = 1

1+2e−βE (1, e−βE , e−βE , 0).

whether p( j)
m is an element from the nonentangleable set. If

p( j)
m ∈ TNE, then p( j+1)

i = p( j)
m ; else p( j+1)

o = p( j)
m .

(4) Repeat the bisection step n = 30 times, achieving the
precision ‖p(n)

i − p(n)
o ‖ ≈ 10−9‖p(0)

i − p(0)
o ‖.

(5) Add the point p(n)
m to the approximate set T̃NE.

(6) Repeat steps (ii)–(v) for all the grid points.

The convex hull of the final set conv(T̃NE) is a good
approximation of the actual nonentangleable set TNE. The
numerical result in Fig. 4 exhibits a monotonic behavior, indi-
cating that low temperatures enhance entangleability. Indeed,
this outcome is intuitively expected. Thermal processes per-
mit the local bypassing of strict energy preservation, thereby
offering advantage in terms of entanglement generation. Yet,
thermal noise inevitably accompanies thermal processes, im-
pacting the amount of achievable entanglement. The negative
impact of thermal noise is anticipated to be minimized at
lower environmental temperatures. We confirm this first by
observing that the set of non-entangleable states TNE van-
ishes at the zero temperature limit β → ∞. Moreover, we can
make a more rigorous observation.

Lemma 1. The set TNE(∞) = {(1, 0, 0, 0)}, i.e., it con-
tains only the ground state.

FIG. 4. Optimal entanglement generation regime. The top plot il-
lustrates the approximated log volume of the set of states that cannot
become entangled, as a function of β. The bottom plot demonstrates
how the geometry of this set changes at specific values of β.
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Proof. Given any other initial state, it is possible to
thermalize one of the subsystems; in the zero-temperature
limit (β → ∞), this transforms a state p = (p1, p2, p3, p4)
into q = (p1 + p3, p2 + p4, 0, 0) or (p1 + p2, p3 + p4, 0, 0).
However, in this specific scenario, it is sufficient to assume
entanglement because the last two levels are empty while the
second level is populated. Consequently, f always becomes
negative. Thus, for any state p �= (1, 0, 0, 0), the final state q
is subspace entangleable, i.e., p ∈ TE. �

One may be tempted to view the ground state (1,0,0,0)
then as useless for entanglement generation; however, this is
not true. In particular, the ground state becomes thermally
entangleable whenever β−1 �= 0: one can thermalize one of
the subsystems to obtain q = 1

1+e−βE (1, e−βE , 0, 0), which is
subspace entangleable. What is observed is that as long as
there is a certain amount of athermality in the initial state (with
respect to environment temperature), we can often trade it for
some amount of entanglement.

Given the above, it is then intuitive to see that given an
initial state p, the range of environmental temperature that
allows for entanglement generation is very much state de-
pendent. In particular, we are able to identify critical inverse
temperatures βC , at which a state p starts to become thermally
(non)entangleable. In fact, we show that βC , if exists, can
be directly calculated for any state by employing Theorem
1 alongside the entanglement constraint in Eq. (26). Interest-
ingly, for some states two critical temperatures βC1 < βC2 exist
and the state becomes entangleable when β < βC1 or β > βC2 .
A particularly clear analysis can be done when the initial
state themselves are thermal, having a temperature βS �= β in
principle different from the ambient temperature. We report
the conclusions here, while directing the curious reader to the
full calculation in Appendix D.

Thermal initial states are written as

p = 1

ZS

(
1, e−βSE , e−βSE , e−2βSE

)
, (28)

where ZS = (1 + e−βSE )2. When the system is colder than the
environment, βS > β, the β ordering of the state is (1,2,3,4).
Finding the explicit form of the extreme point p
 and solving
f (p
) = 0, we may obtain the critical temperature

βC1 ≡ βS − E−1 log
[
1 + 2e−βSE (

√
e2βSE + 1 − 1)

]
. (29)

Whenever the ambient temperature β−1 is higher than the
critical temperature β−1

C1
, the thermal state p becomes ther-

mally entangleable. We can obtain a simple approximation
βC1 � βS − E−1 log 3 of Eq. (29) up to the zeroth order of
e−βSE in the low system temperature limit βSE � 1.

On the other hand, when the system is hotter than its
surrounding, i.e. βS < β, the critical temperature can be ob-
tained from a quartic equation and we do not have an explicit
formula for it. However, in the same limit βSE � 1, we can
approximate βC2 � βS + E−1 log 3. In other words, if

|βS − β| � E−1 log 3, (30)

then we may operate such a thermal machine to gener-
ate entanglement. See Fig. 5 for the numerical values of
the critical temperatures, which clearly displays the validity
of our approximation βC � βS ± E−1 log 3. As mentioned

FIG. 5. Thermal state and entangleability. Critical temperatures
of an environment for thermal initial states, where the qubit energy
gap is set to E = 1. The x axis indicates the inverse temperature βS of
the initial state and the y axis marks the ambient inverse temperature
β. If the pair (βS, β ) is in either blue or red shaded region, the thermal
initial state is entangleable. The blue and red lines mark the hot
critical (inverse) temperature and cold critical (inverse temperature)
for the environment to make the thermal initial state entangleable.

earlier, the temperature difference between the system and the
environment is a resource for entanglement generation, as it is
for many other thermodynamic tasks. This process can be con-
ceptualized as a type of heat engine, which aims not to output
work, but entanglement. For instance, consider a three-stroke
thermal-entanglement engine whose working substance is a
two-qubit system. This engine operates between an ambient
bath at temperature β−1 and a working bath with tempera-
ture β−1

W : |β−1
W − β−1

C | > 0. The cycle proceeds as follows:
(i) the two-qubit system thermalizes with the working bath,
reaching equilibrium state at the working bath’s temperature
β−1

W , which corresponds to acquiring the initial athermality.
(ii) The system is then brought into contact with the ambient
bath, which is at temperature β−1 providing the underlying
free thermal operations. During this stage, entanglement is
generated within the two-qubit system. To close the cycle (iii)
the generated entanglement is used, and the system is returned
to its initial state, which is energy incoherent. Observe that this
cycle cannot generate entanglement if the thermal operations
are replaced by energy-preserving unitaries. The possibility of
heat exchange with the ambient bath in (ii) is the critical factor
that allows the entanglement generation from athermality.

C. Quantifiers for achievable entanglement
under thermal operations

In the previous sections, we focused on determining
whether a state is entangleable or not using thermal re-
sources. Here, we are additionally interested in the extent
of entanglement that thermal operations can produce, and
how this varies across different temperature regimes. Two
figures of merit can be used to quantify this extent: the ther-
mal volume of entanglement, VENT

TO (p) as defined in Eq. (20)
and the maximum negativity [35] that the initial state can
produce. In particular, the thermal volume of entanglement
is a thermodynamic monotone, in other words, VENT

TO (p) �
VENT

TO (q) for all q ∈ T+(p). Further insights on this quantity
can be developed by considering the geometry of the future
thermal cone of entanglement T ENT

+ (p). Recall in Definition 3,
T ENT

+ (p) is the intersection of two sets: E and T+(p). We also
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FIG. 6. Regions of entanglement. The evolution of the future and
entanglement thermal cones as a function of β reveals interesting
behavior. For a bipartite product state p = (0.5, 0.5) ⊗ (0.24, 0.76)
with an identical energy gap E = 1, we observe that at β = 0, the
state cannot be entangled via thermal operations. However, for β �
βC ≈ 0.21, the state becomes entangleable. As β increases, the two
disjoint parts of T ENT(p) become closer, until at β → ∞, they are
separated only by a plane p2 = p3.

know that E is nonconvex and not connected, hence T ENT
+ (p)

is also nonconvex and not connected (see bottom panel of
Fig. 6). However, as the temperature decreases, two disjoint
parts grow in sizes and approach each other, becoming almost
connected; this is a natural consequence of the future thermal
cone approaching the plane p4 = 0, which is on the boundary
of E.

The change in volume VENT
TO (p) with respect to β is,

however, heavily dependent on the initial state. To see this,
consider the energy eigenstates, i.e., four vertices of the prob-
ability simplex �4 as described explicitly in the caption of
Fig. 7. For the ground state p1, VENT

TO (p1) decreases with β

(black solid curve, top panel of Fig. 7), because the future
thermal cone T+(p1) shrinks as the Gibbs state γ approaches
the ground state as β increases. On the other hand, for the
maximally excited state p4, T+(p4) remains constant (red dot
curve, top panel of Fig. 7), since the future thermal cone
encompasses the entire probability simplex, regardless of the
ambient temperature. In this case, the future thermal cone
of entanglement is precisely E. Finally, for both p2 and p3,
the thermal volume of entanglement decreases with β, albeit
slower than that of p1.

The second figure of merit is negativity [35],

N (ρ) = ‖ρTA‖1 − 1

2
=

∑
i

|λi| − λi

2
, (31)

where λi represents all the eigenvalues of ρTA . Equivalently,
N (ρ) = ∑

j |λ−
j |, where λ−

j are negative eigenvalues of ρTA .
Therefore, if the system is qubit-qubit or qubit-qutrit, nonzero
negativity is necessary and sufficient for the state being entan-
gled; for any larger systems, there exist entangled states with
zero negativity [43,44]. In the qubit-qubit system we are ex-
amining, given a population vector q = eig(σ ), the maximal
negativity can be obtained from Eq. (25) as

N (σ ) = 1
2 [
√

(q1 − q4)2 + (q2 − q3)2 − (q1 + q4)], (32)

FIG. 7. Volume and negativity as a function of β. For all
sharp states p1 = (1, 0, 0, 0), p2 = (0, 1, 0, 0), p3 = (0, 0, 1, 0), and
p4 = (0, 0, 0, 1), we plot the thermal volume of entanglement (top),
and the largest negativity as a function of the inverse temperature.
Among all states, two are distinct: when both qubits start in the
excited state p4 and when they start in the ground state (black solid
curve) p1. Any other permutation of the initial state characterizes
a different active state, and their volume is represented by the blue
dotted curve on the top panel. Note that this plot also represents the
normalized volume of subspace entangleable states, since the thermal
cone of p4 is the full set space. Moreover, although the maximum
achievable negativity of p4 is the same as, e.g., (0, 1, 0, 0), it is
much more powerful in terms of state preparation, which can be
useful since entanglement is in general irreversibly manipulated. In
the bottom panel, the maximum negativity of these states coincides
with the maximally active state.

when f (q) < 0, which has also been expected from Ref. [11]
in a different context. Observe that Eq. (32) is related to
Eq. (27) via

N (σ ) = 1
2 [
√

(q1 + q4)2 − f (q) − (q1 + q4)], (33)

and monotonically decreases as f (q) increases. For f (q) � 0,
the negativity is always zero.

The maximum negativity over all probability simplex �4

occurs when q = (0, 1, 0, 0) or q = (0, 0, 1, 0) and the cor-
responding state are the Bell states. If the system is initially
in one of the four vertices of �4, it is possible to prepare Bell
states via thermal operations when β = 0. However, as β � 0,
the ground state p1 loses its ability to produce a Bell state,
while three other pure states remain capable. The maximum
negativity that p1 can produce decreases as β increases.

As argued, maximum negativity is only reachable for very
specific initial states. The natural question is how much neg-
ativity can be produced via thermal operations for general
states. While the answer to this question depends heavily on
the specific state under consideration, one can gain a gen-
eral understanding by visualizing the degree of negativity
generated by states that lie in the subspace entangleable and
thermally entangleable sets. Figure 8(a), shows the maximal
attainable negativity evaluated for all points in E. Specifi-
cally, we consider different slices of the probability simplex,
each having fixed p1. This approach allows us to visualize
the distribution and intensity of attainable negativity across
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FIG. 8. Quantifying entanglement generation via thermal operations. The degree of negativity produced under energy-preserving unitaries
and thermal operations can be visualized by slicing the entangleable and thermally entangleable sets and computing their maximal negativity.
For two qubits with populations p = (p1, p2, p3, p4), we observe a high level of negativity in (a) subspace entangleable set and (b) thermally
entangleable set for β = 0.

various configurations. Similarly, Fig. 8(b) depicts the nega-
tivity for the thermally entangleable set at β = 0. Note that,
even when the initial state is not exactly the one that produces
the maximum negativity, one can still obtain an amount of
negativity close to the maximum.

VI. ADDITIONAL DISCUSSIONS

A. Generation of entanglement in the presence of dissipation

So far, our discussion revolved around the assumption that
any energy-preserving system-bath dynamics is accessible.
However, one can also consider the scenario where the system
undergoes an open dynamics described by a Lindblad master
equation [45–47],

dρ(t )

dt
= −i[H, ρ(t )] + Lt [ρ(t )], (34)

where [·, ·] denotes the commutator and Lt is the Lindbladian
having the general form

Lt (ρ) =
∑

i

ri(t )

[
Li(t )ρLi(t )† − 1

2
{Li(t )†Li(t ), ρ}

]
, (35)

with {·, ·} denoting the anticommutator, Li(t ) being jump
operators, and ri(t ) � 0 being non-negative jump rates. Fur-
thermore, assuming that the quantum system interacts with
a large heat bath implies that the system Gibbs state is
a stationary solution of the dynamics, Lt (γ ) = 0 and that
the Lindbladian Lt commutes with the generator of the
Hamiltonian dynamics −i[H, ·] for all times t .

The dynamics generated by master equations that satisfy
two aforementioned properties lead to what is known as a
Markovian thermal process, which is known to be a strict sub-
set of thermal operations [48]. The differences between them
arise from our degree of control on the bath. Nonetheless,

the entanglement criterion given in Eq. (26) remains valid for
Markovian thermal processes. Consequently, we can study the
entanglement generation in the presence of dissipation using
the same criterion function f .

The additional restriction stemming from the Markovianity
of the Lindblad master equations is the most evident when
considering the highest excited state p = (0, 0, 0, 1) as the
initial state. As analyzed in Sec. V C, the volume of the future
thermal cone of entanglement VENT

TO (p) defined in Eq. (20)
remains maximal for all inverse temperatures β, when we can
utilize any thermal operation to generating entanglement. In
Fig. 9(a), we present how the volume VENT

TO (p) varies as a
function of β, when only Markovian thermal processes are
allowed. For any β, the volume VENT

TO (p) > 0 indicates that the
entanglement generation via dissipative dynamics is possible.
However, the difference between the entanglement generation
via thermal operations is the most pronounced in the high-
temperature limit, i.e. when β is small. Furthermore, in the
limit β → ∞, Markovian thermal processes are as capable as
thermal operations for generating entanglement. The detailed
behavior of the future thermal cone of entanglement under
MTP is depicted in Fig. 9(b).

B. Remarks on higher-dimensional systems

The entanglement structure for multipartite systems with
more than two parties is notoriously complex. Multipartite
entanglement can be classified using equivalence classes de-
fined with invertible local transformations. Two states are
considered to have the same class of entanglement if one
can be transformed into the other via LOCC with a nonzero
probability [49]. Even in the simplest three-qubit systems, one
encounters two distinct classes of entanglement: GHZ-like
entanglement and W-like entanglement [49,50], represented

033236-9



DE OLIVEIRA JUNIOR, SON, CZARTOWSKI, AND NG PHYSICAL REVIEW RESEARCH 6, 033236 (2024)

FIG. 9. Entanglement generation via Markovian thermal pro-
cess. The top plot illustrates the volume of the future thermal cone of
entanglement as a function of β for a bipartite system ρAB = |11〉〈11|
undergoing a Markovian thermal process, depicted by the solid green
curve. The dashed orange line represents the volume of the future
thermal cone of entanglement for the same state, but under thermal
operations. In the bottom plot, the evolution of the Markovian future
thermal cone of entanglement (green) with respect to β is shown.
Here, the orange shape depicts the future thermal cone under TO,
while the internal lighter color with green vertices represents the
future cone under MTP.

by the states

|GHZ〉 = |000〉 + |111〉√
2

, |W〉 = |001〉 + |010〉 + |100〉√
3

.

(36)

The n-qubit extensions of two classes exist. In particular,
n-qubit GHZ states are defined as

|GHZn〉 = 1√
2

⎛
⎝|0 . . . 0〉︸ ︷︷ ︸

n

+ |1 . . . 1〉︸ ︷︷ ︸
n

⎞
⎠, (37)

an equal superpositions of all n qubits being in the ground
state and in the excited state. The concept of W-like entangle-
ment is similarly generalized to n-qubit Dicke states

|Dm〉 =
(

n

m

)−1/2 ∑
σ∈Sn

Pσ

⎛
⎝|0 . . . 0〉︸ ︷︷ ︸

n−m

⊗ |1 . . . 1〉︸ ︷︷ ︸
m

⎞
⎠, (38)

where the sum goes over all permutations σ on n elements and
Pσ are the respective matricial representations. These states
form a basis for the symmetric subspace of an n-qubit system.

Remarkably, different energy level structures give rise to
different entanglement structures that can be achieved using
thermal operations. Let us assume that the Hamiltonian of
the ith qubit is Hi = Ei|1〉〈1|. First, if all the energy gaps are
equal, i.e., Ei = E , then the n-qubit Hilbert space is divided

into energy-degenerate subspaces:

H =
n⊕

i=0

ViE , (39)

each of which spanned by states with a fixed number of
excitations i and thus the energy equal to i · E . With this
energy-level structure, Dicke states |Di〉, or W-like entangle-
ment in the three-qubit case, can be generated via thermal
operations with nonzero components within the energy-
degenerate subspaces.

On the other hand, if we set En = ∑n−1
i=1 Ei, we find that the

degenerate subspace corresponding to this energy

VEn = span

⎛
⎝| 1 . . . 1︸ ︷︷ ︸

n−1

0〉, | 0 . . . 0︸ ︷︷ ︸
n−1

1〉
⎞
⎠ (40)

contains states possessing GHZ-like entanglement. Specifi-
cally, in the case of three qubits, this configuration leads to
GHZ states up to a NOT operation on the third qubit. Similar
arguments can be easily extended to systems with larger local
dimensions.

Concerning systems with larger local dimensionality, we
note that PPT criterion, based on negativity of partial trans-
pose of a state, is a complete entanglement measure not
only for two-qubit systems, but also for qubit-qutrit systems
as well [42]. In particular, we may consider a system in
an energy-incoherent state ρ described by population p =
(p1, . . . , p6) and subject to local Hamiltonians H1 = |1〉〈1|
and H2 = |1〉〈1| + 2|2〉〈2|. Based on similar arguments as
for the qubit-qubit systems, if any of the following two
conditions,

4 p1 min(p4, p5) < (p2 − p3)2,

4 p6 min(p2, p3) < (p4 − p5)2, (41)

is satisfied, one of the eigenvalues of the partial transpose
ρTA can become negative under energy-preserving unitary
operations, and therefore, the state is entangleable. Similar
expressions can be easily put forward for qubit-qudit systems.

It should be highlighted, however, that in general, com-
plete entanglement measures for multipartite systems beyond
2 × 2 and 2 × 3 do not exist, unlike the one based on the
PPT criterion, which is effective for two-qubit and two-qutrit
cases [41,42], which is reflected in the appearance of so-called
bound entanglement [51]. Nevertheless, there exist partial
entanglement measures, such as two- and three-tangle for
three-qubit systems [52], can be used to provide an outer
approximation of the entangleable and nonentangleable sets
in such scenarios. Therefore, the geometry of the entangleable
set may vary when the entanglement measure is not complete,
for instance the aforementioned two- or three-tangle. How-
ever, it will be invariant under choice of seemingly different,
but complete measures.

VII. OUTLOOK

In this paper, we have investigated the interplay between
entanglement and thermodynamics. The minimal thermody-
namic assumptions we made, namely that the system bath is
closed and evolves via an energy-preserving unitary, constrain
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the final entanglement achievable from given initial states.
By applying the PPT criterion and constructing future ther-
mal cones, we derived necessary and sufficient conditions for
two-qubit initial states that can be transformed into entangled
states within thermal operations framework. It turns out that
any separable state, apart from a cluster of states around the
thermal state, can become entangled. In other words, our
investigation demonstrates that entanglement generation is
possible, given certain degree of athermality in the initial state.
Furthermore, we captured how the entanglement generating
capability varies with the ambient temperature, by analyzing
the volume of entangleable initial state set, and found that
low temperature allows more states to become entangleable.
Nevertheless, when the initial state is fixed, we discovered that
lowering temperature is not always beneficial and that more
detailed considerations on the geometry of thermal cones are
needed.

There are several promising avenues for extending and
generalizing the results presented in this paper. A concrete
and direct generalization consists of using an auxiliary sys-
tem, a catalyst, to facilitate a process that would not occur
spontaneously; see recent reviews [53,54]. The idea of using a
catalyst in our context arises from Ref. [55], where the authors
demonstrate that catalysis enables the creation of otherwise
inaccessible types of correlations by accessing those locked
in nondegenerate energy subspaces. As we have discussed, the
entanglement generation capacity depends on the structure of
degenerate energy subspaces. Employing a catalyst not only
increases the number of degenerate energy subspaces but also
lift some of the dynamical restrictions imposed by energy
conservation. In this regard, the initial steps demonstrating the
utility of generating entanglement via thermal operations with
the aid of a strict catalyst were presented in Ref. [56]. Further-
more, in Appendix E, we provide an example where correlated
catalysis enables the generation of entanglement from an ini-
tial state that cannot be entangled without a catalyst. This
raises the intriguing question of how one can systematically
study the generation of entanglement with the assistance of a
catalyst.

In this work, we only considered entanglement genera-
tion from initially energy-incoherent states. When we focus
on the entanglement generated between degenerate energy
levels, coherence between different energy levels cannot con-
tribute. Nevertheless, coherence can still nontrivially affect
the entanglement, including those between energy levels with
different energy values. Currently, tools and methods available
for analyzing coherent state transformations under thermal
operations are rather limited [36,57,58]. For two-qubit sys-
tems, existing techniques to characterize single-qubit coherent
state transformations [36,57] may be adapted to study the
entanglement generation. This direction of study will extend
our results to the realm where three resources—entanglement,
athermality, and coherence–compete and cooperate with each
other.

We make a few final remarks on existing literature, to
which our work can connect. First, it would be interesting
to study the conventional quantifiers of entanglement such as
entanglement cost and distillable entanglement [1], which are
originally defined via LOCC, and evaluate them with regard
to thermodynamic constraints instead. In particular, the gap

between these quantities would then quantify the amount of
irreversibility when it comes to the local preparation of en-
tanglement. Lastly, entanglement in continuous-variable (CV)
systems is relatively less explored. Extending our analysis to
CV systems would be extremely fruitful, considering their
widespread use in practical experiments [59] involving op-
tomechanics [60,61], and superconducting setups [62]. For
instance, we may use the toolkits developed in the study of
Gaussian thermal operations [63] for an analysis similar to
what have been done in the current work, and aim to explicate
CV entanglement results, such as the recent no-go result [64]
for the CV steady-state entanglement generation.
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APPENDIX A: FUTURE THERMAL CONE

We briefly review state transition rules under thermal op-
erations and the notion of the future thermal cone, a set of
state that can be transformed from a given initial state with
thermal operations. First, we introduce thermomajorization
relations, which fully characterize the convertibility between
two states via thermal operations. The thermomajorization
curves, associated to each energy-incoherent state, are defined
as the following:

Definition 5 (Thermomajorization curve). Suppose that the
Gibbs state γ ∈ �d with respect to the system Hamiltonian
H and the ambient inverse temperature β is given. For each
state p ∈ �d , we define the thermomajorization curve of p
as a piecewise-linear function Lp : [0, 1] → [0, 1] composed
of linear segments connecting the point (0,0) and the elbow
points {(∑k

i=1 γπ−1
p (i),

∑k
i=1 pπ−1

p (i) )}d
k=1. Here πp is the β or-

dering of p, which imposes pπ−1
p (i)/γπ−1

p (i) � pπ−1
p ( j)/γπ−1

p ( j)

for all i � j.
Note that thermomajorization curves are always concave

and nondecreasing by definition. For the Gibbs state γ , the
thermomajorization curve Lγ is a straight line from (0,0) to
(1,1). From the concavity of the curve and the fact that any Lp

passes points (0,0) and (1,1), any thermomajorization curve is
above the curve for the Gibbs state. i.e. Lp(x) � Lγ (x) for all
x ∈ [0, 1]. See Fig. 10(a) for examples of thermomajorization
curves.

Using thermomajorization curves, thermomajorization re-
lations between two states can be established.

Definition 6 (Thermomajorization relation). The thermo-
majorization relation is a preorder between two energy-
incoherent states. If two states p, q ∈ �d have corre-
sponding thermomajorization curves Lp and Lq, such that
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FIG. 10. Thermomajorization and future thermal cone. For two states p = (0.7, 0.2, 0.1) and q = (0.6, 0.2, 0.2) with β = 0.5, (a) we plot
their thermomajorization curves Lp(x) and Lq(x), respectively. Since p thermomajorizes q, it implies that one can transform p into q under
thermal operations. This can also be observed by examining their (b) future thermal cones, where q lies within the future thermal cone of p.
The Gibbs state γ is depicted by a black star 
.

Lp(x) � Lq(x) for all x ∈ [0, 1], we say p thermomajorizes
q, or more simply, p �β q.

Since the thermomajorization relation gives a preorder, not
a total order, there exist pairs of states p and q such that neither
p �β q nor q �β p holds. Such pairs are dubbed incompara-
ble. Reamrkably, thermomajorization relations coincide with
the state convertibility under thermal operations.

Theorem 2 (Theorem 2 of Ref. [32]). Suppose that p, q ∈
�d describe two energy-incoherent states of a system with
Hamiltonian H with access to thermal environments with the
inverse temperature β. If p �β q, than p can be transformed
to q via some thermal operation.

In particular, the Gibbs state γ is thermomajorized by
any other state and thus any state can be converted to
the Gibbs state. Conversely, the most excited state with
p = (0, · · · , 0, 1) thermomajorizes all other states in �d and
any state can be converted from it.

Theorem 2 provides an efficient way of checking whether a
transition from one state to another is feasible. However, it is
also possible to characterize the entire set of states that can be
attained from an initial state via thermal operations. We refer
to such set with an initial state p as the future thermal cone of
p and denote it with a symbol T+(p).

Lemma 2 (Lemma 12 of Ref. [38]). Suppose p ∈ �d . The
future thermal cone T+(p) is a convex polytope with at most
d! extreme points each corresponding to permutations π ∈ Sd .
The extreme point pπ corresponding to the permutation π

can be identified by first constructing its following thermo-
majorization curve Lpπ :

(1) The x coordinates of the Lpπ elbow points are
xk = ∑k

i=1 γπ−1(i) for k ∈ {1, . . . , d}.
(2) The y coordinates of the Lpπ elbow points are

yk = Lp(xk ) for k ∈ {1, . . . , d}.
Therefore, Lpπ is the piecewise-linear curve that connects

(0,0) and elbow points {(xk, yk )}d
k=1, which all lie on the curve

Lp.
The thermomajorization relation between the initial state

p and extreme states pπ are also known as tight thermoma-
jorization, since all elbow points of Lpπ are on the curbe Lp.
Furthermore, by construction, each state pπ has the β ordering
π. Lemma 2 enables us to characterize the future thermal cone
of p by constructing states pπ for each π ∈ Sd , and by taking

their convex hull. Here, we provide the construction of T+(p)
as a simple corollary of Lemma 2:

Theorem 3 (Future thermal cone). The future thermal
cone of a d-dimensional energy-incoherent state p is given by

T+(p) = conv[{pπ,π ∈ Sd}]. (A1)

See Fig. 10(b) for example future thermal cones of two
three-level states. In this example, p �β q and T+(q) ⊂
T+(p); these two relations are indeed equivalent in general.
The equivalence directly follows from the transitivity of the
preorder �β , i.e. if p �β q and q �β r, it is always true that
p �β r; hence, r ∈ T+(q) implies r ∈ T+(p).

It is worth mentioning that T β
+ (p) can also be constructed

by identifying the entire set of extremal Gibbs-preserving
stochastic matrices, as discussed in [38,65,66]. However, if
we are only interested in the future thermal cones, following
Lemma 2 and Theorem 3 is more efficient.

APPENDIX B: CONVEXITY OF THE SUBSPACE
NONENTANGLABLE SET NE

For a bipartite two-qubit state, we now show that the
subspace nonentangleable set NE is convex. The set NE
is defined (in Definition 2) as the set of states satisfying
f (p) � 0, where f is a function given in Eq. (27):

f (p) = 4p1(1 − p1 − p2 − p3) − (p2 − p3)2. (B1)

To show that the set of states defined by f (p) � 0 is convex,
we need to demonstrate that the function f is, counterintu-
itively, concave. Our task is to verify that for any two arbitrary
points P1 = (x1, y1, z1) and P2 = (x2, y2, z2), the following
condition holds:

f [λ(x1, y1, z1) + (1 − λ)(x2, y2, z3)] � λ f (x1, y1, z1)

+ (1 − λ) f (x2, y2, z2),
(B2)

for λ ∈ [0, 1]. To make the calculation less cumbersome, we
can prove convexity by considering two arbitrary boundary
points. To do this, we first find the roots of Eq. (B1) with
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FIG. 11. Subspace nonentangleable set NE. Geometry of the set of qubit-qubit states that cannot get entangled using energy-preserving
unitaries. The extreme points of this set include the trivial ones, given by (1, 0, 0, 0), (0, 0, 0, 1), and (0, 1/2, 1/2, 0), as well as a continuous
family of boundary points specified by the solution to the quadratic equation −(p2 − p3)2 + 4p1(1 − p1 − p2 − p3) = 0 when solved for p3.

respect to p3:

f (p1, p2, p3) = −p2
3 + 2p3(p2 − 2p1) − [p2(4p1 + p2)

− 4p1(1 − p1)] = 0, (B3)

whose solutions are simply given by

p(±)
3 = −2p1 + p2 ± 2

√
p1 − 2p1 p2. (B4)

By focusing on the boundary conditions, we can simplify the
analysis concerning convexity. Specifically, when considering
two arbitrary boundary points, the right-hand side of Eq. (B2)
is zero. This reduces the problem to verifying whether the
left-hand side of this equation is less than or equal to zero.
Given that there are two solutions for Eq. (B1), we need to
demonstrate that all possible combinations of boundary points
Pi = (x1, y1, p(±)

3 ) for i{1, 2}, the following inequalities are
satisfied:

f [λ(x1, y1, p(±)
3 ) + (1 − λ)(x2, y2, p(±)

3 )] � 0, (B5)

f [λ(x1, y1, p(±)
3 ) + (1 − λ)(x2, y2, p(∓)

3 )] � 0. (B6)

Furthermore, we must impose the constrain yi � 1/2 for
i ∈ {1, 2} to ensure that the values within the square root
in (B4) are real. By rearranging and rewriting the inequalities
above, we observe that both inequalities in (B5), as well as
inequalities (B6), are equivalent. Consequently, our analysis
boils down to demonstrating the validity of the following two
inequalities:

4λ(1 − λ)[x1(1 − 2y2) + x2(1 − 2y1)

± 2
√

(x1 − 2x1y1)(x2 − 2x2y2)] � 0. (B7)

Since the function 4λ(1 − λ) is concave and positive on λ ∈
[0, 1] interval, we only need to prove that the second term is
positive. By setting a = √

x1(1 − 2y2) and b = √
x2(1 − 2y1

we see that the entire expression is reduced to

4λ(1 − λ)(a ± b)2 � 0, (B8)

which completes the proof of concavity of function f .

APPENDIX C: PROOF OF THEOREM 2

We first establish the existence of a subspace entangleable
β ordering (2, 1, 3, 4) state for all thermally entangleable
states. Yet, the subspace entangleability of the extreme point
p
 is not guaranteed from Lemma 6 yet.

Lemma 7 (Critical β ordering). For any state p ∈ TE,
there exists a state q, such that q ∈ T ENT

+ (p) and the β order
πq = (2, 1, 3, 4).

Proof. Suppose that the Lemma is true for all p ∈ E. Then
for any state r ∈ TE, there exists p ∈ E and q ∈ T ENT

+ (p) ⊂
T ENT

+ (r) with πq = (2, 1, 3, 4). Hence, it is sufficient to prove
the Lemma for p ∈ E.

Without loss of generality, assume that p2 � p3. From
the assumption p ∈ E, we have f (p) < 0 for f defined in
Eq. (27). Now, consider another state r such that r ∈ T+(p)
and

r =
⎛
⎝p1 − δ1, p2 +

∑
i=1,3,4

δi, p3 − δ3, p4 − δ4

⎞
⎠, (C1)

for some δ1, δ3, δ4 � 0. We can observe that f (r) is decreas-
ing monotonically as δ1, δ3, δ4 increases. If (πp)1 �= 2, there
always exists a state r in the form of Eq. (C1) and (πr)1 = 2.
From the monotonicity of f (r), this state r ∈ T ENT

+ (p). We
prove the rest of the Lemma by showing there exists q ∈
T ENT

+ (r) and use T ENT
+ (r) ⊂ T ENT

+ (p). Hence, we assume that
(πp)1 = 2.

Now, suppose that the state p has p4 � p1e−2βE . Then a
state r such that r2 = p2, r3 = p3, and

r1 = (1 − e−2βE )p1 + p4, r4 = e−2βE p1, (C2)

is in T+(p) and satisfies r1e−2βE � r4. From direct
calculation,

f (r) = f (p) − 4(1 − e−2βE )p1(p4 − e−2βE p1) � f (p),
(C3)

i.e., r ∈ T ENT
+ (p) whenever p ∈ E.

Therefore, one can always find q ∈ T ENT
+ (p) whose β or-

dering is either (i) πq = (2, 3, 1, 4), (ii) πq = (2, 1, 4, 3), or
(iii) πq = (2, 1, 3, 4). We will show that cases (i) and (ii) again
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imply the existence of q ∈ T ENT
+ (p) corresponding to the case

(iii), which proves the Lemma.
Case (i): πp = (2, 3, 1, 4) with a strict ordering p3 >

p1e−βE . It is always possible to find p′ ∈ T+(p), such that
πp′ = (2, 3, 1, 4) and f (p′) = 0 by a convex combination
p′ = (1 − λ)p + λγ , where λ ∈ [0, 1] and γ is the Gibbs
state. Now assume that q ∈ T+(p′) is a state with πq =
(2, 1, 3, 4) and

q = (p′
1 + δ, p′

2, p′
3 − δ, p′

4), (C4)

with some δ > 0. Such a state always exists since p′
3 >

p′
1e−βE . The entanglement witness gives

f (q) = 4(p′
1 + δ)(p′

4) − (p′
2 − p′

3 + δ)2

= −δ2 + 2(p′
3 + 2p′

4 − p′
2)δ, (C5)

where we used f (p′) = 0 for the second equality. If p′
1 = 0,

we have p′
4 = 0 from the β order of p′ and p′

2 = p′
3 from

f (p′) = 0; hence, f (q) < 0. When p′
1 �= 0, we use p′

4 =
(p′

2 − p′
3)2/(4p′

1) to get

f (q) = −δ2 − 2(p′
2 − p′

3)

(
1 − p′

2 − p′
3

2p′
1

)
δ. (C6)

Recall 4(p′
1)2 � 4p′

1 p′
4 = (p′

2 − p′
3)2 implying 1 − p′

2−p′
3

2p′
1

�
0 and thus f (q) < 0.

Case (ii): πp = (2, 1, 4, 3). There exists p′ ∈ T+(p), such
that πp′ = (2, 1, 4, 3) and f (p′) = 0 and also q ∈ T+(p′), such
that

q = (p′
1, p′

2, p′
3 + δ, p′

4 − δ), (C7)

with πq = (2, 1, 3, 4). Observe that

f (q) = 4(p′
1)(p′

4 − δ) − (p′
2 − p′

3 − δ)2

= −δ2 − 2(2p′
1 − p′

2 + p′
3)δ < 0 (C8)

for any δ > 0. �
Now we use geometric arguments to prove the remaining

part of Theorem 1. To do this, we define generalized boundary
sets.

Definition 7 (d-dimensional boundaries). Let X be a convex
set and Cd (X ) be a set of all (d + 1)-dimensional convex
subsets Y ⊂ X . d-dimensional boundary of X is defined as

Bdd (X ) := {x | � ∃Y ∈ Cd (X ), such that x ∈ int(Y )}. (C9)

Intuitively, Bdd (X ) cannot be written as a convex combination
of d + 2 extreme points of X with nonzero weights; hence,
Bd0(X ) is a set of extreme points of X , while Bd1(X ) is a set of
points of the edges of X . Furthermore, if X is D dimensional,
BdD−1(X ) reduces to the conventional boundary, ∂X

Note that Bdd (X ) ⊂ Bdd+1(X ) for any d � 0: if it is im-
possible write a state x as a convex combination of any d + 2
extreme points, it is also impossible to write it as a convex
combination of any d + 3 extreme points. Using this defini-
tion, we establish a helpful proposition.

Proposition 8 (Intersection of d-dimensional boundaries).
Suppose that a convex set A is a subset of a convex set B and
their boundaries intersect, i.e., A ⊂ B and ∂A ∩ ∂B �= ∅. Then,
for all d-dimensional boundaries,

A ∩ Bdd (B) ⊂ Bdd (A). (C10)

If we have additional condition [Bdd (A) \ Bdd−1(A)] ∩
Bdd (B) = ∅, for some d , we find

A ∩ Bdd (B) ⊂ Bdd−1(A). (C11)

Proof. For the first part of the proposition, suppose that
there exists a point x /∈ Bdd (A) such that x ∈ A ∩ Bdd (B).
Then there exists a convex subset Y of A having d + 2 extreme
points and containing x in int(Y ). Yet, this set Y is also a
convex subset of B having the same property, which con-
tradicts x ∈ A ∩ Bdd (B). The second part of the proposition
follows directly from combining Eq. (C10) and the additional
assumption [Bdd (A) \ Bdd−1(A)] ∩ Bdd (B) = ∅. �

Now we proceed to prove Theorem 1, which states that
p
 ∈ E whenever p ∈ TE. First, consider mixtures of the
initial state p and the Gibbs state γ that can be written
as p(x) = (1 − x)p + xγ for some x ∈ [0, 1]. Future ther-
mal cones between these states have a hierarchy T+(p(y) ) ⊂
T+(p(x) ) whenever y � x. Then there exists a coefficient a ∈
(0, 1), such that

T+(p(a) ) ⊂ NE, ∂[T+(p(a) )] ∩ ∂ (NE) �= ∅, (C12)

since T+(p) �⊂ NE, while T+(γ ) ⊂ int(NE). The Gibbs state
γ is always full rank and so is p(a), i.e., p(a) ∈ int(�4) and
T+(p) ⊂ int(�4).

Now we show that {Bd1[T+(p(a) )] \ Bd0[T+(p(a) )]} ∩
∂ (NE) = ∅. Let q be a state on the edge of T+(p(a) ) but not
on the vertex of it, i.e. q ∈ {Bd1[T+(p(a) )] \ Bd0[T+(p(a) )]}.
Since NE is convex, if q ∈ ∂ (NE), the entire edge con-
taining q should be included within ∂ (NE). Recall that
T+(p(a) ) is a polyhedron whose edges are defined as seg-
ments of lines on which two of the populations are fixed,
e.g. q = (p(a)

1 , p(a)
2 , t, 1 − p(a)

1 − p(a)
2 − t ) and for some t ∈

(t1, t2). Then the entire edge can be written as a set of states{(
p(a)

1 , p(a)
2 , t, 1 − p(a)

1 − p(a)
2 − t

) ∣∣ t ∈ [t1, t2]
} ⊂ ∂ (NE).

(C13)

Yet, it is impossible to satisfy f (p(a)
1 , p(a)

2 , t, 1 − p(a)
1 −

p(a)
2 − t ) = 0 for a finite range t ∈ [t1, t2], which contradicts

Eq. (C13). The same can be proven for any two fixed popula-
tions. Likewise, [Bd2(T+(p(a) )) \ Bd1(T+(p(a) ))] ∩ ∂ (NE) =
∅: if any point on [Bd2(T+(p(a) )) \ Bd1(T+(p(a) ))] is included
in ∂ (NE), at least one entire edge of T+(p(a) ) should also be
included, which is not possible.

Using Proposition 7 twice with A = T+(p(a) ) and B = NE,
we have

T+(p(a) ) ∩ ∂ (NE) = T+(p(a) ) ∩ ∂ (NE) ⊂ Bd0[T+(p(a) )],
(C14)

i.e., only extreme points of T+(p(a) ) can be included in the set
∂ (NE).

We finally use Lemma 6. Since p(a) ∈ ∂ (TE), there must
exist q ∈ T+(p(a) ) with β-ordering (2, 1, 3, 4) that is in
∂ (E) = ∂ (NE). However, only extreme points of T+(p(a) )
can be in ∂ (NE), implying that the (2, 1, 3, 4) extreme point

(1 − a)p
 + aγ ∈ ∂ (NE). (C15)

From γ ∈ int(NE), we obtain p
 ∈ E, which concludes the
proof.
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APPENDIX D: THERMAL INITIAL STATES

In this section, we derive the critical temperatures above or
below which the initially thermal state become entangleable.
We denote the inverse temperature of the system as βS and
that of the environment as β. To simplify the notation, we use
Boltzmann weights �S := e−βSE , � := e−βE „ and partition
functions ZS := (1 + �S)2, Z := (1 + �)2. Then the initial
state can be written as

p = 1

ZS

(
1,�S,�S,�2

S

)
. (D1)

When βS > β, i.e. when the system is cooler than the envi-
ronment, the β ordering of p is (1, 2, 3, 4). The extreme point
p
 of T+(p), corresponding to the ordering π
 = (2, 1, 3, 4)
can be easily obtained by maximally exchanging populations
(referred to as the β-swapping in Refs. [28,38,67]) between
first two levels |00〉 and |01〉,

p
 = 1

ZS

(
1 − � + �S,�,�S,�2

S

)
. (D2)

We want the entanglement measure to be negative, i.e.,

f (p
) = 1

Z2
S

{
4�2

S[1 − (� − �S)] − (� − �S)2} < 0.

(D3)

Solving this inequality, we obtain

� > �C1
:= �S

(
1 + 2

√
1 + �2

S − 2�S
)
, (D4)

equivalent to Eq. (29) in Sec. V B.
When the system temperature is low, that is, when �S � 1,

Eq. (D4) can be written with the Taylor expansion

�C1 = 3�S + O
(
�2

S

)
, (D5)

yielding the approximation βC1 E � βSE − log 3, up to the
leading order.

Now, consider the other case where βS < β; the system is
now hotter than the surrounding environment, and the β order
of the initial state p is now (4, 3, 2, 1). Thermomajorization
relations reveal that the extreme point p
 now has two dis-
tinct forms depending on the environment temperature β. If
1 > � + �2, that is, βE � − log[

√
5−1
2 ], the extreme state is

p
 = 1

ZS
{1+ (�S− �)(1+ �),�S(1+ �S− �),�,�2}.

(D6)

On the other hand, when βE < − log[
√

5−1
2 ],

p
 = 1

ZS

(
�S

�
,�S(1 + �S − �), 1 + �S + �S� − �

−�S

�
,�2

)
. (D7)

For the latter case Eq. (D7), the entanglement measure is
evaluated as

f (p
) = 1

Z2
S�2

{4�S�3− (�S− �)2[1+ �(�S− �)]2)}.
(D8)

However, in the range where Eq. (D7) is valid, 1 � �S >

� >
√

5−1
2 , entanglement measure is always positive and there

is no critical inverse temperature βC2 . For the former case

Eq. (D6) with 1 � �S > � and
√

5−1
2 � � > 0,

f (p
) = 1

Z2
S

{−(�S − �)2(1 + �S)2

+ 4�2[1 + �S − (1 − �S)� + �2]} (D9)

and the solution for f (p
) = 0 can be obtained by solving this
quartic equation. Unfortunately, there is no simple explicit
solution for this equation. To approximate the critical value,
let us assume that �S � 1, i.e. βSE � 1. Ignoring the ZS
factor in Eq. (D9) and taking only the leading-order terms of
� and �S, we get the approximation

Z2
S f (p
) = 3�2 + 2��S − �2

S + O
(
�3

S

)
, (D10)

and the solution of f (p
) = 0 is approximately � � �S
3 . In

other words, βC2 E � βSE + log 3.

APPENDIX E: CATALYTIC ADVANTAGES
ON ENTANGLEMENT GENERATION:

A TOY EXAMPLE

We now construct a simple toy example to demonstrate that
if a catalyst is allowed, entanglement can be generated from
states that cannot achieve this under thermal operations with-
out a catalyst. For simplicity, we assume β = 0 and consider
a bipartite state

ρAB = 2
5 |00〉〈00| + 1

4 |01〉〈01| + 33
100 |10〉〈10| + 1

50 |11〉〈11|,
(E1)

with local Hamiltonians HX = |1〉〈1| for X ∈ {A, B}. The
initial bipartite state ρAB belongs to the thermally nonentan-
gleable set, i.e., p = eig(ρ) ∈ TNE. Hence, at β = 0, there
is no thermal operation capable of entangling ρAB.

Let us now consider a two-dimensional catalyst, prepared
in a state

ωC = 73
100 |0〉〈0| + 27

100 |1〉〈1|, (E2)

and described described by a Hamiltonian HC = |1〉〈1|, such
that the joint Hamiltonian of the composite system ABC is
given by

(E3)

where the colors in each block highlight the degener-
ate energy subspaces. We assume that the total system
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evolves according to the following energy-preserving unitary
transformation

(E4)

which maps the composite system to σABC := U (ρAB ⊗
ωC)U †, where the reduced states of AB become

σAB = 949
2000 |00〉〈00| + 613

5000 |01〉〈01| + 771
2500 |10〉〈10|

+ 189
2000 |11〉〈11| (E5)

while the catalyst returns exactly to the same state as it started
σC = ωC.

Therefore, one can easily verify that the final state no
longer belongs to TNE, i.e., q := eig(σ ) /∈ TNE. This im-
plies that a thermal operation capable of mapping σAB into an
entangled state can be constructed.
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