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Electronic properties, correlated topology, and Green’s function zeros
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There is extensive current interest in electronic topology in correlated settings. In strongly correlated systems,
contours of Green’s function zeros may develop in frequency-momentum space, and their role in correlated
topology has increasingly been recognized. However, whether and how the zeros contribute to electronic
properties is a matter of uncertainty. Here we address the issue in an exactly solvable model for a Mott insulator.
We show that the Green’s function zeros contribute to several physically measurable correlation functions in
a way that does not run into inconsistencies. In particular, the physical properties remain robust to chemical
potential variations up to the Mott gap, as it should be based on general considerations. Our work sets the stage
for further understandings of the rich interplay among topology, symmetry, and strong correlations.
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I. INTRODUCTION

In noninteracting systems, electronic topology is formu-
lated within band theory. Recent years have seen systematic
development on how symmetries of crystalline lattices con-
strain topology and how they can be utilized to search for new
topological materials [1–7]. In interacting settings, symmetry
constraints have been considered in terms of Green’s func-
tions, either through a renormalized particle picture [8–10] in
the form of a topological Hamiltonian [11,12] or by recog-
nizing that the eigenvectors of the exact Green’s function in
a many-body system form a representation of a lattice space
group [13]. The latter approach, which was introduced in
the context of Weyl-Kondo semimetal [14–17] and provided
the theoretical basis for its robustness [18], has led to the
realization [19] that Green’s function zeros [20] of an inter-
acting lattice system obey symmetry constraints; accordingly,
the Green’s function zeros participate in the formation of
correlated electronic topology, just as Green’s function poles
do. Concurrently, the role of Green’s function zeros has been
studied in the context of the edge spectrum of interacting
topological insulators [21].

Quasiparticles represent the low-energy excitations of a
Fermi liquid. The quasiparticles are conveniently described in
terms of a Green’s function approach in which they appear
as poles of the single-particle Green’s function [22]. They
are characterized by the quasiparticle weight—a quantity that
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plays a central role in the microscopic Fermi liquid the-
ory. When electron correlations are strong, the quasiparticle
weight becomes very small, and its effect on observables
is well documented; exemplary settings can be found in
Refs. [23–26]. In the extreme correlation limit, the quasi-
particle weight may vanish leading to a breakdown of the
Fermi liquid. The precise manner in which thermodynamic
and transport properties are affected by interactions in this
limit is a central question in the field of correlation physics.

Mott insulators (MIs) occupy a special place in the physics
of strongly correlated systems [27]. In MIs, the quasiparticle
weight as well as the single-particle Green’s function vanish
to yield Green’s function zeros along certain frequency-
momentum contours. There has been considerable debate
regarding the role of zeros on the physical charge and cor-
relation functions [20,22,28–40].

Like poles across a Fermi surface, the real part of the
Green’s function changes sign across a zero surface, hence
they contribute to the Luttinger volume [20,22] and single-
particle winding numbers [33]. Similarly, zeros are key to the
generalization of index theorems [28] to interacting settings,
and they play an essential role in understanding symmetric
mass generation [37,41–43]. In interacting topological insula-
tors, it was argued that zeros allow for topological transitions
to occur without closing the boundary gap [30,31,44].

While these properties raise the prospect of the zeros being
experimentally measurable, their relationship to observables
has been tenuous at best. For example, it is required that physi-
cal properties are independent of chemical potential variations
up to the Mott scale at zero temperature [29] despite zeros
occurring in the insulating gap. In addition, when determining
the zeros’ contribution to physically measurable correlations,
it is crucial to keep track of conservation laws and the associ-
ated Ward identities. It is important to address these issues in
order to properly assess the contributions of Green’s function
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zeros to physical properties. Furthermore, Green’s function
zeros are also difficult to probe experimentally. By definition,
the vanishing spectral weight makes their detection chal-
lenging. Sharpening the theoretical understanding of how the
Green’s function zeros affect physical correlation functions is
expected to be important for probing the zeros experimentally
in the future.

In this work, we argue that certain robust physical proper-
ties of electron systems can indeed capture the contributions
of the Green’s function zeros, and, importantly, they do so in
a way that is consistent with the aforementioned expectations.
These properties can be exploited to indirectly gather proper-
ties that may otherwise be elusive to conventional probes. Our
focus here is to illustrate how zeros contribute to observables
in a consistent, gauge-invariant manner, rather than propose a
concrete experimental setup in which they can be systemati-
cally extracted. We demonstrate our claims by considering an
exactly solvable model of a MI [45] as a prototypical example
where extreme correlation effects are realized [27].

More specifically, we compute here the charge and current
response functions in accordance with the Ward identities, and
we demonstrate how zeros manifest in physical observables.
We begin by describing the exactly solvable models of interest
in Sec. II [see Eqs. (1)–(4)]. In Sec. III, we reexamine the
relationship between the Luttinger volume and self-energy in
generic interacting settings. Using this relation, we provide
a simple picture that elucidates how zeros are needed to pre-
serve charge conservation while maintaining robustness of the
total charge to changes in the chemical potential of the order
of the Mott gap (see Figs. 1 and 2). More specifically, the total
charge contains a term associated with the Luttinger volume
and a “backflow” term [see Eq. (7)]. We use our procedure of
considering the total charge as a guide to analyze other more
involved physical quantities, with a focus on the topological
Hall response. In this way, in Sec. IV we evaluate the Hall
response for a MI starting from noninteracting Chern bands,
and we show that it likewise contains two contributions [see
Eqs. (35)–(37)]. The first is a quantized topological term pro-
portional to the three-dimensional winding number N3 [46,47]
with contributions from Green’s function zeros (see Fig. 4).
The second is a previously unrecognized nonquantized back-
flow term essential to preserving charge conservation. In each
case, the two terms combine to ensure that the total quantity
is independent of changes to the chemical potential within
the Mott gap despite containing contributions from zeros. We
discuss some implications and conclude in Sec. V.

II. MODEL

As an exactly solvable model in which Green’s function
zeros occur, we consider a generic multiband version of
the Hatsugai-Kohmoto (HK) model [45]. We write the total
Hamiltonian as

H = H0 + HI , (1)

H0 =
∑

k,ασ,βσ ′
hασ,βσ ′ (k)c†

kασ
ckβσ ′ , (2)

HI = U

2

∑
kα

(nkα↑ + nkα↓ − 1)2 . (3)

FIG. 1. Illustration of the Green’s function zeros’ contribution to
the total particle count and the failure of pole counting. (a) Splitting
of two occupied electronic states (red and green denote spin) at
the Fermi energy into upper and lower Hubbard bands (UHB and
LHB, respectively) due to the repulsive Coulomb interaction u for
the cases of μ > 0, μ = 0, and μ < 0 in the atomic limit of the Hub-
bard model. The blue (dashed) line denotes the chemical potential
(Green’s function zeros). The vertical axis is frequency. (b) Tables
showing the difference between the numbers of poles and zeros (# of
poles − # of zeros) for the three cases of μ > 0, μ = 0, and μ < 0.
The rows n<( f ), n0( f ) label (# of poles − # of zeros) below and
at the chemical potential, respectively, of the matrix f . “#” in the
third row denotes the total contribution to the formula N = vl − δv

in Eq. (7) using Eqs. (16), (11), and (15). The first two columns
label the cases of noninteracting and interacting Green’s function,
respectively, and the third denotes the ratio of their determinants R(z)
[see Eq. (12)]. In each of the three cases, N = vl − δv is satisfied and
the particle number is conserved despite variations of the Luttinger
volume vl and its backflow deviation δv.

Here c†
kασ

is the electron creation operator at momentum k,
orbital α, and spin σ . The hopping matrix elements between
states with orbital indices α, β and spin indices σ, σ ′ are
denoted by hασ,βσ ′ (k), U is a four-fermion electron-electron
interaction that is local in momentum space but highly non-
local in real space, and nkασ is the number operator. The
Hamiltonian at each k point becomes mutually decoupled in
the form H = ∑

k Hk, because of the local-in-momentum-
space interaction. Later in the paper, we will also use a
single-band version of Eq. (1) by replacing the kinetic hop-
ping matrix by a single dispersion ξ (k) = ε(k) − μ, where
ε(k) is the band energy and μ is the chemical potential.
The interaction Hamiltonian then contains a single repulsive
term between opposite spins at a specific momentum point.
Accordingly, the orbital indices α, β are suppressed in the
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electron creation and annihilation operators in Eq. (1) for the
one-band model. We will explicitly specify when this is the
case. The electronic and spectral properties of the Hamiltonian
Eq. (1) for single- [19,34–36,45,48] and multiband disper-
sions [19,40,49] have been previously studied, but we recall
some key properties. First, irrespective of the specific tight-
binding Hamiltonian at hand, Eq. (1) captures a correlated
metal to a fully gapped Mott insulator transition for interaction
strength U comparable to or larger than the noninteracting
bandwidth (W ). Second, the Green’s function can be obtained
exactly, and in the limit of strong interactions compared to W
and zero temperature, a key property of the Green’s function is
the existence of contours of dispersive zeros in the Mott gap.
These contours are a consequence of destructive cancellation
of electron addition- and removal-like transitions with equal
and opposite energy transfers [19]. Further, lattice symme-
tries of the Hamiltonian H constrain spectral degeneracies at
high symmetry points that operate on both poles and zeros
of the Green’s function. Hence, Eq. (1) offers a platform to
explore topological properties in the presence of interactions
nonperturbatively even when there is a loss of quasiparticles.
Additional properties of H for the case when the noninter-
acting bands have a nontrivial spin-Hall Chern number are
discussed in Ref. [19]. Due to these features, we use Eq. (1)
as a starting point for our analysis.

In Sec. III and Fig. 2, it will suffice for us to work with
a single-band version of Eq. (1). We will use a quadratic
band dispersion of the form ξ (k) = k2 − μ, where we denote
k as the magnitude of k. In Sec. IV, we will work with a
multiorbital tight-binding model with Chern bands to compute
the conductivity. In this case, the matrix elements hασ,βσ ′ (k)
are defined later in Eq. (42).

In the course of our discussion, we will also use the atomic
limit of the Hubbard model to illustrate common features of
certain conclusions. To establish notation, let us denote niσ

as the number operator at real space site i and spin σ , and u
as the on-site Coulomb interaction. In this limit, we write the
Hubbard Hamiltonian as

Hu = u
∑

i

ni↑ni↓ − μ
∑

iσ

c†
iσ ciσ , (4)

where μ is the on-site chemical potential, and c†
iσ is the

electron creation operator at site i and spin σ . In this limit,
one obtains an atomic Mott insulator where the single-site
Green’s function acquires dispersionless zeros when the probe
frequency equals negative of the chemical potential [27]. Thus
certain aspects and properties of the Hamiltonian Eq. (1) can
be benchmarked against the physics of the Hubbard model.
We now examine how physical properties are affected by the
presence of zeros in the Green’s function in Eqs. (1) and (4).

III. TOTAL CHARGE

Before we study the specific case of Eq. (1), we begin
by expressing the total particle number in terms of Green’s
function singularities [33]. With knowledge of the interacting
Green’s function G(z), the total particle number N can be

determined from the following equation [50,51]:

N = 1

β

∑
ωn

Tr[G(iωn)]eiωnη =
∮

dz

2π i
nF (z)Tr[G(z)], (5)

where ωn is the fermionic Matsubara frequency, β is the
inverse temperature, η is an infinitesimally small positive
number, nF (z) is the Fermi function, and the contour of
integration encloses the Matsubara frequencies along the
imaginary axis. To extract the topological winding charac-
teristics of the particle number [33], we note that the total
Green’s function can be written in terms of the noninteracting
Green’s function G0(iωn) and self-energy �(iωn) through the
Dyson equation G(iωn)−1 = G0(iωn)−1 − �(iωn). Using this,
we can rewrite

G(z) = G(z)
∂G(z)−1

∂z
+ G(z)

∂�(z)

∂z
, (6)

and as a result the particle number N takes the form

N =
∮

dz

2π i
nF (z)

[
∂ ln detG(z)−1

∂z
+ Tr

(
G(z)

∂�(z)

∂z

)]
.

≡ vl − δv. (7)

The first term in Eq. (7) denoted vl is traditionally defined as
the Luttinger volume, and the second backflow term in Eq. (7)
denoted δv is its deviation from the total particle number. The
Luttinger theorem states that limβ→∞ N = limβ→∞ vl . The
theorem holds when particle-hole symmetry is preserved, and
we will see below that away from the particle-hole symmetric
filling, the Luttinger theorem can be violated and the backflow
term limβ→∞ δv �= 0. To further simplify Eq. (7), we utilize
the analytical properties of the Green’s function. In particular,
we note that the determinant of the single-particle Green’s
function can be decomposed into products of poles and
zeros [30],

detG(z) =
∏nZ

i=1(z − ζi )∏nP
i=1(z − πi )

, (8)

where ζi (nZ ) and πi (nP) are the locations (number) of zeros
and poles of the Green’s function determinant. Substituting
the factorization into the Luttinger volume gives a finite-
temperature expression

vl =
nP∑

i=1

nF (πi ) −
nZ∑

i=1

nF (ζi). (9)

At zero temperature, each of the poles (zeros) below the Fermi
energy contributes one (negative one) count to the Luttinger
volume, while those at the Fermi energy contribute a 1

2 (− 1
2 )

count. Hence the Fermi function is reduced to the Heaviside
step (Kronecker δ) function for energies below (at) the Fermi
energy, and we can rewrite the Luttinger volume as

vl =
(

nP∑
i

�(−πi ) −
nZ∑
i

�(−ζi )

)

+1

2

(
nP∑
i

δ0,πi −
nZ∑
i

δ0,ζi

)
. (10)

For notational simplicity and later discussions, we will denote
the difference between the number of poles and zeros below
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(at) the chemical potential for the determinant of the matrix f
as n<( f ) [n0( f )]. Thus the vl can be rewritten succinctly as

vl = n<(G) + 1
2 n0(G). (11)

Notice that in the scenario when there are no zeros in the
Green’s function, the Luttinger volume reduces to its well-
known expression but with half the contribution from poles
at the Fermi energy when compared to those below, as must
be expected. We can similarly simplify the expression for the
deviation from the Luttinger volume δv. Defining the ratio of
the determinant of the noninteracting and interacting Green’s
function as

R(z) = detG0(z)

detG(z)
, (12)

we can rewrite the deviation as an expression similar to the
Luttinger volume but in terms of analytical properties of
R(z) [33]. Choosing a contour of integration that encloses the
Matsubara frequencies along the imaginary axis, we have the
backflow term [33]

δv = −
∮

dz

2π i
nF (z)Tr

(
G(z)

∂�(z)

∂z

)

= +
∮

dz

2π i
nF (z)

∂ ln R(z)

∂z
. (13)

We now define Zi (NZ ) and �i (NP) as the locations (number)
of zeros and poles of R(z). We then obtain an expression for
the backflow δv similar to that of vl in Eq. (10) as

δv =
(

NP∑
i

�(−�i ) −
NZ∑
i

�(−Zi )

)

+1

2

(
NP∑
i

δ0,�i −
NZ∑
i

δ0,Zi

)
(14)

= n<(R−1) + 1

2
n0(R−1). (15)

In noninteracting systems, G0(z) = G(z) and by definition
R(z) = 1 leading to δv = 0. The total particle number is fixed
by that of the noninteracting electron Green’s function, and it
takes the form

N = n<(G0) + 1
2 n0(G0). (16)

In a Fermi liquid and related phases, due to the absence
of Green’s function zeros in its determinant, there exists a
one-to-one mapping between the poles of G0(z) and G(z).
This is because the lack of zeros leaves the pole structure of
the Green’s function determinant intact. Hence the Luttinger
theorem continues to be satisfied and δv = 0. We are now in
a position to calculate the particle number for different cases
of interest, including the Hamiltonians described in Eqs. (1)
and (4).

A. Insights from the atomic limit

1. Failure of pole counting

To elucidate the role of quasiparticle loss on the particle
number, we begin with the atomic limit of the Hubbard model
in Eq. (4). We argue that in this limit, counting of poles is

insufficient to capture the total particle count. This fact is
already reflected in Eqs. (7), (10), and (15), but here we give a
simplified picture to help demonstrate a key notion—Green’s
function zeros in the Mott gap contribute to the total particle
number while also keeping it invariant under changes to the
chemical potential up to the order of the gap. We argue that
this holds true for any physically measurable property. Later
in the paper, we will further reiterate this simple principle in
the context of a topological Hall response in the Mott phase
obtained from the Hamiltonian in Eq. (1).

We work with the Hubbard Hamiltonian by setting the
kinetic energy and chemical potential to zero, i.e.,

Hu = u
∑

i

ni↑ni↓, (17)

where i runs over the various sites of the lattice. In the ab-
sence of interactions, the determinant of the noninteracting
Green’s function per site is given by det G0(z) = 1

z2 , where
the quadratic power in the denominator is due to the spin
degree of freedom. This leads to two poles located exactly
at zero energy as displayed in Fig. 1(a) with a weight of
one-half each. In the presence of interactions and particle-hole
symmetry, the determinant of the interacting Green’s function
Gu(z) per site is given by

det Gu(z) =
(

4z

4z2 − u2

)2

, (18)

where again the overall quadratic power is from the spin de-
gree of freedom. Due to the pole in the self-energy �(z) = u2

4z ,
the interacting Green’s function has four poles—two poles
each above and below the chemical potential—and two zeros
at the chemical potential. This is shown below the center
arrow in Fig. 1(a). As a result, there is a doubling of the
number of poles below the Fermi energy each with a weight of
unity. Hence counting poles by themselves in the atomic limit
of the Hubbard model cannot be sufficient to account for a
fixed total particle number. A comparison of the determinants
of G0(z) and Gu(z) readily lays out the reason for the failure of
pole counting—a singular self-energy (Green’s function zero)
changes the order of the Green’s function pole structure. Thus,
while accounting for singularities of the Green’s function
in the Hubbard model, it is essential to count zeros for the
preservation of the total particle number [22].

2. Role of zeros

From dimensionality arguments, the singularity of the self-
energy must naturally be involved to account for the total
Luttinger count and electron number. Equations (7), (10), and
(15) precisely capture how Green’s function zeros must be
included to preserve the total particle number in the presence
of interactions.

To better clarify the role of zeros, we compute the total
particle number per site using Eqs. (7), (10), and (15) in the
atomic limit of the Hubbard model [Eq. (4)]. We first work in
the zero chemical potential limit and later consider scenarios
in which it is nonzero. In the absence of interactions, we de-
termine vl and δv from the determinant of the noninteracting
Green’s function det G0(z) = z−2. Since there are two poles at
zero energy [Fig. 1(a)], vl = 1

2 (2) = 1, whereas ln R(z) = 0
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leading to δv = 0; hence N = vl − δv = 1 per site. In the
presence of interactions, there are two poles below the Fermi
energy and two zeros at the Fermi energy in the determinant
Eq. (18) [Fig. 1(a)]. We therefore have vl = 2 − 1

2 (2) = 1,

whereas, since R(z)−1 = detGu(z)/detG0(z) = 4z4

(4z2−u2 )2 , we
have two poles below and four zeros at the Fermi energy
giving δv = 2 − 1

2 (4) = 0; hence again N = vl − δv = 1 per
site. Thus we see that in the atomic limit of the Hubbard
model, the Luttinger theorem holds when μ = 0 (particle-
hole symmetry), and to recover the correct particle number,
Green’s function zeros must contribute to the count.

Moving away from the μ = 0 limit, we shift the chemical
potential within the Mott gap away from the particle-hole
symmetric point. For the case when μ < 0 in the presence
of interactions, there are two poles (no singularities) below
(at) the chemical potential [Fig. 1(a)]. Hence we see that the
Luttinger count is vl = 2 + 1

2 (0) = 2, whereas the deviation
is δv = 2 + 1

2 (−2) = 1, hence satisfying the same particle
number condition N = vl − δv = 1. Similarly when μ > 0,
there are two poles and zeros each (no singularities) below
(at) the chemical potential [Fig. 1(a)]. We therefore have vl =
0 + 1

2 0 = 0 and δv = 0 + 1
2 (−2) = −1 so that the particle

number N = vl − δv = 1 continues to remain unchanged. A
summary of these numerical evaluations for the three cases of
μ = 0, μ > 0, μ < 0 appears in Fig. 1(b).

B. The case of the Hatsugai-Kohmoto model

We can apply a similar analysis to the dispersive bands of
the Hatsugai-Kohmoto model of Eq. (1). It is sufficient to con-
sider a single-band version of the Hamiltonian to illustrate our
results. Since the model is local in momentum space where
the individual k points are decoupled from each other, every
such momentum point can be viewed as a single-site Hubbard
model with a different on-site energy. Hence the results from
previous paragraphs for the single-site Hubbard model in the
atomic limit can be utilized in a straightforward manner.

We focus on the limit where the interaction strength U
is larger than the bandwidth with an occupation N = 1 per
spin (half-filling) and momentum point. Figure 2 shows a
schematic of the spectral function in this limit. The solid
lines are the upper and lower “Hubbard-like” bands, and
the dashed line is the contour of Green’s function zeros.
The blue dots mark the intersection of the zero surface with
the chemical potential, and the red (green) arrow denotes a
momentum point inside (outside) the zero surface at zero
energy [Luttinger surface (LS)]. At the particle hole symmet-
ric point (solid blue dot), there exist two poles (two zeros)
below (at) the chemical potential. Hence, like in the particle-
hole symmetric case described earlier, we have N = vl =
1, δv = 0. Away from particle-hole symmetry, the chemical
potential can be moved above or below zero frequency (short
black solid lines) for a given momentum corresponding to
the blue arrow. Alternatively, the momenta can occur inside
or outside the LS. For the case when the chemical potential
is above zero, or equivalently when the momentum point lies
inside the LS as marked by the red arrow, there are two poles
and zeros below the chemical potential. As a result, vl = 0
but δv = −1 so that the net particle count N = 1 continues to

FIG. 2. Illustration of the upper Hubbard band (UHB), lower
Hubbard band (LHB), and contour zero surface (dashed green line)
of the model Hamiltonian in Eq. (1) with a single band. The blue
dots denote the intersection of zero surface with the Fermi energy
(horizontal dashed gray line). The red (green) arrow denotes a k point
within (outside) the zero surface. The blue arrow denotes a k point at
the zero surface. The short solid lines above and below the right blue
dot denote the cases when the chemical potential is moved slightly
above and below the reference value.

be preserved. Similarly, when the chemical potential is below
zero, or equivalently when the momentum point lies outside
the LS as marked by the green arrow, there are two poles
below the chemical potential, and we obtain vl = 2 but δv = 1
so that the net particle count is again N = 1. Therefore, the
particle number remains conserved for each momentum as
expected for the Hamiltonian in Eq. (1) regardless of changes
in chemical potential.

The result above reconciles two seemingly conflicting no-
tions: (i) that chemical potential changes that are less than or
of the order of the Mott gap are not expected to affect physical
properties since the ground state is unchanged, and (ii) that
only “occupied” singularities (zeros or poles) contribute to the
total particle number. From our analysis above, we can con-
clude that indeed Green’s function zeros contribute to the total
particle number while also keeping it invariant to chemical
potential changes smaller than U . The reconciliation between
(i) and (ii) is made possible because properly accounting for
zero contributions is necessary to obtain the correct invariant
value, and any deviation of the topological quantity (here the
Luttinger count vl ) from this value due to chemical potential
changes is offset by an opposite variation of a nontopological
one (here the backflow deviation δv) in Eq. (7). We will see
below that a similar mechanism holds for the transverse Hall
response function where the role of the Luttinger volume is
played by the topological number N3 [cf., Eqs. (35)–(37)].

IV. HALL CONDUCTIVITY

In this section, we consider the electron transport proper-
ties in the presence of the Green’s function zeros using the
Kubo formula [52]. We reiterate that our analysis here of the
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transverse Hall response is guided by the procedure we have
used while considering the total charge in the previous section.

A. Current operators

The (optical) conductivity can be evaluated by the correla-
tion functions of current operators, which are derived from the
continuity equations ∂tρ + ∇ · j = 0. Combining the Heisen-
berg equation of motion with the continuity equation, one
is able to obtain the expression for the current operator as
follows:

q · jq = [H, ρq], (19)

in which the Fourier transformed density operator takes the
following form:

ρq = 1√
NL

∑
k,ασ

c†
k+ q

2 ασ
ck− q

2 ασ . (20)

Here NL stands for the size of the lattice. For a noninteract-
ing Hamiltonian, the current operator is indeed the velocity
operator of fermions:

Jq = 1√
NL

∑
k,ασβσ ′

vασ,βσ ′ (k)c†
k+ q

2 ασ
ck− q

2 βσ , (21)

in which vασ,βσ ′ (k) = ∇khασ,βσ ′ (k) is the velocity matrix.
However, when the interaction Hamiltonian contains terms
that cannot be written as the products of local density oper-
ators (such as HK Hamiltonian), it will also contribute to the
total current operator, which we will denote as J′

q:

q · J′
q = [HI , ρq] , (22)

and the total current is the summation of the two terms
jq = Jq + J′

q. Parameters in both the kinetic and interacting
Hamiltonians will be affected by the external electromagnetic
field A−q via Peierls substitution due to the gauge invariance,
because the creation and annihilation operators in the inter-
acting Hamiltonian are not always located on the same lattice
sites in real space. As a consequence, the current operator J′

q
originating from the interacting Hamiltonian is also coupled
to the gauge field. Similarly, the diamagnetic current can also
originate from the interaction.

B. Conductivity tensor

With all these factors considered, the optical conductivity
with imaginary frequency can be written as a summation
of the current-current susceptibility and the diamagnetic re-
sponse from both Jq and J′

q. More precisely, the conductivity

tensor takes the following form:

σi j (q, i�) = 1

�
(Di j + χi j (q, i�) + D′

i j (q) + Xi j (q, i�)),

(23)
in which Di j and D′

i j (q) are the diamagnetic response ten-
sors obtained from expanding the kinetic Hamiltonian and
interaction Hamiltonian to the second order of Aq, and the
susceptibilities χi j and Xi j are defined as follows:

χi j (q, i�) = −
∫

dτ ei�τ
〈
Tτ ji

q(τ )J j
−q(0)

〉
, (24)

Xi j (q, i�) = −
∫

dτ ei�τ
〈
Tτ ji

q(τ )J ′ j
−q(0)

〉
. (25)

Since the interaction Hamiltonian usually contains four-
fermion terms, the susceptibility Xi j (q, i�) could contain
correlation functions with more than six fermionic operators.
Using the Ward-Takahashi identity [53,54], we are able to
rewrite the susceptibility χi j together with the diamagnetic
term Di j as a charge-current susceptibility:

Di j + lim
q→0

χi j (q,�) = −i� lim
q→0

∂

∂qi
χ0 j (q,�), (26)

χ0 j (q, i�) = −
∫

dτei�τ
〈
Tτ ρq(τ )J j

−q(0)
〉
. (27)

The derivation of this relationship can be found in
Appendix A. Thus, the conductivity tensor will contain the
charge-current susceptibility as follows:

σi j (q → 0, i�) = −i lim
q→0

∂

∂qi
χ0 j (q, i�) + σ ′

i j (q, i�), (28)

where σ ′
i j (q, i�) stands for the contributions from D′

i j (q) and
Xi j (q, i�), which contain correlation functions with six or
more fermionic operators. To find the connection between the
conductivity tensor and the Green’s functions, it is better to
write the charge-current susceptibility χ0 j as an integral of
exact Green’s functions G(k, iω) and the exact vertex func-
tion �0(q, i�; k, iω) (the definition of which can be found in
Appendix A):

χ0 j (q, i�) = 1√
NL

∑
k

∫
dω

2π
Tr

[
G

(
k + q

2
, iω

)

× �0(k, iω; q, i�)G
(

k − q
2
, iω + i�

)
v j (k)

]
.

(29)

Taking the derivative of the susceptibility χ0 j with respect to
the wave vector q, we yield the following expression for the
conductivity tensor:

σi j (i�) = − i
1√
NL

∑
k

∫
dω

2π
Tr

[
G(k, iω)

∂�0(k, iω; q, i�)

∂qi

∣∣∣
q→0

G(k, iω + i�)v j (k)

]

− i

2
√

NL

∑
k

∫
dω

2π
Tr

[
∂G(k, iω)

∂ki
�0(k, iω; q → 0, i�)G(k, iω + i�)v j (k)

]

+ i

2
√

NL

∑
k

∫
dω

2π
Tr

[
G(k, iω)�0(k, iω; q → 0, i�)

∂G(k, iω + i�)

∂ki
v j (k)

]
+ σ ′

i j (q, i�). (30)
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One can easily notice that the second and third terms only contain the vertex function �0 at q → 0. Using the Ward-Takahashi
identity for �μ, we are able to solve the vertex function �0(k, iω; 0, i�) as follows:

−i� · �0(k, iω; q → 0, i�) = [G−1(k, iω) − G−1(k, iω + i�)]√
NL

+ lim
q→0

∑
i

qi�
i(q, i�; k, iω) . (31)

Here the second term will vanish if the vertex functions �i do not diverge at q = 0. In normal condensed-matter systems with
short-range interaction, this condition is usually satisfied. Because the HK model has a long-range interaction, we have, for
generality, kept this term in the consideration. In the DC limit i� → 0, it can also be written as

�0(k, iω; q → 0, i� → 0) = − i
1√
NL

∂G−1(k, iω)

∂ω
+ F (k, iω), (32)

F (k, iω) = lim
�→0

lim
q→0

∑
i

qi

−i�
�i(q, i�; k, iω). (33)

Using Eq. (32), the conductivity at the DC limit can be written as

σi j = −i
1√
NL

∑
k

∫
dω

2π
Tr

[
G(k, iω)

∂�0(k, iω; q, i� → 0)

∂qi

∣∣∣
qi→0

G(k, iω)v j (k)

]

− i

2
√

NL

∑
k

∫
dω

2π
Tr

[
∂G(k, iω)

∂ki
F (k, iω)G(k, iω)v j (k)

]

+ i

2
√

NL

∑
k

∫
dω

2π
Tr

[
∂G(k, iω)F (k, iω)

∂G(k, iω)

∂ki
v j (k)

]

− 1

2NL

∑
k

∫
dω

2π
Tr

[
∂G(k, iω)

∂ki

∂G−1(k, iω)

∂ω
G(k, iω)v j (k)

]

+ 1

2NL

∑
k

∫
dω

2π
Tr

[
G(k, iω)

∂G−1(k, iω)

∂ω

∂G(k, iω)

∂ki
v j (k)

]
+ σ ′

i j (q, i�). (34)

In addition to the σ ′
i j term from higher point correlation functions, Eq. (34) contains the information of the vertex functions �μ

at nonzero q, which are inherently multipoint correlation functions and cannot be represented by Green’s functions.

C. N3 and Hall conductivity

We focus on the Hall conductivity σxy in this subsection. By using the identities ∂G = −G∂G−1G and v j (k) =
−∂k j G

−1(k, iω) − ∂k j �(k, iω), we are able to represent the velocity matrices and the derivatives of the Green function as the
derivatives of Green’s function inverse matrices. Thus, the expression of the Hall conductivity can be rewritten as [in analogy to
Eq. (7) for the total particle number]

σxy =N3 + �N3, (35)

where the topological invariant

N3 = 1

2NL

∑
k

∫
dω

2π
Tr[G(k, iω)∂ωG−1(k, iω)G(k, iω)∂kx G

−1(k, iω)G(k, iω)∂ky G
−1(k, iω)]

− 1

2NL

∑
k

∫
dω

2π
Tr[G(k, iω)∂kx G

−1(k, iω)G(k, iω)∂ωG−1(k, iω)G(k, iω)∂ky G
−1(k, iω)] (36)

gives the Hall conductivity in the noninteracting limit. The difference,

�N3 = −i
1√
NL

∑
k

∫
dω

2π
Tr

[
G(k, iω)

∂�0(k, iω; q, i� → 0)

∂qx

∣∣∣
qx→0

G(k, iω)vy(k)

]

− i

2
√

NL

∑
k

∫
dω

2π
Tr

[
∂G(k, iω)

∂ki
F (k, iω)G(k, iω)v j (k)

]
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+ i

2
√

NL

∑
k

∫
dω

2π
Tr

[
∂G(k, iω)F (k, iω)

∂G(k, iω)

∂ki
v j (k)

]

+ 1

2NL

∑
k

∫
dω

2π
Tr[G(k, iω)∂ωG−1(k, iω)G(k, iω)∂kx G

−1(k, iω)G(k, iω)∂ky�(k, iω)]

− 1

2NL

∑
k

∫
dω

2π
Tr[G(k, iω)∂kx G

−1(k, iω)G(k, iω)∂ωG−1(k, iω)G(k, iω)∂ky�(k, iω)] + σ ′
i j (q, i�), (37)

is an analog to δv in the generalized Luttinger’s theorem,
and it vanishes in the absence of interactions. Specifically,
in the noninteracting limit, the self-energy �(k, iω) is zero,
and the vertex function is a constant matrix �0(k, iω; q, i�) =
1/

√
NL because of Wick’s theorem (instead of a consequence

of the Ward-Takahashi identity). The contribution from six-
or-more-point correlation functions σ ′

i j (q, i�) also vanishes
since J′

q = 0. Thus, all the terms in the expression of �N3 are
zero, which indicates σxy = N3. However, in the presence of
interactions, the vertex �0 is no longer a constant function of
q, and the self-energy �(k, iω) �= 0, and in general we cannot
identify the topological index N3 as the Hall conductivity. The
vertex functions �0 inherently encode a four-point function,
and the Ward-Takahashi identity is only able to relate it to
both the Green’s functions and other vertex functions together,
rather than representing everything solely through the Green’s
function.

Nevertheless, both values of N3 in �N3 receive contribu-
tions from the zeros of the Green’s function, provided that
interactions are properly accounted for. As exemplified by the
Hatsugai-Kohmoto model, to be discussed below in Sec. IV D
(see Fig. 4 and the associated text), N3 contains terms that
are affected by the number of zeros below the chemical po-
tential. Thus the choice of chemical potential even within an
insulating gap can modify N3 in close analogy to the Luttinger
volume vl in Eq. (7). While the Green’s function zeros’ con-
tributions to N3 have been highlighted in Refs. [30,39,40],
we establish here such contributions in a consistent, gauge-
invariant way. Therefore, caution must be exercised when
considering Green’s function zeros, particularly when com-
puting observable quantities like σxy using Green’s functions
and other correlation functions. Despite this, later in the next
section, we will show how the zero-temperature conductivity
remains unchanged under variations of the chemical potential
within the Mott gap in the spirit of our previous discussion on
the total charge.

A natural question regarding the Hall conductivity is
whether σxy will be equal to N3 when �(k, iω) = �(iω) is
k-independent. Indeed, such self-energy could eliminate the
two terms in the fourth and fifth lines of Eq. (37), indicating
that σxy is different from N3 by only a term containing �0

and σ ′
i j (q, i�), which contains six- or eight-point correlation

functions [when the vector vertex functions are well-behaved
in the long-wavelength limit, such that F (k, iω) = 0]. One
may wonder if the derivative of the vertex function �0 can
be represented by Green’s functions via the Ward-Takahashi
identity. Since this remaining term contains the derivative of
�0 with respect to q, we are not able to use Eq. (32) directly.
In fact, one could check that the following ansatz vertex func-

tions �μ all satisfy the Ward-Takahashi identity:

�0(k, iω; q, i� → 0)

= 1√
NL

(
1 + i

�(iω + i�) − �(iω)

�
− q · �

)
, (38)

�i(k, iω, q, i� → 0) = 1√
NL

(vi(k) + i� · �i ). (39)

Here � is a constant vector with the same dimension as length.
The Ward-Takahashi identity is satisfied regardless of the
choice of �. Therefore, the derivative of the vertex function
�0 in the q → 0,� → 0 limit will be

∂�0(k, iω; q, i� → 0)

∂qx

∣∣∣
qx→0

= − �x√
NL

. (40)

The value of �x is not able to be solely solved from the Ward-
Takahashi identity. Thus, we cannot further reduce Eq. (37)
into an expression that only contains full Green’s functions,
even if the self-energy � is momentum k-independent.

D. HK model with Chern bands

HK models are easily solvable using numerically exact
diagonalization even if the kinetic energy hασ,βσ ′ (k) is not
diagonal, due to the presence of a huge amount of good
quantum numbers Nk = ∑

ασ c†
kασ

ckασ . We choose a tight-
binding lattice model that carries a nonzero Chern number.
The corresponding Hamiltonian is given by

H0 =
∑

k,ασ,βσ ′
hασ,βσ ′ (k)c†

kασ
ckβσ ′ , (41)

h(k) = [t12(τ1 sin kx + τ2 sin ky)

+ τ3(M − t cos kx − t cos ky)] ⊗ s0, (42)

HI = U

2

∑
k

2∑
α=1

(nkα↑ + nkα↓ − 1)2. (43)

Here we use τ0,1,2,3 to represent the identity and Pauli ma-
trices with sublattice indices (α = 1, 2), and we use s0,1,2,3

to represent the identity and Pauli matrices with spin indices
(σ =↑,↓). Since the kinetic Hamiltonian h(k) is proportional
to s0, it has a spin SU(2) symmetry. When the parameters are
chosen to be t12 = t = 1 and |M| < 2, the two energy bands of
each spin will carry Chern numbers νC = ±1, and due to the
spin SU(2) symmetry of the whole kinetic Hamiltonian, the
two lower energy bands have the same Chern number. In the
numerical calculation, we will choose M = 1. The Hamiltoni-
ans for every momentum value Hk are completely decoupled
from each other. Hence, the spectra and the wave functions for
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FIG. 3. (a) The many-body energy spectrum of Hk − μNk along the high-symmetry lines. Here we choose t12 = t = 1, M = 1, and U =
20. States with electron numbers Nk = 0, 1, 2, 3, 4 are labeled by blue, purple, red, brown, and green, respectively. In this figure we also
added a chemical potential μ = 0.2 to separate the Nk = 1 and 3 states. (b) The Green’s function determinant | det G(k, ω + i0+)| along the
high-symmetry lines. The corresponding value of N3 computed from this Green’s function is N3 = −2. (c),(d) Longitudinal and transverse
components of the tensor −i limq→0 ∂qi χ0 j (q, i�) as functions of imaginary frequency. The conductivity tensor σi j is different from this
quantity by σ ′

i j (q, i�) as shown in Eq. (28). The real part value of −i limq→0 ∂qx χ0y(q, i�) at zero frequency is clearly different from the value
of N3, indicating that the backflow term �N3 is nonzero.

each Hk can be numerically solved easily, since it is a 16 × 16
matrix. In Fig. 3(a), we provide the energy spectra of Hk −
μNk when the chemical potential is tuned such that the ground
state is at half-filling. We also note that the ground state for
each k will not change if the chemical potential is changed
by a value |�μ| � U/2, due to the gap between the ground
states (Nk = 2) and the charge ±1 (Nk = 1, 3) excitations.

The many-body wave functions of the whole system are
simply the tensor products of the wave functions for each
k. With these exact wave functions in hand, we are able to
compute quantities, such as Green’s functions and suscep-
tibilities via spectral decomposition. The determinant of the
Green’s function along high-symmetry lines can be found in
Fig. 3(b). Dispersive poles and zeros with different dispersion
relationships are clearly visible. We also find numerically the
topological index N3 = −2 for this Green’s function.

The derivative of the charge-current susceptibility
χ0 j (q, i�), which has been shown to be an important
part of the conductivity tensor σi j , can also be evaluated
numerically using spectral decomposition, as we discuss in
Appendix B. Figures 3(c) and 3(d) provide the values of
the xx and xy components of −i limq→0 ∂qiχ0 j (q, i�) with
imaginary frequencies. Clearly, the transverse component
of this quantity is a nonzero small value. However, it is far
from the value of N3, a plot of which appears in Fig. 4 for
the HK model. Thus, we can conclude that the backflow

terms �N3 in Eq. (37) are not negligible even if σ ′
xy does not

contribute.
We now comment on the extra term σ ′

i j (q, i�) in the ex-
pression of the total conductivity tensor, which describes the
current jq response from the coupling term between the ex-

FIG. 4. Variation of the topological winding number N3 as a
function of the chemical potential normalized by the hopping t . The
zero (pole) bands are shown in green (orange) while the horizontal
blue lines denote the values of N3. N3 is ill-defined in the energy
windows where the zero and pole bands occur. The Mott gap is set
to 20t.
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ternal gauge field and the interaction current operator J′
−q. As

we have already mentioned, this term is inherently a six-and-
more-point correlation function, and it cannot be represented
by the exact Green’s function. It amounts to an extra contribu-
tion to the backflow term �N3.

Finally, we now show why the conductivity at zero tem-
perature remains unchanged under variations in the chemical
potential, provided that such changes do not alter the ground
state. For the HK Hamiltonian at half-filling, the ground state
for each k has a large gap ∼U/2 from any charge excitations,
and as a consequence, the many-body ground states will re-
main in the half-filling sector in a range of chemical potential.
As we specified in Eq. (23), the conductivity tensor contains
the current-current susceptibility, which can be expressed in
terms of a spectral decomposition:

χi j (q, i�) + Xi j (q, i�)

= 1

|G|
∑

g∈G,m

[
〈g| ji

q|m〉〈m| j j
−q|g〉

i� + (Eg − μNg) − (Em − μNm)

− 〈g| j j
−q|m〉〈m| ji

q|g〉
i� − (Eg − μNg) + (Em − μNm)

]
. (44)

Here, G denotes the set of degenerate ground states, and |G|
stands for the ground state degeneracy. In addition, Eg, Em

and Ng, Nm stand for the eigenvalues of the many-body
Hamiltonian and the fermion number operator of many-body
eigenstates |g〉 and |m〉, respectively. The current operators
jq always contain the same amount of fermion creation and
annihilation operators. As a consequence, any excited state
|m〉 that satisfies 〈g| ji

q|m〉 �= 0 must have the same fermion
number eigenvalue (Ng = Nm). Hence, the chemical potential
μ does not show up in the denominator. If the ground states
|g〉 remain unchanged when varying μ (which is true for a
charge gapped system), Eq. (44) will also remain unchanged,
regardless of whether the Green’s function zeros are at the
Fermi level or not. Meanwhile, the diamagnetic response
tensors Di j and D′

i j (q) are directly determined by the ground-
state expectation values of fermionic operator products, which
are unchanged if the ground state remains the same while
changing μ even if it passes through zeros. As a consequence,
the conductivity tensor will not be changed as well. This is
despite the following: (i) The value of N3 can be changed
by varying the chemical potential across zero bands. The
variation of N3 for the Hatsugai-Kohmoto model is shown
numerically in Fig. 4, and it occurs even if the ground state is
unaffected. (ii) σxy must receive contributing terms from zeros
that must be properly accounted for. We infer this from our
numerical evaluation of N3 for the HK model in Fig. 4 as well
as Eqs. (35)–(37) in analogy to the total charge in Eq. (7).
With these fully gauge-invariant calculations, we have thus
demonstrated how zero contributions to both the total charge
and Hall conductivity can be properly accounted for, while at
the same time the physical observable itself remains invariant
under chemical potential variations within the Mott gap. We
stress that our emphasis here is not on the distinctness between
the Hall conductivity and N3 per se [40] but on the behavior
of the Hall conductivity itself.

V. DISCUSSION AND SUMMARY

Several remarks are in order. First, as stated in the Intro-
duction, probing Green’s function zeros experimentally is not
a straightforward task. Our objective in this paper is to study
how zeros contribute to certain observables in a consistent,
gauge-invariant manner. Extracting this contribution unam-
biguously is a challenge and a subject of ongoing debate,
which we postpone for a future investigation. A naive appli-
cation of ordinary spectroscopic tools such as photoemission,
tunneling, or x-ray/neutron scattering does not automatically
reveal their existence, and a more nuanced approach is nec-
essary. Instead, one might rely on specific probes that could
extract this information more indirectly. For example, a key
mechanism for the occurrence of zeros is through ground-state
degeneracies, where we expect the zeros to come from a
resonance scattering of electrons from singular collective spin
excitations. In this regard, a Curie-like behavior of the static,
long-wavelength magnetic susceptibility in the zero-field limit
with a Mott gap is a strong indicator of Green’s function zeros.
In principle, processes connecting nondegenerate but mixed
ground states to excited states can also yield zeros at zero
temperature. Such scenarios must be treated on a case-by-
case basis. Second, in the current paper we have not derived
explicit forms of the six-and-more-point correlation functions
dictated by gauge invariance and alluded to in Eq. (30). These
terms contribute to the deviation of σxy from its topological
invariant N3 as its particle number counterpart in Eq. (7).
Nonetheless, we are able to reach the key conclusion that
measurable properties are contributed to by Green’s function
zeros while remaining unchanged with chemical potential up
to the Mott scale.

In summary, in this work we have examined the role of
quasiparticle loss on physical properties by studying an ex-
actly solvable model of a Mott insulator. The model contains
contours in momentum-frequency space where the Green’s
function vanishes to yield zeros within the Mott gap. We
demonstrate that these zeros contribute to physical properties,
such as the total particle number and conductivity tensor, in
a way that is consistent with the expectations from general
physical grounds. As an example of the latter, the observables
are shown to be insensitive to changes in chemical potential
within the Mott gap. Our results offer a conceptual frame-
work for further analysis of topological response functions
in strongly correlated systems and quantum materials where
a well-defined quasiparticle picture is absent. As such, we
expect our work to help further advance the understanding
of the rich interplay among topology, symmetry, and strong
correlations.

Note added: After completing this manuscript, we became
aware of unpublished work in which the many-body effects of
Hall conductivity are also addressed [39,55].
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APPENDIX A: WARD-TAKAHASHI IDENTITY AND SUSCEPTIBILITIES

In this Appendix, we provide a detailed discussion regarding the susceptibilities χi j , χ0 j and the relationship between these
susceptibilities and the Ward identity [53,54].

The Ward-Takahashi identity can be formulated into the following form using imaginary-time representation:

∂τ

〈
Tτ ρq(τ )c†

k− q
2 ασ

(τ ′)ck+ q
2 βσ ′ (τ ′′)

〉
= q · 〈

Tτ jq(τ )c†
k− q

2 ασ
(τ ′)ck+ q

2 βσ ′ (τ ′′)
〉 + δ(τ ′ − τ )√

NL
Gβσ ′,ασ

(
k + q

2
, τ ′′ − τ

)
− δ(τ ′′ − τ )√

NL
Gβσ ′,ασ

(
k − q

2
, τ − τ ′

)
, (A1)

in which Gβσ ′,ασ (k, τ ) = −〈Tτ ck,βσ ′ (τ )c†
k,ασ

(0)〉 represents the imaginary-time Green’s function. This identity can also be
written in the frequency domain by performing the Fourier transformation on both sides. A compact way to rewrite the
frequency-domain Ward-Takahashi identity is

−i� · Q0
ασ,βσ ′ (k, iω; q, i�) = q · Qασ,βσ ′ (k, iω; q, i�) + 1√

NL
Gβσ ′,ασ

(
k + q

2
, iω

)
− 1√

NL
Gβσ ′,ασ

(
k − q

2
, iω + i�

)
, (A2)

in which the correlation functions Qμ

ασ,βσ ′ (k, iω; q, i�) are defined as

Q0
ασ,βσ ′ (k, iω; q, i�) =

∫
dτ

∫
dτ ′′ei(�τ+ωτ ′′ )〈Tτ ρq(τ )c†

k− q
2 ασ

(0)ck+ q
2 βσ ′ (τ ′′)

〉
, (A3)

Qi
ασ,βσ ′ (k, iω; q, i�) =

∫
dτ

∫
dτ ′′ei(�τ+ωτ ′′ )〈Tτ ji

q(τ )c†
k− q

2 ασ
(0)ck+ q

2 βσ ′ (τ ′′)
〉
. (A4)

Another useful form of the Ward-Takahashi identity connects the Green’s functions and vertex functions �μ(q, i�; k, iω),
which are defined as

�μ(k, iω; q, i�) = −G−1
(

k + q
2
, iω

)
[Qμ(k, iω; q, i�)]TG−1

(
k − q

2
, iω + i�

)
. (A5)

Thus, we can obtain the Ward-Takahashi identity using the vertex functions by rewriting Eq. (A2),

−i� · �0(k, iω; q, i�) =
∑

i

qi · �i(k, iω; q, i�) − 1√
NL

[
G−1

(
k − q

2
, iω + i�

)
− G−1

(
k + q

2
, iω

)]
. (A6)

It is obvious that the susceptibilities χi j (q, i�) and χ0 j (q, i�), which are defined in Eqs. (24) and (27), can be represented by
the correlation functions Qμ(q, i�; k, iω) in the following form:

χ0 j (q, i�) = −
∫

dτei�τ
〈
Tτ ρq(τ )J j

−q(0)
〉 = − 1√

NL

∑
k

∫
dω

2π
Tr[(Q0(k, iω; q, i�))Tv j (k)], (A7)

χi j (q, i�) = −
∫

dτei�τ
〈
Tτ ji

q(τ )J j
−q(0)

〉 = − 1√
NL

∑
k

∫
dω

2π
Tr[(Qi(k, iω; q, i�))Tv j (k)]. (A8)
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Combining this with the Ward-Takahashi identity shown in Eq. (A2), we can find how these two susceptibilities are related to
the Green’s functions:

−i� · χ0 j (q, i�) =
∑

i

qiχi j (q, i�) −
∫

BZ

dd k

(2π )d

∫
dω

2π
Tr

[
∂h(k)

∂k j

[
G

(
k + q

2
, iω

)
− G

(
k − q

2
, iω + i�

)]]
. (A9)

By taking the derivative with respect to qi and then taking the q → 0 limit, we are able to obtain the expression for the χi j (q, i�)
as shown:

χi j (q → 0, i�) = −i� lim
q→0

∂

∂qi
χ0 j (q, i�) +

∫
BZ

dd k

(2π )d

∫
dω

2π
Tr

[
1

2

∂h(k)

∂k j

∂

∂ki
(G(k, iω) + G(k, iω + i�))

]
. (A10)

If the integral over ω in the second term is absolute convergent, it will not depend on the value of �, since it is equivalent to a
shift of the variable of integration ω → ω + �. Hence, Eq. (A10) can be further simplified into

χi j (q → 0, i�) = −i� lim
q→0

∂

∂qi
χ0 j (q, i�) +

∫
BZ

dd k

(2π )d

∫
dω

2π
Tr

[
∂h(k)

∂k j

∂G(k, iω)

∂ki

]
. (A11)

Using this equation, we are able to show that Eq. (26) in the main text will hold if the Ward-Takahashi identity is satisfied. The
diamagnetic response tensor from the kinetic Hamiltonian Di j has the following form:

Di j =
∫

BZ

dd k

(2π )d

∑
ασβσ ′

∂2hασ,βσ ′ (k)

∂ki∂k j
〈g|c†

kασ
ckβσ ′ |g〉. (A12)

We can use the Green’s functions to represent the fermion operator bilinear expectation values, which have been used in the
proof of Luttinger theorem [33]:

〈g|c†
kασ

ckβσ ′ |g〉 = Gβσ ′,ασ (k, τ = 0−) =
∫

dω

2π
Gβσ ′,ασ (k, iω)eiω0+

, (A13)

in which the factor eiω0+
ensures that the integrals for the diagonal elements (ασ = βσ ′) converge. By doing so, the diamagnetic

response tensor becomes

Di j =
∫

BZ

dd k

(2π )d

∫
dω

2π
Tr

[
∂2h(k)

∂ki∂k j
G(k, iω)

]
eiω0+

. (A14)

By performing the integration by parts with respect to ki, this expression can further be transformed into

Di j =
∫

BZ

dd k

(2π )d

∫
dω

2π
Tr

[
∂

∂ki

(
∂h(k)

∂k j
G(k, iω)

)
− ∂h(k)

∂k j

∂G(k, iω)

∂ki

]
eiω0+

. (A15)

The first term, being a derivative of ki, will vanish, since the kinetic Hamiltonian h(k) and the interacting Green’s function
G(k, iω) are periodic functions in the whole Brillouin zone. Therefore, only the second term remains. Because we have assumed
that the integral over ω of ∂ki G(k, iω) is absolutely convergent, the infinitesimal exponential factor eiω0+

could be dropped. Thus,
the diamagnetic response tensor exactly cancels the Green’s function part in Eq. (A11). We conclude that the summation of the
diamagnetic response Di j and the susceptibility χi j (q → 0, i�) can be written as

Di j + χi j (q → 0, i�) = −i� lim
q→0

∂

∂qi
χ0 j (q, i�), (A16)

which is indeed the form of Eq. (26) in the main text.
The above discussion is based on the assumption that the integral

∫
dω∂ki G(k, iω) is absolutely convergent. Here we argue

that this is indeed true using the analytic properties of Green’s functions. The derivative of the Green’s function with respect to
momentum ki can be reexpressed as

∂G(k, z)

∂ki
= −G(k, z)

∂G−1(k, z)

∂ki
G(k, iω) = G(k, z)

[
v(k) + ∂�(k, z)

∂ki

]
G(k, z), (A17)

where �(k, z) = z − h(k) − G−1(k, z) is the self-energy. In general, an element of the Green’s function at large frequency
decays as or faster than 1

z , or more precisely, lim
z→∞ |z · Gασ,βσ ′ (k, z)| � 1. At high frequency, self-energy becomes finite and

frequency-independent [56], as does its derivative lim
z→∞ |∂ki�(k, z)| < ∞. Therefore, each element of the derivative of the Green’s

function will satisfy the inequality

lim
z→∞

∣∣∣∣∣z2 ∂Gασ,βσ ′ (k, z)

∂ki

∣∣∣∣∣ < ∞. (A18)
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Since the absolute value of the integrand decays as or even faster than 1
ω2 , the integral over ω in Eq. (A10) is absolutely

convergent.

APPENDIX B: SPECTRAL DECOMPOSITION OF GREEN’S FUNCTION
AND SUSCEPTIBILITIES IN HK MODELS

Since the electron numbers at each momentum point k are all conserved quantities, the many-body eigenstate wave functions
can be built by the tensor products of eigenstates of all Hk. In the HK model with Chern bands defined in Eq. (42), we have two
energy bands per spin (Nα = 2), and the Hilbert space dimension of each Hk is dim = 22Nα = 16. Among these states, Nk = 0, 4
has

(4
0

) = (4
4

) = 1 eigenstate, Nk = 1, 3 has
(4

1

) = (4
3

) = 4 eigenstates, and Nk = 2 has
(4

2

) = 6 eigenstates.
Due to the SU(2) spin rotation symmetry, the 6 × 6 Hamiltonian Hk in the Nk = 2 sector can be reduced to a block-diagonal

form. Among these diagonal blocks, the largest is 3 × 3, which contains three SU(2) singlet states. This means the analytic
results of many-body wave functions, Green’s functions, and susceptibilities can only be expressed by cubic roots, which will
be highly complicated and not be able to offer substantial insights. In contrast to the complicated analytic expressions involved
in obtaining many-body wave functions, the Hamiltonian Hk − μNk is relatively straightforward to solve numerically since
it is a 16 × 16 matrix for each k. We denote these 16 states by s = 1, 2, . . . , 16, whose energies increase with their indices
[Es=1(k) � Es=2(k) � · · · � Es=16(k)]. We can also use a string of state indices {sk} to represent a many-body wave function
and energy:

|m〉 =
⊗

k

∣∣sm
k

〉
, (B1)

Em =
∑

k

Esm
k
(k). (B2)

Using these notations, the zero-temperature Green’s function can be solved via the spectral decomposition as follows:

Gασ,βσ ′ (k, z) = 1

Dk

Dk∑
sg

k=1

16∑
sm

k =1

(〈
sg

k

∣∣ckασ

∣∣sm
k

〉〈
sm

k

∣∣c†
kβσ ′

∣∣sg
k

〉
z + Esg

k
(k) − Esm

k
(k)

−
〈
sg

k

∣∣c†
kβσ ′

∣∣sm
k

〉〈sm
k

∣∣ckασ |sg
k

〉
z − Esg

k
(k) + Esm

k
(k)

)
, (B3)

in which Dk stands for the ground-state degeneracy of the Hamiltonian Hk. Figure 3(b) in the main text is numerically computed
with Eq. (B3).

Similarly, the charge-current susceptibility can also be written as a spectral decomposition:

χ0 j (q, i�) =
∏

k′

1

Dk′

∑
g∈G

∑
m

(
〈g|ρq|m〉〈m|J j

−q|g〉
i� + Eg − Em

− 〈g|J j
−q|m〉〈m|ρq|g〉

i� − Eg + Em

)
. (B4)

We first study the basic features of the numerator appearing in the spectral decomposition. Both J j
−q and ρq operators contain

c, c† operators from the whole Brillouin zone, thus they have to be treated with caution. For generic many-body eigenstates |g〉
and |m〉, the matrix elements appearing in the spectral decomposition have the following form:

〈g|ρq|m〉〈m|J j
−q|g〉 = 1

NL

∑
k1,k2

〈g|
∑
ασ

c†
k1+ q

2 ασ
ck1− q

2 ασ |m〉〈m|
∑

α′σ ′βσ ′′
v

j
α′σ ′,β,σ ′′ (k2)c†

k2− q
2 α′σ ′ck2+ q

2 βσ ′′ |g〉. (B5)

Now we analyze the condition of obtaining a nonzero element. The matrix element 〈m|c†
k2− q

2 α′σ ′ck2+ q
2 βσ ′′ |g〉 in the above

equation indicates that the state |m〉 must have one more electron at k2 − q
2 and one less electron at k2 + q

2 than the state |g〉. At
any other momentum k′ �= k ± q

2 , the state sm
k′ has to be identical to sg

k′ . Otherwise, the matrix element will simply be zero. For

the same reason, the matrix element 〈g|c†
k1+ q

2 ασ
ck1− q

2 ασ |m〉 being nonzero implies that the same |m〉 state has one more electron

at k1 − q
2 , and one less electron at k1 + q

2 than the state |g〉 when the element is nonzero. Therefore, only the terms with k1 = k2

will contribute to the susceptibility spectral decomposition. This is a direct consequence of electron number conservation for
each k.

Now we write the states |g〉 and |m〉 as the products of eigenstates of Hk, and the matrix elements will become

〈g|ρq|m〉〈m|J j
−q|g〉 = 1

NL

∑
k

∏
k′ �=k± q

2

δsg
k′ ,sm

k′

〈
sg

k+ q
2
, sg

k− q
2

∣∣ρq,k

∣∣sm
k+ q

2
, sm

k− q
2

〉〈
sm

k+ q
2
, sm

k− q
2

∣∣J j
−q,k

∣∣sg
k+ q

2
, sg

k− q
2

〉
, (B6)

in which the operators ρq,k and J j
q,k are defined as

ρq,k =
∑
ασ

c†
k+ q

2 ασ
ck− q

2 ασ , (B7)
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J j
q,k =

∑
ασ,βσ ′

v
j
ασ,βσ ′ (k)c†

k+ q
2 ασ

ck− q
2 βσ ′ . (B8)

For each term evolving fermion operators from k ± q
2 , there will also be

∏
k′ �=k±q/2 Dk′ degenerate ground states that contribute

identically to the current correlation function. Therefore, by combining Eqs. (B4) and (B6), the susceptibility can eventually be
reorganized into the following form:

χ0 j (q, i�) = 1

NL

∑
k

1

Dk+ q
2
Dk− q

2

Dk+ q
2∑

sg

k+ q
2
=1

Dk− q
2∑

sg

k− q
2
=1

16∑
sm

k± q
2
=1

( 〈
sg

k+ q
2
, sg

k− q
2

∣∣ρq,k

∣∣sm
k+ q

2
, sm

k− q
2

〉〈
sm

k+ q
2
, sm

k− q
2

∣∣J j
−q,k

∣∣sg
k+ q

2
, sg

k− q
2

〉
i� + Esg

k+ q
2

(
k + q

2

) + Esg

k− q
2

(
k − q

2

) − Esm
k+ q

2

(
k + q

2

) − Esm
k− q

2

(
k − q

2

)

−
〈
sg

k+ q
2
, sg

k− q
2

∣∣J j
−q,k

∣∣sm
k+ q

2
, sm

k− q
2

〉〈
sm

k+ q
2
, sm

k− q
2

∣∣ρq,k

∣∣sg
k+ q

2
, sg

k− q
2

〉
i� − Esg

k+ q
2

(
k + q

2

) − Esg

k− q
2

(
k − q

2

) + Esm
k+ q

2

(
k + q

2

) + Esm
k− q

2

(
k − q

2

)
)

. (B9)

This susceptibility can also be numerically evaluated using the eigenstates of the many-body Hamiltonian Hk for each k. The
results shown in Figs. 3(c) and 3(d) are obtained using Eq. (B9).
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