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Weyl nodes in Ce3Bi4Pd3 revealed by dynamical mean-field theory

Martin Braß ,1 Jan M. Tomczak ,2,1 and Karsten Held 1

1Institute of Solid State Physics, TU Wien, 1040 Vienna, Austria
2Department of Physics, King’s College London, Strand, London WC2R 2LS, United Kingdom

(Received 16 April 2024; accepted 7 August 2024; published 29 August 2024)

Experimental studies have found unusual transport properties in Ce3Bi4Pd3 which are potentially a con-
sequence of the interplay between band-structure topology and electronic correlations. Based on these
measurements, the existence of Weyl points in strongly renormalized, flat quasiparticle bands has been pos-
tulated. However, so far there has been neither a direct spectroscopic observation of these nor a calculation from
first principles that would confirm their existence close to the Fermi energy. Here we present density functional
theory and dynamical mean-field theory calculations and study the low-energy excitations and their topological
properties. We find that the Kondo effect promotes two out of the six angular momentum J = 5/2 states, with
the other four pushed to higher energies. Further, we find Weyl nodes close to the Fermi energy as previously
suggested for explaining the observed giant spontaneous Hall effect in Ce3Bi4Pd3 as well as nodal lines.
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I. INTRODUCTION

Weyl-Kondo semimetals interface topology and strong
correlation physics and exhibit low-energy excitations and
transport properties different from weakly interacting mate-
rials [1–6]. The Coulomb interaction between localized f
electrons and their hybridization with conduction bands re-
sults in flat bands and quasiparticles with very high effective
masses and, accordingly, low renormalized velocities. These
bands can cross each other at isolated points close to the Fermi
energy giving rise to a linear dispersion relation of the quasi-
particles which then behave like Weyl fermions [7,8]. Such
Weyl points are monopoles of Berry curvature [9], potentially
providing significant contributions to the transverse electrical
conductivity in Hall experiments, even without an external
magnetic field [10].

One Weyl-Kondo semimetal candidate is the noncen-
trosymmetric compound Ce3Bi4Pd3 [1] whose crystal struc-
ture [11] is shown in Fig. 1. The absence of inversion
symmetry makes the existence of Weyl points possible and
the nominally single, localized Ce-4 f valence electron gives
rise to the Kondo effect at low temperatures [1]. When the
system is cooled to the Kondo coherent regime, measurements
of the specific heat show a cubic dependence on tempera-
ture. While usually this is a consequence of phonons, in the
case of Ce3Bi4Pd3, the comparison to the reference material
La3Bi4Pt3 indicates that the electronic contribution to the
specific heat dominates the phononic one [1]. Hence, these
observations have been attributed to the existence of Weyl
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fermions with quasiparticle velocities reduced by three orders
of magnitude compared to weakly interacting metals [1].

Further evidence for this interpretation came from elec-
trical conductivity measurements that showed a giant, spon-
taneous Hall effect [5]. Tilted Weyl points close to the
Fermi edge could induce significant amounts of Berry
curvature on the Fermi surface, which could explain the ob-
served transverse electric current in the absence of magnetic
fields [5,6].

However, so far there has been neither a direct spectro-
scopic observation of these Weyl nodes in highly renormal-
ized bands, nor a calculation from first principles that would
confirm their existence in the vicinity of the Fermi energy.
Here we study Ce3Bi4Pd3 by the combination [12,13] of
density functional theory (DFT) and dynamical mean-field
theory (DMFT) that captures both the topological properties
of the material, as well as the electronic correlations and
Kondo physics. For the localized 4 f electrons of Ce, the local
DMFT correlations can be expected to provide an accurate
description, as long as we are not in the vicinity of an ordering
instability with strong nonlocal correlations.

Our results are strikingly different from a previous
DFT+DMFT study [14] that did not discriminate between the
self-energies of the different J = 5/2 states (J: total angular
momentum). As we will see below such a differentiation
is essential to describe the Kondo effect in Ce3Bi4Pd3 cor-
rectly. Further, in Ref. [14] topology has been studied only
in the (effective one-particle) DFT not in the (interacting)
DFT+DMFT electronic structure.

The outline of the paper is as follows: In Sec. II we de-
scribe the DFT electronic structure and discuss the symmetry
properties of the local orbitals that will give rise to a Kondo
resonance. In Sec. III we study the interacting band structure
within DMFT. We derive an effective low-energy Hamilto-
nian in Sec. IV, which allows us to analyze its topology.
We discover Weyl points from the renormalized quasiparticle
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FIG. 1. Crystal structure [11] in the conventional unit cell of
Ce3Bi4Pd3. One of the equivalent Ce atom is highlighted for refer-
ence in Sec. II.

bands in Sec. V and nodal lines in Sec. VI. A summary and
discussion of our results can be found in Sec. VII.

II. TIGHT-BINDING MODEL FROM FIRST PRINCIPLES

To study how electronic correlations of the localized Ce-4 f
orbitals influence the topological properties, we need an
accurate and material-realistic model that captures the hy-
bridization between these. As a starting point, we perform
a self-consistent density functional theory (DFT) calculation
using the full potential local orbital (FPLO) code [15]. The
system has space group I 4̄3d (220), and we use a = 10.051
Å as lattice parameter. The Wyckoff positions of the differ-
ent atoms are Ce: (3/8, 0, 1/4), Bi: (1/12, 1/12, 1/12), Pd:
(7/8, 0, 1/4).

We employ a dense (6 × 6 × 6) k-mesh and the Perdew-
Wang exchange-correlation potential [16] within the local
density approximation (LDA) to determine the electronic
band structure. After the calculation is converged, we take the
resulting ground state density as the starting point for another
self-consistent computation, where we increase the k mesh
to (12 × 12 × 12). This computation converges immediately,
thereby confirming that the initial k mesh is sufficient. All
calculations are fully relativistic, which especially includes
spin-orbit coupling (SOC).

In Fig. 2 we show the corresponding band structure. We
obtain an insulating system in DFT, because hybridization
between Ce-4 f orbitals and conduction bands compresses the
latter and opens a gap. By looking at the density of states
(DOS) in the right panel of Fig. 2, we can see that the Ce-4 f

FIG. 2. Electronic band structure calculated within DFT. In the
primitive basis the coordinates of the high-symmetry points are
H = (1/2,−1/2, 1/2), P = (1/4, 1/4, 1/4), � = (0, 0, 0), N =
(0, 0, 1/2). The Ce-4 f orbitals hybridize with the conduction bands,
which leads to a band gap. The right panel shows the total density of
states (red) as well as the partial densities for the Ce-4 f5/2 (blue) and
Ce-4 f7/2 (green) orbitals.

orbitals in Ce3Bi4Pd3 have a contribution close to the Fermi
energy. If electronic correlations are later included, these will
give rise to a narrow Kondo peak at the Fermi energy. How-
ever, in order to describe this Kondo physics, we need to treat
the electronic correlations more accurately than it is possible
within DFT.

To capture the low-energy degrees of freedom of the
system, we perform a Wannierization of the bands (cf. Ap-
pendix A for the quality of the Wannier projection). As there
are many entangled bands around the Fermi energy, we here
project them onto the 4 f orbitals of the six Ce atoms, the 4d
orbitals of the six Pd atoms and the 6p orbitals of the eight
Bi atoms in the unit cell. This yields altogether 192 Wan-
nier orbitals out of which 6 × 14 correspond to the Ce-4 f .
For the latter, correlations need to be treated beyond a static
mean-field approximation. This large number of correlated or-
bitals makes computations very demanding. However, we can
simplify the problem by observing that SOC nicely separates
4 f5/2 and 4 f7/2 orbitals in energy as can be seen in the DOS
from Fig. 2. The 4 f7/2 orbitals are farther above the Fermi
energy, such that only the 4 f5/2 orbitals will be occupied at
low temperatures. This energy separation allows us to treat
only the correlations of the 4 f5/2 orbitals on the level of
dynamical mean-field theory (DMFT) and the Coulomb re-
pulsion between 4 f7/2 and 4 f5/2 orbitals on a static mean-field
level.

By analyzing the symmetry properties of the 4 f5/2 orbitals,
we can identify which of them can interact with each other
and which cannot. For this, we compute the stabilizer group
of the Ce atoms, i.e., the subgroup of space group I 4̄3d (220),
which leaves the position of a Ce atom invariant. In the present
case the stabilizer is generated by a single fourfold screw
roto-inversion axis, that is, a fourfold rotation, followed by
inversion and translation by a fractional lattice vector. In other
words, the stabilizer is isomorphic to S4.
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Hence, the Ce-4 f orbitals form a representation of this
group. However, as SOC is not negligible, the group of rel-
evance here is the double cover of S4 for which the 4 f5/2

orbitals form a representation which we can decompose into
irreducible representations (irreps) using the calculus of char-
acters. Since S4 is abelian, all irreps are one-dimensional.
Additionally, due to time-reversal symmetry, for every irrep
contained in the space spanned by the 4 f5/2 orbitals its dual
representation must be contained as well such that these are
degenerate in the local crystal field. Thus the latter will split
the 4 f5/2 manifold into three twofold degenerate states. A
direct calculation reveals that the decomposition reads

�7 ⊕ ��
7 ⊕ �⊕2

6 ⊕ (��
6 )⊕2

. (1)

Here we used the notation for irreps from Cracknell [17], a
star denotes the dual representation, ⊕ is the direct sum of
vector spaces, and the exponent ⊕2 indicates that an irrep
occurs twice in the decomposition.

To get a better intuition of what these irreps are, we ex-
emplarily pick the Ce atom highlighted in Fig. 1 in red. For
this atom, the S4 axis is parallel to the x axis. Then we can
choose the spin-quantization axis to be the x axis as well and
observe that the jx = 1/2 spans the �7 irrep and jx = −1/2
spans its dual. Furthermore, both jx = 3/2 and jx = −5/2
transform as �6. Therefore, these orbitals can interact and will
hybridize due to the local crystal field thereby forming linear
combinations:

ψ+ = α | jx = 3/2〉 + β | jx = −5/2〉,
ψ− = β | jx = 3/2〉 − α | jx = −5/2〉. (2)

These are the eigenorbitals of the local Hamiltonian projected
onto the Ce-4 f manifold. The coefficients α, β, and onsite
energies can be obtained from our Wannier-Hamiltonian. ψ−
is lower in energy than the jx = 1/2 orbital, which in turn is
lower in energy than the ψ+ orbital. The same linear combi-
nations can also be constructed for opposite jx, which then
transform as the dual irrep ��

6.
To speed up the following DMFT calculation we take

advantage of the above observations. If we transform the
Wannier orbitals into the basis of ψ−, ψ+ and jx = ±1/2
orbital, then locally the Ce-4 f part of the Hamiltonian is
diagonal. During the DMFT cycle the jx = 1/2 orbital will
not obtain off-diagonal terms, since it belongs to an irrep
which occurs only once in the decomposition of the 4 f5/2

manifold. For the ψ− and the ψ+ orbital off-diagonal elements
might be generated, since these orbitals can hybridize further.
For quantifying the importance of these off-diagonal terms,
we computed the average of the absolute values of diagonal
and off-diagonal terms of the local Green’s function over all
Matsubara frequencies with energies between −10 eV and
+10 eV. The mean of the diagonal terms is by a factor of 263
higher than the off-diagonal one. Hence, we will neglect the
off-diagonal terms in the DMFT calculation. This reasonable
approximation gives a considerable performance boost, which
allows us to go to low temperatures.

FIG. 3. Average occupation of the Ce-4 f5/2 orbitals as a function
of temperature within DMFT.

III. CALCULATIONS WITH DMFT

With the Wannier Hamiltonian from the previous sec-
tion we have a model at hand which is derived from first
principles and can be used as starting point for a DMFT
calculation. Here we use the quantum Monte Carlo (QMC)
continuous time hybridization expansion (CT-Hyb) as im-
purity solver using the W2DYNAMICS implementation [18].
The electronic interaction is modeled by a density-density
interaction with Coulomb repulsion parameter U = 6 eV,
similar to values used previously for various Ce3A4M3 com-
pounds [14,19–21]. Double counting is taken into account as
described by Anisimov et al. [22]. Since Ce is in a dom-
inantly 4 f 1 configuration, we neglect Hund’s exchange for
the sake of reaching lower temperatures in DMFT. That is,
the interaction term is HU = U

∑
iα<β niαniβ where niα is the

occupation number operator for an electron at Ce site i in the
spin orbital α (out of 14, of which six J = 5/2 are treated
on the DMFT and eight J = 7/2 on the static mean-field
level). This simplified interaction is justified as long as we are
not looking into the multiplet splitting of the upper Hubbard
bands. Using Pulay mixing [23] (DIIS), DMFT converges
after 60 iterations, whereby we consider the calculation to be
converged if for both the self-energy and the impurity Green’s
function the difference between successive iterations averaged
over the first ten Matsubara frequencies does not exceed a
relative tolerance of one percent for ten consecutive iterations.

First, we study the average occupation numbers of the
Ce-4 f5/2 orbitals as a function of temperature. For a converged
DMFT calculation they can be directly obtained from the
average occupations of the impurity. In total we have 1.02
4 f electrons in DMFT, i.e., a Ce3+ configuration. This is not
so different in DFT, which yields 0.95 4 f electrons. How-
ever, there is a substantially larger J = 7/2 contribution, as
the J = 7/2 states are not yet pushed to higher energies by
interaction effects; cf. Fig. 2.

Figure 3 shows the partial occupations of the individual
J = 5/2 states in DMFT. While at room temperature all
six orbitals have comparable occupations, the Kondo effect
changes this. Specifically, the lower the temperature becomes,
the more depleted are the jx = ±1/2 and ψ+ orbitals. The
two ψ− orbitals, however, tend towards being occupied by
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(a) (b)

FIG. 4. (a) Momentum-resolved spectral function from DMFT at T = 29 K (false color; intensity on logarithmic scale for better visibility).
The black curve is the DFT band structure where the Ce-4 f orbitals are treated in the open-core approximation. The rightmost panel of
(a) shows the partial density of states of the ψ− Ce-4 f5/2 orbital with an emerging Kondo resonance. (b) Zoom-in along N-�-P. Close to the
Fermi energy the quasiparticle Hamiltonian from Eq. (5) (red curve) agrees much better with DMFT than the open core DFT bands (black).

one electron in total. Hence, at low temperatures solely these
4 f orbitals with the lowest local crystal field potential are
occupied. This state has a local magnetic moment and forms
a Kondo resonance through hybridization with the conduction
electrons.

In order to resolve this Kondo resonance, we need to an-
alytically continue the imaginary time QMC data obtained
within DMFT. This is performed using the maximum entropy
method as implemented in �MaxEnt [24]. We analytically
continue both the local Green’s function as well as the
self-energy. The imaginary part of the local DMFT Green’s
function gives us the partial density of states for the Ce-4 f
ψ− orbital as shown in the right panel of Fig. 4(a). There we
can see a Kondo resonance at the Fermi energy εF = 0 eV. As
expected already from the occupations, it has almost solely
contributions from the ψ− orbital.

The k-resolved spectral function in the left panel of
Fig. 4(a) is obtained as the imaginary part of the interact-
ing lattice Green’s function with the analytically continued
DMFT self-energy. Since the DMFT self-consistency loop
started from the noninteracting band structure in Fig. 2, which
includes hybridization between Ce-4 f and conduction bands,
we can observe how interactions influence the excitation spec-
trum: At low temperatures a Kondo resonance emerges in the
immediate vicinity of the Fermi level.

Seemingly similar dispersions can be observed if we per-
form a DFT calculation where the Ce-4 f orbitals are treated in
the open-core approximation. The bands from this calculation
are shown by the black lines in Fig. 4(a) and are in good
agreement with previous results [14].

At high temperatures, open-core DFT is a good approxi-
mation to the DMFT spectrum. At lower temperatures, such
as T = 29 K, in Fig. 4(a) the agreement is still good away
from the Fermi energy, i.e., outside the realm of the Kondo
resonance. However, in DMFT, flat renormalized quasiparti-
cle bands emerge in the spectral function close to the Fermi
energy due to the Kondo effect and show up as essentially
horizontal lines in Fig. 4(a). The zoom in Fig. 4(b) shows them
more clearly and reveals that they are dispersive on an meV

scale. At T = 29 K they are not fully coherent throughout
the whole Brillouin zone, as can be seen by a pronounced
smearing. However, at temperatures sufficiently smaller than
the Kondo temperature this smearing (the imaginary part of
the self-energy) is expected to go away. The flat quasiparti-
cle bands will become sharp and, potentially, important for
transport. Hence, in the next section we study their topological
properties.

If we zoom in on the Fermi edge in Fig. 4(b) we can
see that the open core DFT calculation does not capture the
renormalized flat bands at all, which shows that they are
a consequence of electronic correlations. Energetically the
maximum of the Kondo peak is approximately ω0 = 2.4 meV
below the Fermi energy, but with εF still within the width of
the Kondo resonance, as can be seen from the right panel of
Fig 4(b). Upon reducing temperature and thus the smearing,
the Kondo peak will become sharper, and we expect an upshift
of the Kondo resonance since it necessarily forms around εF .

In the spectral function and in the effective low-energy
Hamiltonian discussed in the next section, we do not ob-
serve a Kondo insulating gap throughout the full Brillouin
zone suggesting semimetallic behavior down to lowest tem-
peratures. We note that the related (isoelectronic) compounds
Ce3Bi4Pt3 and Ce3Sb4Pt3 are, instead, prototypical Kondo
insulators [25–27]. Owing to their larger Ce-4 f to conduction
state hybridization [28,29], the hybridization gap, while renor-
malized, remains finite when including correlation effects.

IV. EFFECTIVE LOW-ENERGY HAMILTONIAN

In order to search for Weyl points in the quasiparticle
bands, we need an effective single-particle Hamiltonian that
captures the low-energy physics of the system. From the
DMFT calculation and the analytically continued self-energy

(ω) we can determine the momentum-dependent Green’s
function

G(ω, k) = (ω − Hk − 
(ω) − �DC + μ)−1. (3)
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Here Hk denotes the Bloch-Hamiltonian of the noninteracting
Wannier model derived from DFT. The self-energy 
 and the
double counting correction �DC are diagonal matrices which
are nonzero only for the ψ−, ψ+ and jx = ±1/2 Ce-4 f5/2

orbitals. μ is the chemical potential from DMFT.
We expand the Green’s function around the maximum of

the Kondo resonance ω0,

G(ω, k)≈ Z

ω − Z
1
2
[
Hk+
(ω0) − ω0

∂
(ω0 )
∂ω

+ �DC − μ
]
Z

1
2

,

(4)
where we introduced the quasiparticle renormalization Z =
(1 − ∂
(ω0 )

∂ω
)−1, which can be obtained via numeric dif-

ferentiation. At the peak maximum ω0 we find that the
imaginary part of the self-energy is minimal and thus Z is real
valued.

Equation (4) resembles the Green’s function of an effec-
tive, renormalized quasiparticle Hamiltonian:

Hqp(k) = Z
1
2

[
Hk + 
(ω0) − ω0

∂
(ω0)

∂ω
+ �DC − μ

]
Z

1
2 .

(5)
Taking the square root of Z ensures that Eq. (5) describes
a Hermitian operator. We compare its band structure to the
DMFT spectral function in Fig. 4(b) (red lines), where we can
see that both agree quite well in a region of a few meV around
the Fermi energy. The quasiparticle Hamiltonian captures the
low-energy excitations due to electronic correlations which
the open core DFT calculation (black lines) cannot describe.
Therefore, Hqp is a good starting point to study whether
Ce3Bi4Pd3 exhibits Weyl points in the vicinity of the Fermi
energy, which we pursue in the next section.

The reason why the quasiparticle Hamiltonian describes
the low-energy excitations better than open core DFT lies
in the quasiparticle renormalization Z , which in the present
case is small, thereby strongly renormalizing the width of
the Ce-4 f bands leading to almost flat bands. This is also
an important difference compared to the topological Hamil-
tonian [30] Htopo(k) = G−1(ω = 0, k), which is the inverse
of the Green’s function evaluated at zero frequency. It differs
from Hqp by the energy shift ω0∂ω
(ω0) and the scaling Z

1
2 .

The quasiparticle renormalization is essential to obtain the flat
quasiparticle bands close to the Fermi energy which are not
present in the topological Hamiltonian.

V. WEYL POINTS IN QUASIPARTICLE BANDS

Now we search for Weyl points in Hqp. Since the Wan-
nierization led to a tight-binding Hamiltonian with 192 spin
orbitals as described in the previous sections, this search
is computationally demanding. Therefore, we employ our
recently described algorithm [31] which traces the Berry cur-
vature vector field to its sinks and sources via solving an
ordinary differential equation.

We find nine symmetrically inequivalent band crossings
in the vicinity of εF , each of which sits at general momenta
away from high-symmetry lines. We confirm that these are
Weyl points by calculating the corresponding Chern numbers
numerically. Due to time reversal and the 24 point group sym-
metries, each Weyl node is 48-fold degenerate, i.e., it belongs
to a set of 48 nodes related by symmetry. As half of the point

TABLE I. Weyl points of the quasiparticle Hamiltonian. Their
locations are listed in Cartesian coordinates rounded to three digits.
We present only those Weyl points that belong to bands closest
to the Fermi energy, but others exist too. Due to symmetry, each
point is 48-fold degenerate. In Fig. 8 in Appendix B we show these
degenerate locations for the first Weyl point from this table. The
dispersion around the second Weyl point (indicated in boldface) is
shown in Fig. 5.

Location (2π/a) Energy (meV) Type

(0.584, 0.082, −0.225) −1.26 II
(−0.568, −0.394, −0.691) −1.75 II
(0.559, 0, −0.289) −2.14 I
(−0.354, 0, −0.496) −2.42 II
(−0.371, −0.728, −0.495) 7.27 II
(−0.348, 0.398, 0.181) 21.08 II
(0.262, 0, −0.493) 26.18 II
(−0.251, −0.559, −0.006) 26.35 II
(0.574, 0, 0.228) 26.41 II

group symmetries have negative determinants, each of these
sets can be split into two halves of nodes having opposite
Chern numbers. Hence, the Nielsen-Ninomiya theorem which
enforces a total of zero Chern numbers [32,33] is fulfilled.

Four sets of Weyl points are a few meV below, and five
a few meV above the Fermi edge. From the eigenstates of
Hqp we can infer that the former four sets belong to bands
whose character is around 90% to 99% of the ψ− 4 f5/2 orbital.
The latter five sets above εF have predominantly jx = ±1/2
character. We list them in Table I and exemplarily show the
second Weyl point in Fig. 5. By comparing the band structure
of the effective quasiparticle Hamiltonian Hqp (red lines) to
the momentum-resolved spectral function from DMFT (color

FIG. 5. At T = 29K the quasiparticle renormalized Hamiltonian
Hqp from Eq. (5) has a Weyl point a few meV below the Fermi
energy (red lines). These band crossings can also be found in the
momentum resolved spectral function with the DMFT self-energy
(logarithmic color scale). Since the tangents of both crossing bands
(yellow dashed lines) have positive slope, we can infer that this is
a type II Weyl point. The path in momentum space is chosen as
kW + λk1 where kW is the momentum of the second Weyl point from
Table I, k1 is the first primitive basis vector, and λ ∈ [−0.05, 0.05].
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scale), we can see that this band crossing is present in both of
them.

With energies differing only on a sub-meV scale compared
to the DMFT spectral function, Hqp is a sufficiently good
approximation to detect Weyl points in momentum space.
The reason for small energetic offsets is that Hqp is obtained
from an expansion of the DMFT Green’s function around the
maximum of the Kondo peak. If we go away from this peak,
we must expect some deviations in energy. However, as long
as these deviations do not become large enough to drastically
move the Weyl points or create or annihilate them in pairs,
Hqp can be used to search for topological band crossings and
compare them to the DMFT spectral function. At least this is
the case for the four Weyl nodes below the Fermi edge; those
five above are too far away in energy from the maximum of
the expansion for a meaningful comparison of the results from
Hqp to the DMFT spectral function. Furthermore, as discussed
earlier, they have predominantly jx = ±1/2 character. Hence,
to study these it would be better to obtain Hqp from an expan-
sion around the peak energies of these orbitals.

The plot reveals the type II nature of the Weyl node, which
can be inferred from the slopes of the crossing bands having
the same sign [8,34,35]. This discovery of a type II Weyl
point supports the interpretation of the spontaneous Hall effect
seen in experiment. Furthermore, its type II nature impacts the
temperature dependence of specific heat capacity cV . While a
type I Weyl node has a pointlike Fermi surface and therefore
leads to a cubic temperature dependence of cV [1,6], a type
II node is embedded in a finite Fermi surface [34] such that
the specific heat has terms linear and cubic in temperature.
This reasoning can be confirmed by calculating cV for variable
temperatures T from the quasiparticle Hamiltonian via

cV = 1

(2π )3

∑
n

∫
εn(k)

∂ f (εn(k))

∂T
d3k (6)

with the chemical potential fixed to the energy of the first Weyl
point in Table I. Here εn(k) are the eigenvalues of Hqp and f
is the Fermi-Dirac distribution. The integral over momenta is
performed numerically. We fit cV = aT + bT 3 to these data.
From the cubic term we can calculate the quasiparticle ve-
locity [1,6] via v� = 3

√
7π2kB/(30b) yielding approximately

245 m/s. Similar to the experimental results [1] this is three
orders of magnitude smaller than for usual, weakly interact-
ing metals because of the flatness of the quasiparticle bands.
Hence, our calculations support the experimental findings
qualitatively. Quantitatively, however, our result is by a factor
of 3.6 smaller than experiment, likely due to the fact that here
we used the quasiparticle Hamiltonian to determine cV . This
includes additional contributions to cV besides those from the
Weyl nodes, which results in a nonvanishing linear in tempera-
ture term (aT ). It does not account for temperature-dependent
changes of the correlated band structure, and we also do not
know the precise position of the chemical potential at the ex-
perimental temperature. For a quantitatively accurate specific
heat, further contributions from the interaction energy and
band effects beyond the quasiparticle linearization are likely
important. This would, however, require DMFT calculations
for temperatures between 2 and 10 K, which is not feasible at
present.

TABLE II. Weyl points from DFT where Ce-4 f orbitals are
treated in the open-core approximation. Their locations are listed in
Cartesian coordinates rounded to three digits.

Location (2π/a) Energy (meV) Type

(−0.77, −0.862, −0.656) −18.1 II
(−0.418, −0.566, −0.348) −43.0 II
(0.527, −0.142, 0.274) −118 II
(0.546, 0, −0.231) −132 II
(0.07, −0.438, −0.324) −157 II
(−0.395, 0, 0.425) −161 II
(0.182, 0, 0.464) −180.7 II
(−0.145, −0.426, 0.253) −181.4 II
(−0.587, −0.769, −0.802) −196 II
(0.109, 0, 0.39) −208 I
(0.494, 0.0, −0.248) 247 II
(0.705, 0, −0.129) −310 II
(0.114, 0.571, −0.223) 318 I
(−0.779, −0.782, −0.992) −420 II

To test the stability of our findings we apply the procedure
described above to the quasiparticle Hamiltonian (5) obtained
from the self energy of the converged DMFT calculation
and from the self-energy averaged over the last five DMFT
iterations. It turns out that although the height of the Kondo
resonance fluctuates slightly, the momenta of the Weyl points
are almost unaffected. This reflects the fact that Weyl points
are topological properties of the band structure and hence
small perturbations of the system do not remove them unless
the perturbation is large enough to annihilate them in pairs,
which is not the case here.

On the other hand, the topological character of the Weyl
nodes raises the question whether these nodes are already
present at the DFT level, but adiabatically moved to different
positions in energy and momentum. In the case of the DFT
calculation including the Ce-4 f orbitals, there is a band gap
(which closes within DMFT). Hence, the DFT Hamiltonian
and the quasiparticle Hamiltonian Hqp are not adiabatically
connected. Consequently, we cannot expect that they share
topological features, and indeed we did not find Weyl points
close to the Fermi edge in the DFT Hamiltonian. Thus, the
low-energy Weyl points are correlation-induced.

Due to the apparent similarity of the DFT bandstructure
where Ce-4 f orbitals are treated in the open-core approxima-
tion and the DMFT spectral function in Fig. 4(a), we revisit
the former and perform a search for Weyl points with the same
algorithm [31] as above. We detect multiple Weyl points as
listed in Table II, which also includes Weyl points that had not
been found in an earlier study [5]. Some of these also appear
in the DMFT spectral function at almost the same momentum
and energy. Others may change their position or be pairwise
annihilated. However, none of them are as close to the Fermi
edge as the Weyl nodes from the renormalized quasiparticle
bands.

Beyond this disparity, there is an important physical
distinction between the two settings. The open-core DFT cal-
culation, used previously to advocate a topological state in
Ce3Bi4Pd3 [14], mimics effectively localized f states, corre-
sponding to the high-temperature local-moment regime. The
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(a) (b)

FIG. 6. (a) Eigenvalues of glide mirror symmetry in the plane spanned by kz and kx + ky for a renormalized quasiparticle band: red and
blue denote ±i, respectively. The boundaries of areas of different mirror eigenvalues are nodal lines. (b) Magnitude (norm) of Berry curvature
in the same plane. By comparison with (a) we see that Berry curvature is large near some of the nodal lines, but also at other points.

signatures of the topological state, however, are observed at
very low temperatures, where an additional Kondo resonance
emerges due to many-body effects. This yields the flat renor-
malized quasiparticle bands close to the Fermi edge which
are not present in DFT and are essential for the existence of
the discussed Weyl nodes. The apparent similarity of the con-
duction band dispersions thus does not justify a meaningful
analysis of topology on the basis of DFT.

VI. NODAL LINES IN QUASIPARTICLE BANDS

Besides Weyl nodes other types of topological band cross-
ings are possible. One example is the nodal line where bands
are degenerate on a curve in momentum space. A previ-
ous study [14] found nodal lines in their Bloch Hamiltonian
from a DFT calculation with Ce-4 f orbitals treated in the
open-core approximation as well as in the topological Hamil-
tonian [30] extracted from their DMFT calculation. Here we
study whether the renormalized bands from the quasiparticle
Hamiltonian also have nodal lines within a few meV around
the Fermi energy.

In crystals that exhibit a glide mirror plane, as is the case
in Ce3Bi4Pd3, each band has a well-defined mirror eigenvalue
within the corresponding plane in reciprocal space. Bands
with different eigenvalues do not interact with each other, and
hence they may cross on a line in this plane instead of at an
isolated point [36].

Ce3Bi4Pd3 has six glide mirror planes in which we can
search for nodal lines. As we are considering a spinful system,
the glide mirror eigenvalues of the bands at momentum k are
λ = ±ieik·τ where τ is the translation vector of the glide mir-
ror symmetry operation [37]. These eigenvalues are smooth
functions of momentum unless two bands cross. Thus by
searching such discontinuities, we can identify nodal lines. To
put it differently, λe−ik·τ is constant on patches of the mirror
plane that are bounded by nodal lines.

Since all glide mirror planes are conjugate to each other,
i.e., symmetrically equivalent, we exemplarily show these
patches of constant mirror eigenvalue in the plane perpen-
dicular to (1,−1, 0) centered at k = 0 in Fig. 6(a) for a
quasiparticle band close to the Fermi energy. We obtain multi-
ple nodal lines as can be seen by the many patches. The nodal
lines near the center cross the Fermi energy and thus may
contribute to the specific heat and spontaneous Hall effect.
The ellipsoidal ones at the top and bottom are about 20 meV
above; the remaining four ellipsoidal nodal lines are about
2 meV below.

To demonstrate the effect of the nodal lines on the Berry
curvature, we plot the norm (or magnitude) of the latter for the
same mirror plane in Fig. 6(b). By comparison with Fig. 6(a)
we see that not all nodal lines cause a large contribution to the
curvature, and most of it is concentrated in the central Bril-
louin zone region. Conversely, there are also Berry curvature
contributions of similar magnitude which do not follow the
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FIG. 7. Comparison between the Kohn-Sham bands from DFT
(black) and the bands of the Wannier Hamiltonian from Wannieriza-
tion (red).

nodal lines. They show up as bright spots in the plot but do
not belong to singularities in the mirror plane [38].

VII. CONCLUSION

We studied the Kondo semimetal Ce3Bi4Pd3 within DFT
and DMFT and observed that a Kondo resonance emerges
involving only two out of the six Ce-4 f5/2 orbitals (the ψ−
combination of jx = ±3/2 and ∓5/2). Below the Kondo tem-
perature, these are the only occupied 4 f orbitals, whereas at
elevated temperatures all six Ce-4 f5/2 orbitals are filled more
equally. This theoretical prediction can be tested in future res-
onant inelastic x-ray (RIXS) and x-ray absorption experiments
[39].

The dispersion of the two ψ− Ce-4 f5/2 orbitals in DMFT is
qualitatively different from DFT and from DFT with the 4 f ’s
in the open core. It shows Weyl nodes close to the Fermi sur-
face. This strengthens the interpretation of Ce3Bi4Pd3 being a
Weyl-Kondo semimetal from transport measurements [1,5].

Furthermore, multiple nodal lines in mirror planes provide
Berry curvature near the Fermi energy that could, similarly
to the Weyl points, contribute to the giant spontaneous Hall
effect [5]. Weyl points and nodal lines are within only 3 meV
of the Fermi energy at the lowest temperature reached in our
calculation. There the Kondo peak is not yet fully developed.
Hence, it appears likely that the Weyl points hit the Fermi
energy when the Kondo peak further sharpens and shifts upon
lowering temperature or when marginally doping Ce3Bi4Pd3.

The DFT and DMFT data are available from [40].
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APPENDIX A: WANNIERIZATAION

To judge the quality of our Wannierization of the Kohn-
Sham bands from DFT we compare the latter to the bands of
the Wannier Hamiltonian in Fig. 7. We observe good agree-
ment near the band gap. Farther away from it small deviations
appear. However, we expect that these will not significantly
affect the low-energy physics, especially neither the Kondo
resonance nor the quasiparticle bands observed in DMFT.

For calculation of the densities of states in Fig. 2 we used
the Wannier Hamiltonian to interpolate the bands on a dense,
equally spaced 50 × 50 × 50 grid in order to numerically
perform the momentum integration. A Gaussian broadening
with standard deviation σ = 10 meV has been used.

APPENDIX B: WEYL POINTS IN QUASIPARTICLE BANDS

To give a better overview on how the Weyl points found
within DMFT are located in the Brillouin zone we exemplarily
show the symmetrically equivalent positions of the Weyl node
closest to the Fermi energy in Fig. 8. Note that a projection
of a 3D plot distorts the image such that the symmetry oper-
ations relating the different points might not be recognizable.
Hence, we computationally confirmed that these positions are
actually related by the point group symmetry of the crystal.
For a closer hands-on inspection of the Weyl points we fur-
ther provide as Supplemental Material a rotatable version of
Fig. 8 [41].
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