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Having spectral correlations that, over small enough energy scales, are described by random matrix theory
is regarded as the most general defining feature of quantum chaotic systems as it applies in the many-body
setting and away from any semiclassical limit. Although this property is extremely difficult to prove analytically
for generic many-body systems, a rigorous proof has been achieved for dual-unitary circuits—a special class
of local quantum circuits that remain unitary upon swapping space and time. Here we consider the fate of this
property when moving from dual-unitary to generic quantum circuits focusing on the spectral form factor, i.e.,
the Fourier transform of the two-point correlation. We begin with a numerical survey that, in agreement with
previous studies, suggests that there exists a finite region in parameter space where dual-unitary physics is stable
and spectral correlations are still described by random matrix theory, although up to a maximal quasienergy scale.
To explain these findings, we develop a perturbative expansion: it recovers the random matrix theory predictions,
provided the terms occurring in perturbation theory obey a relatively simple set of assumptions. We then provide
numerical evidence and a heuristic analytical argument supporting these assumptions.
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I. INTRODUCTION

Exact solutions of interacting many body systems are not
just monuments to human ingenuity, they are also key instru-
ments in both statistical mechanics and many-body dynamics.
In fact, it is often implicitly assumed that each (dynamical)
universality class in statistical physics should be endowed
with at least one exactly solvable model through which one
obtains deeper understanding of the whole universality class.

Until recently exact solutions in interacting systems were
limited to the Yang-Baxter paradigm which underlies the so-
called integrable systems in two spatial (or 1 + 1) dimensions
[1,2]. The existence of an extensive number of conservation
laws in these systems, however, makes their dynamical be-
havior nongeneric [3–5] and one was left to wonder how
to describe generic dynamics. Namely, the ones of the so-
called “chaotic” quantum many-body systems, which have
only a finite number of conserved charges. While various
types of random matrix theories, depending on the model’s
time-reversal and interaction-locality, turned out to be a suc-
cessful tool for modeling quantum chaotic systems [6–16],
only very recently the first class of exactly solvable nonin-
tegrable systems has been discovered [17,18] and has led
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to exact solutions for many dynamical problems even in the
absence of explicit randomness [17–35].

These are the so-called dual unitary circuits, which are
expressed in the form of locally interacting quantum systems
in discrete space time, and whose defining feature is that they
generate a unitary evolution not only in time but also in space.
This fundamental property is most clearly expressed in terms
of the so-called space-time duality [36], a space-time swap
symmetry of the tensor network diagram representing the
physical observable of interest. Among other useful features,
dual-unitary circuits allow for exact analytical computation
of dynamical correlation functions of local operators [18],
as well as long-range two-point spectral correlations as ex-
pressed in the form of the spectral form factor (SFF) [17,19].

Given this novel class of exactly solvable chaotic systems
a fundamental question concerns the stability or robust-
ness of their dynamical features. One may trace the basic
motivation for such a question to the notion of structural
stability of hyperbolic flows in classical chaotic dynami-
cal systems [37,38]. Contrary to integrable systems, which
are structurally unstable and where perturbative expansions
around them generically diverge (cf. Kolmogorov-Arnold-
Moser theory in classical dynamical systems, or divergent
Feynman diagram expansions of quantum field theories
around their free/noncoupled limits), chaotic systems are
expected to be robust against typical perturbations. In this
work, we formulate the hypothesis of structural stability of
Floquet dual-unitary circuits (therefore focusing on discrete
time-dynamics with explicit time translation symmetry), and
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streamline a simple strategy for its verification. Specifically,
we conjecture that chaotic/ergodic dual-unitary circuits re-
main chaotic/ergodic under small, time-translation invariant
perturbations. If we assume that chaos is equivalent to a
linear-in-t growth of the SFF in the thermodynamic limit,
this hypothesis can be reformulated in terms of the so-called
spectral Lyapunov exponents (SLE) [39]. In that language,
the hypothesis states that the leading SLE in each of the t
time-translation symmetry sectors decays to 1 exponentially
fast in time t . We note that a somewhat simpler approach to
structural stability hypothesis has been addressed by two of
us and P. Kos in Ref. [40], which studied the robustness of
local dynamical correlators. Importantly, however, the decay
of local correlators is not sufficient for establishing quan-
tum chaos and ergodicity, hence our current study of SFF,
a global (nonlocal) dynamical observable, provides a more
stringent characterization. We also stress that our study goes
substantially beyond the one presented in Ref. [41], where the
stability of the SFF was investigated for a specific dual unitary
circuit at first order in perturbation theory.

Clearly, this question is very challenging, and extremely
difficult to address in full mathematical rigour. The purpose
of our paper is to establish the minimal set of assumptions—
which turn out to be two—needed for a rigorous proof of
the stability of the chaotic SFF. We do this by formulating
a perturbation theory for the SLE, and identifying sufficient
conditions for the expansion to behave in a way that is
consistent with ergodicity. We furthermore verify these two
assumptions numerically.

We now summarize our assumptions and results in more
detail. We study the SFF averaged over an ensemble of locally
constructed unitaries E of an extended 1D system with L
sites K (t, L) = EU∈E [|trU t |2]. The ensemble is parameter-
ized by ε, where the unperturbed point ε = 0 corresponds
to an ensemble of dual unitary Floquet evolutions. Using
the space-time duality noted above, the SFF may be recast
as K (t, L) = trT L for a SFF transfer matrix T acting on 2t
sites [17,19]. The linear-in-t ramp in the SFF characteristic
of ergodic systems [see Eq. (9)] is obtained if the leading t
eigenvalues of T are are nearly degenerate, i.e., exponentially
close to unity, λ j=1,...,t = 1 + e−O(t ).

The unperturbed dual-unitary model provably has this
eigenvalue structure; we investigate the circumstances under
which it remains true in eigenvalue perturbation theory in ε.
We show that it follows from two assumptions. The first of
these stipulates a noncrossing of the leading eigenvalue of
T as a function of ε. Recalling the von Neumann-Wigner
theorem [42], this corresponds to a genericity assumption on
the perturbation. The second, more substantial assumption can
be expressed in terms of an exponential bound on certain
multi-point correlation functions involving the unperturbed
SFF transfer matrix. We numerically demonstrate the validity
of these assumptions in a particular family of perturbed Flo-
quet dual unitary circuits, and corroborate those results with a
heuristic analytical argument involving the spectral decompo-
sition of the resolvent of the unperturbed SFF transfer matrix.

The rest of the paper is structured as follows. In Sec. II,
we recall the precise setting considered, introduce a simple
minimal model that we use for the numerical tests, and briefly
describe the numerical methods used in our computations. In

Sec. III, we present a numerical survey suggesting that the
dual unitary behavior is indeed structurally stable. In Sec. IV,
we present our perturbative argument. In Sec. V we discuss
the validity of our second assumption, presenting numerical
tests and an heuristic analytical argument. Finally, in Sec. VI,
we report our conclusions and discuss the outlook of our
research. Some technical details and proofs are reported in the
three Appendixes.

II. SETTING

A. Physical system

We consider a unitary quantum circuit acting on a chain
of 2L qubits (the local Hilbert space has dimension d = 2) at
half-integer positions that are evolved by discrete applications
of the Floquet operator U = UoUe such that

Uo = U0 ⊗ · · · ⊗ UL−1, Ue = U1/2 ⊗ · · · ⊗ UL−1/2. (1)

Here {Ux}x=0,1/2,...,L−1/2 are the local gates, i.e., unitary matri-
ces acting on two adjacent qubits, at positions x and x + 1/2.
Matrices acting at different positions are generically different
and we denote by the subscript x the leftmost site where the
matrix acts nontrivially. The local gates can be parameterized
as

Ux = Vx · (ux ⊗ vx ), (2)

with

Vx ≡ ei
∑3

k=1 Jk,xσ
(k)
x σ

(k)
x+1/2 ,

(3)
ux ≡ eiθx ·σx , vx ≡ eiφx ·σx+1/2 ,

where σ = (σ (1), σ (2), σ (3) ) is a vector of Pauli matrices, and
σx is the corresponding local embedding in (C2)⊗2L, while
(ux ⊗ vx ) is a tensor product of two one-site unitaries u, v

positioned at sites x and x + 1/2 respectively. Since the op-
erator U is a special kind of matrix-product-operator, it can
be depicted using the standard diagrammatic representation of
tensor networks [43]. In this rendition, tensors with n indices
are represented as two dimensional shapes with n protruding
legs. For instance, the local gate is represented as

(4)

The sum over indices is represented by connecting the cor-
responding legs and matrix multiplication acts bottom to top.
For example, see Fig. 1 for a portray of tr[U t ] where each
local gate is represented by Eq. (4) and different shades denote
in principle different matrices.

Note that, choosing J1,x = J2,x = π/4 the quantum circuit
becomes dual-unitary [18], and also the left-to-right contrac-
tion of the diagram can be thought of as the trace of a power
of unitary operator [17,19].

For simplicity from now on we focus on the case where
the interaction term is the same at each half step. Namely, we
consider

Jj,x = Jj, J ′
j,x+1/2 = J ′

j, j = 1, 2, 3, x ∈ ZL, (5)

and set

V = ei
∑3

k=1 Jkσ
(k)⊗σ (k)

, W = ei
∑3

k=1 J ′
kσ

(k)⊗σ (k)
, (6)
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FIG. 1. Diagrammatic representation of tr[U t ]. The boxes rep-
resent local gates and different legs act on different spatial sites.
Matrix product is represented by joining legs and goes from bottom
to top. The lines at the left and right edges are joined because we
consider periodic boundary conditions (L ≡ 0), while those at the
top and bottom are joined because of the trace. The background grid
specifies the space-time lattice. The gates in the same vertical column
are identical.

while the one-site gates ux and vx are position dependent, i.e.,
θx,φx in (3) are explicitly x dependent.

B. Spectral form factor and space transfer matrix

Our aim is to characterize the spectral statistics of the
Floquet operator (1) for generic choices of the local gates.
Namely, we want to understand the general features of the
distribution of the eigenvalues of U , i.e.,

spect[U ] = {eiϕ j ; j = 1, 2 . . . , 22L}, (7)

where the quasienergies ϕ j can be taken in [0, 2π ). To this
end we compute the spectral form factor (SFF)

K (t, L) = E

⎡
⎣ 22L∑

j, j′=1

ei(ϕ j−ϕ j′ )t

⎤
⎦, (8)

which measures spectral correlations over arbitrary distance
and, over the last few years, has emerged as the standard
spectral-correlation measure in extended systems, see, e.g.,
Refs. [16,17,19,44–54]. Here E[·] denotes an expectation
value over an ensemble of similar systems, which we con-
veniently generate by taking the local gates vx, ux in Eq. (2)
to be independent and identically-distributed random matrices
(equivalently one can take the angles {θx, ηx} to be i.i.d. ran-
dom). The specific distribution of {vx, ux} is irrelevant for the
discussion below, and we will make a concrete choice when
discussing the parametrization used in our numerical studies
(cf. Sec. II D). Introducing the average allows us to filter out
the system-specific details and obtain a universal result which
is expected to only depend on gross properties of the system.
Note that the SFF is not self-averaging [55], therefore without
disorder averaging one should not expect universal results
(see, e.g., Ref. [56]). We expect our results to apply for any
finite—no matter how small—magnitude of disorder in the
thermodynamic limit.

Specifically, in ergodic systems the SFF is expected to take
a universal form that coincides with that observed in random
matrices of the same size. The specific random-matrix ensem-
ble to compare with depends on the antiunitary symmetries
of the Floquet operator (e.g., time reversal symmetry). In the
generic case of no antiunitary symmetries, which is the one of
interest here, the relevant prediction is that of Dyson’s circular
unitary ensemble (CUE), which reads as [6,57]

KCUE(t, L) = min(t, 22L ), (9)

showing a characteristic ramp-like shape. On the other hand,
whenever the system is strongly nonergodic (e.g., integrable,
or localized) the energy levels are expected to be statistically
independent. This means that the SFF should reproduce the
Poissonian-distribution result

KPoisson(t, L) = 22L. (10)

As discussed in Refs. [17,19] (see also Refs. [49,50,52]
where this approach is applied to non-dual-unitary systems),
the spectral form factor of a quantum circuit can be rewritten
in terms of the trace of the Lth power of a transfer matrix
acting along the space direction. The idea is to exploit the
symmetry of the diagram in Fig. 1 under a 90◦ rotation (space-
time swap), and the fact that the disorder is uncorrelated in
space. The main steps go as follows. First we observe that, for
t > 0, the SFF in Eq. (8) can be written as

K (t, L) = E[|tr(U t )|2] = E[tr(U ⊗ U∗)t ]. (11)

Using now the parametrization ((5), (6)) we can depict the
quantity inside the average on the right-hand side as in Fig. 2
where we introduced the symbols

(12)

(13)

and random one-site gates of the same shade of color are
the same. As it is clear from the figure, this quantity can be
equivalently represented as the trace of a matrix acting on the
vertical lattice (of 2t qubits).

More precisely, we denote by Ṽ and W̃ the many-body
operators composed by vertical columns of gates acting on
the time lattice, i.e.,

Ṽ ≡ Ṽ ⊗t , W̃ ≡ W̃ ⊗t , (14)

where Ṽ and W̃ are obtained by reshuffling the indices of the
local gates to propagate from left to right. Namely, the are
obtained from V and W through the mapping ˜(·) : End(C2 ⊗
C2) → End(C2 ⊗ C2) as

Õki;l j := Oi j,kl , i, j, k, l ∈ {0, 1}. (15)
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FIG. 2. Graphical representation of K (t, L) [cf. Eq. (11)]. The
symbols represent the local gates as per Eqs. (12) and (13). Random
one-site gates along the same column coincide, while those on dif-
ferent columns are uncorrelated.

Using these objects we define the transfer matrix

Tx = (Ṽ ⊗r Ṽ
∗)((ux ⊗ 1)⊗t ⊗r (u∗

x ⊗ 1)⊗t )

× ((
1 ⊗ vT

x

)⊗t ⊗r (1 ⊗ v†
x )⊗t

)
(�2t ⊗r �∗

2t )(W̃ ⊗rW̃
∗)

× (
�

†
2t ⊗r �T

2t

)((
uT

x+1/2 ⊗ 1
)⊗t ⊗r (u†

x+1/2 ⊗ 1)⊗t
)

× ((1 ⊗ vx+1/2)⊗t ⊗r (1 ⊗ v∗
x+1/2)⊗t ), (16)

which is highlighted in the shaded box of Fig. 2. Here (·)T

denotes transposition, �n is the one-site shift operator in a
chain of n qubits, and the tensor product ⊗r combines op-
erators acting in the forward evolving time-sheet with those
acting on the backward evolving one [cf. Eq. (8)]: from now
on we will refer to the lattices over which these operators act
respectively as the forward and backward time lattice.

Using the transfer matrix in Eq. (16) we can express the
SFF as

K (t, L) = E[tr(T1 · · · TL )]. (17)

Recalling now that random gates at different positions (i.e.,
those along different columns in the figure) are uncorrelated,
we can bring the average E[·] inside the trace to obtain

K (t, L) = trT L, T ≡ E[Tx]. (18)

Explicitly, we have

T = (Ṽ ⊗r Ṽ
∗)O†(�2t ⊗r �∗

2t )(W̃ ⊗r W̃
∗)

× (
�−1

2t ⊗r �T
2t

)
O , (19)

where O is a nonexpanding map implementing the average
over the local disorder, [58] i.e.,

O ≡ E[(ux ⊗ 1)⊗t ⊗r (u∗
x ⊗ 1)⊗t ]

× E
[(
1 ⊗ vT

x

)⊗t ⊗r (1 ⊗ v†
x )⊗t

]
. (20)

Note that, although we cannot generically prove that T is
diagonalizable, Eq. (18) implies that the SFF is solely deter-
mined by its spectrum and the size of its Jordan blocks. To see
this we write the Jordan decomposition of T as follows:

T = R(D + K)R−1, (21)

where R is invertible, D is diagonal, and K is strictly upper
triangular with zeros on the diagonal. The eigenvalues of
D coincide with those of T and the degeneracy of a given
eigenvalue λ is given by

dλ =
Nλ∑
j=1

dim(Jj,λ), (22)

where j labels all the Jordan blocks corresponding to λ (their
total number is Nλ), designated as Jj,λ, while dim(A) denotes
the dimension of the matrix A. Plugging the decomposition
(21) into (18), we find

K (t, L) = trDL (23)

where we used that products of D and at least one K are
traceless (using fact K strictly upper diagonal).

A notable property of T is that it has a global Zt × Zt sym-
metry under independent two-site translations in the forward
and backward lattices, i.e.[

�
2τ1
2t ⊗ �

2τ2
2t , T

] = 0, τ1, τ2 = 0, . . . , t − 1. (24)

As a result, we can block-diagonalize it by considering a
fixed double-momentum sector labeled by (ν, ν ′), with ν, ν ′ =
0, . . . , t − 1. Therefore the eigenvalues of T (or D) can be
labeled as

λa,(ν,ν ′ ), ν, ν ′ = 0, . . . , t − 1, (25)

where a = 0, . . . , N(ν,ν ′ ) − 1 with N(ν,ν ′ ) the size of the (ν, ν ′)
sector. Noting that the projector onto the sector (ν, ν ′) can be
written as Y (ν) ⊗ Y (ν ′ ), where we introduced

Y (ν) = 1

t

t−1∑
τ=0

exp

(
2π iτν

t

)
�2τ

2t , (26)

such that Y (ν)Y (ν ′ ) = Y (ν ′ )Y (ν) = δν,ν ′Y (ν), we find

N(ν,ν ′ ) = tr[Y (ν)]tr[Y (ν ′ )]. (27)

Reference [19] proved that in the dual unitary limit of the
models considered here and away from the trivial noninteract-
ing point (specifically for J ′

1,2 = J1,2 = π/4 and J ′
3, J3 	= π/4

in Eq. (6)), the transfer matrix T has exactly t eigenvalues λ =
1, corresponding to one-dimensional Jordan blocks, while all
other eigenvalues are contained in a disk of radius r < 1. In
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fact, there is exactly one maximal-magnitude eigenvalue in
each diagonal sector (ν, ν), and their corresponding eigenvec-
tors read as ∣∣1(ν,ν)

〉 = ∣∣Y (ν)
〉
, ν = 0, . . . , t − 1. (28)

In the right-hand side of Eq. (28), we represented the oper-
ator in Eq. (26) as a state of a Hilbert space with doubled
dimension using to the operator-to-state mapping (C2)⊗2t ⊗r

(C2)⊗2t 
 |A〉 �→ A ∈ End((C2)⊗2t ) such that

〈i1 · · · i2t j1 · · · j2t |A〉 = 〈i1 · · · i2t |A| j1 · · · j2t 〉. (29)

The presence of t dominant eigenvalues with unit magnitude
allows one to simply show that K (t, L) is indeed described
by the CUE form in Eq. (9) for large enough L. As pointed
out in Ref. [50], this t-fold degeneracy of T , and the fact the
eigenvectors preserve only the diagonal part of its Zt × Zt

symmetry, indicates that the ramp in the spectral form factor
is a manifestation of a spontaneous breaking of symmetry
Zt × Zt to Zt . The goal of this paper is to understand if
and why this spontaneous symmetry breaking is stable as one
moves away from the dual unitary point, from the perspective
of perturbation theory.

C. Minimal example

Even though our theoretical analysis can be carried out for
the full family of circuits, Eqs. (12) and (13), for our numer-
ical investigations it is useful to fix some of the parameters
and consider a minimal toy model example. Specifically, we
consider

V = W ≡ U = ei(( π
4 −ε1 )σ (1)⊗σ (1)+( π

4 −ε2 )σ (2)⊗σ (2) ), (30)

set θ (2)
x = φ(2)

x = 0, and average over θ (1)
x , θ (3)

x , φ(1)
x , φ(3)

x with
a Gaussian measure with zero mean and infinite variance, i.e.,
maximal disorder strength. This gives

O = O(1)
0 O(1)

1/2O
(3)
0 O(3)

1/2, (31)

where we set

O(α)
s = lim

σ→∞ exp

⎡
⎢⎣−σ 2

2

⎛
⎝∑

τ∈Zt

σ
(α)
τ+s ⊗r 1 − 1 ⊗r σ

(α)
τ+s

⎞
⎠

2
⎤
⎥⎦,

(32)

s = 0, 1/2. These choices simplify drastically our numerical
analysis as they reduce the number of parameters to only two,
however, they still contain a rich phenomenology. The two
extremal cases are found for ε1 = ε2 = 0, when the model
corresponds to an ensemble of ergodic dual unitary circuits,
and for ε1 = ε2 = π/4 when the model is trivially localized
as there is no coupling between different sites. We verified
that including the term Jσ (3) ⊗ σ (3) in the local gate [J has
been set to 0 in Eq. (30)], or a finite disorder variance, does
not qualitatively modify the numerical results. For instance, in
Fig. 3 we show the gap in the 0,0) momentum sector of T at
the dual unitary point ε1 = ε2 = 0, i.e.,

�0 = 1 − |λ1|, (33)

as a function of J and t . We note that the gap is largest
when J = 0, and closes (�0 → 0) when J → π/4, i.e., when

FIG. 3. The gap �0(t ) = 1 − |λ1| at the dual unitary point for
various t and J , all data are collected from (ν, ν ′) = (0, 0) symmetry
sector. The top plot takes α → ∞ as in Eq. (32) while the bottom
plot sets J = 0 and takes σ finite. The bottom plot is the only data
set in this article where σ is taken to be finite, all other datasets and
figures take σ → ∞. The data showcased in the top plot with J = 0
are featured in Fig. 9.

the local unitary U equals the swap matrix and the circuit
becomes noninteracting.

Moreover, in Eq. (32), we took σ → ∞. To confirm that
this choice does not introduce nongeneric behavior we inves-
tigated the gap of the space transfer matrix for various values
of finite variance. A representative example of this is reported
in the bottom panel of Fig. 3, where we took J = 0. We
see that σ = 1 we are already close to the α = ∞ limit. For
example at t = 8, J = 0, σ 2/2 = 1 the gap is found to be
�0(8) ≈ 0.660709. Instead taking σ → ∞ one gets �0(8) ≈
0.6607102. That is, the correction to the gap is observed in the
fifth decimal place. We also emphasize that the choice of an
infinite variance σ 2 → ∞, i.e., a maximal disorder strength,
should be the most challenging for the survival of dual unitary
behavior away from the dual unitary point. Indeed, this is the
optimal regime in which one might expect Floquet many-body
localization (MBL).
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The number of parameters can be reduced further by fixing
the ratio between ε1 and ε2. The value of the ratio, however,
affects rather drastically how dual-unitarity is broken and has
to be chosen with care. Here we choose the two values of
ε2/ε1 corresponding to weakest and strongest breaking of
dual-unitarity. To find them we note that ρŨ = ŨŨ †/4 is a
positive matrix with unit trace [59] and can be interpreted
as a quantum state. Therefore the dual-unitarity breaking can
be estimated by computing the fidelity between ρŨ and the
maximally mixed state ρ∞ = 1/4. In particular, an explicit
calculation gives

F (ρ∞, ρŨ ) = tr|√ρ∞
√

ρŨ |2 = cos(ε1)2 cos(ε2)2, (34)

where |A| =
√

AA†. This means that, considering without loss
of generality

ε2 � ε1 =: ε, (35)

the two cases corresponding respectively to the weakest and
strongest breaking of dual unitarity are ε2 = 0 and ε2 = ε. In
the following we consider both these cases referring to them,
respectively, as cases I and II.

D. Numerical approaches

Besides standard exact diagonalization of (1) for small
systems, in this paper we provide three numerical tests to
characterize the space transfer matrix T . The first is an
Arnoldi exact diagonalization method to converge several
leading eigenvalues simultaneously. We use this to study the
full spectrum of T without resolving the translation symmetry
in Eq. (24). Due to the number of eigenvalues we want to com-
pare and the behavior of the spectrum this method is limited
to t � 6 (our full forward-backward time lattice comprises of
4t qubits).

Next, we isolate a specific double-momentum sector (ν, ν)
and characterize the action of the transfer matrix within the
sector (a detailed discussion of how this is achieved is pre-
sented in Appendix C). This removes degeneracy near the
spectral edges of T and in most cases allows us to study
the spectrum with the power iteration method, allowing us
to access times t � 9 (for some data sets we had to use the
Arnoldi method also within a given sector as the gap was too
small). Moreover, we use this representation to evaluate the
coefficients in our pertubative analysis of Sec. IV.

Our third method is a Monte Carlo based approach that
approximates the maximal eigenvalue in a given double-
momentum sector by stochastically unraveling the average in
Eq. (17) and allowing us to approach times t � 12. The idea
is to observe that, before the average, the transfer matrices in
Eq. (17) are written as the tensor product of two operators (re-
lated by complex conjugation) acting only on the forward and
backward lattices. Therefore, if we do not perform the average
explicitly we can consider only one of the lattices, halving the
number of qubits we need to simulate. More concretely we
proceed as follows. Instead of considering directly Eq. (18),
we construct local gates on the time lattice as

Ũ�θx
= Ũ · (ux ⊗ vx ), (36)

where

u = exp(iθ (1)σ (1) ) exp(iθ (3)σ (3) ), (37)

v = exp(iφ(1)σ (1) ) exp(iφ(3)σ (3) ). (38)

Therefore the transfer matrix is characterized by four angles
�θ = (θ (1)

x , θ (3)
x , φ(1)

x , φ(3)
x ), which are uniformly generated ran-

dom numbers, and can be written as

T�θx
= Ũ�θx

⊗r Ũ
∗
�θx
, Ũ�θx

= Ũ ⊗t
�θx

�2tŨ
⊗t
�θx

�−1
2t . (39)

We then observe that for large enough N

E

[
N∏

n=1

T�θn
|ψ〉 ⊗r |ψ〉∗

]
≈ λN

0 c0|λ0〉 + . . . , (40)

where |ψ〉 is a random state on the forward lattice, c0 =
〈λ0|(|ψ〉 ⊗r |ψ〉∗), and the average is performed over all
choices of �θn, n = 1, . . . , N . We now estimate the left-hand
side of Eq. (40) by sampling over the choices of �θn. Letting

|ψN 〉 =
N∏

n=1

Ũ�θn
|ψ〉, (41)

we have

E

[
N∏

n=1

T�θn
|ψ〉|ψ〉

]
≈ 1

�

�∑
m=1

|ψN 〉m ⊗r |ψN 〉m, (42)

where m labels the samples of �θ1, . . . , �θn and � denotes the
sample size. Therefore, plugging back into (40), we obtain

1

�

�∑
m=1

|〈ψ |ψN 〉m|2 ≈ λN
0 c0(〈ψ | ⊗r 〈ψ |∗)|λ0〉 + . . . (43)

The left-hand side of this equation can be easily computed for
a large number of samples and moderately large t because it is
defined only on the forward lattice (the objects involved live
in a vector space of half the size). A simple way to extract λ0

from this relation is to take the logarithm of both sides and
find the slope of the data as a function of N . In what follows,
we take � = 107 for small t and reduce our sample size to
� = 105 for t = 11, 12. This method works best when λ0 is
significantly larger than one.

Finally we mention that if one is only interested in charac-
terising the evolution in time of the leading eigenvalues of T
one can use the time-evolution-based method recently intro-
duced in Ref. [49]. This method assumes a certain structure
for the spectrum of T and evaluates the leading eigenvalues
by performing an evolution in time in a quantum circuit with
finite length and judiciously selected twisted boundary condi-
tions. Here, however, we are interested in an assumption-free
characterization of T which goes beyond its leading eigenval-
ues (cf. Sec. IV). Therefore we do not use this approach.

III. STABILITY OF THE ERGODIC PHASE:
NUMERICAL SURVEY

As recalled in Sec. II B, on the dual-unitary manifold the
quantum circuit is chaotic in the sense that its spectral form
factor exhibits the linear ramp characteristic of random matrix
theory [cf. Eq. (9)]. This property is found to correspond to the
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space transfer matrix T having t eigenvalues equal to one. In
this section, we investigate how the spectrum of T behaves
when we move away from the dual unitary point using the
model in Eq. (30).

Our expectation is that the ε-dependence of the spectrum of
T should be smooth for small enough ε. This means that there
should exist a phase where the spectrum of T is qualitatively
similar to the that of the dual-unitary point: the leading eigen-
value, or SLE, should have an approximate t-fold degeneracy
near unity [which becomes increasingly exact as t → ∞) and
the corresponding eigenvectors should lie in the diagonal mo-
mentum sectors (i.e., (ν, ν)]. This phenomenology would be
consistent with the spontaneous symmetry breaking scenario
proposed in Ref. [50] (cf. Sec. II B). More concretely, we
expect that at late enough times Eq. (23) is dominated by the
leading eigenvalues so that

K (t, L) ≈
t−1∑
ν=0

λL
0,(ν,ν). (44)

For ε = 0 this approximation is exact, the eigenvalues are
all equal to 1, so that K (t, L) = t for large enough L. When
ε 	= 0, the requirement is that a linear ramp ensues on time
scales in excess of the so called Thouless time (expected
to be sub-polynomial in L in the absence of conservation
laws). Combined with Eq. (44), this suggests that the leading
eigenvalues in each sector are split from 1 by an amount that
decays exponentially in time, i.e.,

λ0,(ν,ν) = 1 + O(e−γ t ), γ > 0. (45)

On the other hand, an MBL phase should be characterized by
a single leading eigenvalue going to λ0,(0,0) = 4 for large t ,
while all remaining eigenvalues having magnitude less than
unity. In the language of Ref. [50], this corresponds to a
symmetry-unbroken phase. Let us now proceed to substanti-
ate these expectations using our exact numerical approaches.
Even though maximal-magnitude eigenvalues exist in all the
(ν, ν) symmetry sectors, we begin by focusing our attention
on the (0,0) sector (and temporarily drop the sector label)
as this gives us the ability to investigate longer times (larger
time-lattice sizes). At the end of this section we will discuss
all symmetry sectors simultaneously. We observe that in the
(0,0) sector, ε 	= 0 implies λ0(t ) > 1 for all the observable
times t , that is, perturbing away from the dual unitary point
increases the leading eigenvalue (Fig. 6). Conversely, in the
other sectors we detect a decreasing in the size of the maximal
eigenvalue, i.e., |λ0,(ν,ν)| < 1 for ν 	= 0 and ε 	= 0.

In Fig. 4, we report ln(λ0(t ) − 1) versus t for both Cases I
and II and variety of values of ε, all relatively small. We find
good agreement with the following scaling form:

λ0(t ) ≈ 1 + c(ε)e−γ (ε)t , (46)

where γ (ε) > 0 and c(ε) are constants depending solely on ε.
In general, we observe that γ (ε) decreases monotonically with
increasing ε. In particular, we find that γ (ε) is substantially
larger in case I than in case II (cf. Sec. II C). More specifically,
we observe that taking ε twice as big in case I compared to

case II produces similar γ (ε). For example, γ (0.05)|CaseII ≈
0.6191 while γ (0.1)|CaseI ≈ 0.5962. This persists for all
ε tested. We similarly observe γ (0.3)CaseII ≈ 0.0687 and
γ (0.6)CaseI ≈ 0.0805.

For larger values of ε the exponent γ (ε) becomes too small
to be reliably determined in the time window accessible by our
exact methods. However, our numerics indicate that for case I
γ (ε → π

4 ) is nonzero. This suggests that for case I ergodicity
is stable for the entire parameter regime. In principle one
can explore larger times by using the time-evolution based
approach introduced in Ref. [49] (cf. Sec. II D), however, here
our focus is chiefly on small ε. We further note the apparent
zigzag pattern in the data of Fig. 4 differentiating even and odd
t . We associate this behavior with the fact that for even t there
is an additional parity symmetric sector of T besides (0,0),
i.e., (π, π ). This changes the structure of the eigenspaces (and
their dimensions) also affecting the value of λ0,(0,0).

Having discussed the behavior of the leading eigenvalue in
the (0,0) sector we now move on and study the gap between
the latter and the rest of the spectrum. In particular, in Fig. 5,
we report

�(t ) := |λ0(t )| − |λ1(t )|, (47)

as a function of time and for different choices of ε (again for
both cases I and II). In all the cases explored, we find that the
gap satisfies �(t ) > 0 in (0,0) sector and, therefore, λ0(t ) is
sufficient to characterize the large L behavior of the SFF. This
means that, for small ε, the ν = 0 component of Eq. (44) is
confirmed.

To conclude our numerical test of Eqs. (44) and (45) it
remains to check that this behavior is mirrored in other sym-
metry sectors. We achieve this by using the Arnoldi method
to check all sectors simultaneously. Our results are reported in
Fig. 6. Interestingly, the leading eigenvalue in the (0,0) sector
is always observed to be the dominant one. Along with this
property, it is observed to converge to 1 more slowly than
the other leading eigenvalues. For example the t = 6, ε = 0.6
data set for case I has λ0,(0,0) = 1.45898 while the second
furthest from unity is λ0,(1,1) = λ0,(5,5) = 0.838665. Leading
eigenvalues are always found to be real numbers, while sub-
leading values in general are real or complex with magnitude
smaller than unity. The leading eigenvalue in the (0,0) sector is
the only one to be consistently greater than unity, other leading
eigenvalues can oscillate around 1 as functions of time.

In summary, our numerical analysis is consistent with the
expectation that for small ε the spectrum of T is a smooth
deformation of that at the dual unitary point: We have t real
eigenvalues close to unity while the rest have significantly
smaller magnitudes. We stress that this is the case despite the
fact that our minimal model (30) and (31) involves maximal
disorder strength. Interestingly, in all our numerical experi-
ments we also observed that the (0,0) sector has the largest
eigenvalue. This is consistent with the symmetry breaking
picture of Ref. [50]: as the system is perturbed away from
the maximally ergodic point, i.e., the dual unitary point, a sin-
gle symmetric eigenvalue becomes the dominant one. Further
numerical surveys suggest that this phenomenology contin-
ues also when moving away from our minimal model (30)
and (31).
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FIG. 4. ln(λ0(t ) − 1) as a function of time for various ε1, ε2. Dotted lines indicate numerical fits. Circle data points are retrieved with the
power method isolated in the (ν, ν ′) = (0, 0) symmetry sector. Diamond data points are calculated using the Monte Carlo. Monte Carlo data
consist of 107 samples for t � 10 and t > 10 use 105 data points. In the top two panels, we supply exact values and Monte Carlo estimates for
all times t , while in the bottom two panels, we simply plot exact values for t � 9 and the remaining points are Monte Carlo estimations.

FIG. 5. The gap � = |λ0| − |λ1| versus time t for various choices of perturbation. These data were retrieved using the Arnoldi method in
the (ν, ν ′) = (0, 0) symmetry sector.
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FIG. 6. Full spectrum λn,(ν,ν ) analysis (all diagonal double momentum sectors) of T for various ε and t . Points are plotted in polar
coordinates, with the radius being the magnitude of the eigenvalue (this plot therefore covers up some degeneracy in the sub-leading
eigenvalues). The polar angle is 2πν/t , where ν labels the symmetry sector (ν, ν ). Results were obtained by an Arnoldi method converging
n = 12 eigenvalues at the edge of the spectrum.

IV. PERTURBATION THEORY

In this section, we propose an analytical explanation for
the main observation of Sec. III. Namely, that the dual-unitary
eigenvalue structure is maintained for finite ε suggesting
structural stability of the dual-unitary phase. The idea is to
fix ε and write the maximal eigenvalue of T in each diagonal
double-momentum sector (ν, ν)—we denote it by λ(ν,ν) ≡
λ0,(ν,ν)—as a perturbative series in an auxiliary parameter.
Studying this series we then show that, if two assumptions
are fulfilled, then |λ(ν,ν) − 1| is bounded by a term that is
exponentially small in t , implying that our circuit models are
ergodic at the considered value of ε. Remarkably, this happens
even for the minimal model with maximal disorder strength
discussed in Sec. II C.

Specifically, our two assumptions are the following.
(i) No “maximal level” crossing occurs in the perturba-

tive expansion, i.e., the evolution of the maximal eigenvalue

in each sector can be followed by tracing the smooth de-
formation of the maximal eigenvalue at the dual-unitary
point.

(ii) The (ε-dependent) coefficients of our perturbative se-
ries are bounded by an exponentially decaying function of t
and grow at most exponentially in n, where n is the perturba-
tive order.

A more precise formulation of these assumptions is given
in the upcoming derivation.

The first assumption is safe for generic enough perturba-
tions: if the perturbation couples all the eigenvectors in a given
sector, all adjacent level encounters are avoided crossings.
Therefore assumption (i) can be rephrased by saying that
we assume our perturbation to be sufficiently generic. This
assumption is consistent with our numerical survey of Sec. III
(cf. Fig. 5). The second assumption is our main one and, as
we discuss in Sec. V, can be partly justified by an analytical
argument. In Sec. V we also show that Assumption (ii) fails at
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the trivially localized point (i.e., for case II and ε = π/4, cf.
Sec. II C) while we give numerical evidence of it holding for
small ε.

We now proceed to show that when (i) and (ii) hold the
quantum circuit (1) is ergodic. We begin considering the
eigenvalue equation for the maximal eigenvalue λ of the trans-
fer matrix resolved to the double momentum sector (ν, ν),
namely,

T |λ〉 = λ|λ〉. (48)

Here and in the following, we drop the dependence on the
subscript (ν, ν) whenever it is not ambiguous to do so. Since
for ε = 0 only the diagonal sectors contain the maximal
eigenvalues, and the latter are unique, Eq. (48) contains all
the necessary information to characterize the spectral form
factor for small enough ε. It is not obvious, however, that
this will continue to hold also for finite ε. Here we as-
sume this to be the case, namely, we make the following
postulate.

Assumption 1 (No leading eigenvalue crossing). The lead-
ing eigenvalues of T for small enough ε are obtained by
smooth deformation of those of T |ε=0. Namely, λ is a smooth
function of ε.

By virtue of Assumption 1 we can limit our treatment
to diagonal double-momentum sectors and only consider
Eq. (48), which we treat using a “dressed” perturbative ap-
proach. Specifically, we proceed as follows. First, we set

T0 ≡ T |ε=0, T̄ε ≡ T − T0

ε
(49)

and rewrite Eq. (48) as

(T0 + εT̄ε )|λ〉 = λ|λ〉. (50)

Next we solve

(T0 + xT̄ε )|λ〉 = λ|λ〉, (51)

in perturbation theory in x for fixed ε. Finally we recover
a perturbative solution of Eq. (48) by setting x = ε in the
end. The advantage of this approach is that it involves only
a first order correction to the transfer matrix as it happens
in standard time-independent perturbation theory in quantum
mechanics, at the cost of making the perturbation manifestly
ε-dependent.

Explicitly, we expand both |λ〉 and λ in x

|λ〉 =
∞∑

k=0

xk|λ〉(k), |λ〉(0) = |1〉, (52)

λ =
∞∑

k=0

xkλ(k), λ(0) = 1, (53)

and impose (51) order by order in x. As shown explicitly in
Appendix A, this yields

|λ〉(1) = GT̄ε |1〉,

|λ〉(n>1) =
n−1∑
�=1

n−1∑
k1,...,k�=1

k1+...+k�=n−1

GKk1GKk2 · · ·GKk�
GT̄ε |1〉, (54)

and

λ(1) = 〈1|T̄ε |1〉, λ(2) = 〈1|T̄εGT̄ε |1〉, (55)

λ(n>2) =
n−2∑
�=1

n−2∑
k1,...,k�=1

k1+...+k�=n−2

〈1|T̄εGKk1GKk2 · · ·Kk�
GT̄ε |1〉,

where we set

Q = 1 − |1(ν,ν)〉〈1(ν,ν)|, (56)

G =
∞∑

n=0

QT nQ = Q(1 − T Q)−1, (57)

Kk = δk,1T̄ε − λ(k)1. (58)

Note that G is the resolvent R(z) = (z1 − T0)−1 of T0

projected away from the leading-eigenvalue subspace and
evaluated at z = 1. The projection makes this operator well
defined.

Using these expressions one can write λ(n) in terms of the
following expectation values of products of the perturbation
T̄ε and the projected resolvent G

[k1, . . . , km] = 〈1|T̄εGk1 T̄εGk2 · · ·Gkm T̄ε |1〉, k j � 1,

[ ] = 〈1|T̄ε |1〉. (59)

Explicitly, the first few orders read as

λ(1) = [ ],

λ(2) = [1],

λ(3) = [1, 1] − [ ][2],

λ(4) = [1, 1, 1] − [1][2] − [ ][2, 1] − [ ][1, 2] + [ ]2[3],

λ(5) = [1, 1, 1, 1] − [1, 1][2] + [ ][2]2 − [1, 2][1] − [2, 1][1]

+ 2[0][1][3] − [ ][2, 1, 1] − [ ][1, 2, 1] − [ ][1, 1, 2]

+ [ ]2[3, 1] + [ ]2[2, 2] + [ ]2[1, 3] − [ ]3[4]. (60)

Continuing to arbitrary order we have

λ(n>2) =
∞∑

q=1

∞∑
p1,...,pq=1

n−1∑
k11,...,kqpq =1

(−1)q+1C[{ki j}]

× δ

⎡
⎣ q∑

i=1

pq∑
j=1

ki j − (n − 1)

⎤
⎦θ

[
n −

q∑
i=1

(pi + 1)

]

× [ ]n−∑q
i=1(pi+1)

q∏
m=1

[
km1, . . . , kmpm

]
, (61)

where δ[x] and θ [x] are equal to one when x = 0 and x �
0 respectively and to 0 otherwise, while C[{ki j}] counts
the combinatorial multiplicity of a given term (we do not
need its explicit expression). Here q denotes the number of
[k1, . . . , km] symbols appearing in a given term, pm is the
length of the m-th symbol. Each symbol contains pm + 1
factors of the perturbation T̄ε , while each [ ] contains one
factor. Therefore the final line of Eq. (61) contains in total
n factors of the perturbation, consistent with it being an n-th
order perturbative term.
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To find the constraints we used that pi + 1 is the number
of T̄ε in [ki1, . . . , kipi ] and

∑pq

j=1 ki j is the number of Gs. Since
the total number of T̄ε in each term at order n equals n, we
have

q∑
i=1

(pi + 1) = n − m, (62)

where m is the number of [ ]’s in the term. On the other hand
from the last of (55) and the last of (58) we have that each term
contributing to the nth order in perturbation theory contains
n − 1 occurrences of G. Therefore we find

q∑
i=1

pq∑
j=1

ki j = n − 1. (63)

Our goal is to bound from above the magnitude of the per-
turbative correction λ(n) to the maximal eigenvalue. To this
end, we make the following assumption on the scaling of the
symbols [k1, . . . , km]

Assumption 2. The symbols [k1, . . . , km] and [ ]can be
bounded as follows:

|[k1, . . . , km]| � e−β(t−t0 )eα
∑m

j=1 k j eγ (m+1),

|[ ]| � e−β(t−t0 ), (64)

where β > 0, α, γ , t0 are independent of m, k j and t .
Using Assumption 2 in Eq. (61) we obtain the following

bound:

|λ(n)| � e−α−β(t−t0 )e(α+γ )nNn, (65)

where Nn is defined as

Nn ≡
∞∑

q=1

∞∑
p1,...,pq=1

n−1∑
k11,...,kqpq =1

C[{ki j}]

× δ

⎡
⎣ q∑

i=1

pq∑
j=1

ki j = n − 1

⎤
⎦θ

[
n −

q∑
i=1

(pi + 1)

]
. (66)

This number can be computed with three simple observations.
First we note that (55) implies N1 = N2 = 1. Next, we ob-
serve that Nn>2 can be alternatively written as

Nn>2 =
n−2∑
�=1

n−2∑
k1,...,k�=1

k1+...+k�=n−2

#k1,...,k�
, (67)

where #k1,...,k�
denotes the number of terms in the expansion

of 〈1|T̄εGKk1GKk2 · · ·Kk�
GT̄ε |1〉. Finally, noting

#k1,k2...,k�
=

{
#k1,k2,...,k�−1 (N1 + 1), k� = 1,

#k1,k2,...,k�−1Nk�
, k� > 1,

(68)

we immediately find N3 = 3 and the following recursive
relation

Nn>3 = Nn−2 +
n−3∑
p=1

(Np + δp,1)Nn−p =
n−1∑
p=1

NpNn−p, (69)

where we used N1 = N2 = 1. This means that Nn+1 fulfils
the recursive relation of the Catalan numbers with the same

initial condition. Therefore

Nn = Cn−1 = 1

n

(
2n − 2

n − 1

)
� 4n

4n3/2
√

π
. (70)

Plugging back into (53), we find

|λ − 1| �
∞∑

n=1

xn|λ(n)|

= e−α−β(t−t0 )
∞∑

n=1

xne(α+γ )nNn. (71)

To conclude we observe that the sum on the right-hand side
is always convergent for small enough x. Namely we have
convergence whenever

x � ε � e−(α+γ )/4. (72)

For all the values of ε fulfilling the above bound, we then have

|λ − 1| � A(γ , α)e−βt . (73)

This expression recovers Eq. (45) and shows that whenever
Assumptions 1 and 2 hold the ergodic phase is stable.

V. DISCUSSION OF ASSUMPTION 2

Our Assumption 2 on the behavior of the perturbative
coefficients in Eq. (59) can be justified by an analytical ar-
gument assisted by numerical observations. For definiteness
we again focus on the sector (ν, ν) = (0, 0), although other
double momentum sectors show similar behavior. We begin
by considering the simplest of the coefficients in Eq. (59), i.e.,

[n] = 〈1|T̄εGnT̄ε |1〉, (74)

and compute it numerically for n = 1, . . . , 30 and t =
3, . . . , 8. Some representative examples of our results, for
both cases I and II, are reported in Figs. 7 and 8. Overall we
see that, in agreement with Eq. (64), the term increases expo-
nentially as a function of n and is exponentially suppressed as
a function of t .

A more refined analysis is provided by fixing t , varying n,
and performing a linear fit. Namely, we set

ln |[n]| ≈ α(t, ε)n + δ(t, ε), (75)

and find α(t, ε) and δ(t, ε) providing the best fit [60].
Studying these coefficients (cf. Fig. 9), we find that, very
interestingly, the slope α(t, ε) is roughly independent of ε.
Moreover—and this is a key observation—it matches remark-
ably well the logarithm of the inverse of the spectral gap
calculated at the dual-unitary point, i.e.,

α(t, ε) ≈ − ln �0(t ). (76)

In fact, since in this case the largest sub-leading eigenvalue is
unique and real (cf. Table I) we have �0(t ) = 1 − λ1(t ). In
fact, our Assumption 2 requires δ(t, ε) to decrease linearly in
t . Here our data are less convincing and sensitive to the parity
of t , but have the correct overall trend.

This result can be reproduced by making two assumptions
on the structure of the dual-unitary transfer matrix T0. First,
we assume that T0 is diagonalizable: this seems a reasonable
assumption given that T0 is an average over matrices, and that
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FIG. 7. [n] terms in perturbation theory as a function of t and n. Solid dots represent the natural logarithm of data retrieved through
exact evaluation of [n] in the (ν, ν ′) = (0, 0) sector. Dotted lines are numerical fits indicating exponential dependence on the independent
variables t, n.

defective (i.e., nondiagonalizable) matrices are nongeneric. In
fact, our upcoming reasoning continues to hold also when
there are nontrivial Jordan blocks but only for the eigenvalue
0. The latter requirement is easier to check numerically, and
it is fulfilled in all our numerical observations [61]. Therefore

TABLE I. In this table, we present the raw data used to calculate
�0(t ) in Fig. 9. We in general observe the value to be real for this
choice of parameters. We also include λ2(t ) which was extracted
from the symmetry resolved Arnoldi method.

t λ1 λ2

3 0.4081361 −0.0982743 ± 0.1952433i
4 0.5225734 0.3919454
5 0.4245154 0.2848218
6 0.4221175 0.3426469
7 0.3630244 0.2755609
8 0.3392898 0.3102323
9 0.3113076 0.2756089

we write G as [62]

G =
∑
j>0

1

(1 − λ j )

|λ j, r〉〈λ j, l|
〈λ j, r|λ j, l〉 , (77)

where |λ j, l〉 and 〈λ j, r| are respectively the (orthogonal) right
and left eigenvectors corresponding to the jth subleading
eigenvalue λ j . Next, assuming 1 − λ1 � |1 − λ j>1| we trun-
cate the spectral decomposition (77) to the leading eigenvalue

G ≈ 1

(1 − λ1)

|λ1, r〉〈λ1, l|
〈λ1, r|λ1, l〉 . (78)

This gives

[n] ≈ 1

(1 − λ1)n

〈1|T̄ε |λ1, r〉〈λ1, l|T̄ε |1〉
〈λ1, r|λ1, l〉 , (79)

which is consistent with the numerical observation (76).
In fact, the approximate form (78) of the resolvent can

also be used to explain the exponential decay in time ob-
served in the upper panels of Figs. 7 and 8. We begin noting
that for a large enough � ∈ N one can make the following
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FIG. 8. [n] terms in perturbation theory as a function of t and n. Solid dots represent the natural logarithm of data retrieved through
exact evaluation of [n] in the (ν, ν ′) = (0, 0) sector. Dotted lines are numerical fits indicating an exponential dependence on the independent
variables t, n.

approximation:

|λ1, r〉〈λ1, l|
〈λ1, r|λ1, l〉 ≈

(T0Q
λ1

)�

=
(T0

λ1

)�

Q, (80)

where Q is the projector on the leading eigenspace of T0

[cf. Eq. (58)] and we neglected terms that are prima facile
O((λ j/λ1)�). This approximation is in fact more subtle than
it might appear because the terms |λ j, r〉〈λ j, l|/(〈λ j, r|λ j, l〉)

FIG. 9. Data extracted from numerical fits in Figs. 7 and 8 for different choices of ε1, ε2. α(t, ε), δ(t, ε) correspond to the quantities defined
in Eq. (75). �0(t ) is the gap at the dual unitary point. Importantly we plot �0(9) for reference, α(t, ε) and δ(t, ε) were not extracted for t = 9.
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can have large operator norm (possibly even exponentially
large in t). This means that one might need to consider � =
O(t ) to safely neglect higher order terms. Here we assume
that this is not the case and take � to be O(t0).

Using (80) we can rewrite Eq. (79) as

[n](1 − λ1)n ≈ 1

λ1
〈1|T̄εT �

0 QT̄ε |1〉

= 1

λ1ε2

(〈1|T T �
0 T |1〉 − 〈1|T |1〉2

)
. (81)

Next, we rewrite the last line in terms of the original time
evolving gates, undoing the space-time duality transformation
discussed in Sec. II B. The idea is to represent the expectation
value of a product of n transfer matrices on a state in terms
of the time-evolution operator of a chain of n qubits. The
state translates into the boundary conditions imposed on the
time-evolution operator. In our case the boundary conditions
will pair forward and backward evolution, giving a nonunitary
boundary term to the evolution operator. More concretely,
considering, for instance, the first term we have

〈1|T T �
0 T |1〉 =

∑t−1
τ=0 〈1|T T �

0 T
∣∣�2τ

2t

〉
∑t−1

τ=0

〈
1
∣∣�2τ

2t

〉
� 1

22t

t−1∑
τ=0

〈1|T T �
0 T

∣∣�2τ
2t

〉
, (82)

where |O〉 is the state corresponding to the operator O under
the mapping in Eq. (29). In the second step, we dropped terms
that are at most O(2−t ) by using

t−1∑
τ=0

〈
1
∣∣�2τ

2t

〉 =
t−1∑
τ=0

22gcd(t,τ ) = 22t +
t−1∑
τ=1

22gcd(t,τ ), (83)

and noting that the sum on the right-hand side is bounded
by 2t .

The terms on the right-hand side of Eq. (82) can be easily
translated in the time evolving picture because the states |�2 j

2t 〉
implement simple pairings between backward and forward
evolution. For instance, the term with τ = 0 is written as

〈1|T T �
0 T |1〉 = E

[
tr
[
Bt

�+2,0

]]
, (84)

where we introduced the 42n−1 × 42n−1 matrix

Bn,0 = ((U ⊗r U
∗) ⊗ mn)(m0 ⊗ (W ⊗r W

∗)). (85)

The latter is written in terms of the time evolution operators
for 2n − 2 qubits (∈ End(C22n−2

))

U = U0 ⊗ . . . ⊗ Un−1, (86)

W = U1/2 ⊗ . . . ⊗ Un−1/2, (87)

and the boundary matrices (∈ End(C4))

[m0]i j = 1

2

2∑
r,s=1

[U−1/2]r,i1
s, j1

(
[U−1/2]r,i2

s, j2

)∗
, (88)

[mn]i j = 1

2

2∑
r,s=1

[Un]i1,r
j1,s

(
[Un]i2,r

j2,s

)∗
. (89)

Introducing a convenient diagrammatic representation for ob-
jects acting on both the forward and backward time sheets

(90)

(91)

we can depict Bn,0 as in Fig. 10(a). Analogously, a generic
term with τ 	= 0 is written as

〈1|T T �
0 T

∣∣�2τ
2t

〉 = E
[
tr
[
Bt

�+2,τ

]]
, (92)

where we introduced the matrices

Bn,τ = ((U ⊗r U
∗) ⊗ bτ ⊗ 1⊗2(τ−1))

× (m0 ⊗ ((W ⊗ �τ ) ⊗r (W ∗ ⊗ �∗
τ ))), (93)

[bτ ]i j = 1

d
[Un]i1, j4

j1, j3

(
[Un]i2,i4

j2,i3

)∗
. (94)

Note that Bn,τ ∈ End(C42n+τ−1
) and bτ ∈ End(C42

). Introduc-
ing the following diagrammatic representation for bτ :

(95)

we can depict Bn,τ as in Fig. 10(b).
The traces of Bn,τ can be treated following Ref. [63]. In

particular, using theorem 1 of the aforementioned reference
we have that if there are no x � y such that

Ux(1 ⊗ a)U †
x = 1 ⊗ a′, (96)

Uy(b ⊗ 1)U †
y = b′ ⊗ 1, (97)

for some local operators a, a′, b, b′, then

tr[Bt
n,0] = 1 + O(e−βt ), β > 0. (98)

Note that, although β > 0 for all values of n, Ref. [63] gives
no information on its n dependence.

With a similar reasoning we prove in Appendix B that if
(96) does not hold for any x, then ρ(Bn,τ ) < 1, where we used
ρ(·) to denote the spectral radius. This implies

tr
[
Bt

n,τ

] = O(e−βt ), τ > 0. (99)

Since for (ε1, ε2) 	= (π/4, π/4) the gates fulfilling (96) and
(97) have measure zero in the disorder average, we conclude
that

〈1|T T �
0 T |1〉 � 1 + A(ε)e−β(ε)t , (100)

where the constant A(ε) vanishes for ε = 0 because the left-
hand side is trivially equal to one for ε = 0 while Fig. 8
suggests that β(0) is finite. Note that, since we do not control
the β dependence on �, we cannot exclude that it approaches
0 in the limit of infinite �. This is why we had to assume
� = O(t0) in Eq. (80).

Proceeding analogously we find

〈1|T |1〉 � 1 + B(ε)e−β(ε)t , (101)
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(a) (b)

FIG. 10. Diagrammatic representation of Bn,0 (a) and Bn,τ 	=0 (b).

with B(ε) � A(0)′ε/2 for small ε. Putting all together in
Eq. (81), we then have

[n] ≈ C2(ε)e−β(ε)t

λ2
1(1 − λ1)n

, (102)

where C2(ε) is O(1) for small ε. If we compare Eq. (102) with
our two parameter fit for [n] [Eq. (75)], we predict that −β is
the slope of δ with respect to t . The right panel of Fig. 9 then
suggests that β(ε) depends weakly on ε for small enough ε.

Proceeding along similar lines we can estimate all the co-
efficients in Eq. (59). In particular, using the approximations
(78) and (80), we have that the generic coefficient [k1, . . . , km]
is written as

[k1, . . . , km] ≈ 〈1|T̄ε (T0QT̄ε )m|1〉
λm

1 (1 − λ1)k1+...+km
. (103)

While applying (98) and (99), we have

[k1, . . . , km] ≈ Cm+1(ε)e−βt

λm
1 (1 − λ1)k1+...+km

,

[ ] ≈ C1(ε)e−βt , (104)

with Cm(ε) = O(1) for small ε. This provides an analytical
justification to Assumption 2. In Figs. 11 and 12, we provide
an independent numerical test of this assumption by consider-
ing the behavior of the flat coefficients

[1, 1 . . . 1] = 〈1|T̄εGT̄εG · · ·GT̄ε |1〉. (105)

These contributions are those for which the approximation
(78) is the least justified as the latter becomes exact only
when the resolvent is taken to infinite power. Nevertheless,
from Fig. 11 we clearly see an exponential decay in time in
agreement with Eq. (104) and hence with Assumption 2. This
despite the relatively short times accessible in our numerical
simulations. Instead, Fig. 12 reports the behavior of [1, 1 . . . 1]
as a function of m, i.e., the number of ones in the coefficient.
We see that the coefficient decays exponentially in m. This
suggests that Cm+1(ε) in Eq. (104) is bounded by an exponen-
tially decaying constant. In fact we note that, at least for case I
and small enough ε, Fig. 11 shows that the exponential decay
in time becomes stronger when m increases. This can be ex-
plained by our asymptotic form Eq. (104) if we admit that the
factor λ1(1 − λ1) appearing in the denominator increases as a
function of time. Note that this growth cannot be unbounded
as λ1(1 − λ1) � 1/4.

Finally we stress that Eq. (104) do not hold at the trivially
localized point ε1 = ε2 = π/4. Indeed, in that case Eqs. (98)
and (99) do not apply as Eqs. (96) and (97) are clearly satisfied
for all x and y. As a result, in this case there is no exponential
decay in time of the coefficients (59). For instance, using the

simple form of T at the localized point (see, e.g., Ref. [51]) it
is easy to show that

[ ]|ε1=ε2=π/4 = 4

π
+ O(t−α ). (106)

VI. CONCLUSIONS

In this work, we laid down a general framework to
investigate the structural stability of dual-unitary spectral
correlations, which can be loosely thought of as the quan-
tum many-body analog of the theory of structural stability
of hyperbolic flows in classical chaotic dynamical systems
[37,38].

Our guiding principle has been that, contrary to integrable
systems, dual-unitary systems should be robust under typi-
cal perturbations as they are quantum chaotic. Therefore the
spectral correlations of a perturbed dual-unitary system, or
at least their universal part, should be accessible by devis-
ing an appropriate perturbation theory. Here we formulated
such a perturbation theory and identified two key assump-
tions needed for a rigorous proof of its convergence. We then
provided a compelling numerical evidence for the validity of
these assumptions in a particular family of perturbed Floquet
dual-unitary circuits, and corroborated them with a heuristic
analytical argument (supported by numerical evidence) in-
volving the spectral decomposition of the resolvent of the
unperturbed transfer matrix.

Besides their consequences on the structural stability of
dual-unitary correlations, our findings have an important con-
sequence on the interplay between ergodicity and disorder.
Indeed, since spatial disorder does not affect dual-unitarity
breaking (only two-body couplings can break dual unitarity),
our results imply that whenever a quantum many-body sys-
tem is close to an interacting (non-SWAP) dual unitary point
its spectral correlations are always random-matrix-like, irre-
spective of the disorder strength—for instance, the particular
family used in our numerical analysis has maximal disorder
strength. This rules out the possibility of Floquet MBL in the
thermodynamic limit for systems close enough to the dual-
unitary point.

Although these findings are remarkable, they are in many
ways only a stepping stone to the development of a compre-
hensive theory of structural stability for Floquet dual-unitary
circuits, and many key questions remain open. In particular,
it would be important to explore the degree of generality
of the structural stability we found in dual unitary circuits
by investigating more general perturbations. Moreover, fur-
ther research is required to corroborate and expand our
perturbative approach. To this end, we identify two main
directions.
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FIG. 11. Flat coefficients [1, 1, 1 . . . 1] as a function of t for different values of m and ε. The top panels report two examples of case I
((ε1, ε2) = (0.1, 0) and (ε1, ε2) = (0.3, 0)) while the bottom ones report two examples of case II (ε1 = ε2 = 0.01 and ε1 = ε2 = 0.1).

The first is to find quantitative estimates or bounds for the
radius of convergence of our perturbative expansion. Indeed,
at the moment we have merely shown that, under our two
assumptions, the radius is finite. However, we gave no infor-
mation on its value. A quantitative estimate of the radius of
convergence could potentially lead to the identification of the
point of transition to the nonergodic (i.e., localized) regime,
which might be occur for a finite value of two-body coupling
or only at the trivially localized point where the qubits are
disconnected. A related question is whether one can identify
the transition point expanding around the trivially localized
point.

The second direction is, of course, to provide rigorous
mathematical proofs of our assumptions, in particular to the
second one that appears the more substantial. We believe that
the heuristic analytical argument we provided in support of
that assumption can be used as blueprint for such a proof.
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APPENDIX A: PERTURBATION THEORY
TO AN ARBITRARY ORDER

Writing explicitly the coefficient of xn in Eq. (51), we have

(1 − T0)|λ〉(n) = T̄ε |λ〉(n−1) −
n∑

k=1

λ(k)|λ〉(n−k), (A1)

where we assumed n > 0 as the equation is trivially satisfied
for n = 0. Next, we note that fixing the arbitrary phase and
normalization of |λ〉 as

〈λ|λ〉(0) = 1, (A2)
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FIG. 12. Flat coefficients [111 . . . 1] as a function of m for different values of t and ε. The top panels report two examples of case I
((ε1, ε2) = (0.1, 0) and (ε1, ε2) = (0.3, 0)) while the bottom ones report two examples of case II (ε1 = ε2 = 0.01 and ε1 = ε2 = 0.1).

gives |λ〉(n) ⊥ |λ〉(0) for n > 0. Therefore we can rewrite
Eq. (A1) as

λ(n) = 〈λ|(0)T̄ε |λ〉(n−1), (A3)

|λ〉(n) = GT̄ε |λ〉(n−1) −
n−1∑
k=1

λ(k)G|λ〉(n−k)

=
n−1∑
k=1

GKk|λ〉(n−k). (A4)

To obtain the first equation we took the scalar product of
Eq. (A1) with |λ〉(0) and to obtain the second we multi-
plied it by Q, used |λ〉(n>0) = Q|λ〉(n>0), and noted G =
(Q(1 − T0)Q)−1. Finally, we recalled the definition of Kk

from Eq. (58).
Using (A4) we find

|λ〉(1) = GT̄ε |λ〉(0), (A5)

recovering the first of (55). Moreover, for n � 2, we obtain

|λ〉(n) = GKn−1GT̄ε |λ〉(0) +
n−2∑
k=1

GKk|λ〉(n−k). (A6)

Using Eq. (A4), we then have

|λ〉(n) = GKn−1GT̄ε |λ〉(0) +
n−2∑
k1=1

n−k1−1∑
k2=1

GKk1GKk2 |λ〉(n−k1−k2 )

= GKn−1GT̄ε |λ〉(0) +
n−2∑
k1=1

GKk1GKn−k1−1GT̄ε |λ〉(0)

+
n−2∑
k1=1

n−k1−2∑
k2=1

GKk1GKk2 |λ〉(n−k1−k2 )

= GKn−1GT̄ε |λ〉(0) +
n−1∑

k1,k2=1
k1+k2=n−1

GKk1GKk2GT̄ε |λ〉(0)

+
n−2∑
k1=1

n−k1−2∑
k2=1

GKk1GKk2 |λ〉(n−k1−k2 ). (A7)

We iterate this procedure n − 1 times and note that

n−2∑
k1=1

n−k1−2∑
k2=1

· · ·
n−k1···−kn−1−1∑

kn=1

GKk1GKk2 · · · GKkn |λ〉(n−k1···−kn )=0,

(A8)
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to obtain Eq. (55). Using that expression in Eq. (A3) gives
Eq. (55).

APPENDIX B: SPECTRAL RADIUS OF Bn,τ

In this Appendix we show that if Eq. (96) is not satisfied for
any x, then ρ(Bn,τ ) < 1. We begin by noting that ‖Bn,τ‖∞ =
1. This can be easily seen writing

Bn,τB†
n,τ = U1/2(m0m†

0 ⊗ 1)U †
1/2 ⊗ 1⊗(2n−2) ⊗ bτ b†

τ ⊗ 1τ−1

(B1)

and observing ‖m0‖ = ‖bτ‖ = 1. Since

ρ(Bn,τ ) � ‖Bn,τ‖∞ = 1, (B2)

our goal is then to show that Eq. (96) is not satisfied for
any x,Bn,τ does not have a unit-magnitude eigenvalue. Let
us proceed by contradiction and assume that there exists a
|�〉(normalized) such that

Bn,τ |�〉 = eiθ |�〉. (B3)

Using ‖Bn,τ‖∞ = 1, we then have

B†
n,τBn,τ |�〉 = |�〉, (B4)

Bn,τB†
n,τ |�〉 = |�〉, (B5)

which also give

B†
n,τ |�〉 = e−iθ |�〉. (B6)

We now proceed along the lines of Ref. [63] and note that (B5)
and the fact that Eq. (96) is not satisfied for any x � y imply

|�〉 = |�〉 ⊗ |�′〉, (B7)

where |�〉 = ∑2
k=1 |k〉 ⊗r |k〉/√2 [cf. Eq. (91)]. Contracting

(B3) with this state, we find

B′
n,τ |�′〉 = eiθ |�′〉. (B8)

where we introduced

B′
n,τ = (

m0 ⊗ (U ′ ⊗r U
′∗) ⊗ bτ ⊗ 1⊗2(τ−1)

)
× (((W ⊗ �τ ) ⊗r (W ∗ ⊗ �∗

τ ))) (B9)

where U ′ is obtained from U by removing the leftmost gate.
Proceeding as before we find

|�′〉 = |�〉 ⊗ |�′′〉. (B10)

This procedure can be iterated 2n − 2 times and gives

|�〉 = |�〉⊗2(n−1) ⊗ |ν〉, (B11)

where |ν〉 fulfils(
bτ ⊗ 1⊗2(τ−1)

)
(m0 ⊗ (�τ ⊗r �∗

τ ))|ν〉 = eiθ |ν〉. (B12)

This implies that

‖bτ (m0 ⊗ 1)‖∞ = 1. (B13)

Namely that there exists a |λ〉 such that

〈λ|(m†
0 ⊗ 1)b†

τ bτ (m0 ⊗ 1)|λ〉 = 1. (B14)

Recalling that ‖m0‖ = ‖bτ‖ = 1 this also means

(m†
0m0 ⊗ 1)|λ〉 = |λ〉, (B15)

b†
τ bτ (m0 ⊗ 1)|λ〉 = (m0 ⊗ 1)|λ〉. (B16)

The first of these equations implies |λ〉 = |�〉 ⊗ |a〉 so that we
finally have

b†
τ bτ |�〉 ⊗ |a〉 = |�〉 ⊗ |a〉. (B17)

Rewriting this equation in terms of the local gate, it reads as

Un(1 ⊗ a) = b ⊗ 1, b = 1
2 tr2[Un(1 ⊗ a)]. (B18)

This equation is solved only by a unitary and Un = 1 ⊗ a†.
Since such a gate fulfils Eq. (96), we have a contradiction.

APPENDIX C: WORKING IN A FIXED
DOUBLE-MOMENTUM SECTOR

In this section, we briefly describe how to reduce the
numerical analysis to a given double-momentum sector. As
mentioned in the main text the transfer matrix T is invari-
ant under two-site translations in the forward and backward
lattices[

�
2τ1
2t ⊗ �

2τ2
2t , T

] = 0, τ1, τ2 = 0, . . . , t − 1. (C1)

For the forward and backward lattices, the most natural basis
to work in is therefore the eigenbasis of the two-site shift
operator. Considering the forward time lattice, we have 2t
qubits, and we know we have �2t

2t = 1, giving eigenvalues
e2π iν/t with ν = 0, . . . , t − 1. To generate the eigenbasis we
select a set of reference states | f 〉 (taken to be product states
in the computational basis) and write

| fν〉 = 1√
L f

L f −1∑
r=0

e2π iνr/t�2r
2t | f 〉, (C2)

where L f is the period of the reference state �
2L f

2t | f 〉 = | f 〉.
Typically L f = t however some special states will have pe-
riods that are integer multiples of t . Computationally this
representation reduces our overall storage from 22t → 22t/t
approximately, with the largest sector being the ν = 0 sector
(see, e.g., Ref. [64] for more details). For the purposes of
discussing complexity later in this section we will call D = 22t

and Dν = 22t/t .
An important observation about T is that it is made up

of a product of operators which independently are translation
invariant under two shifts. This is evident from Eq. (19) and
implies that we can update vectors in distinct steps. First let
us treat the case where we do not couple the forward and
backward lattice, i.e., we consider an operator of the form

Ũo = Ũ0 ⊗ · · · ⊗ Ũ2t−2, (C3)

where Ũ is a two-local operator (it acts nontrivially only
on a pair of nearest neighbours). We will use the above as
an example to illustrate working in the momenta basis for
operators with this general structure. Since[

�2r
2t , Ũo

] = 0, (C4)

we can write

Ũo|ψν〉 = 1√
L f

∑
f

c f

L f −1∑
r=0

e2π iνr/t�2r
2t Ũo| f 〉. (C5)
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Where the sum over f is taken over the set of representation
basis states. One memory inefficient way to evaluate this ex-
pression is to simply evaluate Ũo| f 〉 in the full Hilbert space,
and then compress the state back into the translation invariant
representation. This approach is computationally costly and
likely memory bound, severely slowing down the code. It also
removes the advantage of working in the symmetry resolved
basis by increasing storage requirements to D, which, once
we couple the forward and backward lattice, will eliminate
our advantage with this approach. In fact, an open question
we were not able to answer is how to evaluate Ũo|ψν〉 faster
than O(D2

ν ). The operations similarity to a discrete Fourier
transform indicates this may be possible.

Instead of updating the vector directly from the expression
(C5) we focus our efforts on computing matrix elements of
the operator

〈mν |Ũo| fν〉 =
Lm−1∑
p=0

L f −1∑
r=0

e2π iν(r−p)/t√
LmL f

〈m|�2(r−p)
2t Ũo| f 〉. (C6)

The above equation is simpler to evaluate. To see this without
loss of generality take r = p = 0. Because Ũo is made up of a
product of commuting terms the expression factorizes

〈m|Ũo| f 〉 =
t∏

j=0

〈m2 jm2 j+1|Ũo| f2 j f2 j+1〉, (C7)

where we have broken the representative state into its com-
putational basis form for individual time lattice qubits. Note
that Eq. (C6) can be computed in O(t ) steps due to repeated
computations. For convenience we will call this new symme-
try resolved operator

Ũ (ν)
0,(m, f ) ≡ 〈mν |Ũo| fν〉. (C8)

This allows us to store it in a Dν × Dν dimensional matrix,
the same size as we will see, as the many body vectors once
we combine the forward and backward lattice. A vector on the
full space can be represented by∣∣ψ(ν,ν ′ )

〉 =
∑
f ,b

Cf ,b| fν〉|bν ′ 〉, (C9)

where the sum is taken over the set of representation basis
states. Updating the full forward and backward lattice state
with the symmetry resolved operator is now given by

(Ũo ⊗ Ũ∗
o )

∣∣ψ(ν,ν ′ )
〉 → Ũ (ν)

o CŨ (l )†
o . (C10)

The final piece of the puzzle is to understand the operation

O(3)
0

∣∣ψ(ν,ν ′ )
〉 =

∑
f ,b

Cf ,bO(3)
0 | fν〉|bν ′ 〉. (C11)

We focus here on O(3)
0 as it is diagonal in the computational

basis. Other nondiagonal terms can be evaluated with a simple
basis rotation, and then following the steps we will outline.
The action of this operator on the translation invariant basis is
trivial, we have,

O(3)
0 | fν〉|bν ′ 〉 =

{
| fν〉|bν ′ 〉 ∑t−1

m=0 f2m = ∑t−1
m=0 b2m

0 otherwise
.

(C12)

Where we again used the computational basis representation
of our reference states. This concludes all necessary steps to
reduce the overall storage required by the problem by a factor
of t2, along with working with the symmetry resolved transfer
matrix.
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