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Analytic evolution for complex coupled tight-binding models:
Applications to quantum light manipulation
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We present analytic solutions to the evolution in generalized tight-binding models, which consider complex
first-neighbor couplings with equal amplitude and arbitrary phases. Our findings provide a powerful tool to
efficiently calculate expectation values and correlations within the system, which are otherwise difficult to com-
pute numerically. We apply our results to relevant examples in quantum light manipulation using N-port linear
couplers, describing the evolution of single (multi)-mode squeezing, single-photon added (subtracted) Gaussian
states, and second-order site-to-site photon correlations. Significantly, our analytic results outperform standard
numerical calculations. Our study paves the way for a comprehensive mathematical framework describing the
spatial evolution of quantum states across a wide range of physical systems governed by the tight-binding model.
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I. INTRODUCTION

A good physical model captures the nature of a phe-
nomenon through a simple mathematical description; how-
ever, simple descriptions do not always lead to simple
solutions. The tight-binding (TB) model is an iconic example
of this. Noninteracting particles hopping between adjacent
sites describe the essence of the quantum behavior of elec-
trons in solids, their transport properties, and band structure.
Although initially intended to describe electrons in solids [1],
the TB model characterizes analogous systems such as optical
lattices with cold atoms [2–4], light propagating in lattice
waveguides [5–8], phononic crystals [9], surface waves and
topological insulators [10–12], and quantum random walks
[13,14]. Regardless of the simplicity of the TB model, many
configurations lack analytic solutions in real space, and stan-
dard approaches resort to solving the problem in momentum
space or through numerical methods. These approaches, how-
ever, pose a challenge for modeling the dynamics of spatial
distributions and correlations of particles—critical aspects of
quantum systems.

Although the TB model in the second quantization formal-
ism describes a linear evolution, its Hilbert space dimension
grows exponentially with the number of sites, presenting
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a significant computational problem [14]. For example, the
seemingly simple scenario of a TB model with linear coupling
between arbitrary sites lacks a real-space analytic solution to
efficiently compute transport and correlations dynamics. Even
approximated numerical methods with a truncated Hilbert
space, mean-field descriptions [2], or solving for the ground
state [15] are resource-intensive tasks for classical comput-
ers [16]. More importantly, quantum phenomena generally
arise from correlations beyond the mean field, while corre-
lations between particles across lattice sites are not captured
in the momentum-space representation that diagonalizes the
TB Hamiltonian. Thus, we need techniques beyond the stan-
dard ones to calculate the real-space evolution of many-body
quantum systems.

The previous limitations are especially relevant for mul-
timode quantum light engineering, where correlations are
crucial. For example, an N-port linear coupler described by
a TB model can be used to produce multimode squeezed
states [17], besides the multiple applications it has for tech-
nologies based on integrated photonics [18]. Furthermore,
states generated by the addition or subtraction of photons
on Gaussian states find an extension to multimode sys-
tems, producing a plethora of nonclassical states such as
two-mode photon-added entangled coherent squeezed states
[19], (superpositions of) photon-added trio-coherent states
[20], and photon-added and photon-subtracted four-mode
squeezed vacuum states [19,21]. Multimode quantum optics
find applications in quantum technologies such as informa-
tion processing [22], metrology [23–25], and cryptography
[26], evidencing the relevance of calculating the evolution
and the correlations of such states. Although real coupling
coefficients describe the interactions in the above examples,
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many other models rely on complex coefficients [27–30]. For
instance, complex phases of the coupling constants simulate
a fictitious vector potential in honeycomb photonic lattices
demonstrating photonic topological insulation [31], display
an effective gauge potential for photons with synthetic di-
mensions in photonic lattices [32], and lead to non-Hermitian
Hamiltonians describing phenomena such as Bloch oscilla-
tions, the invisibility of defects, and PT -symmetric quantum
fields [33].

This work presents an analytic real-space solution to the
one-dimensional TB model for complex coupling constants
with equal amplitudes and arbitrary phases. Our method draws
upon tools from graph theory to analytically calculate all the
elements of the transformation matrix for closed and open
arrays, deriving expressions for the evolution of functions
that depend on the annihilation and creation operators. The
solution allows us to efficiently analyze transport dynamics
and the propagation of spatial quantum correlations, outper-
forming numerical computations.

We demonstrate the advantages of our findings by ad-
dressing problems related to quantum light propagation in
an arbitrary N-port array of linear couplers. First, we eluci-
date the generation of multimode squeezing from single-mode
squeezing. Second, we explore the dynamics of single-photon
added or subtracted Gaussian states, providing a precise ana-
lytical depiction of their N-mode Wigner function, extending
recent results [34] to the multimode regime. Third, we pro-
vide an analytic solution for propagating second-order photon
correlations through coupling phase disorder. In particular, we
show that two-photon entangled states exhibit an interference
term in their second-order correlation that decreases exponen-
tially with the degree of phase disorder, transitioning from
a quantum to classical behavior. Finally, we benchmark our
analytic solutions against standard numerical solvers, proving
their computational advantage. Our results enable the analysis
of spatial evolution and correlation dynamics in an extended
one-dimensional TB model with numerous particles. This ap-
proach broadens the scope of linearly coupled systems beyond
traditional mean-field approximations and paves the way to
explore analytical solutions in varied spatial configurations.

II. FIELD MODE TRANSFORMATIONS
IN AN N-DIMENSIONAL COUPLER

We consider a system of N coupled bosonic modes de-
scribed by the Hamiltonian

H = h̄
∑
〈 j,k〉

(Cjka†
j ak + C∗

jka†
ka j ), (1)

where a j (a†
j ) is the annihilation (creation) operator of an

excitation in the jth mode. In the most general case, the sum
runs over all the ordered pairs of modes, whose coupling is
determined by the respective complex coefficient Cjk . In the
context of the examples given in this work, this Hamiltonian
describes a linear device with N × N input-output ports. We
interchangeably refer to the system as a coupler, array, or
N-mer.

We use a Heisenberg picture approach for N-bosonic
modes and apply it to the open and closed TB model with

complex coupling coefficients (see Fig. 1). The evolution of
each mode is computed as a transformation of the bosonic
operators am into new bosonic operators a′

m, given by

a′
m = U †amU, (2)

where U = exp(−iHt/h̄) is the evolution operator. This
input-output approach is suitable for studying the spatial
evolution and correlations of arbitrary states in an N-mode
system, as it is state independent.

The Baker-Campbell-Hausdorff (BCH) formula allows us
to express the transformed operators a′

m as

a′
m = am +

[
i

h̄
tH, am

]
+ 1

2!

[
i

h̄
tH,

[
i

h̄
tH, am

]]
+ · · · ,

(3)
or, equivalently,

a′
m =

∞∑
n=0

1

n!

(
it

h̄

)n

[H, am]n, (4)

with

[H, am]n = [H, [H, am]n−1] =
N∑

j=1

�
(n)
j a j, (5)

and [H, am]0 = am. The right-hand side arises from the canon-
ical commutation relations and implies that each term in the
iterative sum in Eq. (4) is a linear combination of the N modes
of the field. Substituting with the definition of H in Eq. (1), we
obtain

�
(n+1)
j = −h̄

∑
�( j)

C�( j), j�
(n)
�( j), (6)

where the sum over � is restricted to the modes connected to
the jth mode through the coupling constants. Thus, the set of
coefficients �(n)

n and �(n+1)
n is related through the Hermitian

coupling matrix C, which corresponds to the single-particle
representation of the Hamiltonian in Eq. (1). Using Eq. (6),
we can write Eq. (4) as

a′
m =

∞∑
n=0

1

n!

(
it

h̄

)n
⎡
⎣ N∑

j=1

êᵀ
j (−h̄Cᵀ)nêma j

⎤
⎦, (7)

where ê j denotes the jth vector in the canonical basis. The in-
formation specific to the array is present in each term through
the coupling matrix C. Writing the modes operators as the
components of vectors �a′ and �a, the above expression can be
written as

�a′ = A(N )�a, (8)

where the N × N matrix A(N ) is the exponential of the cou-
pling matrix C (see Appendix A for details), that is,

A(N ) = exp(−itC). (9)

Thereby, determining the evolution of functions of bosonic
operators depends on evaluating the transformation matrix
A(N ).

The dependence of operators ai on the dynamical variable
t provides a convenient framework to describe the evolution
of specific observables, such as the mean photon number or
the field quadratures [35,36] as well as classical and quantum
correlations on few-particle systems [13,14]. The dynamics
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FIG. 1. (a) N-mode linear coupler. We consider a one-dimensional system sustaining N modes of a bosonic field. The system evolves
according to the transformation U = exp(−iHt ) associated to the Hamiltonian in Eq. (1), allowing adjacent modes to couple according to a
TB model with complex coefficients Cj . After evolution, we can analytically compute different observables or correlations �i j . (b) and (c) show
a schematic of an open and closed array, respectively.

of the TB model can be studied by numerically solving the
associated Schrödinger equation [37]. Considering N modes
and, at most, D excitations per mode, the effective dimension
of the Hilbert space is given by DN . This exponential scaling
severely limits this approach when computational resources
are scarce (see the graphical representation in Ref. [14]).
Given the linearity of the TB model, which conserves the
total excitation number and neglects interaction between par-
ticles, it is possible to calculate the dynamics via the N × N
transformation matrix A(N ), as discussed in the above para-
graphs. It can be diagonalized using several methods, such as
direct diagonalization or matrix Padé approximations, which
are among the most used. Unfortunately, the associated algo-
rithms have unfavorable arithmetic complexities, which in the
case of diagonalization scales as O(N3). Here, we provide
methods to analytically calculate the transformation matrix
A(N ) for N arbitrary and open and closed arrays, thus avoiding
computational resource limitations.

A. Approaches to determine A(N)

The problem reduces to finding the entries A(N )
m,n of the

matrix A(N ), which are particular to the geometry defining the
interacting modes, i.e., the set of pairs in the sum in Eq. (1).
The first approach would be to diagonalize the Hamiltonian.
However, one can only do so analytically in particular cases
[35]. Other methods allow obtaining an explicit expression
for the A(N )

m,n, whose suitability differs for each specific cou-
pling matrix C. For example, as discussed in Appendix C, by
grouping the terms as factors of each mode am, the expansion
in Eq. (3) indicates that each entry A(N )

m,n is, in fact, expressible
as a series expansion on the amplitude of the coupling co-
efficients Cjk , whose terms follow an integer sequence. The
iterative relation between successive terms can be derived
from known integer sequences or a generating function [38]
that is specific for each mode coupling configuration. Indeed,
this approach provides an expression for the entries A(N )

m,n,
but translates the problem into finding the initial condition

for the respective sequence in their expansion. We find that
the previous approach based on integer sequences is more
convenient for studying the closed TB model with complex
coupling coefficients. At the same time, direct evaluation of
the exponential in Eq. (9) is advantageous for specific arrays.
We present two illustrative examples in Fig. 2.

On the other hand, the coupling matrix C links to graph
theory since it is the adjacency matrix of the connected graph
where the propagating particles describe a quantum random
walk (QRW) [13,14]. This framework relates the system to an
underlying support graph [39], where each mode corresponds
to a vertex while their couplings are the weighted edges.
This correspondence includes the case of complex coupling
coefficients, meaning complex entries of the adjacency ma-
trix, which leads to asymmetric transport across the edges of

A
(4)
mn ∝ k FmnkCk

Cexp(iδ1)

Cexp(−iδ1)

Cexp(iδ3)

Cexp(−iδ3)

C
ex

p(
iδ

4
)

C
ex

p(
−i

δ 4
)

C
ex

p(
iδ

2
)

C
ex

p(
−i

δ 2
)

C

C

C

C
C

A(4) = exp(iCt)

FIG. 2. Example of two similar linear couplers whose evolutions
are easier to solve with different methods. For the closed tetramer
with complex coupling (left), it is challenging to derive analytical
expressions from exp(iCt ), but the evolution of the bosonic operators
can be readily represented as a series expansion in terms of the
amplitude C (see Sec. II B). For the rhomboidal array (right), the
exponential exp(iCt ) can be calculated analytically for real coupling
coefficients.
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the graph [40,41] in the context of quantum random walks.
Specifically, the dynamics in the N-mer is related to the prob-
lem of counting paths in a connected graph [42]. From Eq. (7),
one sees that the expression enclosed in square brackets is
formally equivalent to a sum over all the walks of length n
leading to vertex m. Thus, Eq. (7) implies that the transformed
mode a′

m results from adding the weights of all the paths
leading to the mth vertex from the vertices associated with
the modes a j . This fact will be helpful to derive the explicit
form of the transformations in Eq. (2) for the open and closed
TB couplers in the next section.

B. Complex coupled tight-binding model

We now focus on the N-mode TB model with first-
neighbor coupling. For the open case in Fig. 1(b), the
Hamiltonian in Eq. (1) becomes

H = h̄
N−1∑
j=1

(Cja
†
j a j+1 + C∗

j a†
j+1a j ), (10)

where Cj = C exp(iδ j ) is the complex coupling coefficient
between the jth and the ( j + 1)-th modes, being the amplitude
C and the phases δ j are real quantities. Equation (10) also
describes the closed array shown in Fig. 1(c) by extending
the sum to j = N and taking aN+1 = a1. Most physical de-
scriptions using Eq. (10) consider real and identical coupling
constants, i.e., δ j = 0, which implicitly assume time-reversal
symmetry of the dynamics [40]. Here, we study a more
general case exhibiting complex coupling coefficients with
identical coupling amplitude between modes but different ar-
bitrary phases δ j . Note that the complex coupling terms in
Eq. (10) are still Hermitian, so its dynamics differs from the
non-Hermitian TB networks [33]. Instead, it exhibits asym-
metrical coupling between connected nodes of the support
graph, which gives rise to time-reversal symmetry breaking
[43] and chiral quantum walks [40,41], whose actual effects
strongly depend on the geometry and the parity of N [39].

The complex entries of the transformation matrix can be
generally expressed as

A(N )
m,n = exp(−iφm,n)β (N )

m,n. (11)

While this representation is valid for any complex value of the
coefficients, it is not always possible to express it in an explicit
form that is suitable for actual computations.

For the open array [Fig. 1(b)], an evaluation of the recur-
sive terms in Eq. (5) leads to

φm,n = �m−1 − �n−1, (12)

with �k = δ1 + δ2 + · · · + δk and �0 = 0. The (m, n)-th en-
try of the transformation matrix is found to have the general
form

A(N )
m,n = 2

N + 1
exp[−i(�m−1 − �n−1)]

×
N∑

k=1

exp

[
−2i cos

(
kπ

N + 1

)
Ct

]

× sin

(
mkπ

N + 1

)
sin

(
nkπ

N + 1

)
. (13)

This expression can be derived from different approaches,
discussed in Appendix C.

For the closed array [Fig. 1(c)], the translational symmetry
of this case allows us to consider any mode as the first one.
Then, we can deduce the structure of the transformation ma-
trix A

(N )
, whose nth row has the same entries as the first but

cycled by n positions:

A
(N ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

A
(N )
11 A

(N )
12 · · · A

(N )
1,N−1 A

(N )
1N

A
(N )
1N A

(N )
11 · · · A

(N )
1,N−2 A

(N )
1,N−1

...
...

. . .
...

...

A
(N )
1,2 A

(N )
13 · · · A

(N )
1N A

(N )
1,1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (14)

Therefore, only the entries A
(N )
1,n are required to obtain the full

matrix. Unlike the open N-mer, the matrix elements for the
closed array are divided into several cases. For N even and n
odd, with the condition n = N/2 + 1, we found

A
(N )
1,n = 2

∞∑
l=0

cos

[
N

2
(2l + 1)(δ − π/2)

]
JN (2l+1)/2(2Ct ),

(15)

where the JN (2l+1)/2 are the Bessel function of the first kind
and δ = δ j (same phase for every coupling). The remaining
cases are listed in Eq. (C27) of Appendix C. Circulant matri-
ces, such as A

(N )
, are diagonalized by means of the discrete

Fourier transform and, consequently, linear functions of them
can be efficiently evaluated by a fast Fourier transform.

It is important to highlight the versatility of the previous
formalism, since Eq. (11) holds for any set of coupling coef-
ficients, beyond the two one-dimensional cases studied here.
This allows us to extend our study to two-dimensional systems
that can be mapped to a one-dimensional array (i.e., systems
whose nodes can be properly enumerated and the coupling
between them set accordingly), provided that the appropriate
integer sequence or recurrence matrix is known. Remarkable
examples are flat-band lattices whose dynamics can be ad-
dressed using a one-dimensional linear coupler [44,45].

III. APPLICATIONS

We use our previous results to describe the quantum evo-
lution of many particles or excitations in N linearly coupled
modes. We aim to quantify quantum correlations between
particles through their evolution (both in the position and the
quadrature space). While the time required to solve the single-
particle problem scales linearly with the number of modes N ,
it grows exponentially with the maximum number of particles.
Computing the evolution of such systems is generally hard.
However, it can be significantly simplified using the expres-
sions obtained in the previous section.

A. Method summary

Figure 3 summarizes the method we follow to efficiently
compute the evolution of states or expectation values. We ex-
press the initial state as an operator 
̂ acting over the vacuum
state, where 
̂ is written as a combination of terms containing

033224-4



ANALYTIC EVOLUTION FOR COMPLEX COUPLED … PHYSICAL REVIEW RESEARCH 6, 033224 (2024)

FIG. 3. Schematic of the method to compute the evolution of the
expectation value of any observable expressible as an analytic func-
tion of a and a† (left) or the state of the system (right). Knowing the
analytical form of the transformation matrix A(N ), we can consider
any initial state generated by an operator 
̂ composed of sums and
products of the operators a†

j .

powers of the creation and annihilation operators. For exam-
ple, in Sec. III B, we study the evolution from a product of
single-mode squeezed vacuum states |ξ1〉|ξ2〉 · · · |ξN 〉, so the
corresponding operator will be 
̂ = Ŝ1(ξ1)Ŝ2(ξ2) · · · ŜN (ξN ),
with S j (ξ j ) the squeezing operator on the mode j with squeez-
ing parameter ξ j . On the other hand, as a part of our study of
two-particle correlations in Sec. III D, we require an initial
state given by the superposition of Fock states 1/

√
2(|2k〉 +

|2�〉) so we use 
̂ = 1/2[(a†
k )2 + (a†

� )2].
The evolution is calculated through U = exp(−iHt/h̄).

Depending on our goal, we choose between two different
procedures. To obtain the state evolution, we operate with U
on the vacuum state, using the fact that it remains unaffected
by rotations, obtaining U −1
̂U . Since the operator 
̂ can be
decomposed in sums and powers of the creation operators ai,
we can then use the identity

U −1a†
jU =

∑
i

A(N )∗
ji a†

i , (16)

and then apply our main results, summarized in Appendix B
and deduced in Appendix C. Specifically, we use Eq. (11)
for the open arrays and Eq. (15) for the closed arrays. An
arbitrary case can always be addressed by the exponential
expression in Eq. (9) which, as discussed in Sec. II A, is
not the optimal method in most cases. On the other hand, to
compute the expectation value of an observable Ô express-
ible as an analytic function of a and a†, the transformations
UajU −1 and Ua†

jU
−1 allow one to evaluate UÔU −1. This

method is versatile enough to address evolution from a wide
variety of initial conditions, which could be a superposition of
Fock states, squeezed-coherent states, and even photon-added
(-subtracted) squeezed-coherent states [19,46–51].

B. Single-mode squeezing cancellation

The propagation of squeezed states through an open
N-mer has been previously studied [35]. In particular, it has

been shown that for N = 2 and N = 3, an initial product of
single-mode squeezed states can evolve into a state exhibiting
multimode squeezing with suppressed single-mode squeezing
[17,52]. This procedure allows one to induce multimode
correlations among quantum fluctuations of different pairs
of modes from a single-mode squeezed state. We use
the mathematical tools developed here to generalize this
phenomenon to an arbitrary N > 3. Let us consider that the
initial state of the system is given by a product of single-mode
squeezed vacuum states,

|ψ0〉 = Ŝ1(ξ1)Ŝ2(ξ2) · · · ŜN (ξN )|0〉, (17)

with Ŝ j (ξ j ) = exp[(ξ ∗
j a2

j − ξ ja
†
j
2
)/2] the squeezing operator

on the jth mode. As depicted in the diagram of Fig. 3, the
state of the system after a time t is obtained by applying the
unitary operator U −1 on the squeezing operators of the initial
state and the inverse U on the vacuum, leading to

|ψt 〉 = exp

{
1

2

[
N∑

j=1

a2
j

N∑
i=1

ξ ∗
i

(
A(N )

i j

)2 + 2
N−1∑
k=1

N∑
j=k+1

aka j

×
N∑

i=1

ξ ∗
i A(N )

ik A(N )
i j − H.c.

]}
|01, . . . , 0N 〉, (18)

where the dependence on time t is implicit in the coefficients
A(N )

i j of the transformation matrix obtained in Sec. II B. From
the first term in this expression, it follows that a single-mode
squeezing suppression fulfill the condition

N∑
i=1

ξ ∗
i

(
A(N )

i j

)2 = 0, ∀ j = 1, 2, . . . , N. (19)

Let us consider real initial squeezing parameters. This
assumption leads to a system of N equations and N + 1
unknowns: the N initial squeezing parameters and the
propagation distance t at which the single-mode squeezing
nullifies. However, since we are not interested in the exact
amount of initial squeezing but in the relation between
the squeezing parameters for all the modes, one squeezing
parameter can be arbitrary, rendering the problem solvable.
Furthermore, we can set the required initial distribution
of squeezing to be symmetrical across the N-mer, i.e.,
squeezing in the jth and (N + 1 − j)-th modes should be the
same. In this way, Eq. (19) leads to a system of (N + 1)/2
equations (N/2 equations) for odd N (even N), with the same
number of unknowns. Note that due to the linear independence
of Eq. (19) and the columns of the transformation matrix,
the sums

∑
i ξiA

(N )
ik A(N )

i j in the second term of Eq. (18) will
not be null in general for any pair k, j when evaluated in
the solutions ξ ∗

i . Therefore, we can expect to find two-mode
squeezing over different pairs of modes throughout the
evolution where single-mode squeezing is suppressed.

We exemplify this with a pentamer (N = 5) having real
first-neighbor coupling. By solving Eq. (19), we find that the
squeezing values ξ1 = ξ5 = 0.1, ξ2 = ξ4 = 0.25, and ξ3 = 0.3
suppress single-mode squeezing at t = 0.640, but not mul-
timode squeezing. Figure 4 shows the squeezing dynamics
for this case, along with analogous results for the enneamer
(N = 9). At certain stages of the evolution, single-mode
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FIG. 4. Transition from single-mode to multimode squeezing in
linear couplers. (a) Evolution of the single-mode squeezing degree
for the pentamer (top left) and the enneamer (top right). Black re-
gions indicate the absence of single-mode squeezing. The relation
between the respective squeezing parameters ξi of the initial state is
depicted by the horizontal blue bars, where we indicate the initial
value at the center mode used in the simulations. The dynamics of
the variance of two-mode quadratures for different pairs of modes
is shown in the plots, where the orange region indicates squeezing.
Vertical pink lines mark a distance where the state of the system
exhibits multimode squeezing only. (b) Single-mode Wigner func-
tion (blue surfaces) and marginal distributions of the multimode
Wigner function for the same pairs of quadratures (red surfaces) for
N = 5. (c) Examples of the evolution of the squeezing degree in the
enneamer when complex coefficients with identical phases δi 
= 0 are
considered. The values are in the same range shown by the bar in
(a) for N = 9. (d) The particle number at each mode, here shown for
the N = 9 case, is the same for any value of the coupling phases.

squeezing vanishes, while squeezing is observed in the vari-
ance of the two-mode quadratures between multiple pairs
of modes. We confirm this by computing the single-mode
and multimode Wigner functions at different values of t ,

shown for N = 5 in Fig. 4(b). The suppression of single-mode
squeezing is clearly observed in the Wigner function of each
mode (blue surfaces). Conversely, the marginal distributions
of the multimode Wigner functions [17,53] become squeezed
(red surfaces). When the maximal multimode squeezing is
achieved, the single-mode states (in this case, per waveguide)
become thermal [17].

Our results generalize previous ones, showing that N-mers
can produce multimode squeezed states among arbitrary N>3
modes from initially single-mode squeezed states. In addition,
we computed the evolution of the squeezing degree (in dB)
for complex coupling coefficients, i.e., δi 
= 0. As shown by
the examples in Fig. 4(c), single-mode squeezing cancellation,
with the corresponding transition to multimode squeezing (not
shown in the examples), still occurs for the studied phases,
with the particular evolution of the squeezing degree being
different for each case. Interestingly, the effect of the com-
plex coupling is not reflected in the evolution of the particle
number [presented in Fig. 4(d) for the enneamer], which is the
same for all the values of δi under consideration.

C. Wigner function representation for propagating
nonclassical states

Wigner functions are informationally complete graphic
representations of the quantum states of single and multi-
mode electromagnetic fields. Negative values in the Wigner
function imply that the field is purely quantum without a
classical counterpart [54,55]. Since its dynamics reflects the
state evolution, the Wigner representation is useful for readily
identifying emerging or vanishing quantum features [56,57],
an otherwise challenging mathematical task. The results pre-
sented in Sec. II are particularly useful to track the variation of
the multimode Wigner function describing nonclassical states
of the system.

As an example, we study the propagation of initial states
obtained by adding (subtracting) a single excitation to (from) a
nondisplaced Gaussian state and examine the Wigner function
dynamics. In recent articles, a rather simple expression for
the Wigner function WG(Y ) of a single-photon added and sub-
tracted Gaussian state was presented [22,34], which uses the
symplectic representation of the phase space. In this frame-
work, we associate the in-phase and out-of-phase components
of the �th mode amplitude with two elements, e(�) and Je(�),
in a symplectic basis:

E s = {e(1), . . . , e(N ), Je(1), . . . , Je(N )}, (20)

where J is a 2N × 2N matrix fulfilling J2 = −I and
( f1)(J f2) = (− f2)(J f1) for any f1 and f2 linear combinations
of the symplectic basis in R2N , sometimes called the symplec-
tic form. The operators that annihilate and create an excitation
in the mode f are denoted by a( f ) and a†( f ) and can be
defined in terms of quadrature operators as

a( f ) = [Q( f ) − iQ(J f )]/2, a†( f ) = [Q( f ) + iQ(J f )]/2.

(21)

In order to use our expressions for the transformation
matrix A(N ) with the symplectic formalism, we set the
correspondence a j = a(e j ). Since the quadrature operators
are linear, i.e., Q(α f1 + β f2) = αQ( f1) + βQ( f2) and
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a(J f ) = −ia( f ), we can describe the evolution a′
j = UajU −1

as a transformation of the corresponding mode in the
symplectic space,

a′
j =

N∑
�=1

A(N )
j,� a� = a

{
N∑

�=1

[
Re
(
A(N )

j�

)
e� + Im

(
A(N )

j�

)
Je�

]}
,

a†′
j = a†

{
N∑

�=1

[
Re
(
A(N )

j�

)
e� − Im

(
A(N )

j�

)
Je�

]}
. (22)

Upon this equivalence, it is possible to keep track of how
the characteristic function and the Wigner function of the
system are transformed. Its definition, as derived in Ref. [22],
involves two key elements. The first one is the covariance
matrix V , whose (i, j)-th entry is the symmetrized covariance
between quadrature operators Q(E s

i ) and Q(E s
j ) evaluated in

the basis εs. Following the same principle as in Eq. (22), the
entry V ′

i j after evolution is given by

V ′
i j = 1

2

〈
�Q′(E s

i

)
�Q′(E s

j

)+ �Q′(E s
j

)
�Q′(E s

i

)〉
, (23)

with

Q′(E s
i

) = a
[
(Re AT ⊕ Im AT)E s

i

]
+ a†

[
(Re AT ⊕ −Im AT)E s

i

]
.

This matrix captures the influence of the Gaussian component
of the initial state on the evolution of the system. Second,
consider that a single excitation is added, the added or sub-
tracted excitation in a mode is described by a vector g in the
symplectic basis. The additional correlations induced by this
excitation are captured by the following matrix acting on the
space R2N :

A± = 2
(V ± 1)

(
Pg + PJg

)
(V ± 1)

tr
[
(V ± 1)

(
Pg + PJg

)] , (24)

where Pg and PJg are the projectors on vectors g and Jg, re-
spectively. Its evolution under U is obtained by using Eq. (23)
and transforming g accordingly. Using these definitions (cf.
Ref. [22]), we can express the Wigner function of the evolved
state as

W ±(Y ) = Z±(Y )WG(Y ), (25)

with

Z±(Y ) = 1
2 [Y TV −1A±V ′−1Y − tr(V ′−1A±′) + 2], (26)

where Y is a vector expressed in the base E s which spans the
quadrature space, and WG(Y ) is the Wigner function of the
nondisplaced Gaussian state given by

WG(Y ) = 1

(2π )N
√

detV ′ exp

(
−1

2
Y TV ′−1Y

)
. (27)

In Fig. 5, we present two illustrative examples showing
the effect of adding a single excitation to the product of
single-mode squeezed states studied in Sec. III B for the open
pentamer (N = 5). We observe that when the excitation is
added to a single mode, it results in the expected negativity
of the corresponding Wigner function around the center of
the phase space. As the system evolves, dips appear in the

FIG. 5. Evolution of the Wigner function for each mode in the
pentamer when a single excitation is added to the initial state, which
is the same product of single-mode squeezed states as in Sec. III B.
The excitation is added in (a) the mode a3 and (b) in a uniform
superposition of the five modes. Blue and pink frames indicate the
same stages as in Fig. 4. Three-dimensional plots in (c) and (d) show
two illustrative examples of different evolved states, also indicated in
the upper graphs.
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Wigner functions of the adjacent modes, so even the functions
of the edge modes exhibit a negative region at some point.
On the other hand, when the single excitation is added as a
uniform superposition in all the modes [Fig. 5(b)], it does not
lead to negative regions for any mode at the initial stage; in-
terestingly, the Wigner function’s distributions rotate through
the evolution, with noticeable negativity regions appearing for
the central mode.

These examples show how highly non-Gaussian states
arise during evolution, starting from products of quasi-
Gaussian states. The symplectic space representation of field
evolution allows studying different state superpositions added
to a wide class of Gaussian states beyond our demon-
strative results. Knowing the exact form of the Wigner
function is crucial for applications such as computing the
Cramer-Rao bound [25,58] for measuring phase shifts in a
particular mode, thus providing a reliable estimation of the
metrological improvement when using non-Gaussian input
states.

D. Effect of phase disorder on quantum correlations

As a final application of our analytic results presented
in Sec. II, we now study two-particle cross correlations
after propagation through an N-mer, highlighting the quan-
tum properties of the propagating fields. In particular, the
study of photon pairs propagating through waveguide arrays
shows that the interference in the N-mode system gives rise
to photon bunching resembling the Hong-Ou-Mandel effect
[13]. In the following, we study how this behavior is af-
fected by decoherence arising from the random variation of
the complex phases in the coupling coefficients. N-mode
couplers exhibiting random amplitudes or weights of the
coupling constants are known to produce Anderson local-
ization, extensively studied. However, the effect of disorder
in the phases of the coupling coefficients remains relatively
unexplored.

Depending on the observable, two-particle states suffice to
manifest the quantum nature of the system. A suitable mea-
surement to reveal it is the two-particle correlation function
�mn, related to the probability of detecting a particle at each
mode m and n,

�mn = 〈a†
ma†

naman〉. (28)

We are interested in computing the dynamics of the correla-
tion �mn(t ) for a state |ψt 〉.

First, let us consider an initial two-photon state of the form
|1k0〉|1k0+1〉 for two adjacent central modes k0 and k0 + 1,
leading to

|ψt 〉 = U −1|1k0〉|1k0+1〉 = a†
k0

′
a†

k0+1
′|0〉. (29)

Substituting in Eq. (28) and using the result of Eq. (13), we
obtain

�mn(t ) = ∣∣A(N )
k0,m

A(N )
k0+1,n + A(N )

k0,n
A(N )

k0+1,m

∣∣2
= 1

2

∣∣β (N )
k0,m

β
(N )
k0+1,n

∣∣2 + 1
2

∣∣β (N )
k0,n

β
(N )
k0+1,m

∣∣2
+ β

(N )
k0,m

β
(N )
k0+1,nβ

(N )∗
k0,n

β
(N )∗
k0+1,m exp

[− i
(
φk0,m

+ φk0+1,n − φk0,n − φk0+1,m
)]+ H.c., (30)

where we have used the notation introduced in Sec. II B in
order to make explicit the dependence of �mn on phases δ j ,
which is then contained in the exponential term in Eq. (30).
By noticing that φ j,m − φ j,n = φn,m and φm,n = −φn,m, we
see that the argument in the exponential cancels, so �mn

is independent of phases δ j . Accordingly, decoherence does
not affect the dynamics of a product state since it does
not exhibit coherence in the form of interference between
two modes. Therefore, for any complex coupling phases,
the evolution of |1k0〉|1k0+1〉 leads to the well-known bunch-
ing effect obtained from two-particle product states [13,14],
where both particles are most likely to end in the same
mode, as shown in Fig. 6(a). Note that the dynamics of the
product state in the N-mer saturates the Cauchy-Schwartz
inequality �mn <

√
�mm�nn but never violates it, as shown in

Fig. 6(b).
Let us now consider that the system is initially in a super-

position of two-photon states in modes k and �, i.e.,

|ψ0〉 = 1√
2

(|2k〉 + |2�〉). (31)

The state after time t is given by

|ψt 〉 = 1√
2

[(a′
k )†2 + (a′

�)†2]|0〉. (32)

Replacing Eqs. (13) and (32) in Eq. (28), we obtain

�mn(t ) = ∣∣A(N )
k,mA(N )

k,n + A(N )
�,mA(N )

�,n

∣∣2 = ∣∣β (N )
k,mβ

(N )
�,n

∣∣2 + ∣∣β (N )
k,n β

(N )
�,m

∣∣2
+ β

(N )
k,mβ

(N )
�,n β

(N )∗
k,n β

(N )∗
�,m 2 cos(2φk,�) + H.c. (33)

Unlike the product state, the initial superposition in
Eq. (31) leads to a final state depending on the phases δ j of
the coupling coefficients. If |ψ0〉 is composed of only two
adjacent modes k0 and k0 + 1, the cosine in Eq. (33) simplifies
to cos(2δk0 ). In this case, a disorder in the coefficient phases
reduces to δk0 varying randomly with a normal distribution of
variance ε centered around δk0 = 0. The width ε defines the
degree of disorder. The average can be computed by direct
integration, leading to

�mn(t ) = ∣∣β (N )
k0,m

β
(N )
k0+1,n

∣∣2 + ∣∣β (N )
k0,n

β
(N )
k0+1,m

∣∣2
− exp(−2ε2)β (N )

k0,m
β

(N )
k0+1,nβ

(N )∗
k0,n

β
(N )∗
k0+1,m + H.c.

(34)

In Figs. 6(c) and 6(d), we present the two-photon corre-
lation function at time t f = 3π/4 for different decoherence
degrees (normal distribution of width ε). For ε = 0 (no
decoherence, identical and real coupling coefficients), a su-
perposition of two-photon states in two adjacent modes k =
k0 and � = k0 + 1 leads to the expected behavior for the
correlations shown in Fig. 6(c), with each of the photons
ending in distant modes, instead of the bunching obtained
if both particles start in a product state. This effect is due
to the interference expressed by the last term in Eq. (34).
As we raise ε to introduce disorder in the phases δ j , we
observe how this behavior is gradually suppressed, and the
output correlation becomes similar to the one obtained from a
macroscopic or classical state. Again, this can be understood
from Eq. (34) since the term accounting for quantum inter-
ference decays as exp(−2ε2). In fact, for ε = π [Fig. 6(e)],
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FIG. 6. Two-particle correlations after evolution up to t f = 3π/4 from different initial states. (a) Initial state given by a product of single-
particle states in adjacent middle modes, with real coupling. (b) Maximum violation of the Cauchy-Schwartz inequality. Corresponding cases
are indicated by the letter next to the curves. (c) Evolution from a two-particle state in superposition over the adjacent center modes, (|2k〉 +
|2�〉)/

√
2, for equal and real coefficients ε = 0. The same is shown in (d) for ε = 0.55π and (e) for ε = π . Results are averaged over 100

realizations.

the correlation matrix exhibits a four-peak pattern similar to
the one obtained from an initial state |2〉k0 , which is a simple
product of two single-photon distributions without coherence
[13]. Interestingly, this is also reflected by a violation of
the Cauchy-Schwartz inequality. Figure 6(b) shows the max-
imum violation as a function of t for the scenarios under
consideration. Since this inequality sets an upper bound
for classical correlations [59], its violation indicates quan-
tum correlations. We observe that when the system evolves
from an initial superposition, the inequality is violated as
far as the decoherence degree ε is low; as this increases
and the interference is suppressed, the maximum viola-
tion gradually decays until the system just saturates the
Cauchy-Schwartz inequality for large ε. Such behavior evi-
dences the fragility of quantum properties under decoherence,
in this case, induced by random phases in the coupling
coefficient.

The analytic solution of the TB model with complex coef-
ficients allowed us to describe a previously almost unexplored
decoherence mechanism, where quantum correlations wash
out after propagation through an N-mer with random coupling
phases. More generally, the description allows for simple ex-
pressions describing higher-order spatial correlation between
modes, an otherwise challenging computational task.

IV. BENCHMARK

The standard procedure for solving the evolution of quan-
tum systems often involves employing a basis function set
spanning the Hilbert space, diagonalizing the Hamiltonian
matrix, and using tensor products and partial traces to derive
the desired expectation values. This procedure is challeng-
ing unless the dimension of the Hilbert space is small [60].
The computational complexity grows exponentially with the

number of modes [13], emphasizing the need for efficient
computational tools.

We now compare solving the N-mer evolution with
our analytical expressions versus numerical solvers of the
Schrödinger equation. Figure 7 compares the computation
time required to calculate the evolution from initial products
of squeezed vacuum states with real squeezing parameters
(similar to the initial states used in Sec. III B) using the
respective toolboxes for MATLAB, JULIA, PYTHON, and our
analytical results. Solutions in these languages were computed
with a maximum particle number equal to 40, which leads to
a respective Hilbert space of size 1600 for N = 2, 64 000 for
N = 3, 2 560 000 for N = 4, and 102 400 000 for N = 5.

FIG. 7. Comparison of the average time required to compute the
evolution of squeezed initial states in the N-mer using numerical in-
tegration in different languages and the analytical results of Sec. II A.
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All calculations were carried out on a laptop computer with
an 8-core Intel i7 processor operating at a clock speed of
2.80 GHz, and 16 GB of DDR4 RAM. The numerical values
of the analytical expression were obtained by implementing
the respective functions in C++. The solutions for different
numerical tools agree with each other, differing only on the
computational time. The results showcase a substantial ad-
vantage in average computation time when utilizing analytical
expressions, reaching up to six orders of magnitude difference
for the pentamer case. We omit tests for larger systems due
to RAM limitations, which introduce significant inconsisten-
cies in computation time for numerical approaches, where
resource allocation becomes crucial. In fact, for N > 6, the
equations could not be solved numerically, even on a com-
puter with 128 GB RAM.

V. SUMMARY AND OUTLOOK

Initially proposed to calculate band structures in solids,
the tight-binding model describes several analogous systems,
such as optical lattices with cold atoms, light propagating in
phononic crystals, surface waves, topological insulators, and
quantum random walks. Despite its conceptual simplicity and
broad applicability, many cases lack analytical solutions. We
find exact analytical solutions for the spatial evolution of arbi-
trary quantum states in one-dimensional tight-binding models
with complex coupling constants of equal amplitudes and
arbitrary phases. Our results have profound implications for
understanding transport dynamics and quantum correlations
in real space, enabling us to describe these phenomena within
an analytical framework.

Our analytic solutions provide a considerable computa-
tional advantage over standard numerical solvers regarding
efficiency and accuracy. In particular, we compared perfor-
mances when solving the Schrödinger equation to compute
spatial propagation and correlations in large systems involv-
ing many particles for nontrivial initial conditions, such as
products of single-mode squeezed states. Such a computation
advantage could facilitate studying the effect of losses in the
propagation of light and quantum correlations through quan-
tum Monte Carlo methods, which require simulating many
trajectories.

To demonstrate the generality and practicality of our ana-
lytic results, we have applied them to the study of quantum
light propagation in multimode linear couplers. We have
showcased the generalization of multimode squeezing for-
mation from single-mode squeezed states and efficiently
computed the dynamics of the Wigner function of single ex-
citation added (subtracted) to (from) a displaced many-mode
Gaussian state, revealing the emergence and propagation
of highly non-Gaussian states. Finally, we also studied
the evolution of two-particle cross correlations, highlight-
ing the propagation of quantum properties of the fields.
In particular, we analytically showed that decoherence aris-
ing from phase disorder, that is, random variation of the
complex phases in the coupling coefficients, leads to a
quantum-to-classical transition in the two-particle correlation
function.

Although our main emphasis is on a mathematical method
to obtain analytical solutions of the tight-binding model, we

also provide physical insight in its application to interesting
examples. However, we hope that our results may prove valu-
able in the study of other physical systems described by the
tight-binding model, such as other geometric configurations.
In this regard, analytic results such as ours could have an
impact that extends as broadly as the tight-binding model
itself.
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APPENDIX A: COUPLING MATRIX

The transformed mode a′
m according to Eq. (4) is given by

a′
m =

∞∑
n=0

1

n!

(
it

h̄

)n

[H, am]n, (A1)

where

[H, am]n =
N∑

j=1

�
(n)
j a j . (A2)

Now we calculate the (n + 1)-th commutator between H and
am, obtaining

[H, am]n+1 =
[

H,

N∑
l=1

�
(n)
l al

]
. (A3)

Using the general Hamiltonian given by Eq. (1), in the equa-
tion above, the commutator becomes

[H, am]n+1 = −
N∑

l=1

h̄�
(n)
l

⎡
⎣∑

〈 j,k〉

(
Cj,kδl jak + C∗

j,kδlka j
)⎤⎦.

(A4)
Since the sum is constrained to modes j and k connected to
mode l , we obtain

[H, am]n+1 = −
N∑

l=1

h̄�
(n)
l

⎡
⎣ ∑

j(l ),k(l )

(
Cl,k(l )ak(l ) + C∗

j(l ),l a j(l )
)⎤⎦.

(A5)
Using the fact that C∗

i, j = Cj,i and by exchanging the summa-
tion over Eq. (A5), we find, for the (n + 1)-th commutator,

[H, am]n+1 =
N∑

j=1

⎛
⎝−h̄

∑
l ( j)

�
(n)
l ( j)Cl ( j), j

⎞
⎠a j . (A6)
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From (A6), we can see that the �
(n+1)
j coefficients are recur-

sively related to the �
(n)
l ( j) coefficients by the iterative rule,

�
(n+1)
j = −h̄

∑
l ( j)

Cl ( j), j�
(n)
l ( j). (A7)

This can be cast as a matrix equation,

��n+1 = −h̄Cᵀ ��n, (A8)

where

C =

⎛
⎜⎜⎜⎜⎜⎝

0 C1,2 · · · C1,N

C∗
1,2 0 · · · C2,N

...
...

. . .
...

C∗
1,N C∗

2,N · · · 0

⎞
⎟⎟⎟⎟⎟⎠, ��n =

⎛
⎜⎜⎜⎜⎜⎜⎝

�
(n)
1

�
(n)
2

...

�
(n)
N

⎞
⎟⎟⎟⎟⎟⎟⎠

. (A9)

The recursive relation between the � coefficients in
Eq. (A9) guides us to apply Cᵀ n times over an initial con-
dition ��0 (which depends on the transformed mode am).
By doing this operation, the recursive commutator [H, am]n

results in

[H, am]n =
N∑

j=1

êᵀ
j (−h̄Cᵀ)nêma j . (A10)

By inserting (A10) in (A1), we obtain, for the transformed
modes,

a′
m =

∞∑
n=1

1

n!

(
it

h̄

)n
⎡
⎣ N∑

j=1

êᵀ
j (−h̄Cᵀ)nêma j

⎤
⎦,

a′
m =

N∑
j=1

êᵀ
j exp (−itCᵀ)êma j . (A11)

Thereby, transformed modes a′ are related to the modes a j

through the matrix relation⎛
⎜⎜⎜⎜⎜⎝

a′
1

a′
2

...

a′
N

⎞
⎟⎟⎟⎟⎟⎠ = exp (−itC)

⎛
⎜⎜⎜⎜⎜⎝

a1

a2

...

aN

⎞
⎟⎟⎟⎟⎟⎠. (A12)

APPENDIX B: MAIN RESULTS

In this section, we summarize the main results obtained
when evaluating the matrix

A = exp (−itC), (B1)

where C is the coupling coefficient matrix for closed and open
arrays. A detailed derivation of the coefficients of A can be
found in Appendix C.

1. Closed array

In this case, the matrix A turns out to be circulant. Thereby,
the nth row has the same entries as the first row, but cycled
by n positions. The first-row coefficients of matrix A for a
N-mer with first-neighbor coupling constants given by Cj =
C exp (iδ), with C and δ arbitrary but constant, are given by

the expression

A
(N )
1,n =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α
(1)
N , N odd, n = 1

α
(2)
N,n, N odd, n � (N + 1)/2

Pcα
(2)
N,N−n+2, N odd, n > (N + 1)/2

α
(0)
N , N even, n = 1

α
(2)
N,n, N even, n � N/2

α
(3)
N,n, N even, n = N

2 + 1, n odd

α
(4)
N,n, N even, n = N

2 + 1, n even

α
(2)∗
N,N−n+2, N even, n > N

2 + 1, n odd

−α
(2)∗
N,N−n+2, N even, n > N

2 + 1, n even,

(B2)

where the αN,n functions are given by

α
(0)
N = −J0(2Ct ) + 2

∞∑
l=0

cos [lN (δ − π/2)]JlN (2Ct ),

α
(1)
N = −J0(2Ct )

+ 2
∞∑

l=0

{cos [2lN (δ − π/2)]J2lN (2Ct )

+ i sin [(2l + 1)N (δ − π/2)]J(2l+1)N (2Ct )},

α
(2)
N,n =

∞∑
l=1

σN,n,l exp [(−1)l+1bl (N, n)(δ − π/2)i]

× Jbl (2Ct ),

α
(3)
N,n = 2

∞∑
l=0

cos

[
N

2
(2l + 1)(δ − π/2)

]
JN (2l+1)/2(2Ct ),

α
(4)
N,n = 2i

∞∑
l=0

sin

[
N

2
(2l + 1)(δ − π/2)

]
JN (2l+1)/2(2Ct ),

(B3)

with a parity conjugation operator

Pceinδ =
{−e−inδ, n odd

e−inδ, n even.
(B4)

The Bessel functions Jk (2Ct ) are of the first kind and the
special sign function σN,n,l is given by

σN,n,l =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

σ1[bl (N, n)], N odd , n even

σ2[bl (N, n)], N odd , n odd
(−1)l+1, N even , n even

1, N even , n odd,

,

σ1(bl (N, n)) =
{−1, bl (N, n) = 2N − n + 1 mod(2N )

1 otherwise,

σ2[bl (N, n)] =
{−1, bl (N, n) = N − n + 1 mod(N )

1 otherwise,
,

(B5)
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where indexes bl (N, n) are defined by the set

bl (N, n) = {k ∈ N | k = n − 1 ∨ N − n + 1 mod(N )}.
(B6)

2. Open array

In this case, the coefficients of matrix A for a N-mer with
first-neighbor coupling constants given by Cj = C exp (iδ j ),
with C and δ j arbitrary, are given by the expression

A(N )
m,n = 2

N + 1

N∑
k=1

exp

[
−2i cos

(
kπ

N + 1

)
Ct

]
Smnk, (B7)

where

Smnk = exp
{
−i
[π

2
(m − n) + �m−1 − �n−1

]}

× sin

(
mkπ

N + 1

)
sin

(
nkπ

N + 1

)
(B8)

and

�n = δ1 + δ2 + · · · + δn. (B9)

APPENDIX C: DERIVATION

1. Mathematical context: Overview

We consider a lattice formed by an N nearest-neighbor
evanescently coupled bosonic single mode described by the
quantum Hamiltonian

H = h̄
N−1∑
j=1

(Cja
†
j a j+1 + C∗

j a†
j+1a j ), (C1)

where a j (a†
j ) is the annihilation (creation) operator of an

excitation in the jth mode and Cj = C exp(iδ j ) is the com-
plex coupling coefficient between the jth and the ( j +
1)-th modes, with C and δi real numbers. It is worth not-
ing that the standard model used for waveguide arrays
or Bose-Einstein condensates in periodical lattices, which
considers real coupling constants, is obtained by taking
δ j ≡ 0, i.e., Cj ≡ C.

Closed analytic solutions for the elements of the trans-
formation matrix A(N ), given by Eq. (9), were obtained for
N = 2 [52] and N = 3 [17]. For N = 4, the transformation
element that accompanies a2 in the evolution of a1 (that is, a′

1),
namely, A(4)

1,2 , can be obtained in terms of the series expansion
of Eq. (A1), resulting in

A(4)
1,2 = − ieiδ1

[
(Ct ) − 2

3!
(Ct )3 + 5

5!
(Ct )5 − 13

7!
(Ct )7

+ 34

9!
(Ct )9 − 89

11!
(Ct )11 + 233

13!
(Ct )13 − · · ·

]
. (C2)

The coefficients in Eq. (C2) exhibit an interesting property;
they are the odd terms of the Fibonacci succession, so the
series can be rewritten as

A(4)
1,2 = −ieiδ1

∞∑
j=0

(−1) j

(2 j + 1)!
S2 j+1(Ct )2 j+1. (C3)

TABLE I. Sequences in the coefficients β1,1 and βN,N for differ-
ent N . We show the respective OEIS code and generating function.

N Sequence OEIS GN (x)

2 1,1,1,1,1,1,1,... A000012 1
1−x

3 1,1,2,4,8,16,32,... A011782 1−x
1−2x

4 1,1,2,5,13,34,89,233,... A001519 1−2x
1−3x+x2

5 1,1,2,5,14,41,122,365,... A124302 1−3x+x2

1−4x+3x2

6 1,1,2,5,14,42,131,417,... A080937 1−4x+3x2

1−5x+6x2−x3

7 1,1,2,5,14,42,132,428,... A024175 1−5x+6x2−x3

1−6x+10x2−4x3

8 1,1,2,5,14,42,132,429,... A080938 1−6x+10x2−4x3

1−7x+15x2−10x3+x4

By means of Binet’s Fibonacci Number formula [61], the jth
term of the succession is expressed as

S j = 1√
5

⎡
⎣(1 + √

5

2

) j

−
(

1 − √
5

2

) j
⎤
⎦. (C4)

Using Eq. (C4) in Eq. (C3), we finally obtain an analytic
expression for A(4)

1,2,

A(4)
1,2 = − ieiδ1

√
5

[
sin

(
1 + √

5

2
Ct

)
+ sin

(√
5 − 1

2
Ct

)]
.

(C5)
The previous calculation of A(4)

1,2 is essential to acquire a com-
prehensive understanding of the procedure to achieve general
analytic expressions of A(N ). After the expansion of Eq. (A1),

A(N )
m,n ∝ β (N )

mn =
∞∑

k=0

Fmnk (Ct )k, (C6)

the main task is to identify the behavior of the series β (N )
m,n ,

that is, the rule behind the terms Fmnk . Therefore, efficient
computation of the amplitudes of the output modes requires
knowing the convergence of the series expansion β (N )

m,n from
the BCH formula for any N . This series expansion is related
to several interesting problems in mathematics, as we will now
discuss.

For N � 5, the coefficients in the series expansions are
associated with less known successions. Table I presents the
sequences appearing in the expansions of β

(N )
1,1 and β

(N )
N,N

for N � 8, identified by their respective OEIS codes [62].
For N > 8, we cannot unequivocally identify the sequences
with the current OEIS database. We notice that the sequence
expanding the entries of the evolution matrix A(N ) of an N-
mode system differs from those of an (N − 1)-mode system
at the N th place (highlighted with italics in Table I). The
sequences clearly show that the effect of adding a mode to a
(N − 1)-mode system manifests at the N th order in the series
expansion for the output operator. Such sequences can be
found recursively for arbitrary N > 2 using their generating
function GN (x), defined by GN (x) = 1/[1 − xGN−1(x)], with
G2(x) = 1/(1 − x), show in Table I.

Finding the generating function GN (x) for all the matrix co-
efficients βi, j is more complicated, although it is still a feasible
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approach to obtain the respective sequences. However, the
effect of having arbitrary phases δi in the coupling coefficients
requires a specific definition of GN for each coefficient, so we
must take a different approach for the present case.

2. General relations

For the open array [Fig. 1(b)], the complex entries of the
transformation matrix A(N ) can be generally expressed as

A(N )
m,n = exp(−iφm,n)β (N )

m,n. (C7)

An evaluation of the recursive terms in Eq. (A2) leads to

φm,n = �m−1 − �n−1, (C8)

with �n = δ1 + δ2 + · · · + δn. All of the information about
the complex phases of the respective coupling coefficients is
captured by φm,n.

Such a simple expression for the phase φm,n is a unique
feature of the open one-dimensional model. As discussed
in Ref. [39], this and other particular geometries allow the
unitary operation with complex coupling to be decomposed
in three stages: evolution with real-valued coupling preceded
and succeeded by individual phase shifts on each mode. In this
geometry, the asymmetry introduced by the complex coupling
coefficients is not expected to affect the transition proba-
bilities from one mode to the other, but only the transition
amplitudes.

For the closed N-mer [Fig. 1(c)], a factorization of the
phase φmn analog to Eq. (C8) could not be found since the
entries of A(N ) behave differently from the open array. Con-
sidering equal phases δ j = δ, the evaluation of Eq. (A2) leads
to expressions of the form

A
(N )
1,n =

∞∑
l=1

σN,n,l exp [(−1)l+1bl (N, n)δi]β (N )
nbl

, (C9)

where σN,k,l is the sign function; bl (N, n) are a set of integer
numbers and β

(N )
nbl

follows the definition in Eq. (C6).
As can be seen in Eq. (C9), the phase of the complex

coupling coefficients is embedded in every term of the ex-
pansions. Although there is no factorization of the phases
such as Eq. (C8) for the close N-mer, the only change with
arbitrary phases is that δ become functions of all the phases,
δ = δ(δ1, δ2, . . . , δN ).

3. Successive method

As was pointed out in the case of A(4)
1,2 [Eq. (C5)], Fmnk is

linked to integer sequences. If the nature of these numerical
successions is recursive, we can write them as

Sn+r = Q1Sn+r−1 + Q2Sn+r−2 + · · · + QrSn, (C10)

where r is the recursive order and Qr integer numbers (for
instance, for the Fibonacci sequence r = 2 and Q1 = Q2 = 1).
Equation (C10) can be cast into matrix form,

S(N )
j = R(N ) S(N )

j−1, (C11)

with R(N ) the recursion matrix and S(N )
j a vector composed of

r successive terms in the sequence, i.e.,

S(N )
j =

⎛
⎜⎜⎜⎜⎝

S j+r−1

S j+r−2

...

S j

⎞
⎟⎟⎟⎟⎠, (C12)

R(N ) =

⎛
⎜⎜⎜⎜⎝

Q1 Q2 · · · Qr−1 Qr

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

⎞
⎟⎟⎟⎟⎠. (C13)

The superscript (N ) is written to indicate the relation-
ship to the transformation matrix A(N ). Then Eq. (C11)
can be rewritten by decomposing the initial condition S(N )

0
on the eigenvectors {ϕ j} of the recursion matrix R(N ).
This leads to the following expression for the jth term in
the sequence:

S(N )
j =

r∑
l=1

ηlϕ
j
l , (C14)

where ϕl is the lth eigenvalue of R(N ). In Eq. (C4), we have
η1 = 1/

√
5, η2 = −1/

√
5, ϕ1 = (1 + √

5)/2, and ϕ2 = (1 −√
5)/2. The initial condition S(N )

0 is specific for each entry in
the transformation matrix.

This formalism reduces the problem to diagonalize the
recursion matrix R(N ), i.e., to find the roots ϕl of its charac-
teristic polynomial; afterwards, we must find the coefficients
ηl in Eq. (C14).

The first task is addressed by different methods depend-
ing on the chosen framework. For the open tight-binding
system [Eq. (C1)], in the geometrical study of golden fields
it was found that diagonals of regular N-side polygons are
proportional to the ratio of successive terms in generalized
Fibonacci sequences [63]. This correspondence, described by
the diagonal product formula (DPF), shows that characteris-
tic polynomials can be expressed in terms of the Fibonacci
polynomials of the second kind Kn(x) [64], which, in turn,
relate to the Chebyshev polynomials of the second kind
UN (x) [64],

KN+1(x) = UN (x/2). (C15)

Chebysev polynomials are a key element in our search for
a general transformation matrix, inasmuch as is known that
the roots of UN (x) are given by xk = cos[kπ/(N + 1)] [65],
for k = 1, . . . , N . Substituting in Eq. (C15), the roots of the
KN (x) are obtained as

ϕk = 2 cos

(
kπ

N + 1

)
, k = 1, . . . , N. (C16)

The above derivation not only gives the eigenvalues of the
recursive matrix R, but also illustrates the relation between
an N-mode lattice, the Fibonacci-like sequences, and the as-
sociated polynomial families.

To determine the ηl coefficients, it is essential to examine
the initial condition S0 of the succession behind the Fmnk . The
direct manner to come by them is to look at the first terms in
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the expansion of Eq. (A1). This procedure must be carried out with caution since a priori r is not known or how many initial
conditions exist. In the case N = 6, we found that Q1 = 1, Q2 = 2, Q3 = −1 and three initial conditions,

S(6)
0 =

⎛
⎝2

0
1

⎞
⎠,

⎛
⎝1

0
0

⎞
⎠,

⎛
⎝2

1
1

⎞
⎠. (C17)

From Eq. (C17), all the sequences to describe A(6) were determined, namely,⎛
⎝2

0
1

⎞
⎠ −→ {1, 0, 2, 1, 5, 5, 14, 19, 42, 66, 131, . . . }, (C18)

⎛
⎝1

0
0

⎞
⎠ −→ {0, 0, 1, 1, 3, 4, 9, 14, 28, 47, 89, 155, . . . }, (C19)

⎛
⎝2

1
1

⎞
⎠ −→ {1, 1, 2, 3, 6, 10, 19, 33, 61, 108, 197, . . . }. (C20)

Note that the expansion of Eq. (A1) by means of the BCH formula can always be done regardless of the complexity of
the tight-binding interactions in the Hamiltonian. Notwithstanding, finding a formula to describe the integer sequences is not a
straightforward task if no information about them is available in the OEIS. Given the recursive nature of the BCH formula, it is
expected that the expansion of (A1) gives rise to recursive sequences. However, this is not always the case, as we will see in the
close N-mer.

A more manageable scenery comes to light when we face the case of the closed array [Fig. 1(c)] because the sequences that
appear are just binomial coefficients. For example, for N = 5, the entry Ā(5)

1,2 results in

A
(5)
1,2 = ei(δ−π/2)

[
Ct − 3

3!
(Ct )3 + 10

5!
(Ct )5 − 35

7!
(Ct )7 + 126

9!
(Ct )9 − 462

11!
(Ct )11 + 1716

13!
(Ct )13 − · · ·

]

+ e−4i(δ−π/2)

[
(Ct )4

4!
− 6

6!
(Ct )6 + 28

8!
(Ct )8 − 120

10!
(Ct )10 + 495

12!
(Ct )12 − 2002

14!
(Ct )14 + · · ·

]

+ e6i(δ−π/2)

[
(Ct )6

6!
− 8

8!
(Ct )8 + 45

10!
(Ct )10 − 220

12!
(Ct )12 + 1001

14!
(Ct )14 − 4368

16!
(Ct )16 + · · ·

]

+ e−9i(δ−π/2)

[
− (Ct )9

9!
+ 11

11!
(Ct )11 − 78

13!
(Ct )13 + 445

15!
(Ct )15 − 2380

17!
(Ct )17 + 11628

19!
(Ct )19 − · · ·

]

+ e11i(δ−π/2)

[
(Ct )11

11!
− 13

13!
(Ct )13 + 105

15!
(Ct )15 − 680

17!
(Ct )17 + 3876

19!
(Ct )19 − 20349

21!
(Ct )21 + · · ·

]

+ e−14i(δ−π/2)

[
(Ct )14

14!
− 16

16!
(Ct )16 + 153

18!
(Ct )18 − 1140

20!
(Ct )20 + 7315

22!
(Ct )22 − 42504

24!
(Ct )24 + · · ·

]

+ e16i(δ−π/2)

[
(Ct )16

16!
− 18

18!
(Ct )18 + 190

20!
(Ct )20 − 1540

22!
(Ct )22 + 10626

24!
(Ct )24 − 65780

26!
(Ct )26 + · · ·

]

+ e−19i(δ−π/2)

[
− (Ct )19

19!
+ 21

21!
(Ct )21 − 253

23!
(Ct )23 + 2300

25!
(Ct )25 − 17550

27!
(Ct )27 + 118755

29!
(Ct )29 − · · ·

]
+ · · · .

(C21)
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The coefficients in the series given by Eq. (C21) with factor
ei(δ−π/2) were identified to be

1, 3, 10, 35, 126, 462, 1716, . . . −→
(

2n + 1
n + 1

)
. (C22)

With these coefficients, we were able to converge this series,
obtaining

β
(5)
2,1 =

∞∑
n=0

(
2n + 1
n + 1

)
(−1)n

(2n + 1)!
(Ct )2n+1,

β
(5)
2,1 =

∞∑
n=0

(2n + 1)!

(n + 1)!n!

(−1)n

(2n + 1)!
(Ct )2n+1,

β
(5)
2,1 =

∞∑
n=0

(−1)n

n!(n + 1)!
(Ct )2n+1,

β
(5)
2,1 = J1(2Ct ). (C23)

Following the same procedure for the remaining complex
exponentials, the β

(5)
2,bl

factors were also turned to be Bessel
functions of the first kind whose indexes were bl . This is
summarized as follows:

β
(N )
nbl

= Jbl (2Ct ), (C24)

bl (5, 2) = {1, 4, 6, 9, 11, 14, 16, 19, · · · }. (C25)

Replacing the series in Eq. (C21) by their respective Bessel
functions results in

A
(5)
1,2 = ei(δ−π/2)J1(2Ct ) + e−4i(δ−π/2)J4(2Ct )

+ e6i(δ−π/2)J6(2Ct ) − e−9i(δ−π/2)J9(2Ct )

+ e11i(δ−π/2)J11(2Ct ) + e−14i(δ−π/2)J14(2Ct )

+ e16i(δ−π/2)J16(2Ct ) − e−19i(δ−π/2)J19(2Ct ) + · · · .

(C26)

The alternating minus sign over the terms of the series given
by Eq. (C26) does not follow a pattern (−1)k like the minus
sign over the argument of the complex exponentials. The rule
for this minus sign is captured by the σN,n,l function defined in
Eq. (C30). Following the same strategy, all the entries of Ā(N )

were found, obtaining

A
(N )
1,n =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α
(1)
N , N odd, n = 1

α
(2)
N,n, N odd, n � (N + 1)/2

Pcα
(2)
N,N−n+2, N odd, n > (N + 1)/2

α
(0)
N , N even, n = 1

α
(2)
N,n, N even, n � N/2

α
(3)
N,n, N even, n = N

2 + 1, n odd

α
(4)
N,n, N even, n = N

2 + 1, n even

α
(2)∗
N,N−n+2, N even, n > N

2 + 1, n odd

−α
(2)∗
N,N−n+2, N even, n > N

2 + 1, n even,
(C27)

where the αN,n functions are given by

α
(0)
N = − J0(2Ct ) + 2

∞∑
l=0

cos [lN (δ − π/2)]JlN (2Ct ),

α
(1)
N = − J0(2Ct )

+ 2
∞∑

l=0

{cos [2lN (δ − π/2)]J2lN (2Ct )

+ i sin [(2l + 1)N (δ − π/2)]J(2l+1)N (2Ct )},

α
(2)
N,n =

∞∑
l=1

σN,n,l exp [(−1)l+1bl (N, n)(δ − π/2)i]

× Jbl (2Ct ),

α
(3)
N,n = 2

∞∑
l=0

cos

[
N

2
(2l + 1)(δ − π/2)

]
JN (2l+1)/2(2Ct ),

α
(4)
N,n = 2i

∞∑
l=0

sin

[
N

2
(2l + 1)(δ − π/2)

]
JN (2l+1)/2(2Ct ),

(C28)

with indexes bl (N, n) defined by the set

bl (N, n) = {k ∈ N | k = n − 1 ∨ N − n + 1 mod(N )},
(C29)

and the special sign function

σN,n,l =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

σ1[bl (N, n)], N odd , n even

σ2[bl (N, n)], N odd , n odd

(−1)l+1, N even , n even

1, N even , n odd,

,

σ1[bl (N, n)] =
{−1, bl (N, n) = 2N − n + 1 mod(2N )

1 otherwise,

σ2[bl (N, n)] =
{−1, bl (N, n) = N − n + 1 mod(N )

1 otherwise, ,

(C30)

with a parity conjugation operator

Pceinδ =
{−e−inδ, n odd

e−inδ, n even.
(C31)

The αN,n functions for the entries of A(N ) resemble the Jacobi-
Anger expansions, but with a major detail on the indexes of
the series. This feature make us unable to converge the series
in Eq. (C28). It is important to highlight the versatility of
the previous formalism since Eqs. (C7) and (C14) hold for
any set of coupling coefficients, in addition to the two one-
dimensional cases studied here. This allows us to extend our
study to any two-dimensional system that can be mapped to a
one-dimensional matrix, provided that the appropriate integer
sequence (or its recurrence matrix) is known.

4. Path method

Coefficients η j in Eq. (C14) are still required to find the
sequence describing the entries of the transformation matrix.
However, we can use the link between quantum random walks
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and graph theory, provided by the aforementioned equivalence
between the coupling matrix C (corresponding to the single-
particle representation of H) and the adjacency matrix J of
the associated path graph PN . If G is a graph with weights at
the edges and adjacency matrix JN,�, where N is the number
of vertices and � is the weight of the loops, then the sum of
weights of walks of length m from vertex i to j is given by
(eT

i )(J m
N,� )(e j ). Defining ZN

i, j (m, �) as the number of walks
from i to j of length m, and using � loops in Pn, the following
can be obtained [42]:

m∑
�=0

ZN
i, j (m, �)�� = (eT

i

)(
J m

N,�

)
(e j ). (C32)

This is precisely the expression we need in order to write
Eq. (A10) more effectively. Obtaining an expression for the
left-hand side of Eq. (C32) is straightforward when consid-
ering the spectrum of the adjacency matrix. If JN,� admits an
orthonormal basis (v1, v2, . . . , vN ) of eigenvectors and λi ∈ C
is the eigenvalue corresponding to vi = (v1,i, v2,i, . . . , vN,i ),
then (

eT
i

)(
J m

N,�

)
(e j ) =

N∑
k=1

λm
k vi,kv j,k . (C33)

In the particular case of JN,0 the eigenvalues λk and eigen-
vectors vk are given by

λk = 2 cos

(
kπ

N + 1

)
(C34)

and

vk =
[

sin

(
1 × kπ

N + 1

)
, sin

(
2 × kπ

N + 1

)
,

× sin

(
3 × kπ

N + 1

)
, . . . , N × sin

(
kπ

N + 1

)]
, (C35)

for k = 1, 2, . . . , N . Note that Eq. (C34) is identical to the
expression obtained in Eq. (C16). This illustrates a close re-
lationship between the Chebyshev polynomials of the second
kind and their roots and eigenvalues of the adjacency matrix
displayed above. Replacing Eqs. (C34) and (C35) in Eq. (C33)
and using Eq. (C32) enables us to obtain an explicit expression
for the numbers ZN

i, j (m, �) in terms of trigonometric sums.
Assuming � = 0, in the case where we have open arrays, the
ZN

i, j (m) numbers are given by

Z
(Nopen )
i, j (m) = 2

N + 1

N∑
k=1

[
2 cos

(
kπ

N + 1

)]m

× sin

(
ikπ

N + 1

)
sin

(
jkπ

N + 1

)
, (C36)

for an N-mode open array with first-neighbor coupling, and
for cycle graphs Cn, which correspond to paths where the walk
begins at vertex i and ends at vertex j and which we associate
with closed arrays, the numbers are given by

Z (Nclosed )
i, j (m) = 1

n

n−1∑
k=0

[
2 cos

(
k

2π

n

)]m

cos

(
k

2π (i − j)

n

)
,

n =
{

N, N even
2N, N odd.

(C37)

Equations (C14) and (C36) show the formal correspon-
dence between the mth term in the series expansion of A(N )

i, j
and the total number of all m-step paths, i.e., the path length
corresponds to the order of the terms in the approximation
given by Eq. (C7). This enables a straightforward physical
interpretation of the path count: while adding Z (N )

i, j (m) for 0 <

m < ∞ would give the number of all possible paths between
vertices i and j, A(N )

i, j , on the other hand, captures the super-
position of all the contributions, resulting in the excitation of
waveguide ai by an initial excitation of waveguide a j . Indeed,
the Z numbers can be considered a universal quantity, and
terms in many numerical successions, including the Fibonacci
and Catalan sequences, can be obtained as particular cases of
them [42].

In order to construct the complete entry A(N )
μ,ν , we must sum

the number Z (N )
i, j (m) defined in Eq. (C36) over all the path

lengths m from 0 to ∞. Also, we need to modify the sum in the
equation to take into account the complex phases δi present in
the coupling coefficients �i. By doing so, we finally obtain

A(N )
μ,ν = 2

N + 1

N∑
k=1

exp

[
−2i cos

(
kπ

N + 1

)
Ct

]
Sμνk, (C38)

where

Sμνk = exp
{
−i
[π

2
(μ − ν) + �μ−1 − �ν−1

]}

× sin

(
μkπ

N + 1

)
sin

(
νkπ

N + 1

)
, (C39)

ε = 0.55π ε = π

FIG. 8. Representative examples of the different correlation pro-
files obtained from individual realizations when disorder is present
in the complex phases of the coupling coefficients.
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and the terms �ν = δ1 + δ2 + · · · + δν contain the infor-
mation about the phases of the coupling coefficients Cj =
C exp(iδ j ), with C being their real amplitude. On the other
hand, the closed system, i.e., the N-mer where the first and the
N th modes are also coupled, is described by a transformation
matrix A

(N )
, whose nth row is obtained by cycling n times the

first row with entries

A
(N )
1,n = e2iCt

N
+ 2

N

(N−1)/2∑
k=1

(−1)(n−1)k cos
[
(n − 1)k

π

N

]

× exp
[
(−1)k2iCt cos

(
k
π

N

)]
, (C40)

for N odd. For N even, its elements are given by

A
(N )
1,n = 1

N

N−1∑
k=0

cos

[
(n − 1)k

2π

N

]

×

⎧⎪⎨
⎪⎩

cos
[
2Ct cos

(
k 2π

N

)]
, n odd

i sin
[
2Ct cos

(
k 2π

N

)]
, n even.

(C41)

.

APPENDIX D: EXAMPLES OF CORRELATION PROFILES
FOR INDIVIDUAL REALIZATIONS

In Sec. III D, we presented the analytic average correlation
patterns obtained for different degrees of decoherence ε. Here
we present some illustrative profiles of single realizations
corresponding to random choices for the coefficients phases
with a normal width distribution ε. These provide examples
of different outputs occurring with different frequencies, re-
sulting in the average profiles presented in the main text. Note
that the effects of having disorder in the phases of the coupling
coefficients clearly differ from the well-studied off-diagonal
disorder in the amplitudes of the coefficients, which is known
to induce Anderson localization. In our case, no localization
is observed. Instead, the effect of phase disorder shows in the
interference. In Fig. 8, the highlighted profile for each case
resembles the most frequent outputs in a qualitative review
of the individual realizations. The first example is the most
representative for ε = 0.55π (left column); bunching and an-
tibunching still occur, with the latter being more probable.
On the other hand, for ε = π (right column), most cases
lead to a four-peak profile in the output, with bunching and
antibunching still occasionally occurring.
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