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Low depth virtual distillation of quantum circuits by deterministic circuit decomposition
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Virtual distillation using measurements of multiple copies of a quantum circuit have recently been proposed
as a method of noise mitigation of expectation values. Circuit decompositions known as B gates were found only
for 1-local Hamiltonians, however practical problems for chemistry require n-local Hamiltonians, which cannot
be corrected with B gates. We discover low depth circuit decompositions for expectation values for n-local
Pauli strings by combining multiple projections to recover the correct measurement statistics or expectation
values. Our method adds linear entangling gates with the number of qubits, but it requires extra measurements.
Furthermore, in applications to find ground states such as the variational quantum eigensolver (VQE) algorithm,
the variational principle is required which states that the energy cannot go below the ground-state energy. We
find that the variational principle is violated when using B gates and is preserved if we use our low depth
decomposition on all expectation values. We perform a demonstration on real devices, and we show that our
decomposition can mitigate real experimental noise in VQE for the H2 molecule with a two-qubit tapered
mapping, H3 with three qubits, and H2 with four qubits. Our decomposition provides a way to perform duplicate
circuit virtual distillation on real devices at significantly lower depth and for arbitrary observables.
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I. INTRODUCTION

Quantum computing is a rapidly emerging field that is
anticipated to run algorithms capable of solving certain com-
putationally hard problems with improved scaling compared
to its classical counterpart [1,2]. Unfortunately, current quan-
tum devices are in the noisy intermediate scale quantum era
(NISQ) because they suffer from significant noise, which
reduces the accuracy of general algorithms or renders them
useless for a quantum advantage. However, specific NISQ
algorithms have been designed in which a quantum advan-
tage is thought to have been found, e.g., boson sampling to
calculate matrix permanents [3], increased information ca-
pacity for finite use of an amplitude damping channel [4],
and the ability to generate statistics from random quantum
circuits [5]. However, whether specific implementations show
an advantage is a matter of debate [6–8]. For algorithms with
more widespread applications, advantage is only reached with
significantly more qubits and less noise. For example QAOA,
which can calculate various graph theory problems like MAX-
CUT, is thought to need 420 qubits for supremacy given
some complexity assumptions [9]. Quantum error correction
can guarantee that if noise is below a threshold, multiple
physical qubits can be mapped to correctable logical qubits,
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and the error rate can be bound arbitrarily [10]. These fault-
tolerant devices will be able to show a quantum advantage
without modifying the algorithms to consider noise. However,
with our current NISQ devices, we require more specialized
algorithms.

Some NISQ algorithms are considered tolerant to specific
errors, such as the variational quantum eigensolver (VQE)
for finding ground-state energies of Hamiltonians [11]. VQE
uses a parametrized Ansatz circuit and measures the energy
of the resultant state. The parameters are adjusted until the
minimum is found, and this compensates for errors due to
parameter setting or gate calibration. However, VQE cannot
compensate for incoherent errors that result in mixed states,
and there is a need to design noise mitigation techniques for
these incoherent errors (see Fig. 1).

Many existing strategies of incoherent noise mitigation
rely on a characterization of the device, such as Bayesian
readout error mitigation [13], probabilistic error correction
[14], random circuit sampling [15], or machine-learning-
based methods [16]. Similarly, if the noise model is known
analytically, there exist solutions to measure and undo its
effect [15,17]. While these have shown success, these char-
acterization methods become quickly outdated due to noise
drift in real devices, and methods without this assumption
are needed. Zero noise extrapolation has found success lately
with the use of additional measurements on circuits of in-
creasing noise to extrapolate back to a theoretical noise-free
value [14]. However, this can lead to a biased estimator de-
pending on the noise amplification method [18]. There also
exist error detection and postselection methods that increase
the number of measurements to select samples with less
noise [19].
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FIG. 1. Diagram of virtual distillation circuit implementations for a two-qubit H2 VQE calculation. Part (a) is the original B gate proposal
from Huggins et al. [12], which is only able to measure 1-local Hamiltonian terms and is unable to perform VQE calculation. In (b) for 1-local
terms we use B gates, and for 2-local terms we use our method of decomposition, where the measurement statistics can be recreated with
an entangling gate and computational measurement instead of direct measurement. This results in the variational principle being violated,
and VQE is unable to be performed. (c) We replace the B gates with our method to recreate the expectation value of S2 using an entangling
projection and computational measurements. The Pauli terms are recreated with the same computational measurement and an entangling
projection. Part (d) shows the circuits for the Ansatz, B gates, the entangling projection to recreate Pauli sampling statistics, and the entangling
projection to recreate the S2 expectation value.

Recently, a method of virtual distillation was designed
that uses a duplicate copy of the circuit to correct expecta-
tion values after measurement [12]. This found success with
small systems that used only 1-local expectation values, but
no general scheme was provided for larger systems that also
require n-local expectation values (see Fig. 1). The extension
of the B gate scheme would require a unique circuit for each
expectation value with no bound on circuit depth. As the depth
of the noise mitigation circuit increases, it can add more noise
than is removed, rendering it useless.

Subsequently, additional papers that used virtual distil-
lation only measured observables that can be rewritten as
1-local expectation values [20] by calculating a density ma-
trix from maximum likelihood [21], or shadow tomography
methods rather than direct measurement, which will require
exponential measurements for arbitrary states [22]. Recently,
a method of circuit cutting for the swap gates of the B gate
circuit was found so that the correcting gates can be simulated
on a classical computer, but this also requires probabilistic

reconstruction [23]. There is a need to devise new methods of
deterministic circuit decomposition to enable duplicate circuit
virtual distillation for use in practical calculations.

In this work, we propose a method of recovering the
statistics of the proposed unitary projections in Ref. [12] by
combining measurements from computational and specific
entangling projections. We find methods to reconstruct the
output sampling statistics or reconstruct the expectation value.
Our method ensures linear scaling maximum additional depth.
In particular, we find that only n additional two-qubit entan-
gling gates are required for a circuit with n qubits before
duplication. We devise a circuit decomposition that recon-
structs the sampling statistics as well as one that reconstructs
the expectation value. We show that a combination of these
allows the variational principle to be retained while also hav-
ing lower depth than the B gates. In the Appendix, we show
alternative methods that are useful for chip topologies, such
as measuring Pauli strings by reconstructing the expectation
value, which increases the depth for fewer measurements, or
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direct decomposition of observables to Pauli strings, which
has no extra entangling gates but exponentially more measure-
ments for systems where shots are less costly than depth.

Our method works for any algorithm that requires expecta-
tion values, therefore we demonstrate its effectiveness on the
variational quantum eigensolver (VQE) [11] for two qubits
(H2), three qubits (H3), and four qubits (H2, no symmetry
reduction). We show noise resilience using simulations as
well as by running demonstrations on IBM quantum devices
through cloud-based access.

II. THEORETICAL FRAMEWORK

For the trial state ρ and the Pauli string O, the expectation
value is given by

tr(Oρ). (1)

Normally, we rotate ρ such that O is diagonalized, measure
in the computational basis, and combine the counts based
on the corresponding eigenvalues, i.e., if O = UDU †, where
D is a diagonal matrix and U is a unitary matrix, then the
measurement becomes

tr(UDU †ρ) = tr(DU †ρU ), (2)

since the trace is invariant under cyclic permutations.
If there are errors, we can virtually purify the density

matrix by replacing these measurements with

tr(Oρ2)

tr(ρ2)
. (3)

It has been shown in Ref. [12] that this quantity can be
calculated using two copies of the circuit to create the density
matrix ρ⊗2 and measuring

tr(OS2ρ
⊗2)

tr(S2ρ⊗2)
, (4)

where S2 is the operator that swaps each qubit with their
duplicate. It should be noted that tr(S2ρ

⊗2) is the definition
of the purity of ρ.

For general observables, we construct the symmetrized
operator:

Osym = O + S2O

2
. (5)

This is the expectation value of O on the original circuit
added to the expectation value on the duplicate circuit. This
is desirable as the null space of the new operator is much
larger as it consists of the states for which both the circuit and
the duplicate circuit have zero eigenvalue, but also when they
differ by a sign. The components of a state in this null space
will not contribute to the expectation value, and they can be
ignored when reconstructing the measurements.

Huggins et al. [12] found that 1-local observables, i.e.,
O = ZII . . . , commute with S2 and therefore they can con-
struct one unitary [U from Eq. (2)] to project on to measure the
entire quantity in Eq. (4). Their specific circuit decomposition
is called the B gate.

Unfortunately, multiqubit operators do not commute with
S2 in general. We still need the B gate unitary to measure
tr(S2ρ

⊗2), but now we need a new matrix that rotates the state

to measure the numerator. We can naively decompose this
matrix into circuits using general decomposition algorithms,
however this is incredibly deep and requires a new circuit for
every set of commuting Pauli strings.

To enable use for arbitrary systems, we require a gen-
eral decomposition scheme for all Pauli strings. We first
investigate the eigenvectors of the observables. For S2, the
eigenvectors will be the states invariant to swapping. For
example, consider a four-qubit state |abcd〉, a, b, c, d ∈ {0, 1}.
The effect of S2 is

S2|abcd〉 = |cdab〉. (6)

The eigenvectors are therefore the following:
(i) |abcd〉 for a = c; b = d .
(ii) 1√

2
(|abcd〉 + |cdab〉) otherwise.

The computational basis states are exclusively either al-
ready eigenvectors or they can be rotated into the eigenbasis
by superposition with their swapped basis. The technique
from Huggins et al. [12] finds a single unitary that can project
on the superposition states while leaving the rest in the com-
putational basis. We show that we can recreate the same
statistics by combining measurements on a computational ba-
sis and entangled bases with less depth.

We now show how to decompose this superposition basis
into CNOT and Hadamard gates. Depending on the native en-
tangling gates of the hardware, further optimizations can be
made. We choose these as they are a subset of Clifford gates,
which can be simulated efficiently classically and allow for
noise mitigation schemes that characterize noise by compar-
ing Clifford gate simulations to experiment.

A. Reconstructing sampling statistics for Pauli strings

For a general four-qubit state |abcd〉, a, b, c, d ∈ {0, 1}, the
effect of applying a CNOT with control qubit 0 and target qubit
1 and then a Hadamard on qubit 0 is

H0 CNOT0,1|abcd〉 = |0bcd〉 + XXII|0bcd〉, (7)

where the subscript labels the qubits. We therefore create the
superposition of the first qubit in |0〉 and |1〉 and the second
qubit identity or bit flipped. Using this, we can decompose the
superpositions in Eq. (6) into equivalence classes of the form
in Eq. (7). For a duplicate circuit of 2n qubits, the number of
total equivalence classes is 2n, but they only all need to be
measured for 〈S2〉, which is one reason we find an alternative
method for specifically S2 below. For observables, only a sub-
set need to be measured because we use the symmetrized form
in Eq. (5). If the expectation values of O and S2O differ by a
sign, the value becomes 0. Furthermore, since Hamiltonians
can be decomposed into multiple Pauli strings, they may share
equivalence classes. Any technique that can remove the need
to measure strings of one class will reduce measurements.
For example, Pauli grouping to find a unitary to maximize
simultaneous measurement of Pauli strings could be used to
reduce the number of string classes and is compatible with
our decomposition as we recreate sampling statistics.

The final procedure is then as follows: identify the set
of entangling projections necessary for the specific Paulis
required; measure those and the computational basis; di-
rectly reconstruct the measurement vectors where statistics
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from states invariant to swap are taken from computational
measurements and the rest are taken from their respective
entangled measurement; normalize the measurement vector;
and calculate relevant Pauli expectation values.

We note that our circuit for the 1-local measurements
has significantly lower depth than the B gate proposed in
Ref. [12].

B. Recreating the expectation value of S2

Rather than recreate the sampling statistics, we can in-
stead decompose the expectation value directly. Previously,
we could normalize the sampling statistics, but this cannot
be performed with only the expectation value. Physicality
requires the expectation value to fall in the range [−1, 1], and
for 〈S2〉 this is not a problem as it is only close to 1 with no
noise.

Consider |ψ〉 = a0|00〉 + a1|01〉 + a2|10〉 + a3|11〉. We
can expand the expectation value 〈ψ |S2|ψ〉 as

a0a†
0〈00|S2|00〉 + a0a†

1〈00|S2|01〉 + · · · . (8)

We can group these into our two sets of basis states from
Eq. (6). If the basis state |i〉 is invariant, then they will con-
tribute terms of the form |ai|2, whereas if a pair of basis sets,
|i〉 and | j〉, are mapped to each other by S, then they contribute
aia

†
j + a ja

†
i .

To calculate the full expectation value, we consider a cir-
cuit where we apply CNOTs on pairs of qubit copies (qubits
labeled by subscript) and Hadamards on all qubits of one copy.
For a two-qubit circuit, this is

(H ⊗ H ⊗ I ⊗ I )CNOT0,2CNOT1,3. (9)

When applied to a computational basis state |abcd〉, this
creates a superposition over four states,

IIII|00cd〉 ± IIIX |01cd〉 ± IIX I|10cd〉 ± IIXX |11cd〉,
(10)

where the sign depends on the initial state. Importantly, for
any number of qubits, it will contain the original computa-
tional state and the generator Pauli strings calculated above;
however, it will also contain the superposition of additional
states. Consider an arbitrary state

∑
abcd Aabcd |abcd〉. Apply-

ing the circuit and then measuring in the computational basis
will give outcomes that are linear combinations of all four
states in Eq. (10). It is always possible to find a linear combi-
nation of outcomes that recreate the expectation value for S2

because it is simply the addition of terms where the states are
swapped. Appendix A 1 details how to find the linear com-
bination of outcomes with examples for one and two qubits.
Appendix A 2 then describes how to use this method for
measuring observables, which requires multicontrol Z gates.

The full procedure is as follows: first calculate the linear
combination of outcomes that eliminates the additional cross
terms; then perform measurements in both the computational
basis and the pairwise entangled basis projection; the ex-
pectation value of S2 is the addition of the computational
measurements for states invariant to S2 with the linear com-
bination of outcomes from the entangled projection. We note
that the pairwise entanglement is identical to the B gate and
requires only one entangling gate per pair compared to the B

gate, which needs two. It also requires no rotations and uses
only Clifford gates.

III. DEMONSTRATIONS ON IBM DEVICES

To benchmark the performance of our methodologies, we
run our circuits on IBM superconducting devices. It should be
noted that in this paper, we report all states in conventional
(big endian) format, which is reversed from IBM measure-
ment output.

For two qubits, we generate a Hamiltonian for the H-H
molecule at a fixed distance using PySCF [24] with a STO-3G
basis [25]. This is mapped to a two-qubit basis using the parity
mapping with Z2 symmetry reduction. We then use a manu-
ally simplified UCCSD Ansatz with one parameter, θ , given
by preparation in the computational basis, Ry(θ ) ⊗ X CNOT,
and measurement in the computational basis. As there is only
one parameter, we sweep from [−π, π ] with 51 steps. This
is repeated with auxiliary error correcting circuits. For each
Hamiltonian, the angle that minimizes the energy for the raw
data was found and the corrected values were calculated for
that angle. Demonstrations were performed on ibm_hanoi us-
ing a mapping to qubits 1,4,7,6 as indicated in Appendix A 6.

Similarly, for three qubits, we used a linear chain H-H-H
with equal distances between hydrogens. We used STO-3G
with the Jordan-Wigner mapping and qubit tapering [26] to
get a three-qubit basis. A hardware-efficient Ansatz with nine
parameters was used given by two layers of Ry, CNOT, Ry,
CNOT, Ry. Calculations confirming the ability of the Ansatz to
find the ground state can be found in Appendix A 4. Optimal
values were found with simulated data using a provided noise
model as performed by Li et al. [23]. The optimal circuit
was then measured in a computational basis and on entangled
corrective projections. Demonstrations were performed on
ibm_hanoi using a mapping to qubits 5,3,2,1,4,7 as indicated
in Appendix A 6.

Finally, for four qubits, we used the H-H molecule with
STO-3G and parity mapping but without any symmetry re-
duction. We used a hardware-efficient circuit with Ry, Rz,
CNOT, Ry, Rz, CNOT, Ry, Rz layers across all qubits. This
Ansatz is able to find the ground state for the Hamiltonian with
parity mapping but not Jordan-Wigner mapping as detailed
in Appendix A 4. Optimal values were found using a pro-
vided noise model using simulated data. The optimal circuit
was then measured in the computational basis and on entan-
gled corrective projections. Experiments were performed on
ibm_hanoi with mapping to qubits 1,2,3,6,4,7,5,8 as indicated
in Appendix A 6.

The entangled projections are determined to recreate sam-
pling statistics for each Pauli string and pairwise entangling
gates to recreate the expectation value of S2.

IV. RESULTS AND DISCUSSION

We first perform a calculation with B gates from Ref. [12]
as a comparison to previous work. We will use the two-qubit
H2 molecule calculation as an example, which has a Hamil-
tonian that decomposes to IZ, ZI, ZZ, XX strings. Since the
B gate cannot calculate multiqubit measurements, we must
use the method developed in this work for reconstructing the
sampling statistics for ZZ and XX Paulis.
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FIG. 2. H2 energy at a distance of 2 Å as depolarization noise
on CNOT gates increases. Ideal refers to the noise-free value at 0
depolarization. Raw refers to directly measuring the Ansatz; B refers
to using B gates [12] for VD and violates the variational principle by
being below ideal.

Figure 2 gives the measured ground-state energy of H2 at
2 distance as depolarization on each two-qubit gate increases.
The depolarization parameter ranges between 0 at no noise
and 1 where the qubit is in the maximally mixed state. The
dotted line refers to the ideal noiseless measurement; the blue
dots give the raw measurement without any correction; the
yellow crosses give the B gate corrected values.

It is obvious that depolarization noise causes the B gates to
immediately violate the variational principle (see Fig. 1). This
is because it has four CNOTs to calculate S2, whereas our work
only uses two at most. This means S2 sees four depolarization
channels and underestimates the purity.

O’Brien et al. [20] also noted violation of the variational
principle with virtual distillation, however they bound ex-
pectation values between [−1, 1], which they state is clearly
qualitatively incorrect. They are correct in that assessment: it
is obvious that if S2 measurements have more error than Pauli
measurements, observables will appear to take their maximum
value when the noiseless value may be nowhere near it. We
will now provide results for the method developed in our
work, which takes this into account and ensures we can retain
the variational principle.

Figure 3 shows the same two-qubit CNOT gate depolariza-
tion noise as in Fig. 2. Figure 3(a) shows the same two-qubit
H2 system, and the raw measurement given by blue dots is
the same as in Fig. 2. Figure 3(b) shows the three-qubit H3

linear chain molecule, and Fig. 3(c) shows the four-qubit H2

molecule with no symmetry reduction.
First, our method does not violate the variational principle,

as the computed energy with noise is always higher than the
noiseless ideal dotted blue line (see Fig. 1). Second, the cor-
rected values are always a lower energy than the raw values,
which means our method is successfully mitigating noise.
Specifically, it means the additional entangling gates do not
add more noise than they cancel out. We note that while the
uncorrected raw energies increase linearly, in this noise range
the corrected values increase much slower, especially for four
qubits in Fig. 3(c).

Finally, it is observed that the larger systems are more
sensitive to small noise. Around 0.01 depolarization, the two-

FIG. 3. Effect of depolarization on ground-state energy for two-
qubit (H2), three-qubit (H3), and four-qubit (H2, no symmetry
reduction) systems at a distance of 2 Å. Simulated data from depo-
larization channel on each CNOT gate. The dotted blue line gives the
ideal noiseless value. Blue dots show raw measured energy. Yellow
crosses give corrected energy.

qubit system is able to be corrected to almost ideal, whereas
the four-qubit system cannot. In comparison, due to the slow
increase of the corrected values to noise, at high noise values,
larger systems perform well. VD by itself is therefore optimal
at relatively higher noise (up to reasonable noise for a current
device). However, since it always corrects, there are other
techniques that can be used in conjunction that could mitigate
VD at small noise and allow it to reach the ideal case.

After a basic test of our method in noisy simulation
environments, we can now implement it on a noisy IBM
quantum device. We calculate the full dissociation curve for
the molecules in question as distance increases. The results
are given in Fig. 4. The ideal curve is given as a dotted blue
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FIG. 4. Dissociation curves for two-qubit, three-qubit, and four-
qubit systems on ibmq_hanoi. Exact refers to direct diagonalization
of the Hamiltonian after qubit mapping. Raw refers to directly
measuring the Ansatz. Corrected refers to using VD with our cir-
cuit decomposition. Part (a) shows H2 molecule with UCC Ansatz
and parity reduction. Part (b) shows H3 linear chain molecule
with hardware-efficient Ansatz. Part (c) shows H2 molecule with
hardware-efficient Ansatz.

line, the raw values are yellow dots, and the corrected values
are green crosses. As above, Fig. 4(a) is the two-qubit H2

calculation, (b) is the three-qubit H3 linear chain, and (c) is
the four-qubit H2 calculation with no symmetry reduction.

The results follow similar trends to the simulated data. For
the smallest system, in Fig. 4(a) we note that the ideal energy
can be recreated up to shot noise, despite large errors on the
raw data. For the largest system in Fig. 4(c), we can note
a similar correction close to ideal, however the curve as the
hydrogen atoms are separated is not able to recreate the exact
energies. Furthermore, from the comparison of raw and exact

FIG. 5. Simulated Ansatz minimum energies raw and corrected
with virtual distillation as depolarisation noise increases for UCCSD
and hardware-efficient Ansatz with one and two layers. Part (a) shows
the three-qubit H3 in Jordan-Wigner mapping and Z2 symmetry
reduction with an expanded section in (b). Part (c) shows the four-
qubit H4 with parity mapping with an expanded section in (d). Part
(e) shows the four-qubit H4 with Jordan-Wigner mapping with an
expanded section in (f). HF refers to Hartree-Fock initial guess and
is the lowest depth circuit as it contains no entangling gates. Nuclear
repulsion energy is not added.

data, it appears that the noise in Fig. 4(c) is much less than in
Fig. 4(a).

Similarly, the effect of shot noise was considered. The
demonstrations from Fig. 3 were simulated with 8196 shots
and no other noise. This was repeated 100 times and the
standard deviations in the energy recorded. The standard devi-
ations for the corrected energies are 1.296×10−3 Ha for two
qubits, 1.386×10−3 Ha for three qubits, and 2.038×10−3 Ha
for four qubits. These are significantly smaller than the dis-
crepancy between all measured and exact energies, which
shows that incoherent noise must be responsible rather than
shot noise. However, shot noise is of the order of chemical
accuracy of approximately 1.594×10−3 Ha, and this means
significantly more shots are required in applications to reach
chemical accuracy even if incoherent noise can be mitigated.

While this method is shown to work, care must be taken
to know the exact hardware implementation to ensure that
the S2 measurements do not have significantly more error
than the Pauli measurements. In particular, additional swap
gates or dynamical decoupling steps may be introduced by
a compiler that can violate this. In the Appendix, we detail

q0 : RY (θ) •
q1 : X

FIG. 6. Manually reduced Ansatz for Z2 symmetry reduced UCC
H2 two-qubit Hamiltonian. The Hartree-Fock initial guess is mapped
to |01〉. The excitations were found to map to the space spanned by
|01〉 and |10〉 with real coefficients.
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q0 : RY (θ[0]) RZ (θ[3]) • RY (θ[6]) RZ (θ[9]) • RY (θ[12]) RZ (θ[15])

q1 : X RY (θ[1]) RZ (θ[4]) • RY (θ[7]) RZ (θ[10]) • RY (θ[13]) RZ (θ[16])

q2 : RY (θ[2]) RZ (θ[5]) RY (θ[8]) RZ (θ[11]) RY (θ[14]) RZ (θ[17])

FIG. 7. Three-qubit two-layer hardware-efficient Ansatz for the Jordan-Wigner H3 Hamiltonian. The initial Hartree-Fock guess is mapped
to |010〉.

several alternative methods that can be used to tailor this
method to hardware requirements. We show how to calculate
Paulis by recreating their expectation value (as we did with
S2 in the main text), however this adds a multi-controlled-Z
gate, which can be prohibitive, and if three-qubit gates can
be implemented, the ancilla-based Fredkin approach may be
more desirable. Similarly, we show how to decompose all
expectation values into Pauli strings, which requires no extra
entangling gates and has the least noise, but will require the
most measurements. At worst, it will need to measure all
Paulis for all doubled qubits, at which point it will take fewer
measurements to do a tomography on the original circuit and
analytically calculate powers of the density matrix. In that
sense, for specific problems and hardware limitations, these
alternate methods could be useful, however in the specific case
of chemical calculations on IBM architecture our method of
recreating Pauli sampling statistics and S2 expectation values
was found to be optimal.

In conclusion, we have demonstrated that the B gate cir-
cuit decomposition for VD only works for observables that
commute with S2 and can violate the variational principle
otherwise. We found a method for circuit decomposition that
maintains the variational principle which enables VQE appli-
cations. Our method increases the number of measurements
but reduces the number of entangling gates compared to the
B gate method. We found that it performs well at different
noise scales and on real devices. Future work can investigate
combining VD with other noise mitigation strategies to see if
chemical accuracy can be reached.
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APPENDIX

1. Linear combination of measurements for 〈S2〉
Recall that the goal is to recreate the expectation value of

the swap operator. Let us say we have |ψ〉 = A|00〉 + B|01〉 +
C|10〉, then

〈ψ |S2|ψ〉 = |A|2 + BC + CB. (A1)

The squared terms are probabilities measured from compu-
tational measurement. The goal is thus to measure a quantity
that corresponds to the cross terms added together with their
complex conjugates. This will be accomplished by the CNOT H
circuit (written in circuit order). We want to know what prob-
abilities occur after an arbitrary state |ψ〉 is projected by the
circuit CNOT H on each pair. Ultimately we will be taking
probabilities from measuring in the computational basis and
taking linear combinations of them. Therefore, the first step is
to see what the projection of CNOT H looks like on an arbitrary
state |ψ〉.

To make the analysis easier, we reorder qubits such that
each qubit is adjacent with its corresponding qubit from the
copied system, i.e., for a two-qubit system |abcd〉 → |acbd〉.
This now makes the swap operator S2 act as

S2|abcd · · ·〉 = |badc · · ·〉. (A2)

In this qubit ordering, the projection circuit is now CNOT H
on each pair in order, so we can consider the action only on
separable pairs of qubits, specifically now only the top two
qubits. The operation of CNOT H has the form

|+〉|0〉 ⊗ I + |−〉|1〉 ⊗ X. (A3)

We want to know what the outcome of measuring in the
computational basis looks like after this. If we project onto
state 〈01|, we get

〈01|HCNOT = 1√
2
〈01| + 〈10|, (A4)

which means that if we start with the state |ψ〉 and project
using the circuit, we will measure the outcome 01 with prob-
ability

1
2 (〈ψ |01〉 + 〈ψ |10〉)(〈01|ψ〉 + 〈10|ψ〉)

= 1
2 (|B|2 + |C|2 + BC + CB). (A5)

Similarly, the outcome 10 occurs with probability

1
2 (〈ψ |01〉 − 〈ψ |10〉)(〈01|ψ〉 − 〈10|ψ〉)

= 1
2 (|B|2 + |C|2 − BC − CB). (A6)

Therefore, if we subtract the probability of measuring
outcome 10 from 01, we get BC + CB, which matches the
quantity required in Eq. (A1).

q0 : X RY (θ[0]) RZ (θ[4]) • RY (θ[8]) RZ (θ[12]) • RY (θ[16]) RZ (θ[20])

q1 : X RY (θ[1]) RZ (θ[5]) • RY (θ[9]) RZ (θ[13]) • RY (θ[17]) RZ (θ[21])

q2 : RY (θ[2]) RZ (θ[6]) • RY (θ[10]) RZ (θ[14]) • RY (θ[18]) RZ (θ[22])

q3 : RY (θ[3]) RZ (θ[7]) RY (θ[11]) RZ (θ[15]) RY (θ[19]) RZ (θ[23])

FIG. 8. Four-qubit two-layer hardware-efficient Ansatz for H2 molecule with parity mapping but no symmetry reduction. Hartree-Fock
state is mapped to |1100〉.
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q0 : RX (−π
2

) H • RX (π
4
) • H RX (π

2
)

q1 : RX (π
2
) RZ (π

4
) RX (−π

2
)

FIG. 9. B gate over two qubits. For a larger number of qubits, we
require B gates over every pair of qubits.

Explicitly, for arbitrary numbers of qubits, the action of
CNOT H on the top two qubits is to map

〈00| ⊗ 〈abc · · ·| → (〈00| + 〈11|) ⊗ 〈abc · · ·|,
〈01| ⊗ 〈abc · · ·| → (〈01| + 〈10|) ⊗ 〈abc · · ·|,
〈10| ⊗ 〈abc · · ·| → (〈00| − 〈11|) ⊗ 〈abc · · ·|,
〈11| ⊗ 〈abc · · ·| → (〈01| − 〈10|) ⊗ 〈abc · · ·|. (A7)

If we have CNOT H gates on every pair, we end up with all
qubit pairs having entangled projections as above. Let us label

〈S+| = 1√
2

(〈00| + 〈11|),

〈A+| = 1√
2

(〈01| + 〈10|),

〈S−| = 1√
2

(〈00| − 〈11|),

〈A−| = 1√
2

(〈01| − 〈10|). (A8)

The action of CNOT H creates several orbits, i.e., it will
create entanglement between a few select states with each
other. Specifically, for some fixed number of S and A states,
the orbit will contain every combination of + and −. This is
important because fixing the S and A nature of each qubit pair
fixes the projected states, whereas the +,− nature only affects
the relative sign.

We can write the linear combination of measurements in
an example orbit of just S as

〈ψ |(a|S+〉 + b|S−〉)|ψ〉. (A9)

We want this to equal 〈S2〉. We can find coefficients by
projecting onto the operator, for example,

a = tr(S2|S+〉〈S+|). (A10)

Specifically, we see that

S2|S+〉 = |S+〉,
S2|S−〉 = |S−〉,
S2|A+〉 = |A+〉,
S2|A−〉 = −|A−〉. (A11)

q0 : • H

q1 : •
q2 : •
q3 :

FIG. 10. Entangling projection required to recreate Pauli sam-
pling probabilities for H2.

q0 : • H

q1 : • H

q2 :

q3 :

FIG. 11. Entangling projection required to recreate expectation
value of S2 for H2.

This means the coefficients are either 1 or −1, and once
they are solved, the linear combination of measurements can
be made to estimate 〈S2〉.

As an example, for H2, the orbit of |0001〉 is |0001〉,
|0100〉, |1011〉, |1110〉. We can reorder the qubits and rewrite
this as |0001〉, |0010〉, |1101〉, |1110〉. This can be decom-
posed into

|S+〉|A+〉, |S+〉|A−〉, |S−〉|A+〉, |S−〉|A−〉. (A12)

Therefore, only the terms with |A−〉 will pick up a negative
sign, and we can write the expectation value as

〈ψ |(|S+〉|A+〉〈S+|〈A+| − |S+〉|A−〉〈S+|〈A−|
+ |S−〉|A+〉〈S−|〈A+| − |S−〉|A−〉〈S−|〈A−|)|ψ〉.

(A13)

We can also identify which measurements these corre-
spond to by looking at the action of CNOT H on the states to
be projected. Let P0 be the probability of measuring outcome
0. We can now write the final expectation value as

P0001 − P0101 + P1001 − P1101. (A14)

This process is then repeated for each orbit. This can be
used for arbitrary numbers of qubits, and it serves as a low
depth method of measuring the purity with two copies of a
quantum circuit.

2. Recreating Pauli expectation values

While 〈S2〉 only requires pairwise CNOT gates and
Hadamards on one copy of the Ansatz, additional gates are
needed to reconstruct the expectation value of arbitrary Pauli
strings. First, any X and Y observables can be mapped to Z
by applying a Hadamard or Hadamard and −π

2 phase gate,
respectively, so we only consider Pauli observables O that
contain I or Z . Thus, 〈S2O〉, is only modified by adding a −1
phase to states where O|ψ〉 = −|ψ〉. The additional gates we
require must add this phase to those specific states.

Unfortunately, in the general case, this will require multi-
control-Z gates with control on arbitrary many qubits.
Multicontrol gates decompose into deep two-qubit entangling
gates, and if even three-qubit entangling gates are efficient, it
may be better to simply measure expectation values with an
ancilla and Hadamard test. However, the advantage depends
on the topology, and entangling to one ancilla may cause more
swap gates than multicontrol Z.

3. Decomposing observables to Pauli strings

Direct decomposition of the observables into Pauli strings
is possible and requires no additional entangling gates.
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(a)
q0 :

q1 :

q2 : • H

q3 :

q4 :

q5 :

(b)
q0 :

q1 : • H

q2 :

q3 :

q4 :

q5 :

(c)
q0 :

q1 : • H

q2 : •
q3 :

q4 : •
q5 :

(d)
q0 : • H

q1 :

q2 :

q3 :

q4 :

q5 :

(e)
q0 : • H

q1 :

q2 : •
q3 : •
q4 :

q5 :

(f)
q0 : • H

q1 : •
q2 :

q3 : •
q4 :

q5 :

(g)
q0 : • H

q1 : •
q2 : •
q3 : •
q4 : •
q5 :

FIG. 12. Entangling projections required to recreate Pauli sampling probabilities for H3. Seven are required since the Pauli decomposition
of the Hamiltonian includes all seven strings of the form IIP, IPI, PII, IPP, PIP, PPI, PPP, where P ∈ X,Y, Z . Pauli grouping or rotation can
reduce the required number of circuits.

An observable, O, can be decomposed into Pauli strings by
calculating the projection along each:

ai = 1

n
tr(PiO). (A15)

We can then write

O =
∑

i

aiPi. (A16)

As above, we can map measurements of Pauli strings with
X and Y to Z by using a Hadamard or Hadamard and −π

2
phase gate on the corresponding qubit. Then the measurement
sampling statistics can be combined with the relevant eigen-
values to get expectation values for every Pauli string with I
or Z, since they commute.

This procedure can be performed on the expectation value
from Eq. (4). However, since these observables act on twice
the qubit number, the corresponding Pauli decomposition will
also act on twice the qubits. This means that in the worst
case scenario, it may take all 42n Pauli string measurements
to measure Eq. (4).

As mentioned in the main text, a full tomography of one
copy of the circuit is sufficient to get the density matrix and
analytically perform virtual distillation up to arbitrarily high
copies. While this technique adds no extra entangling gates,
the exponential scaling in measurements means it can only be
used if the Pauli decomposition is guaranteed to be small.

q0 : • H

q1 : • H

q2 : • H

q3 :

q4 :

q5 :

FIG. 13. Entangling projection required to recreate expectation
value of S2 for H3.

4. Ansatz evaluation

For three- and four-qubit calculations, we simulated
UCCSD and the hardware-efficient Ansatz of increasing depth
to determine the lowest depth Ansatz of appropriate accuracy
to run on real devices. VQE was performed on noise-free
simulation with the basin-hopping algorithm to find the global
minimum. Once the final parameters were found, the circuit
was simulated with increasing depolarization noise up to 0.1
along with the full virtual distillation calculation, and the
results for all Ansätze are shown in Fig. 5.

UCCSD is able to find the ground state in all cases. How-
ever, due to the circuit depth, depolarization beyond 0.01
causes it to be worse than the Hartree-Fock initial guess,
even with VD corrections. A hardware-efficient Ansatz with
one layer is not expressive enough to recover the ground-
state energy in any cases. It is also interesting to note that
it is worse than the Hartree-Fock initial guess for the four-
qubit parity Hamiltonian shown in (d). The hardware-efficient
Ansatz with two layers is able to recover the ground state and
does not exceed the Hartree-Fock limit at 0.1 depolarization
for the three-qubit Hamiltonian in (b) and the four-qubit par-
ity Hamiltonian in (d), however it is not expressive enough
to find the ground state for the four-qubit Jordan-Wigner
Hamiltonian in (f). As such, the obvious choice of Ansatz is
the hardware-efficient Ansatz with two layers for three-qubit
H3 calculation and four-qubit H2 calculation with the parity
mapping.

5. Circuit diagrams

In this section, we will show that the circuits run on real
devices in this work. First we show the Ansatz used. For H2

(two qubit) shown in Fig. 6 we design our own Ansatz based
on the symmetry of the ground state in the parity mapping
with Z2 symmetry reduction. For H3 (three qubit) and H2 (four
qubit) we use a basic SU2 hardware-efficient circuit with two
repetitions in Figs. 7 and 8. Next we show that the B gates
directly measure the S2 expectation value in Fig. 9. This is
applied to every pair of qubits. For this work, we replace

033223-9
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(a) q0 :

q1 :

q2 :

q3 : • H

q4 :

q5 :

q6 :

q7 :

(b) q0 :

q1 :

q2 : • H

q3 :

q4 :

q5 :

q6 :

q7 :

(c) q0 :

q1 :

q2 : • H

q3 : •
q4 :

q5 :

q6 : •
q7 :

(d) q0 :

q1 : • H

q2 :

q3 :

q4 :

q5 :

q6 :

q7 :

(e) q0 :

q1 : • H

q2 :

q3 : •
q4 :

q5 : •
q6 :

q7 :

(f) q0 :

q1 : • H

q2 : •
q3 :

q4 :

q5 : •
q6 :

q7 :

(g) q0 :

q1 : • H

q2 : •
q3 : •
q4 :

q5 : •
q6 : •
q7 :

(h) q0 : • H

q1 :

q2 :

q3 :

q4 :

q5 :

q6 :

q7 :

(i) q0 : • H

q1 :

q2 :

q3 : •
q4 : •
q5 :

q6 :

q7 :

(j) q0 : • H

q1 :

q2 : •
q3 :

q4 : •
q5 :

q6 :

q7 :

(k) q0 : • H

q1 :

q2 : •
q3 : •
q4 : •
q5 :

q6 : •
q7 :

(l) q0 : • H

q1 : •
q2 :

q3 :

q4 : •
q5 :

q6 :

q7 :

(m) q0 : • H

q1 : •
q2 :

q3 : •
q4 : •
q5 : •
q6 :

q7 :

(n) q0 : • H

q1 : •
q2 : •
q3 :

q4 : •
q5 : •
q6 :

q7 :

(o) q0 : • H

q1 : •
q2 : •
q3 : •
q4 : •
q5 : •
q6 : •
q7 :

FIG. 14. Entangling projections required to recreate Pauli sampling probabilities for H2 mapped to four qubits. All 15 are required due to
the Pauli decomposition of the Hamiltonian. Pauli grouping or rotation can reduce the required number of circuits.
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q0 : • H

q1 : • H

q2 : • H

q3 : • H

q4 :

q5 :

q6 :

q7 :

FIG. 15. Entangling projection required to recreate expectation
value of S2 for H2 mapped to four qubits.

the B gates with combinations of computational and entan-
gled measurements. The entangled gates for Pauli sampling
reconstructing of H2 (two qubit) are given in Fig. 10. The
entangling circuit for reconstructing the S2 expectation value
is given in Fig. 11. Similarly, the entangled gates for H3 (three
qubits) Paulis are given in Fig. 12 and S2 in Fig. 13. The
entangled gates for H2 (four qubits) are given in Fig. 14 and
S2 in Fig. 15.

6. IBM device characteristics

In this section, we show the layout of the ibm_hanoi chip
used for demonstrations in this work in Fig. 16 along with

FIG. 16. Layout of the ibm_hanoi device. Two-qubit calculation
uses qubits 1,4,7,8. Three-qubit calculation uses 5,3,2,1,4,7. Four-
qubit calculation uses 1,2,3,6,4,7,5,8.

noise spectroscopy collected around the time of the simula-
tions in Table I. It should be noted that other sources of noise
exist in real devices, and this only represents the sources of
noise that were measured.
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