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Maximal Anderson localization and suppression of surface plasmons in two-dimensional
random Au networks
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Two-dimensional random metal networks possess unique electrical and optical properties, such as almost total
optical transparency and low sheet resistance, which are closely related to their disordered structure. Here we
present a detailed experimental and theoretical investigation of their plasmonic properties, revealing Anderson
(disorder-driven) localized surface plasmon resonances of very large quality factors and spatial localization
close to the theoretical maximum, which couple to electromagnetic waves. Moreover, they disappear above a
geometry-dependent threshold of approximately 1.7 eV in the investigated Au networks, explaining their large
transparencies in the optical spectrum.
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I. INTRODUCTION

Disordered nanostructures of noble metals, especially Au,
are studied for their unique disorder-induced mechanical,
electric, chemical, and optical properties, and ensuing appli-
cations such as flexible electrodes for neural implants [1] and
monitoring of blood vessels [2], electromechanical chemical
vapor and gas sensors, etc. [3,4]. One of their most intriguing
properties is their ability to sustain strongly enhanced and
localized electromagnetic fields coupled to localized surface
plasmons (LSPs). These were first observed in so-called ran-
dom dielectric thin films (also referred to as semicontinuous
metal films) [5–7], which occur upon Volmer-Weber-type
growth of metallic thin films. Following the Ioffe-Regel
criterion [8], Anderson localization (AL) of (classical and
quantum) waves in disordered systems can occur in the limit
of strong resonant scattering when the mean free path be-
comes equal to or less than the wavelength. Accordingly,
various articles discuss the observed emergence of localized
surface plasmon modes in disordered systems in the context
of AL employing different localization measures and theo-
retical frameworks (for a quasistatic description, see [9] and
references therein; for fully retarded, see [10,11]). Average
quantities such as energy transport or effective dielectric func-
tions may be well described with the help of renormalization
techniques and sophisticated self-consistent theory of AL
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[11]. We note that persisting theoretical challenges are met
in the description of anisotropic and lossy media, and in the
description of the local fluctuations, which may be ultimately
traced to the vectorial and non-Hermitian character of the
plasmon dynamics.

Meanwhile, AL of classical optical and infrared fields
has been observed in a variety of related systems, such as
nanoparticle (NP) aggregates [12] and lithographically pro-
duced cavities [13,14]. Moreover, various applications such
as surface-enhanced Raman spectroscopy (SERS) [5,15], the
effective generation of nonlinear optics on the nanoscale
(e.g., four-wave mixing, nonlinear absorption, harmonic gen-
eration) [16], random lasing [17,18], and bistable optical
transistor [19] have been discussed and partially realized.
Here, persisting challenges in engineering the network geom-
etry and the limited substrate choice of the semicontinuous
metal films still hamper these efforts.

Very recently, the development of a novel synthesis route
allowed for the synthesis of large-scale two-dimensional (2D)
Au networks with significantly reduced mass thickness (com-
pared to the semicontinuous metal films), deliberately tunable
coverage, and self-similar (fractal) character [20], thereby
overcoming some of the above limitations. In the following,
we experimentally demonstrate the emergence of disorder-
driven LSP resonances in this novel type of Au networks. We
demonstrate very large quality factors of ≈8 of these modes
and show that the localization mechanism can be described
in terms of AL by comparison with simulations allowing
to deliberately switch on loss, retardation, and disorder.
For their characterization, we employ high-spatial-resolution
scanning transmission electron microscopy–electron energy-
loss spectroscopy (STEM-EELS) plasmon mapping [21],
which permits one to resolve the LSPs at a nanometer length
scale and a direct correlation of the localization position with
the underlying Au network structure.
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FIG. 1. Transmission electron microscopy image of an exem-
plary 2D Au network.

II. EXPERIMENT

A. Au network synthesis

Two-dimensional Au networks of varying fractal dimen-
sion and coverage in the range between 31% and 54%
have been synthesized following the procedures described in
Ref. [20]. Following the initial synthesis step and after the
evaporation of the organic solvent, the networks were trans-
ferred to a TEM grid by carefully pressing the substrate onto
the aqueous solution. Then, the substrate was washed with
ethanol (EtOH) (see Fig. 1 for an exemplary network and
Appendix A for more details).

B. Electron energy-loss spectroscopy

Spatially resolved EEL spectra (so-called spectrum im-
ages) of a collection of subareas of the network were recorded
scanning a sharply focused probe of electrons with 80 keV
kinetic energy over the sample (see Fig. 2) in a probe-
corrected FEI Titan3 TEM. The microscope is equipped with
a Gatan Tridiem energy filter and a Wien monochromator,
which was optimized [22] to facilitate an energy resolution
of 60–70 meV. EELS was performed under a convergence
angle of 16 mrad and a collection angle of 3 mrad with
an energy dispersion of 0.01 eV per channel. The spectrum
images were acquired with a beam current of 120 pA and
dwell time of 30 ms. To improve measuring statistics, several
(up to 10) repeated spectrum images were recorded for each
dataset, followed by the summation of the data accounting
for individual spatial drifts. The obtained spectra were cor-
rected for the temporal energy instability of primary electrons
through the alignment of the zero-loss peak (ZLP). This peak,
prevailing in the low-loss EELS region, was then deconvolved
from the spectra by means of Richardson-Lucy algorithm and

FIG. 2. (a) Experimental setup. (b) 2D slice of the 3D dataset
[�(x, y, ω)] at h̄ω = 0.6 eV. The color scale corresponds to the
spatially resolved loss probability; the gray arrows illustrate propaga-
tors of the surface plasmons eventually interfering constructively at
random hot spots. (c) Spectrally resolved loss probability at a specific
scan positioyn.

ultimately subtracted, employing a reference profile collected
in a separate run in vacuum. Finally, the energy positions
and magnitude of distinct peaks in the low-loss region were
fitted using the nonlinear least-squares procedure to deter-
mine the quality factors. The thereby obtained loss probability
�(x, y, ω) = �(�r⊥, ω) corresponds to a projection of the
induced z component of the electric field along the beam di-
rection, {�(r⊥, ω) ∝ ∫

dz Re[e−iωz/vz Ẽz(r⊥, z, ω)]}. For more
details on the method, the setup, and the various processing
steps, see Refs. [21,23]. To analyze the spatial localization of
the LSP modes, we corrected for elastic scattering absorption
(i.e., scattering of electrons into large scattering angles) by
normalizing the pointwise collected spectra with the over-
all intensity of each individual spectrum, i.e., �n(r⊥, ω) =
�(r⊥, ω)/

∫
�(r⊥, ω) dω [see Fig. 3(a) for a compari-

son of an as-recorded and an absorption-corrected loss
probability map].

Examples of typical spectra, shown in Fig. 3(b), reveal the
presence of spectrally localized surface plasmon modes of
excitation energies h̄ω ranging from approximately 0.3 eV (≈
73 THz) to 1.7 eV (≈ 387 THz). Below 0.3 eV, the limited
energy resolution of the experiment prevented the detection
of modes. Most remarkably, the quality factor Q = ω/�ω

given by the ratio of the energy of a particular mode and
its energy width (FWHM) frequently reaches values in the
range of 10, which comes very close to the theoretically
achievable maximum in Au limited by the comparatively
large imaginary part (loss) of its bulk dielectric function (see
Appendix B). Displaying the spatial slices of the spectrum
image datacube [Figs. 3(a) and 3(c)] reveals the spatial lo-
calization of the surface plasmon modes (so-called hotspots),
with the magnitude of the localization clearly increasing
towards higher excitation energies. Moreover, we observe
that the maximally localized modes (in the vicinity of the
1.7 eV threshold) are always centered around the underly-

033221-2



MAXIMAL ANDERSON LOCALIZATION AND SUPPRESSION … PHYSICAL REVIEW RESEARCH 6, 033221 (2024)

FIG. 3. (a) As-recorded and absorption-corrected loss probability map at 1.62 eV. (b) EELS spectra from different scanning regions
indicated by the solid (overall image) and dashed blue rectangle (upper right corner) in the bottom image of (a). (c) High-angle annular
dark-field (HAADF) image of EELS scanning region (a), and corresponding absorption-corrected loss probability maps at different energies
(the contours of the metal web are highlighted for better visibility). The intensity scaling of the absorption-corrected loss probability maps is
individual to compensate for the effect of decreasing loss probability with increasing energy for better visibility of the hotspots.

ing Au network stripes. In the region between approximately
1.7 eV and the surface plasmon cutoff frequency (ωcut, Au) of
Au at 2.4 eV, only very weak higher-order LSP modes of
the Au-vacuum interface of almost absent mutual hybridiza-
tion are observed (no hotspots). Accordingly, the mean loss
probability �

exp
n (ω) (averaged over several spatial subsets of

the web) decreases until the threshold at approximately 1.7 eV
and becomes very small in the spectral range between the
threshold and ωcut, Au. The latter behavior is in good agreement
with the optical transmission [see Fig. 4(a)], which proves
the coupling of the localized plasmons to free (transverse)
electromagnetic waves.

III. ANDERSON LOCALIZATION

By breaking any translational symmetry, the self-affine Au
networks support localized modes, which are square inte-
grable, and may be assigned a position and excitation energy.
To measure the localization from the EEL spectrum images,
we employed two different localization measures frequently
used in the context of AL [14,24]: (I) the azimuthally averaged
(〈·〉ϕ) autocorrelation,

Rexp(r, ω) =
〈 ∫ ∞

−∞
[�n(r⊥ + r′

⊥, ω) − �̄n(ω)]

× [�n(r′
⊥, ω) − �̄n(ω)]d2r′

⊥

〉
ϕ

, (1)

within a certain energy interval (midpoint ω) corresponding
to the energy resolution of the experiment, and (II) the inverse
second momentum of the spectrum image,

pexp(ω) =
(∫ ∞

−∞

�2
n (r⊥, ω)

�̄2
n (ω)

d2r⊥

)−1

, (2)

within an energy interval [here, �̄n(ω) = ∫
�n(r⊥, ω)d2r⊥

corresponds to the mean loss probability of a spatial subset
at ω]. The latter is closely linked to the so-called participation

number psim and has been shown to reflect localization rather
robustly, independent of absorption and the character of local-
ization (e.g., exponential or algebraic) [10].

By exhibiting a characteristic central maximum and de-
creasing toward larger distances, the autocorrelation confirms
the localized nature of the surface plasmon resonances (pres-
ence of hotspots). Their correlation length ξ (as characterized
by the full width at half maximum (FWHM) [see Fig. 4(b)]
of the autocorrelation) decreases towards larger energies with
no significant dependency on the network properties [see
Fig. 4(c)]. The increasing localization of the LSPs is fur-
ther corroborated by pexp [see Fig. 4(c)], which increases
toward higher energies until approximately 1.7 eV [i.e., the
same energy where localized modes disappear; see Fig. 4(d)].
Please note that the evaluated spectral range is restricted to
energies above ≈ 0.8 eV due to the limited spatial extent of
the measured spatial subsets eventually artificially cropping
the modes.

In order to further analyze the observed localization
behavior, we conducted numerical simulations of sur-
face plasmon resonances in which the strength of dis-
order, loss, and retardation may be deliberately modi-
fied. The fully retarded response of the Au network is
well described by macroscopic Maxwell’s equations taking
into account a frequency-dependent inhomogeneous dielec-
tric function, i.e., ∇ × ∇ × E(r, ω) − k2ε(r, ω)E(r, ω) =
−i 4πk

c jext (r, ω). Here, jext denotes the external current
(e.g., electron beam in the case of EELS), k = ω/c is
the wave number of the free photon, and we employed
an experimentally determined complex dielectric function
of Au ε(ω) = εAu(ω) in order to appropriately consider
losses [25].

The prefactor k2 of the spatially random dielectric function
increases the impact of disorder at larger ω (additional fre-
quency dependency is introduced by the dielectric function),
which agrees well with the experimentally observed increase
of localization. This behavior is markedly different from quan-
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FIG. 4. (a) Optical transmission of a macroscopic web (mm in
size, coverage ≈0.4) compared to the spatially averaged loss prob-

ability �
exp
n (ω) as well as the simulated loss probability �

sim
(ω) =

Nres(ω)|P(ω)|. (b) Azimuthally averaged autocorrelation R(r, ω) of
resonant LSP modes at 0.8 eV energy loss. The width of the blue
shaded area indicates the FWHM ξ of the central peak (correlation
length). (c) Spectral dependence of the inverse participation number
1/p(ω) and correlation length 1/ξ (ω). (d) Spectral dependence of the
number of resonant eigenmodes, Nres(ω), of the simulated system of
coupled electric dipoles. The simulated data were averaged over an
ensemble of 10 disorder configurations in all cases.

tum AL, where such an “intrinsic” amplification of disorder
toward higher frequencies is absent and disorder is dominant
in the low-energy limit [26]. Another fundamental difference
to AL within the framework of the Schrödinger equation is the
vectorial character of the electric field [27].

In order to circumvent the computationally demanding (if
not unfeasible) computation of the above partial differential
equation on a large Au net, we solved the geometrically in-
verse problem of interacting randomly distributed oblate Au
nanoellipsoids (representing the holes of the network) of ran-
dom lateral main axis and the same thickness as the network
yielding the same (inverse) coverage like the Au network.
This approach exploits the qualitative similarity between the
plasmonic response of the complementary and the original
system due to a generalized Babinet principle [28–30]. The
latter holds in the limit of thin samples (in comparison to
the photon wavelength) consisting of perfectly conducting
material [28]. Both conditions are satisfied well by the in-
vestigated 2D networks in the evaluated frequency range (ω
well below the material’s plasma frequency ωp). Restricting
the interaction between the NPs to the dominant dipole cou-
pling leads to further simplification, i.e., the following discrete

equation system for the particles’ dipole moments P:

Pi(ω) − αi(ω)
N∑

j=1, j 
=i

Gi j (ω)P j (ω) = αi(ω)Eext
i (ω),

with the retarded dipole interaction [31]

Gi j (ω) = eikri j k2

4πε0ri j
· (I3 − ei j ⊗ ei j )

+eikri j (1 − ikri j )

4πε0

(
3ei j ⊗ ei j − I3

r3
i j

)
.

Here the indices i, j, running from 1 to the number of par-
ticles, N , denote the individual NPs, I3 the 3 × 3 identity
matrix, αi is the polarizability tensor of an ellipsoidal NP,
Eext

i is the external electric field (e.g., corresponding to the
Liénard-Wiechert potential of the beam electrons), and ei j is
the unit distance vector between two NPs (see Appendix C for
details).

As we seek to model the geometry of the holes in the 2D
random networks, we approximate the NPs as highly oblate
ellipsoids, for which an analytic solution for the polarizability
tensor exists. Along the principle axis of an ellipsoid (denoted
by m), it reads [32]

αmm(ω) = 4πε0a1a2a3
ε(ω) − 1

3 + 3Li[ε(ω) − 1]
, (3)

with the purely geometrical depolarization factors,

Lm = a1a2a3

2

∫ ∞

0

1(
a2

m + q
)√∏3

n=1

(
q + a2

n

)dq, (4)

satisfying L1 + L2 + L3 = 1. Here, am are the semiaxes of
the ellipsoid and ε(ω) is the bulk dielectric function of the
metal. In our simulations, we will always employ strongly
oblate ellipsoids with in-plane semiaxes a1, a2 in the range
of several tens of nanometers and out-of-plane a3 = az below
1 nm, i.e., a1, a2 � a3 by roughly one order of magnitude,
which corresponds well with the observed nature of the holes.
To include radiative corrections, we also incorporated the first-
order correction factor according to [31], i.e.,

αi → αi

1 − k3

6πε0
αi

. (5)

As a consequence of k3 ∏
m am � 1, however, this correc-

tion is small and may be neglected, which we also explicitly
checked further below in the simulations by switching re-
tardation on and off (see Fig. 7). In order to compute the
polarizability tensor for arbitrary in-plane orientations of the
oblate ellipsoids (i.e., with the in-plane principle axis not
coinciding with the coordinate axis), the diagonal α matrix
is rotated by left and right multiplication with an xy rotation
matrix.

Resonant modes occur when (I3N − αG) approaches zero
(i.e., a small external field leads to a large response),
where we wrapped all the αi into one matrix α of size 3N and
abbreviated the application of the dipole interaction over all
particle indices into one large G. In the following, we will de-
termine these modes by solving the corresponding eigenvalue
problem P (ω)PP (ω) = α(ω)G(ω)PP (ω) in dependence on
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FIG. 5. Spatial distribution of the induced dipole moments of selected resonant eigenmodes of the simulated system of coupled dipoles at
different energies. The number of dipoles participating to a resonant mode (participation number) decreases with increasing energy, revealing
stronger localization with higher energy.

ω and restricting the eigenspace to modes with complex
eigenvalues P within a small interval around 1 (resonance
condition; see Appendix C), i.e., |P − 1| � δ. Their localiza-
tion behavior is then analyzed by computing their azimuthally
averaged 〈·〉ϕ autocorrelation,

Rsim(r⊥, ω) =
〈 ∫

[PP (r⊥ + r′
⊥, ω) − P̄P (ω)]

× [PP (r′
⊥, ω) − P̄P (ω)]d2r′

⊥

〉
P,ϕ

, (6)

and participation number psim(ω) = 〈∑N
i=1

1
|Pi,P (ω)|2 〉P from

the induced dipole moments of the eigenmodes PP and the
corresponding mean value P̄P (ω) = ∫

PP (r⊥, ω)d2r⊥. Both
Rsim and psim are averaged over resonant modes in the interval
around 1 indicated by 〈·〉P , respectively.

Using that model, we computed the localization proper-
ties of the resonant modes (typically as an average over all
resonant modes in the interval) for a set of free parameters
of the model. In order to improve the statistics, we generally
averaged the results over several lattice configurations. As the
reference structure, we employed a square lattice of NPs (i.e.,
holes) matching the filling factor of the experiment. We then
varied the following parameters.

(i) Geometrical parameters:
(a) total size of the system (0.75–1.5 µ m);
(b) filling factor/coverage via density of NPs [182–292 NPs

(representing the holes of the webs) in the system leading to
filling factors of 0.1–0.4];

(c) disorder via uniform principal axis (±10–20 nm) and
orientation distribution of the NPs (corresponding to random
diagonal entries in α) and uniform position distribution (cor-
responding to off-diagonal random entries of G).

Please note that by independently randomizing the princi-
pal axis length of the NPs, their volume was also randomized.
The uniform distribution of the NPs around their nominal
positions of the square lattice was limited such that the
square distribution boxes of adjacent NPs touched but did not
overlap.

(ii) Dielectric parameters (εAu and εAl are taken from [25]
and [33]).

(iii) Interaction parameters (quasistatic, fully retarded).
We also evaluated the autocorrelation and inverse par-

ticipation number (and other characteristics). The whole
algorithm has been implemented in the JULIA programming

language employing efficient libraries for linear algebra and
numerical integration.

Accordingly, the eigensolutions in close vicinity to the
resonance condition are localized depending on the corre-
sponding energy [see Figs. 5(a)–5(g)], in good agreement with
the experiment [Fig. 3(c)]. Similarly, the simulated inverse
participation number increases with the energy as observed
experimentally [Fig. 4(c)]. Moreover, the number of resonant
eigenmodes decreases toward higher energies and is eventu-
ally completely suppressed above a spectral threshold around
1.7–1.8 eV [see Fig. 4(d)]. The latter reflects the experimental
observation of vanishing hybridized LSP modes above this
threshold [see Figs. 3(b) and 3(c)]. To calculate a measure
for the loss probability, we multiplied the number of resonant
modes, Nres(ω), corresponding to the optical density of states,
with the mean induced dipole moment |P(ω)| (averaged over
all coupled dipoles and resonant modes), corresponding to

the interaction strength [�
sim

(ω) = Nres(ω)|P(ω)|]. The ob-
tained quantity reproduces the experimental loss probabilities
very well [see Fig. 4(a)]. Below 1.7 eV, �sim decreases with
higher energy and saturates at small values above the 1.7 eV
threshold, again reflecting the high optical transparency in the
visible spectral range.

To gain further insight, we separately analyzed the different
vector components of the induced dipole moments P. Accord-
ingly, the localization behavior is strongly dominated by the
in-plane (⊥) field components since the mean dipole moment
(P, averaged over all nanoplatelets and resonant eigenmodes)
perpendicular to the nano-oblates is negligible in comparison
to the in-plane components (see Fig. 6).

FIG. 6. Comparison of the mean dipole moment, in-plane (P⊥)
and perpendicular to the nano-oblates (Pz).
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This observation in combination with L1 ≈ L2 ≈ 0 �
L3 ≈ 1 following from a1, a2 � a3 motivates the following
separation of in-plane and out-of-plane components. We start
out by rephrasing the inverse polarizability,

α−1
i (ω) = 1

Vi
χ (ω) + 1

Vi

3∑
n=1

(3Li,n − 1)ei,n ⊗ ei,n − i
3k3

3
I3 ,

(7)

where Vi = ai1ai2ai3 is the volume of the NPs, ei,n the unit
vector along the principal axis of the ith NP, and

χ (ω) = ε(ω) + 2

ε(ω) − 1
. (8)

Substituting into Eq. (C1), while taking into account L1 ≈
L2 ≈ 0 � L3 ≈ 1 and Gi j,13 = Gi j,23 = 0, decouples the re-
sulting equation in the xy and z planes. The xy-plane equation,
hosting the localization behavior as noted above, reads

[χ (ω) − 1]Pi = ViE i + Vi

[
Gi j,⊥(ω) + 2k3

3
I2

]
P j, (9)

with

Gi j,⊥ =
(

Gi j,11 Gi j,12

Gi j,21 Gi j,22

)
. (10)

Using a Drude dielectric function,

χ (ω) − 1 = −3
ω(ω + i/τ )

ω2
p

, (11)

the resonance condition reads∣∣∣∣∣3ω(ω + i/τ )

ω2
p

+ λk (ω)

∣∣∣∣∣ � δ , (12)

where λk (ω) are eigenvalues of the matrix on the right-hand
side of Eq. (9) defined by

D
[

G⊥(ω) + 2k3

3
I2N

]
Pk = λkPk, (13)

with

D :=

⎛
⎜⎜⎜⎝

V1I2 0 · · · 0

0 V2I2
. . . 0

...
. . .

. . .
...

0 0 · · · VN I2

⎞
⎟⎟⎟⎠ . (14)

This resonance condition may be satisfied at low frequen-
cies and filling factors, as observed in Fig. 7, where we
show the results of a couple of simulations, showing the
2D Anderson nature of the localization, by (I) a quasistatic
simulation neglecting retardation effects, (II) a simulation as-
suming a loss-free material [perfect conducting material with
Im{ε} = 0], (III) a simulation of a web with much smaller
coverage in comparison to the experimentally investigated
one, and (IV) a simulation of an aluminum web. Switching
off retardation and loss does not lead to a significant change of
the inverse participation number, which proves that the local-
ization is disorder driven. Changing the coverage or material,
on the other hand, leads to a shift of the spectral threshold
of vanishing hybridized LSP modes, although the localization
behavior, in general, remains (see Fig. 7).

FIG. 7. Simulated inverse participation number for different cov-
erages (red and blue curves) and material (orange curve). The green
and black graphs correspond to simulations of the quasistatic case
(neglecting retardation effects) and loss-free (no dielectric damping)
material, both for gold and coverage of 0.4.

The particular form of the resonance problem in 2D (9) and
the associated eigenvalue equation (13) allows separating the
sources of disorder into diagonal ones (D) and off-diagonal
ones (G), corresponding to the size and positional disorder
of the NPs, respectively. Figure 8 shows that in the case
of purely off-diagonal disorder, the system does not show
resonant modes (indicated by the dashed green line). The
inverse participation number corresponding to diagonal disor-
der reproduces the general behavior of increasing localization
at higher energies. Thus, the size distribution of the holes
dominates the localized response in the 2D networks.

Having established a good qualitative and partly even
quantitative agreement between experimentally observed
LSPs in the Au networks and the simulated LSPs in the ran-
domly distributed oblate NPs, we may now draw the following
conclusions about the localization behavior:

(I) Switching off loss and retardation (see Fig. 6) does
not significantly alter the localization behavior. While the
former rules out finite-lifetime-related localization effects as
the dominant mechanism behind the observed localization, the
latter shows that wave interference on short distances below
the photon wavelength is the driving force (in correspondence
to the Ioffe-Regel criterion). The last observation is corrob-
orated by the fact that the ordered square lattice of identical

FIG. 8. Effect of diagonal (NP geometry variation only) and
off-diagonal (position randomization only) disorder on the inverse
participation ratio. Only randomizing the positions did not yield res-
onant modes according to the resonance criterion, which is indicated
by a dashed line.
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NPs (corresponding to a regular network of holes) sustains
quasicontinuous plasmon bands (not shown) [23].

(II) The localization behavior in this 2D system is driven by
the positional disorder of the holes and not their size disorder
(within boundaries given by simulated coverage rates; see
Fig. 6). The latter property may significantly change upon
increasing the thickness, also modifying the localization be-
havior as a consequence.

(III) The disappearance of hybridized localized modes
above a spectral threshold (1.7 eV in the case of the inves-
tigated Au webs) independent of loss magnitude is a universal
localization effect in the following sense. Different geomet-
ric parameters of the network (i.e., coverage, size of holes)
or material composition may lead to a shift of the spectral
threshold, whereas the general localization behavior remains
(see Fig. 6). For instance, Au NP assemblies of lower coverage
exhibit a lower threshold, corresponding to smaller/less holes
in the network (see blue curve in Fig. 6).

We therefore attribute the suppression of LSPs in these
networks to a (destructive) wave interference effect ultimately
canceling the dominant dipolar coupling between various
hotspots above a certain frequency. This disappearance of
localized modes above the threshold at the lower end of the
optical spectrum explains the exceptionally large transparen-
cies of up to 97% (in the optical frequency range 443–635
THz) of the Au networks [20]. We note, however, that our
data do not allow a statement about a possible existence of a
mobility edge (i.e., the transition to fully delocalized states)
below 0.3 eV. Reasons are the limited energy resolution of the
experiment and the system-size limits of the simulations.

IV. SUMMARY AND OUTLOOK

Summing up, we showed both experimentally and theo-
retically that self-affine metallic networks of very low mass
thickness and coverage support Anderson localized disorder-
driven LSP resonances that are confined to the network plane
in their oscillation direction. These LSP modes have very
large quality factors close to the theoretical maximum and
show increasing spatial localization toward higher excitation
energies (frequencies). They typically consist of few hotspots,
couple to electromagnetic plane waves, and their localization
behavior is mainly driven by the random distribution of the
network holes. They are only weakly affected by retarda-
tion effects and disappear above ≈1.7 eV in the investigated
Au networks, which explains their exceptionally large trans-
parency in the optical spectrum.

Unresolved questions pertain to the existence of a mobility
edge and generally to a better understanding of the observed
correlation distance, their spectral distribution, and the impact
of the networks’ self-affinity and thickness, which hinges on
the development of an analytical description of AL in such
random 2D networks (e.g., via self-consistent AL theory).
Such a theory could support the development of design rules
for the networks, e.g., in order to further optimize design
transparency for envisaged future application as transparent
electrodes.

The data accompanying this publication are available
in [34].
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APPENDIX A: SYNTHESIS OF THE AU NETWORK

The general synthesis route of the 2D Au networks (see
Fig. 1 for an example) corresponds to that described in Hiekel
et al. [20]. First, Au NPs were synthesized. To that end, 0.1
mmol HAuCl4 · 3H2O (Sigma-Aldrich, >99.9 % trace metal
basis) was dissolved in 492 ml water and solutions (volumes
2–4 ml) of 0.143 mmol/ml NaBH4 (Sigma-Aldrich, >96 %)
were swiftly added before stirring the solution for 30 min.
In one case, the obtained solution was diluted afterwards by
adding 100 ml water.

Subsequently, the 2D Au network structures were prepared
in the following way. First, 200 µl or 400 µl of the above
synthesized Au NP solution was deposited on cover slips
(24 × 24 mm, washed with acetone). Subsequently, the so-
lution was slowly overlaid with 100 µl of a toluene/EtOH
(1:1) mixture and the 2D Au network structures formed at the
phase boundary. After the evaporation of the organic solvent,
the structures were transferred to a TEM grid or another
cover slip by carefully pressing the substrate onto the aqueous
solution. Then, the substrate was washed with EtOH. Optical
transmission spectra were recorded using a Varian Cary 5000
absorption spectrometer.

APPENDIX B: THEORETICAL LIMIT OF THE Q FACTOR

In general, the Q factor of a LSP mode is defined as
Q = ω

�ω
, where h̄�ω corresponds to the full width at half

maximum (FWHM) of the spectral peak in the loss spec-
trum. From the time-domain Fourier transform of the damped
plasmonic oscillator (with damping constant τ ), one ob-
tains a Lorentzian line shape: F{e−at } = F{e−iωt · e−t/τ } =√

1
2π

1/τ

(1/τ )2+(ω−ω0 )2 . Analyzing the extrema of the Lorentzian
curve, the maximum can be found at ω − ω0 = 0. Hence, it
follows, for the FWHM, h̄�ω = h̄

2τ
. Assuming τ = 5.646 ×

10−14 s [35], this directly leads to h̄�ω ≈ 20 meV. At 1 eV
loss energy, this corresponds to Q ≈ 45, which represents the
theoretical limit which is reduced in practice due to loss chan-
nels not considered in the Drude model, e.g., radiative losses,
inter- and intraband transitions, etc. We note, furthermore, that
the experimentally determined FWHM is also broadened due
to the residual width of the zero loss peak in the EEL spec-
trum of ≈30 meV after the Richardson-Lucy deconvolution.
Consequently, the experimentally observed quality factors of
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the AL localized LSPs are close to the theoretical maximum
in Au plasmonic nanostructures, which may be further ver-
ified by comparing to reported Q factors in the literature
(e.g., [28]).

APPENDIX C: SELF-CONSISTENT DIPOLE MODEL

The self-consistent dipole coupling model,

Pi(ω) = αi(ω)

⎡
⎣Eext,i(ω) −

N∑
j=1, j 
=i

Gi j (ω)P j (ω)

⎤
⎦, (C1)

couples a set of N NPs, denoted by i or j, with anisotropic
polarizability tensor αi via dipole interaction [31]

Gi j (ω) = eikri j

4πε0

k2

ri j
(I3 − ei j ⊗ ei j )

+ eikri j

4πε0

(1 − ikri j )(3ei j ⊗ ei j − I3)

r3
i j

, (C2)

and an external electric field Eext,i (in our case, the evanescent
field produced by the scanning electron beam). Here, the
wave number reads k = ω/c and the interparticle unit distance
vector is ei j = ri j/ri j .

In order to test the impact of retardation on the localization
behavior, we also tested the nonretarded version of the dipole
interaction [31],

Gi j = 1

4πε0

3ei j ⊗ ei j − I3

r3
i j

. (C3)

The dipole coupling model (C1) may be written in the
following compact form:

[α−1(ω) + G(ω)]P(ω) = Eext (ω), (C4)

where α is the 3N × 3N matrix of all NP polarizability ten-
sors,

α =

⎛
⎜⎜⎜⎝

α1 0 · · · 0

0 α2
. . . 0

...
. . .

. . .
...

0 0 · · · αN

⎞
⎟⎟⎟⎠, (C5)

and G is the matrix operator of all dipole interactions,

G =

⎛
⎜⎜⎜⎝

0 G12 · · · G1N

G21 0 . . . G2N
...

. . .
. . .

...

GN1 GN2 · · · 0

⎞
⎟⎟⎟⎠ . (C6)

The above model is a simplified version of the more general
multiple elastic scattering of multipole expansions (MESME)
model, which employs a higher-order multipole expansion
beyond dipolar coupling [36]. We show in the following
that the pure dipolar coupling model indeed reproduces the
main observations, while being sufficiently simple to facili-
tate analytical transformations as well as numerical solutions;
notwithstanding the impact of higher-order coupling may lead
to additional spectral shifts as well as localization effects, not
considered here.

The singularities of the resolvent, R(ω) = [α−1(ω) −
G(ω)]−1, define the frequencies at which the dipole assem-
bly response is resonant. These frequencies are complex
in general, whereas real frequencies or energies are probed
in the EELS experiment (we will come back to that point
further below). The resonances can be found by searching
for zeros of I3N − α(ω)G(ω) as a function of ω. To cir-
cumvent the costly zero search including the computation
of associated modes, we assume that the matrix A(ω) :=
α(ω)G(ω) is not defective and thus has a complete set
of eigenvectors,

α(ω)G(ω)Pk (ω) = Pk (ω)Pk (ω), (C7)

that guarantees the existence of a dual basis 〈Pk (ω)|Y l (ω)〉 =
Zk (ω)δkl at each frequency ω. The resolvent can then be
written as

R(ω) =
∑

k

|Pk (ω)〉〈Y k (ω)|
Zk (ω)[1 − Pk (ω)]

. (C8)

Therefore, the singularities of the resolvent occur at frequen-
cies where Pk ≈ 1. Hence, we can consider those modes
resonant, which have eigenvalues that fall into a small interval
around 1, i.e., |Pk − 1| � δ. In our analysis, we deliberately
set δ = 0.4 in order to have sufficiently large statistics for
the autocorrelation and inverse participation number, when
averaging over the ensemble of resonant modes. Smaller in-
tervals yield similar results in terms of localization with larger
stochastic noise. Larger intervals should be avoided in order
to not pick up nonresonant modes close to the accumulation
point of the spectrum at 0.
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