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We unravel the ground state properties and emergent nonequilibrium dynamics of a mixture consisting of
a few spin-polarized fermions embedded in a two-dimensional bosonic quantum droplet. For an increasingly
attractive droplet-fermion interaction we find a transition from a spatially delocalized fermion configuration to a
state where the fermions are highly localized and isolated. This process is accompanied by the rise of induced
fermion-fermion interactions mediated by the droplet. Additionally, for increasing attractive droplet-fermion
coupling, undulations in the droplet density occur in the vicinity of the fermions manifesting the back-action
of the latter. Following interaction quenches from strong to weaker attractive droplet-fermion couplings reveals
the spontaneous nucleation of complex excitation patterns in the fermion density such as ring- and cross-shaped
structures. These stem from the enhanced interference of the fermions that remain trapped within the droplet,
which emulates, to a good degree, an effective potential for the fermions. The non-negligible back-action of
the droplet manifests itself in the fact that the effective potential predictions are less accurate at the level of the
many-body wave function. Our results provide a paradigm for physics beyond the reduced single-component
droplet model, unveiling the role of back-action in droplets and the effect of induced mediated interactions.
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I. INTRODUCTION

Quantum droplets in atomic settings are many-body, self-
bound states that are nearly incompressible [1–3]. They are
characterized by extremely low densities and are typically
around eight orders of magnitude more dilute than their
counterparts in liquid helium [4]. Recently, they have been ex-
perimentally realized in single-component [3,5] and binary [6]
dipolar gases but also in Bose mixtures featuring contact inter-
actions [7–10]. Their stability originates from the presence of
repulsive quantum fluctuations that can be modeled by the per-
turbative Lee-Huang-Yang (LHY) [11,12] energy correction,
which arrests the collapse enforced by mean-field attrac-
tion. A successful theoretical description of these structures
is achieved through the so-called extended Gross-Pitaevskii
equation (eGPE), which incorporates the LHY contribution
[13,14]. The impact of higher-order correlations has also been
discussed [15–18].

Droplets exhibit a flat-top density for increasing atom
number or decreasing intercomponent attraction. Otherwise,
they possess a Gaussian-type profile irrespectively of the di-
mension [13,19,20]; see also Ref. [21] for solutions at large
chemical potentials. It has been shown that they can host sta-
ble nonlinear excitations, for example, in the form of solitary
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waves [22,23], vortices [24–27], and dispersive shock waves
[28]. These self-bound states can also appear in mixtures
with spin-orbit coupling [29–31] and in Bose-Fermi mixtures
[32–34]. For the latter the competition between an attractive
Bose-Fermi coupling and a repulsive Bose-Bose interaction
can lead to soliton-type structures [35,36]. More recently, it
was proposed that higher-order Bose-Fermi interactions are
able to support the formation of Bose-Fermi droplets [32–34].

Introducing impurities into such self-bound states can un-
veil new phenomena related, for instance, to the generation
of quasiparticle modes which have been intensively studied
in repulsive gases [37–39], or the existence of induced in-
teractions mediated by the droplet. Additionally, impurities
provide the possibility to act as probes for the properties
of the self-bound configurations, and recent investigations
have demonstrated that a bosonic impurity embedded in a
quasi-one-dimensional Bose-Bose droplet [40–42] features
self-localization and a rich excitation spectrum composed of
hybrid droplet and impurity modes. On the other hand, it was
found that a fermionic impurity immersed in a dipolar droplet
allows one to tune the bound state character of the latter
[43]. The impact of more than a single impurity in a droplet
regarding the back-action onto the latter and the phases of
the composite system, however, have not yet been explored.
Here also induced interactions among the impurities can arise.
Another interesting prospect is to understand the conditions
under which the impurity remains trapped or can escape from
the droplet [41] when it is dynamically perturbed. To address
these open questions we consider a few fermionic impurities
immersed in a two-dimensional (2D) bosonic droplet with
contact interactions. The ground state and dynamics of this
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composite system are captured via a set of Schrödinger equa-
tions for the fermions coupled to an eGPE for the droplet.

We find that the bound character of the ground state is
determined by the interplay between the combined mean-field
and LHY droplet energy [14] and the intercomponent one
for varying droplet-fermion coupling strengths. Also, a larger
number of fermions leads to a stronger bound composite sys-
tem, implying that the impurities can manipulate the strength
of the ensuing bound state. Specifically, a phase separation
[44] between the fermions and the droplet occurs for repul-
sive intercomponent interactions. Importantly, for attractive
couplings the fermions delocalize within the droplet and fea-
ture a gradual localization for larger attractions, a process
reminiscent of the self-pinning transition known in 1D gases
[45,46]. In this regime, attractive induced interactions among
the fermions arise constituting one of our central findings.
The strength of these induced interactions becomes larger
for increasing interspecies attraction and also depends on the
number of fermions. Simultaneously, a fraction of bosons
from the droplet accumulate in the vicinity of the impurities
manifesting the back-action of the latter to the droplet for
attractive intercomponent couplings.

Turning to the dynamics triggered by a quench of the
droplet-fermion interaction from strong to weak attractions,
we show that the fermions feature various excitation patterns
while remaining trapped within the droplet. These excitations
originate from interference of the fermion cloud caused by its
reflection from the droplet edges. The droplet appears to be al-
most insensitive to the quench exhibiting only weak amplitude
breathing motion. We also show that the dynamical response
of the fermions can be described using an effective approach,
where a static droplet provides an effective potential for the
fermions, by demonstrating good quantitative agreement with
the predictions of the coupled eGPE model at the density
level. However, substantial variations occur at the level of the
many-body fermion wave function. We note in passing that
this effective model is not capable to adequately capture the
spatially delocalized fermionic ground state that appears at
smaller attractions.

Our work is organized as follows. Section II describes
the three-component droplet-fermion mixture, the underlying
energy functional and set of coupled evolution equations.
In Sec. III we discuss the ground state phases of the
droplet-fermion setting and analyze the presence of induced
fermion-fermion interactions. Section IV is devoted to the
study of the nonequilibrium dynamics of the mixture fol-
lowing quenches of the intercomponent coupling from strong
to weak attraction. We conclude and discuss future research
directions based on our results in Sec. V.

II. ATTRACTIVELY INTERACTING
BOSE-FERMI MIXTURE

A. Droplet-fermion setting and assumptions

We consider a mixture composed of a few (NF ) spin-
polarized fermions immersed in a two-component Bose gas.
The whole system experiences a strong harmonic confinement
of frequency ωz in the transversal z direction, such that all
energy scales in the x − y plane are much smaller than h̄ωz.
This ensures an effective 2D nature of the dynamics [47,48],
as transversal excitations are essentially frozen out. In the
2D plane, both species are confined by a box potential of
length Lx = Ly ≡ L, which is chosen large enough such that
boundary effects are precluded unless stated otherwise.

To not get lost in the large parameter space, we will
assume that the bosonic components have equal repulsive in-
tracomponent 2D s-wave scattering lengths, i.e., a11 = a22 ≡
a > 0, and repulsive intercomponent coupling, a12 > 0. In
this case, droplets form in the region where the total en-
ergy is negative [1,14], which appears for densities nB <

e−2γ−1/2 ln (a12/a)/2πa12a, with γ being Euler’s constant.
It is worth noting the difference compared to the case in
three dimensions where droplets form when δa(3D) = a(3D)

12 +√
a(3D)

11 a(3D)
22 < 0 with 3D scattering lengths a(3D)

ii > 0 and

a(3D)
12 < 0 [1,13]. If we further assume that the bosonic compo-

nents have the same mass (m1 = m2 ≡ mB) and atom number
(N1 = N2 ≡ NB), the resulting droplet will be a single one
with ψ1 = ψ2 ≡ ψ for the two macroscopic bosonic wave
functions [14,49,50]. For convenience, we also assume that
the fermions have the same mass as the bosons (mB = mF ≡
m). However, due to the antisymmetry of the fermionic many-
body wave function, �(r1, r2, ...), s-wave scattering between
the individual fermions is forbidden [51,52], and they there-
fore interact only with the bosonic droplet atoms [35].

To a good approximation such a droplet-fermion setting
can be experimentally realized using a 39K–40K mixture,
where the two bosonic components correspond to two differ-
ent hyperfine states of 39K [7,8]. In this case, the condition
a11 ≈ a22 can be reached for a Feshbach magnetic field of
strength B ≈ 54.8 G as in the 3D experiment of Ref. [10].
Also, in order to ensure that the system remains two-
dimensional, a transversal trap, e.g., of frequency ωz/2π ∼
106 Hz can be used.

B. Energy functional

The energy functional of the three-component mixture con-
taining the mean-field interactions and the first-order LHY
quantum correction can be written as

E

V
= Ekin + Etrap + Eint, Ekin =

∑
i=1,2

h̄2

2m
|∇ψi(r)|2 +

NF∑
i=1

h̄2

2m
|∇φi(r)|2, Etrap =

∑
i=1,2

Vtrap(r)|ψi(r)|2 +
NF∑
i=1

Vtrap(r)|φi(r)|2,

Eint =
∑
i=1,2

g̃BF|ψi(r)|2nF

︸ ︷︷ ︸
EBF

int

+ g̃BB

4
[|ψ1(r)|2 + |ψ2(r)|2]2 ln

( |ψ1(r)|2 + |ψ2(r)|2
2en0

)
︸ ︷︷ ︸

EBB
int

. (1)
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Here r = (x, y), g̃BB = 8π h̄2/m ln2(a12/a) is the in-
tracomponent interaction coefficient for the droplet, and
|ψi|2 = nB is the droplet density. The external box po-
tential is given by Vtrap(x, y) = 0 for |x|, |y| � L/2 and
Vtrap(x, y) = ∞ otherwise. Moreover, φn denote the single-
particle fermionic orbitals, which when expressed in terms
of a Hartree product form the total fermionic wave function
� = 1√

NF !

∑NF !
i sgn(Pi)Pi[φ1(r1) · · · φNF (rNF )]. In this ex-

pression, Pi is the permutation operator which exchanges
the particle positions within the orbitals. Accordingly, the
fermionic density distribution is nF = ∑NF

n=1 |φn|2.
The first two terms in Eq. (1) represent the standard kinetic

(Ekin) and potential (Etrap) energy contributions of the mixture
referring to both the droplet components (i = 1, 2) and the
fermion subsystems. However, the third term Eint describes
the mean-field droplet-fermion interaction energy (EBF

int ) of
strength g̃BF , and the combined mean-field and LHY inter-
action energy terms (EBB

int ) of the bosonic droplet as derived
in Ref. [14]. Here n0 = e−2γ−3/2

2π

ln(a12/a)
a12a being the equilibrium

droplet density in the thermodynamic limit.

C. Equations of motion

To identify the ground state phases and monitor the time
evolution of the droplet-fermion mixture we consider the re-
spective system of coupled (NF + 1) equations of motion.
These correspond to the 2D reduced eGPE describing the
droplet and the NF Hartree-Fock equations of motion for
the φ j characterizing the time evolution of the jth fermionic
orbital, given by

i
∂ψ

∂t
=

[
− ∇2

2
+ Vtrap + gBBnB ln

(
nB√
en0

)
+ gBF nF

]
ψ,

(2a)

i
∂φn

∂t
=

[
−∇2

2
+ Vtrap + 2gBF nB

]
φn. (2b)

For generality, the energy, length, and time are ex-
pressed in terms of h̄ωz, lHO = √

h̄/mωz (transverse oscillator
length), and 1/ωz, respectively. The interaction parameters are
rescaled as gBF = g̃BF /(h̄ωzl2

HO) and gBB = g̃BB/(h̄ωzl2
HO).

The ground state of the droplet-fermion system is obtained
iteratively by evolving Eq. (2a) in imaginary time using the
split-operator method [53]. In particular, we first calculate the
droplet wave function. Subsequently, we use nB to diagonalize
Eq. (2b) to determine the fermionic wave function. This gives
access to nF , and we repeat this scheme until the energy
difference between successive iterations is below a threshold
∼10−9. For clarity, it should also be noted that in the above
scheme our initial ansatz is the droplet and fermion ground
states at gBF = 0; see, e.g., Figs. 1(a2) and 1(b2). These
states are consecutively used to determine the ones for finite
intercomponent coupling |gBF | > 0, by adiabatically ramping
gBF in increments of |
gBF | = 0.01h̄ωzl2

HO. These finite gBF

solutions serve as the initial states for the quench-induced
dynamics, which is monitored through real time propagation
of the coupled (NF + 1) system of Eq. (2).

III. GROUND STATE CONFIGURATIONS

Let us first examine the ground state phases of the
combined droplet-fermion mixture as a function of the
intercomponent interaction gBF . To get comparable re-
sults, we fix the number of bosons in the droplet to be
NB = 5000 and their intracomponent interaction strength
as gBB = 0.3112h̄ωzlHO. This corresponds to 2D scattering
lengths a = 0.005lHO and a12 = 40lHO such that this subsys-
tem in the absence of fermions forms a 2D flat-top droplet
distribution with equilibrium density n0 ∼ 0.5l−2

HO; see, e.g.,
Fig. 1(a2). In the following we will show how the respective
densities, nB and nF , change as a function of gBF . We will start
by considering NF = 4 impurities, and generalize this number
later.

A. Density distributions

We show representative ground state densities of the
droplet (upper panels) and the fermions (lower panels) for
different coupling strengths gBF in Fig. 1. The ground state
densities for the decoupled case, gBF = 0, are depicted in
panels (a2) and (b2). Here the droplet can be seen to have
a self-bound 2D circularly symmetric, flat-top profile with
a peak density of max(nB) ≈ n0. On the other hand, the
fermionic density corresponds to the well-known distribution
of noninteracting fermions in a 2D box [54]. More concretely,
the fermions are spatially delocalized and exhibit a weak
spatial overlap with the droplet as their major population is
outside of it.

For repulsive droplet-fermion interactions, gBF > 0, the
components phase-separate [see Figs. 1(a1) and 1(b1)] in
order to minimize the interaction energy EBF

int . Specifically,
the fermions lie outside the droplet mainly assembling in four
density humps residing at the corners of the box and each of
them being populated by a single fermion. At the same time
the droplet density is largely unchanged. The phase separa-
tion process of repulsively interacting Bose-Fermi mixtures
has also been previously observed in the case of the bosonic
component being in the gaseous phase [44,55,56]. It should
also be noted that in both the decoupled and the repulsive in-
tercomponent interaction regions, the density overlap between
the fermions and the droplet is influenced by finite-size effects
which vanish as the box size is enlarged.

Turning to attractive interactions, one can see from
Figs. 1(a3)–1(b4), that the fermions are located within the
droplet, thus maximizing the spatial overlap among the com-
ponents. Here the droplet-fermion interaction energy EBF

int is
negative [see Fig. 3(c)], and in fact the energy difference
EBF

int (gBF < 0) − EBF
int (gBF = 0) dominates over the remaining

energy scales (Fig. 3). This also leads to a fraction of the
bosons in the droplet tending towards the vicinity of the
fermionic impurities, which cause noticeable undulations in
the droplet density, especially for increasing intercomponent
attraction; see Fig. 1(a4). It is worth noting that with increas-
ing gBF attraction the radius of the droplet slightly reduces
and the distance between the individual fermions becomes
smaller as well. This suggests an effective attraction among
the fermions mediated by the droplet (see also the discussion
below). The above demonstrates a transition from a spatially
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FIG. 1. Ground state densities of (a1)–(a4) the bosonic droplet and (b1)–(b4) the four fermions from repulsive droplet-fermion interactions,
gBF > 0, to attractive, gBF < 0, ones (see legends). Phase separation among the fermions and the droplet occurs for repulsive gBF . However,
for larger attraction the fermions become gradually more localized and their interparticle distance decreases, while residing inside the droplet.
The droplet contains NB = 5000 atoms whose interaction is gBB = 0.3112h̄ωzlHO. Both components are trapped in a 2D box potential of length
Lx = Ly = L = 350lHO. The colormap represents the density in units of l−2

z . Note that panels (a3)–(b4) are adjusted to a smaller spatial region
for better visualization.

delocalized fermionic distribution to a localized one charac-
terized by well-isolated fermions as gBF is tuned to stronger
attractive values. Since the Pauli exclusion principle prevents
the fermions from being at the same location, this behavior
resembles the self-pinning transition of a Tonks-Girardeau gas
immersed in an one-dimensional Bose gas [45].

B. Mediated fermion-fermion attraction

Signatures of induced attractive fermion-fermion interac-
tions can also be seen on the level of the fermion density by

FIG. 2. Relative distance between the fermions with respect to
the droplet-fermion interaction strength, gBF for different number
of fermions NF (see legend). It becomes apparent that the relative
distance decreases for stronger attractive gBF evincing the existence
of mediated attractive interactions among the fermions. Inset depicts
the fermionic torus type density for NF = 3 at different gBF (see
arrows). Here the axis is in units of lHO and the colormap depicts
the density range in log scale from nF = 0 to nF = 0.01l−2

z . The
remaining system parameters are the same as in Fig. 1.

computing the relative distance [57,58] between the individual
impurities as

〈r〉 = 1

NF (NF − 1)

∫
dr1dr2|r1 − r2|ρ (2)(r1, r2), (3)

where ρ (2)(r1, r2) refers to the diagonal of the fermionic two-
body reduced density matrix. It determines the probability
of simultaneously finding two fermions at positions r1 and
r2, respectively [39,51]. For noninteracting fermions, that we
consider here, the diagonal of the two-body reduced density
matrix can be expressed in terms of the single-particle orbitals
[59], as follows: ρ (2)(r1, r2) = ∑

n |φn(r1)|2 ∑
m |φm(r2)|2 −

| ∑n φ∗
n (r1)φn(r2)|2. The relative distance, 〈r〉, is shown in

Fig. 2 as a function of gBF for different numbers of fermions.
Since the fermions move towards the box boundaries for
gBF > 0, due to phase separation [Fig. 1(b1)], we do not
present 〈r〉 in this interaction regime because it suffers from
finite-size effects introduced by the box potential. In addition,
for relatively weak attractive values of |gBF | � 0.006 h̄ωzlHO,
the fermion density still extends beyond the droplet radius,
RD, and may therefore be affected by finite-size effects. For
gBF < −0.006 h̄ωzlHO, however, we find that the number of
fermions lying outside the droplet is only

∫ ∞
RD

dr nF < 0.1 and
further decreases for stronger attraction. Thus, boundary ef-
fects due to system size in the fermion density are suppressed
for gBF < −0.006h̄ωzlHO. Let us remark that the relative dis-
tance can be experimentally monitored via an average of in
situ spin-resolved single-shot measurements on the fermionic
state [60].

For gBF < 0, we observe that, independently of the number
of fermions, 〈r〉 shows an overall decreasing behavior for
stronger attractive droplet-fermion couplings. This decreas-
ing trend of 〈r〉 quantifies the presence of attractive induced
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FIG. 3. (a) Ground state energy of the droplet-fermion mixture as a function of gBF for different numbers of fermions (see legend). The
increase in the absolute value of the negative energy for gBF � 0 indicates the bound character of the system. The inset provides a magnification
of the total energy for gBF > 0. Individual energy contributions of the (b) combined Bose-Bose mean-field and LHY interaction energies, (c) the
Bose-Fermi mean-field interaction energy, as well as the kinetic energy of (d) the Bose and (e) the Fermi components. As can be seen, the
interaction energies are negative revealing the origin of the bound state formation. The other system parameters correspond to the ones of
Fig. 1.

fermion-fermion interactions mediated by the droplet. Also,
the relative reduction of 〈r〉 with respect to gBF = 0 provides
an estimate for the strength of induced interactions which can
be seen to increase for larger attractions. Moreover, at suf-
ficiently large attractions, e.g., here gBF < −0.8h̄ωzlHO, the
relative distance features a saturation tendency, thus implying
a maximal strength of induced attraction. It is worth noting
that such a behavior of attractive induced interactions has been
reported for both bosonic [39,61,62] and fermionic [56,63,64]
impurities immersed in a Bose gas, and it appears here to
equally hold when the medium is a droplet. In all cases, 〈r〉 ex-
hibits a larger rate of decrease at around gBF ∼ −0.7h̄ωzlHO,
which corresponds to the interaction region where the onset
of the transition from delocalized to isolated fermions occurs;
see also Fig. 1 for NF = 4.

A notable exception occurs for NF = 3, where the fermion
distance reduces with a relatively larger rate in the vicinity
of gBF ∼ −0.7h̄ωzlHO as compared to NF = 2, 4. However,
this does not correspond to a transition to isolated fermions
as in this case nF can be observed to have a toroidal den-
sity profile for weak gBF (see inset of Fig. 2). This shape is
maintained for even stronger attractive gBF , where it can be
seen to drastically shrink instead of transitioning into a pattern
with isolated fermions. This torus-type fermionic distribution
arises due to the underlying closed-shell configuration of the
ground state [54,65] and also occurs when the majority com-
ponent is a weakly interacting bosonic gas (not shown for
brevity). Here we confirmed that the same behavior holds
in the presence of a droplet. Notice also that as in the case
of a Bose-Fermi mixture with the bosons being in the gas
phase, closed shell configurations are present in the current

droplet setting for NF = 3, 6 fermions in a 2D box that we
have checked. However, when NF = 2 the aforementioned
transition is recovered.

C. Interplay of energy contributions

The origin of the above-described droplet-fermion phases
lies in the competition between the distinct energy terms given
in Eq. (1). To better understand this, we show the overall
and the individual energies in Fig. 3 as a function of the
intercomponent interaction strength, gBF . The first thing to
notice is that the overall energy is always negative and dom-
inated by the droplet binding energy, even for positive gBF

when no droplet-fermion bound state is present. However, for
gBF � 0, the overall energy E becomes increasingly negative,
indicating the creation of the droplet-fermion bound state. As
expected, E becomes more negative for larger attractive gBF

and exhibits a hierarchical trend in terms of NF . Both of these
behaviors stem from the interplay of the combined Bose-Bose
and LHY interaction energy, EBB

int , and the droplet-fermion
interaction energy, EBF

int , shown in Figs. 3(b) and 3(c).
Indeed, EBB

int < 0 due to the droplet formation, while
EBF

int < 0 for gBF < 0 and EBF
int ≈ 0 for gBF > 0 since phase

separation occurs. The most pronounced contribution comes
from EBB

int [Fig. 3(b)] since it scales as ∼n2
B, while EBF

int
[Fig. 3(c)] is proportional to ∼nBnF . The latter is also the
reason for the aforementioned hierarchical dependence of
E since a larger NF entails an increasingly negative EBF

int .
This holds also for gBF > 0, where we still observe a tiny
increase in E for larger NF [see inset of Fig. 3(a)] despite
the vanishing overlap among the droplet and the fermions.
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FIG. 4. Snapshots of the fermion density after an interaction quench from gBFi = −0.9h̄ωzlHO to gBFf = −0.1h̄ωzlHO. The fermion
dynamics as captured by (a1)–(a5) the complete system [see Eq. (2)] and (b1)–(b5) the effective potential approach [see Eq. (4)] is presented.
Excitation patterns, such as ring- and cross-type configurations, build upon the fermion density for longer evolution times due to destructive
interference of the fermion cloud caused by the droplet edges. In both cases the composite system is prepared in its ground state with
gBFi = −0.9h̄ωzlHO, NF = 4, NB = 5000, and gBB = 0.3112 h̄ωzlHO where the bosons assemble in a flat-top droplet. The black circular dashed
lines designate the droplet periphery in the course of the evolution in panels (a1)–(a5) and that of the initial ground state in panels (b1)–(b5).
The flat-top droplet component experiences weak amplitude density fluctuations due to the existence of fermions (not shown for brevity). The
time units correspond to ω−1

z , while the colormap indicates the density in units of l−2
z . Qualitative agreement between the two methods is

clearly visible.

For completeness, we remark that for NF = 3 the slope of
EBB

int is larger compared to the NF = 4 scenario, which can
be attributed to the existence of the above-discussed closed
shell configurations. It should be noted, however, that with re-
spect to gBF = 0, it is the droplet-fermion relative interaction
energy, EBF

int (gBF �= 0) − EBF
int (gBF = 0), that is dominant over

all other energy terms.
On the other hand, the kinetic energy terms of both the

droplet [Fig. 3(d)], EB
kin, and the fermions [Fig. 3(e)], EF

kin
remain positive independently of gBF . In particular, they show
a tendency to slightly increase for gBF < 0 since the fermions
are within the droplet and feature induced attraction [see
Figs. 1(a3)–1(b4)]. Moreover, they are almost constant for
gBF > 0 due to phase separation [see Figs. 1(a1) and 1(b1)].

IV. QUENCH-INDUCED PATTERNS

The knowledge of the droplet-fermion ground state phases
is a good starting point to study the dynamical response of the
composite system to a sudden perturbation. As in our system
the intercomponent interaction plays a significant role, we will
first monitor the system’s time evolution after quenching gBF

from the isolated fermion state, e.g., with gBF = −0.9h̄ωzlHO,
to the spatially delocalized phase, e.g. for gBF = −0.1h̄ωzlHO.

The emerging 2D fermion density profiles for the above
quench are shown in Figs. 4(a1)–4(a5). Since the postquench

interaction is less attractive compared to the prequench one,
the originally highly localised fermions [see Fig. 1(b4)], ex-
pand and start noticeable spatially overlapping; see, e.g., t ∼
50ω−1

z in Fig. 4(a1). In the course of the evolution, the ex-
pansion continues and the major part of the fermion density
accumulates at the center forming a square-type profile, as
depicted, for instance, in Fig. 4(a2) at t ∼ 100ω−1

z . Simultane-
ously, the tails of the fermion density reach the droplet edges
(indicated by the black dashed line in Fig. 4) and are bounced
back towards the center where the majority of the fermion
cloud resides. This behavior suggests that the droplet acts as
an effective potential trapping the fermions in its interior and
specifically its circular edge emulates a material barrier for the
fermions (see also the discussion below). The aforementioned
reflection of the minority fermion density portion to the cen-
ter leads to destructive interference with the majority of the
fermionic cloud that continuously radially expands outwards.
As a result, ring-shaped structures develop in the fermion
density; see Fig. 4(a3) at t ∼ 150ω−1

z where an outer ring is
evident in the vicinity of the droplet edge and an inner one
closer to the bulk fermion density. Notice, however, that these
ring structures are shallow, namely, their density is not fully
dipped, and they are not characterized by a π phase jump as
in the case of ring dark solitons [66].

As time evolves, interference phenomena become pro-
nounced and more complicated excitation patterns appear in
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the fermion density. For instance, at t ∼ 250ω−1
z [Fig. 4(a4)],

the outer ring remains close to the droplet edge, and it is
more prominent while the inner one disappears within the
bulk (whose width shrinks) and a deformed rhombic-type
structure forms. Afterwards, the outer ring is also lost, and
a cross pattern appears in the bulk as a result of the ongoing
interference. During the whole process, the back-action of the
fermions onto the droplet is negligible due to their relatively
small density compared to the droplet. As such, only weak
amplitude density fluctuations occur in the flat-top droplet
profile at the vicinity of the fermions, and a tiny amplitude
breathing mode in the droplet is triggered (not shown).

To understand the impact of the droplet on the ob-
served nonequilibrium dynamics we next consider an effective
single-component model. In this context, the droplet solely
acts as a static external potential of the form Veff(x, y) =
2gBFf nB(t = 0) for the fermions. Here nB(t = 0) denotes the
droplet ground state density at the initial prequench gBFi ,
while gBFf is the postquench intercomponent interaction. A
profile in the vicinity of the fermions, e.g., at y = x of this ef-
fective potential is shown in Fig. 5(a) for gBFf = −0.1h̄ωzlHO

and a droplet density taken for gBFi = −0.9h̄ωzlHO. One can
see that it has a circular-well shape whose minimum corre-
sponds to the flat-top droplet density. On top of this a dip at
the location of each fermion as a result of their back-action to
the droplet appears.

We also present the lowest-lying eigenstates obtained from
diagonalizing Heff = [−∇2/2 + Veff(x, y)] for the same pa-
rameters as above in Fig. 5(b). The lowest eigenstate φ̃1,
whose energy lies within the fermion-induced dips in the
effective potential, show the characteristic four humps (hardly
visible) on top of a Gaussian-like profile. The next five eigen-
states (φ̃2 to φ̃6), however, closely resemble the eigenstates
of noninteracting fermions in a 2D infinite circular well.
Namely, they can be expressed as φn(r) ∼ Jm(kνr)eimθ up to
a normalization factor. Here kνR is the νth root of the Bessel
function of the first kind, Jm(z), for a circular well of radius
R, and m ∈ {0,±1,±2, . . .} is the phase winding. At the
same time, ν also counts one more than the number of radial
nodes, that is, for ν = 1, there is no node, and we recover the
Gaussian-type profile. The eigenstate degeneracy is related
to the choice of ±m. The resemblance of the eigenstates of
Heff to that of the infinite circular well is due to gBFf being
relatively small and thus the fermion-induced density dips
are shallow. Additionally, for the higher energy states (e.g.
φ̃7 and φ̃8) more prominent deviations to the infinite circular
well approximation take place where, for instance, regions of
positive and negative values are expected to have the same
extent.

Under the above-described effective potential assumption,
the time evolution of the nth fermionic orbital is governed by

i
∂φn(x, y)

∂t
=

[
−∇2

2
+ Veff(x, y)

]
φn(x, y). (4)

It becomes evident that within the effective approach, a
quench of gBF from larger to smaller attractions implies
a relatively shallower effective potential. The resultant 2D
density profiles of the fermions subjected to the aforemen-
tioned Veff(x, y) and obeying Eq. (4) after a quench from

FIG. 5. (a) Profile along y = x (the diagonal) of the effective
potential, Veff(x), created by the ground state distribution of the
flat-top droplet for the fermions for gBFf = −0.1h̄ωzlHO and gBFi =
−0.9h̄ωzlHO. In practice, the potential is radial. The inset provides a
magnification of Veff(x), in which the horizontal lines represent the
eight energetically lowest eigenenergies of the effective potential,
with two of them being degenerate (see text). (b) The first few
low-lying eigenstates of the effective potential. Red (blue) colors
refer to negative (positive) values and white to zero. (c) The time
evolution of the overlap integral, �(t ), of the fermion density and
the many-body fidelity, O(t ), as predicted from the complete model
[Eq. (2)] and the effective one [Eq. (4)] for different postquench gBFf

in units of h̄ωzlHO (see legend). A comparison between �(t ) and
O(t ) reveals that on the many-body wave-function level the former
measure underestimates the deviations between the two approaches.

gBFi = −0.9h̄ωzlHO to gBFf = −0.1h̄ωzlHO are depicted in
Figs. 4(b1)–4(b5) at times corresponding to the ones where
we have shown the densities of the complete model. A quali-
tatively similar dynamics to the complete model [Eq. (2)] can
clearly be observed.

However, certain deviations from the coupled droplet-
fermion system exist. For example, the density peaks appear
to be always larger in the effective system, while their lo-
cations are fixed to the initial (prequenched) location of the
fermions even for relatively long evolution times, for instance,
at t ∼ 250ω−1

z illustrated in Fig. 4(b4). Notice also that the
merging of the original four fermion density humps and the
formation of ring structures are delayed in the effective dy-
namics; see, e.g., Figs. 4(b3) and 4(a3). Later, as shown in
Fig. 4(b5), the density spreads out, and it still captures the
same qualitative features observed within the full approach.
These differences can therefore be attributed to the neglected
density-density droplet-fermion interaction which is also
responsible for structural deformations (even small ones) of
the droplet during the evolution. Notice that this behavior is
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in line with the ground state one where the effective potential
picture becomes gradually invalid for smaller attractions, and,
for instance, the distribution shown in Fig. 1(b3) cannot be
recovered.

The degree of deviation in the fermion response between
the effective and the extended mean-field models can be
tracked either by comparing the fermion densities or their
many-body wave functions. Regarding the former case, an
estimator is the overlap integral [67,68]

�(t ) =
[∫

d2r nF (t )ñF (t )
]2∫

d2r n2
F (t )

∫
d2r ñ2

F (t )
. (5)

The case of �(t ) = 1 [�(t ) = 0] refers to complete overlap
(vanishing overlap) and thus quantifies the difference between
the two approaches. Notice that ñF represents the fermion
density in the effective system. The deviations of the many-
body wave function can be similarly quantified through the
fidelity

O(t ) =
∣∣∣∣
∫

�(r1, r2, . . . , rNF ; t )�̃∗(r1, r2, . . . , rNF ; t )

× dr1 dr2 . . . drNF

∣∣∣∣
2

. (6)

Conveniently, for fermionic systems this can be rewritten in
terms of the single-particle orbitals [69,70]

O(t ) = | det[A(t )]|2, (7)

with the matrix elements An,m = ∫
d2rφn(r, t )φ̃∗

m(r, t ) denot-
ing the overlaps between single-particle orbitals φn and φ̃m of
the full and effective model, respectively. If the fidelity van-
ishes, O(t ) → 0, the time-evolved many-body fermion wave
function in the effective approach is orthogonal to the state
described by the full model. Meanwhile, for O(t ) = 1 the two
wave functions are identical, and the effective approach ex-
actly describes the dynamics. It is important to note that these
two quantities characterize the variations between the two
models at different levels. Specifically, O(t ) is a more strict
measure to gauge the deviations as compared to �(t ) since in
the latter case all but one degree of freedom is integrated out.

The time evolution of both �(t ) and O(t ) for different
postquench interactions but fixed initial state is presented in
Fig. 5(c). As expected, at short times, 0 < t < 20ω−1

z and
independently of gBFf it holds that �(t ) ≈ 1 and O(t ) ≈ 1, in-
dicating an excellent agreement between the two approaches.
Focusing on gBFf = −0.1h̄ωzlHO and longer evolution times,
a systematic reduction of �(t ) is observed until t ≈ 320ω−1

z
where the ring and rhombik configurations have been gen-
erated as already described above. In the time interval,
320ω−1

z < t < 400ω−1
z where the fermion density features

a relatively enhanced spreading within the droplet region
[Figs. 4(a5) and 4(b5)], �(t ) naturally increases and after-
wards again decreases. Overall, �(t ) is not reduced below
0.9, which means that the predicted response between the two
methods features an adequate agreement on the density level.

The many-body fidelity, however, captures larger de-
viations than the overlap integral in the course of the
evolution. More concretely, beyond t > 20ω−1

z and for gBFf =
−0.1h̄ωzlHO, a gradual decrease of O(t ) during the dynamics
takes place reaching a minimum at around O(� 400ω−1

z ) ∼

0.63 and subsequently showing a saturation tendency. The
decreasing behavior of O(t ) evidences that the magnitude
of the diagonal elements of An,m(t ) decreases with time
indicating an increasing orthogonality trend between the
single-particle orbitals φn and φ̃n. However, the off-diagonal
terms remain comparatively small in magnitude throughout
the evolution. Additionally, for smaller quench amplitudes,
gBFf − gBFi , e.g., with postquench interactions in the interval
gBFf = [−0.4,−0.7]h̄ωzlHO, a comparatively larger decrease
occurs in both �(t ) and O(t ) with the latter being sup-
pressed [i.e., O(t ) ≈ 0] at longer times. The fact that a smaller
quench amplitude yields lesser agreement between the two
approaches reveals the significant role of the back-action for
these postquench attractions. Namely, for more attractive gBFf

the dynamics is heavily influenced by the droplet back-action
to the fermions which is a mechanism not captured by the
effective model. This is reflected by the finite increase rate of
EBF

int [in line with the ground state behavior; see Fig. 3(c)],
within the extended model, thus justifying the deviations be-
tween the two approaches. Naturally, O(t ) is more sensitive
to the interplay of the two components and thus also the
back-action since it encapsulates all degrees of freedom of the
fermions. Such effects are not adequately captured by �(t )
since the latter solely assesses density modifications.

Finally, we remark that a drastically different response
takes place following quenches from weak to strong attrac-
tions (not presented for brevity). Here, while initially the
fermion cloud is spread out in the droplet density, after the
quench it shrinks towards the center. This process leads to
gradual localization of the density for t � 400ω−1

z into four
distinct humps resembling the corresponding ground state dis-
tribution; see also Fig. 1(b4). As time evolves, however, these
four density humps gradually merge at the center forming a
bulk which shapes into different structures such as rectangle
or rhombic configuration in the course of the evolution. As in
the previous quench scenario, the droplet remains to a large
extent undisturbed in the course of the evolution. Monitoring
the density overlap and the many-body fidelity between the
coupled eGPE and the corresponding effective model unveils
an overall decreasing trend in both quantities. Specifically,
they reach a minimum value of �(t/ω−1

z = 329) ≈ 0.36 and
O(282 < t/ω−1

z < 353) ≈ 0, and afterwards they feature a
relatively small revival. A similar decreasing behavior fol-
lowed by a revival is also observed in EBF

int (t ) of the complete
system, again highlighting the role of the interaction energy in
the emergent response.

V. CONCLUSIONS AND OUTLOOK

We have studied the ground state phases and the corre-
sponding nonequilibrium quantum dynamics of few fermionic
impurities embedded in a 2D flat-top bosonic droplet upon
variations of the droplet-fermion coupling. The bosonic sub-
system comprises two equally populated hyperfine states with
the same intracomponent contact interactions, and thus the
two-component subsystem can be described by a single-
component droplet. The droplet lies, in particular, in the
flat-top region due to the specific choice of the intercomponent
boson interactions that are held fixed. The composite system
is modeled through a set of NF mean-field equations for
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the NF fermions coupled to a eGPE that takes into account
quantum fluctuations for the droplet via the appropriate LHY
contribution.

We have shown that the bound character of the compos-
ite system is dictated by the combined mean-field and LHY
as well as the droplet-fermion energy contributions. Here a
larger number of fermions results in a more strongly bound
system. Different ground state phases of the entire system
have been identified depending on the intercomponent inter-
action strength. For repulsive droplet-fermion couplings phase
separation takes place with the fermions residing outside the
droplet. Turning to attractive intercomponent interactions it
is found that the fermions lie within the droplet and fea-
ture a structural deformation for increasing attraction. Indeed,
they exhibit a spatially delocalized (localized) distribution
for weak (strong) attractions. Due to the attractive intercom-
ponent coupling a non-negligible fraction of bosons tends
towards the location of the impurities. This is a conse-
quence of the back-action of the impurities on the droplet in
this attractive interaction regime. Interestingly, the aforemen-
tioned transition of the fermions for varying droplet-fermion
attraction is accompanied by the emergence of attractive in-
duced interactions mediated by the droplet. By monitoring
the strength of the induced attraction, via the relative distance
among the fermions, it is possible to deduce that they are
enhanced for larger attraction.

We have also studied the dynamics of the system by in-
ducing a quench of the droplet-fermion coupling from strong
to weak attractions. After the quench, the isolated fermion
state expands towards the droplet edges and is then reflected
back to the center. This process triggers the interference of
the reflected fermion cloud with the one at the center resulting
in peculiar excitation patterns. These include, for instance,
the generation of ring-, rhombic-, and cross-shaped config-
urations. On the other hand, the droplet performs a weak
amplitude breathing oscillation and features small density
undulations on top of the initial flat-top profile due to the
presence of fermions.

Using an effective model where the droplet acts as
a static potential for the fermions has been shown to
allow for adequate agreement with the coupled eGPE ap-
proach regarding the fermion density dynamics. This is not
necessarily true for the many-body fidelity of the fermion

wave function, where substantial variations among the two
methods are evident especially for larger postquench attrac-
tions. This inability of the effective model to correctly capture
the dynamics at the many-body level can be understood by
realizing that the effective approach neglects the significant
droplet-fermion interaction energy during evolution. The ef-
fective model also becomes gradually more invalid for smaller
attractions since it cannot predict the spatially delocalized
fermion distributions.

There are various possible extensions of the work pre-
sented here. A direct one is to explore modulational instability
events of the droplet background using the fermionic im-
purities [71,72]. Another intriguing possibility would be to
emulate the respective radiofrequency spectroscopy scheme
for the present mixture, e.g., by considering spinor fermionic
impurities aiming to establish dressed polaronic states. Here
the characterization of the quasiparticle properties such as
their residue, effective mass, and importantly induced inter-
actions would be interesting. In this context, it would also be
valuable to develop an effective model, similar to the ones that
have been employed for polarons [63,73], for quantifying the
magnitude and sign of the mediated effective interactions. Ad-
ditionally, the study of induced interactions when two bosonic
impurities are embedded within a droplet is an interesting
prospect in order to expose their dependence on the different
statistics. Finally, studying the phase diagram in the crossover
towards the particle balance limit of the droplet-fermion set-
ting by systematically increasing the number of fermions and
thus enhancing their back-action would be worth pursuing.
However, here another approach for the fermions, such as
the hydrodynamic one [32], should be utilized to achieve the
description of larger densities.
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