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Investigating the superconducting state of 2H-NbS2 as seen by the vortex lattice
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2H -NbS2 is a classic example of an anisotropic multiband superconductor, with significant recent work
focusing on the interesting responses seen when high magnetic fields are applied precisely parallel to the
hexagonal niobium planes. It is often contrasted with its sister compound 2H -NbSe2 because they have similar
onset temperatures for superconductivity, but 2H -NbS2 has no charge density wave whereas in 2H -NbSe2 the
charge density wave order couples strongly to the superconductivity. Using small-angle neutron scattering, a
bulk-sensitive probe, we have studied the vortex lattice and how it responds to the underlying superconducting
anisotropy. This is done by controlling the orientation of the field with respect to the Nb planes. The super-
conducting anisotropy, �ac = 7.07 ± 0.2, is found to be field independent over the range measured (0.15 to
1.25 T), and the magnetic field distribution as a function of the applied magnetic field is found to be in excellent
quantitative agreement with anisotropic London theory modified with a core-size cutoff correction, providing
the first complete validation of this model. We find values of λab = 141.9 ± 1.5 nm for the in-plane London
penetration depth, and λc ∼ 1 µm for the out-of-plane response. The field-independence indicates that we are
primarily sampling the larger of the two gaps generating the superconductivity in this material.

DOI: 10.1103/PhysRevResearch.6.033218

I. INTRODUCTION

Recent studies of the superconducting phase diagram of
2H-NbS2 [1] and 2H-NbSe2 [2] have revealed that the super-
conducting state in these sister materials is very sensitive to
the orientation of the magnetic field with respect to the basal
plane. Different types of spatially textured superconductivity
[3,4] have been conjectured at high magnetic fields in both
materials.

These two compounds belong to the larger family of transi-
tion metal dichalcogenides (TMDCs). This is a class of highly
two-dimensional (2D) materials, with hexagonal planes of
transition metals weakly coupled along the c axis, with mem-
bers displaying multiple types of electronic order, including
charge density wave (CDW) order, Mott-insulating behavior
and superconductivity [5]. 2H-NbSe2 is a classic example
of the interaction between a charge density wave state and
superconductivity, and the family 2H-MX2 (M = Nb, Ti, Ta;
X = S, Se) all have similar electronic band structures in the
normal state. When they become superconducting, typically a
larger gap develops on Fermi surface sheets with a more 2D
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nature, and the smaller gap appears on Fermi surface sheets
with a more three-dimensional (3D) character. Within this
family, 2H-NbS2 stands out because it is the only one in which
CDW order has not been seen in the bulk (see Table I); in the
literature there is some dispute if it exists in the monolayer
1H-NbS2 [6,7]. This means that comparing 2H-NbS2 and
2H-NbSe2 is a clean way to check out how the CDW affects
the physics observed in these materials.

Both materials are considered to be excellent examples of
two-band superconductors with two different s-wave gaps,
from scanning tunneling spectroscopy [11], specific heat
[12,13], and Andreev reflection [14] studies. For both ma-
terials, the Fermi surfaces are similar, with three types of
Fermi surface sheet. The Fermi surface sheets that arise from
the Nb 4d bands and exhibit superconductivity are cylinders
centered around the � and K points in the Brillouin zone.
They have different levels of corrugation leading to more 3D
character in those around the � point. There is also a (non-
superconducting) smaller pancakelike sheet at � associated
with the chalcogen. This has been reported by many indepen-
dent groups; a nice description is given by Noat et al. [15].
Where there are two superconducting sheets, one may expect
different gap magnitudes and superconducting anisotropies,
although the effective vortex core radii (related to the co-
herence lengths) are expected to lock together in most cases
[16,17].

In this context, we use the vortex lattice (VL) that develops
in the superconducting state to probe the superconducting
response, with a particular eye on the effects of anisotropy.
In 2H-NbSe2, the vortex lattice has been studied using a
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TABLE I. Transition temperatures for the charge density wave
and superconducting states in selected transition metal dichalco-
genides. Values are taken from Refs. [8–10].

TMDC TCDW (K) Tc (K)

2H -NbSe2 33.5 7.3
2H -NbS2 None 5.5
2H -TaSe2 122.3 0.15
2H -TaS2 78 0.8

variety of methods. Two results stand out. First, the individ-
ual vortex cores have a six-fold star-shaped structure [11],
reflecting the symmetry of the CDW order. Second, the vortex
lattice consists of one hexagonal domain; to a first approx-
imation the vortices lie parallel to the external field [see
Fig. 1(b)]. On rotating the magnetic field toward the basal
plane, this domain distorts, reflecting the underlying effec-
tive mass anisotropy. However, the unit cell vectors of this
domain do not change direction and are, in fact, pinned to the
crystallographic a∗ axis [18,19]. This unexpected observation

indicates that in 2H-NbSe2 the orientation of the VL is not in
agreement with the predictions of anisotropic London theory,
as seen in, for example, YBa2Cu3O7−δ [20], Sr2RuO4 [21],
and KFe2As2 [22].

In contrast, there are relatively few direct studies of the vor-
tex lattice in 2H-NbS2, with a scanning tunneling microscopy
and spectroscopy study by Guillamon et al. [11] confirming
that a well-ordered vortex lattice can be seen at the sample
surface, and that the vortex core has a standard circular shape.

Here, we present a study of the vortex lattice as measured
deep inside the superconducting state at 1.5 K, extracting in-
formation on the superconducting anisotropy, the penetration
depth λ, and the coherence length ξ . This is done by neu-
tron diffraction from the magnetic field distribution associated
with the vortex lattice, whereby the Fourier components of
this periodic distribution can be extracted from the resulting
Bragg reflections. A schematic of the experimental setup is
shown in Fig. 1. This is done in the small-angle scattering
regime because the inter-vortex distances are much larger than
available neutron wavelengths. To probe the anisotropy of
the system, we create vortex lattices with different angles �
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FIG. 1. Schematic diagram of the experimental setup. (a) Typical small-angle neutron scattering (SANS) instrument setup for diffraction by
a superconducting vortex lattice. The neutrons pass through a velocity selector, which sets their average wavelength (usually with a full-width
half-maximum (FWHM) spread ∼10%). The beam is well collimated, with a long evacuated flight path before and after the sample to minimize
air scattering. The transmitted main beam is caught on a neutron-absorbing beamstop to allow the Bragg reflections, which are scattered at
small angles, to be visible on a 2D multidetector. The sample crystal structure is represented here, while the actual crystal orientation used
during the experiment is shown in (c). (b) Sketch of the “parallel” field geometry used in the experiment; here the individual vortices are aligned
parallel to the applied field, and then by rotating the magnet and sample together through angles ω or φ, the Bragg condition for the vortex
lattice can be met. When the data obtained at different angles are summed together, an image such as that shown on the multidetector will be
seen. (c) Experimental geometry. The coordinate system is defined with the z direction along B, and the components of observed VL scattering
vectors are denoted as qx and qy. The applied magnetic field B is rotated away from the c-direction by an angle �, and the longitudinal and
transverse components of the field modulation are denoted by bz and bx & by, respectively.
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FIG. 2. SANS diffraction patterns of the VL in 2H -NbS2 as a function of field rotation angle �. We show the results of measurements
made at 1.5 K for seven different field angles, �, at either 0.15 T or 0.25 T, depending on the closeness of the Bragg spots to the direct beam.
The images are sums over φ rocking scans about the horizontal axis perpendicular to the incoming beam, minus backgrounds. The direct beam
has been masked off in the software. The white and green dashed lines in panels (a), (b), and (c) represent the opening angles of α and β for

Domain I ( ) and Domain II ( ), respectively. The white dashed ellipse depicted in panel (d) lies on top of the Bragg reflections from the
distorted VL. It has a major-to-minor axis ratio �VL and the reciprocal-space area of the ellipse is given by πq2

�, with q� = 2π (2B/
√

3�0 )1/2.

between the applied magnetic field and the c axis. Full de-
tails of the experimental protocols are given in Appendix A.
Figure 2 shows a range of diffraction patterns collected at
T = 1.5 K and magnetic fields ranging from 0.15 T to 0.25 T,
for a range of values of �, running from 0◦ to 87.5◦, prepared
using the field cooling process described in Appendix A. It
is clear that rotating the field from being parallel to c axis
(� = 0◦) to nearly being in the basal plane (� = 87.5◦) dis-
torts the hexagonal vortex lattice, indicating the anisotropic
nature of 2H-NbS2.

II. RESULTS AND DISCUSSION

A. Vortex lattice structure

When the field (B = 0.15 T) is parallel to c axis (� = 0◦),
the diffraction pattern is perfectly hexagonal [Fig. 2(a)], with
the Bragg peaks appearing at q� = 5.6(1) × 10−3 Å−1, as
compared with the ideal value for a hexagonal VL q� =
2π (2B/

√
3�0)1/2 = 5.7 × 10−3Å−1 at B = 0.15 T. �0 =

h/2e is the flux quantum. Because of the sixfold crystal sym-
metry, one of two hexagonal domains separated by 30◦ might
be expected to be energetically favored. We observe that one
domain (Hexagonal Domain I [ ]) is dominant, with trace
amounts of Hexagonal Domain II [ ]. Prior to changing �,
the diffraction spots of Domain I lie parallel to the a/b axes,
indicating that, in real space, the vortex lattice planes are
perpendicular to the Nb nearest neighbor directions. When
� = 0◦, the qx and qy directions on the detector are probing
directions at right angles within the basal plane, and we expect
the superconducting parameters (λ and ξ ) to be essentially
isotropic around this plane.

At � = 30◦ at 0.15 T, the ratio of the two domains has
shifted, making Domain II easier to see, and we can also see
the VL begin to distort due to the difference in the super-
conducting properties in- and out-of-plane. The Bragg peaks
move further away from the beam center along the horizontal
axis and closer along the vertical axis. The same distortion
applies to both domains, as can be seen by considering that
all of the Bragg spots lie on the same ellipse [Figs. 2(b) and
2(d)].

As the field is rotated further, Domain II becomes the dom-
inant form and, indeed, is the only domain seen for � > 70◦.
As the distortion increases, the top and bottom reflections
become more prominent. The side reflections also move out
of the window captured by the 2D detector. The regions in
which the different domains are seen as a function of magnetic
field and � are shown in Fig. 3. No intermediate structures
are seen at any point. These observations suggest that the
transition between Domains I and II is first order in character,
as reported in CaAlSi [23].

As � is increased, qy remains in the same orientation in
the basal plane of the crystal lattice, but qx starts to mix
basal plane and out-of-plane components. A VL structure
with Bragg peaks pinned to the qy direction should then
be preferred, as observed in, for example, YBa2Cu3O7−δ

[20], Sr2RuO4 [21], and KFe2As2 [22]. However, as noted
above, this was not observed in 2H-NbS2

′s sister compound,
2H-NbSe2, presumably due to a stabilizing effect associated
with the CDW formation [19].

B. Superconducting anisotropy

The vortex lattice becomes increasingly anisotropic as the
field is rotated toward the basal plane, because the London
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FIG. 3. The B-� phase diagram of the VL in 2H -NbS2 at T =
1.5 K. The shaded areas are represented by a gradient of green color,
transitioning from dark green to pale green, signifying the change
in VL structure as the direction of the magnetic field B is changed
relative to the crystallographic ab plane. Hexagon symbols represent
distinct vortex lattice domains, with dark blue hexagons for domain I

( ), light green for domain II ( ), and a teal dodecagon indicating
regions with mixed domains (I and II). The dashed black lines define
the transitions between these domains as a function of B and �. The
upper critical field (Bc2) line is the parametrization from the ratio of
Borb

c2 (θ )/Borb
c2‖ab using values from Ref. [24]. Bc1‖c is estimated to be

∼30 mT [14].

penetration depth is different in the basal plane and along the
c axis. This leads to the distortion of the diffraction pattern
because the screening currents no longer follow circular paths
close to the vortex core. 2H-NbS2 falls into the class of uni-
axial anisotropic superconductors, which have a distortion of
the hexagonal VL as a function of �. The anisotropy of the
vortex lattice, �VL is defined as the ratio of the semimajor and
semiminor axes of the ellipse circumscribing the diffraction
spots, as given by

�VL = �ac√
sin2 � + �2

ac cos2 �

, (1)

where �ac corresponds to the a-c anisotropy of the penetration
depth. Equation (1) is implied by the results of Ref. [25], but
for completeness, its derivation is detailed in Appendix B. To
evaluate �ac, we therefore need to measure �VL as a function
of �. There are multiple ways to extract this information, and
different ways have to be used at different angles, primarily
because not all of the spots are measured at higher angles
(Fig. 2).

For � � 70◦, the following methods were used:
(1) The area of the Brillouin zone associated with the

VL is fixed for a given value of field, and can be calculated
directly for the perfect hexagon. Given this, the position in
reciprocal space of the spots, or, equivalently, the opening
angles α and β [marked in Figs. 2(a)–2(c)] can be used to
calculate �VL, although the two domains require slightly dif-
ferent treatment. For Domain I ( ), �VL = √

3 [tan(α/2)],
or by taking the qy value for the spots , �VL = 3/4[q�/qy]2.

For Domain II ( ), we have �VL = [q�/qy]2 where qy is

measured for the spots , or �VL = 1/(
√

3 [tan(β/2)]).
(2) Fitting an ellipse that meets the area constraint

[Aellipse = πq2
� = 8π3B/

√
3�0, shown in Fig. 2(d)] to the

six Bragg spot positions gives the semimajor and semiminor
axes, and hence �VL directly. This method cannot be used for
� > 70◦ as only the top and bottom spots are visible.

For � > 70◦, only the top and bottom Bragg spots of Do-
main II are visible, so the first of these methods is employed;
in this case the position of the spots is qVL = qy. However,
in anisotropic superconductors when the vortices are tilted
away from a principal axis, the field distribution associated
with the vortices develop transverse field components that
vary with � [26]. [We later give expressions for these in
Eqs. (6), (7), and (8).] Even if the near-horizontal spots at
large angles did fall on the detector, they would have almost no
intensity. This is because the transverse components [labeled
bx and by in Fig. 1(c)] are close to zero at small qy and the
longitudinal component bz also falls off at large �. For the
vertical spots, the transverse field component bx dominates
and flips the spin of the scattering neutrons. Neutrons, after
spin flipping parallel or antiparallel to the applied magnetic
field, will have slightly different Zeeman energies, leading
to a change in the kinetic energy and, hence, the velocity of
the scattered neutron. This results in the Bragg spots splitting
into two separate peaks in the φ rocking scans with maxima
at φ = φB ± �φ, where φB is the Bragg angle expected for
elastic scattering from the distorted vortex lattice [20–22], and
�φ is the magnitude of the spin splitting of φ. Examples of the
data are given in Fig. 4, together with schematic illustrations
in Fig. 4(e) of the effect of the energy change on the scattering
process.

This spin-splitting of the peaks, 2�φ becomes more pro-
nounced as � increases, because it is a function of �VL.
This arises because 2�φ = (2k0/qVL)(�ε/ε0) where qVL is
the magnitude of the scattering vector along the minor axis,
i.e., qVL = qy as depicted in Fig. 4(b), �ε = γμN B and ε0 =
h̄2k2

0/2mn, the neutron gyromagnetic ratio γ = 1.913, the nu-
clear magneton μN = eh̄/2mn and mn is the neutron mass.
This gives �φ = C �VLφB where C = γ

√
3/4π = 0.2635.

We therefore have four peaks, two associated with the spot
seen in the upper half of the detector in Fig. 4, with centers
φ1/2 and two associated with the lower spot, φ3/4. Their cen-
ters are at angles:

φ1/2 = φB ± C �VL φB, (2)

φ3/4 = −φB ∓ C �VL φB. (3)

�VL can then be extracted from the rocking curves by a
simultaneous fit of the four peaks. The individual peaks are
treated as Lorentzians with a common integrated intensity and
width under each field and � condition. The relations between
the peak centers are fixed by the equations above, giving two
outputs: �VL and the zero error in the φ motor positioning
(found to be 0.09◦).

All of these methods have been used to evaluate �VL where
possible, and they all agree within experimental error. The
values obtained at each � are field-independent. The weighted
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FIG. 4. Spin-splitting of the VL Bragg reflections due to spin-flip scattering. Vortex lattice diffraction patterns as a function of rotation
angle (�) Vortex lattice rocking curves at 0.45 T and 1.5 K. Each rocking curve is fitted by two Lorentzian. The VL anisotropy increases as
� comes close to the basal plane, as indicated by the dashed white lines in the upper panels (a–c). Lower panels (d–f) represent the rocking
curves corresponding to the diffraction patterns in the upper panels. The rocking curves show the scattered intensity distribution plotted as a
function of the tilt angle deviation (φ + �φ) relative to the rocking curve center which has slight zero offset at φ = 0.09◦. Two distinct peaks,
indicative of Zeeman splitting from transverse field modulation (spin flip), the top Bragg reflection is represented in red, while the bottom
Bragg reflection is depicted in purple. Both sets of peaks are fitted with two Lorentzians, as shown by the dashed lines, delineating the peak
intensities and width for the top and bottom spots as a function of rotation angle (�). The scattering geometry triangles are depicted in panel
(e) (with angles exaggerated for clarity) for the two different SF processes: Spin-up to spin-down (left-hand side) and spin-down to spin-up
(right-hand side), The scattering angle (2θ = 2φ0) is the same in both cases, but different tilt angles are required to satisfy the Bragg condition
φ2/3 (kinetic energy loss) and φ1/4 (kinetic energy gain) for the top and bottom Bragg spots, respectively.

average of all methods at each condition is shown in Fig. 5. By
fitting to Eq. (1), the superconducting anisotropy is found to
be �ac = 7.07 ± 0.2.
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FIG. 5. Field-independent vortex lattice anisotropy. The VL
anisotropy measured at 1.5 K as a function of the applied field and the
angle between the field and the c axis (�). The dashed line shows the
VL anisotropy calculated using Eq. (1), with �ac = 7.07; the solid
line is for �ac = ∞.

For anisotropic superconductors, like 2H-NbS2, the vari-
ations in the penetration depth ultimately arise due to
differences in the Fermi velocities and effective masses of
the carriers in the different directions. �ac can therefore
also be observed in the ratios of the superconducting coher-
ence length, ξab/ξc, and the upper critical fields, Bab

c2/Bc
c2.

The upper critical fields have been measured by transport
at 2 K, giving anisotropies ranging from 6.5 to 8.1 [27,28],
and a temperature-dependent study of the heat capacity by
Kačmarčík et al. [12] finds a value of 7 for temperatures
0.3 Tc < T < Tc. While this value is in agreement with ours,
Leroux et al. estimated a value of 11 from extrapolations of the
penetration depth to 0 K [29], while Cho et al. [24] used torque
magnetometry to trace out the upper critical fields, combined
with extremely precise in-plane angular alignment. From this
latter work, the in-plane upper critical field has an unusual
temperature dependence. Using the critical fields measured at
1.5 K gives Bab

c2/Bc
c2 = 7.33. However, this upper critical field

appears to be significantly lower than the orbital upper critical
field estimated from measurements close to Tc, which would
give �ac ∼ 15. Bi et al. [30] have pointed out that surface
superconductivity (up to Bc3 = 1.695Bc2) may be playing a
role here.

In multiband superconductors, the different bands may
have different anisotropies, leading to field- and temperature-
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dependent superconducting anisotropies; a classic example is
MgB2 [31]. 2H-NbS2 is widely accepted to be a two-band
superconductor, but we do not observe any field dependence
in our superconducting anisotropy, as was the case in the heat
capacity studies of Kačmarčík et al. [12]. To engage with
this question further, we first need to extract more informa-
tion about the characteristic superconducting lengths from our
data.

C. Integrated intensity and the field-dependent form factor

For a structurally two-dimensional, well-ordered VL, the
spatial variation of the magnetic field in the mixed state can
be written as a Fourier series with components at different
momentum transfers. The Fourier component associated with
the first-order Bragg reflections from the diffracted lattice is
referred to as the “form factor” and can be related to the inte-
grated intensity I (qi ) of a Bragg reflection from VL domain i
via the Christen formula [32]:

I (qi ) = 2πViS
(γ

4

)2 λ2
n

�2
0qi cos(ζ )

|F (qi )|2. (4)

Here, Vi is the volume of the sample occupied by the
VL domain i (with VI + VII = V , the total sample volume).
S is the incident neutron flux density (extracted through a
measurement of the direct beam with known aperture size),
λn is the neutron wavelength, γ is the gyromagnetic ratio of
the neutron, �0 is the flux quantum, qi is the magnitude of the
scattering vector for the relevant Bragg spot in the diffraction
pattern, and cos(ζ ) is the Lorentz factor, where ζ is the angle
between the reciprocal lattice vector qi and the direction that
is at right angles to the rocking axis [33]. For each domain, the
relevant integrated intensities of individual Bragg peaks (see
Appendix A) are averaged to give I (qi ) for that domain; this
is related to the form factor via Eq. (4).

In an isotropic superconductor, the flux lines lie parallel to
the applied field, with the screening supercurrents perfectly
perpendicular to the direction of the average field, so that
the local fields are all parallel to the applied field. The form
factor of the vortex lattice therefore contains only components
parallel to the field [bz in Fig. 1(c)]. In 2H-NbS2, this case
applies if the field is perfectly parallel to the c axis. As soon
as the field rotates away from this, transverse field components
(bx,y) will develop, leading to the spin-split scattering dis-
cussed above. This happens because the supercurrents tend to
flow within the “easy” basal plane. Whereas the flux lines still
follow the average field direction, the form factor arises from
spatially varying contributions from both the longitudinal and
transverse field components. This has been fully described
using anisotropic London theory by Kogan [34] for uniaxial
crystal systems like 2H-NbS2, and expanded to account for
the effective mass anisotropy of the carriers by Thiemann et al.
[26]. Kealey et al. applied this practically to the biaxial super-
conductor YBa2Cu3O7−δ [20], correcting some misprints in
Ref. [26], but were only able to find qualitative agreement, as
was the case in studies on Sr2RuO4 [21,35] and KFe2As2 [22].
This may be due to difficulties in handling field-dependent
superconducting anisotropies. In 2H-NbS2, we have a fixed
value of �ac, and we are able to validate the model of

Thiemann et al. over almost the entire angular range at multi-
ple fields.

In the mixed state, the magnetic field distribution B(r) can
be decomposed into a Fourier series over the set of reciprocal
space wave vectors q:

B(r) =
∑

q

b(q) exp(iq · r). (5)

The average field is in the z direction, parallel to the applied
field, and the transverse fields bx(r) and by(r) are in the xy
plane. For a given Bragg reflection at q = (qx, qy), the field
components are [26]

bx =
(
λ2mxzq2

y

)
B

d
, (6)

by = (−λ2mxzqxqy)B

d
, (7)

bz = (1 + λ2mzzq2)B

d
, (8)

where

d =(
1 + λ2myyq2

x + λ2mxxq2
y

)(
1 + λ2mzzq

2
) − λ4m2

xzq
2q2

y .

(9)

Here B is the average field and λ = (λ2
abλc)1/3 is the ge-

ometric mean of the penetration depths in the ab plane and
along the c axis, and mi j are the tensor components of the
effective mass of the charge carriers, referred to the x, y,
and z axes defined in Fig. 1(c). The normalized effective
masses along the unit cell axes are ma, mb, and mc. For
2H-NbS2, ma = mb < mc, so ma

2mc = 1. The superconduct-
ing anisotropy can be quantified as the ratio of the normalized
effective masses, �ac = (mc/ma)1/2, so we can rewrite the
effective mass components in the vortex frame into functions
of �ac and �:

mxx = �−2/3
ac cos2 � + �4/3

ac sin2 �, (10)

myy = �−2/3
ac , (11)

mzz = �−2/3
ac sin2 � + �4/3

ac cos2 �, (12)

mxz = (
�−2/3

ac − �4/3
ac

)
sin � cos �. (13)

With these expressions we can then calculate the theoretical
form factor, F (q), for a given Bragg reflection, including a
Gaussian cutoff term to account for the finite size of the vortex
core [36]:

F (q) = (
b2

x + b2
y + b2

z

)1/2
exp

[ − c
(
q2

xξ
2
⊥) + q2

yξ
2
ab

)]
. (14)

ξ⊥ = [ξ 2
ab cos2 � + ξ 2

c sin2 �] represents the core width
along the qx direction. Here, ξ⊥ is ξc when � = 90◦, i.e., B
‖ crystal planes. ξab represents the in-plane coherence length
while ξc is the coherence length for the c-axis direction.
The constant c is a core cutoff parameter; a quantitative
comparison of this model and the numerical solution of the
Eilenberger equations indicates that the most suitable value is
c = 0.44 [37].

The theoretical form factors depend on sample properties
λ, ξab, and ξc. We fitted the field-dependent data separately
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FIG. 6. Field dependence of the vortex lattice form factor for different field-sample angle �. Each panel shows the vortex lattice form
factor as a function of the applied magnetic field B, measured at 1.5 K for a particular value of �, ranging from 30◦ to 87.5◦. For the upper

panels, scattering from two distinct hexagonal vortex lattice domains was present, denoted as Domain I ( ) and Domain II ( ), while for the
lower panels, the scattering arises only from Domain II. The data points represent experimental measurements of |F (qi )|2 with their respective
error bars (see Supplemental Material Note 1 [48]). The dashed black lines are the results from fits to Eq. (14), using theoretical values for the
scattering vectors q of the Bragg peaks assuming �ac = 7. Hexagons are depicted for each � to visualize the vortex lattice, constructed based
on the actual anisotropy ratio �VL(�).

for different values of �. The fits are very insensitive to the
value of ξc, as it only influences the Domain I spots, and
even then its contribution varies as ξ 2

c sin2 � � ξ 2
ab cos2 �,

and so has little effect. Accordingly, we fixed this parameter as
ξc = ξab/�ac, and let λ and ξab vary as a fittable parameters.
Where two VL domains were present, their data were fitted
simultaneously, with one additional (field-dependent) fitting
parameter representing the fractions of the sample volume
occupied by the two domains: VI/V and VII/V . In Fig. 6, we
show the VL form factor variation as a function of field at
T = 1.5 K for six values of �. At each field, we distinguish
between the form factor values obtained from different types
of Bragg spots, as these different spots will have different
amounts of longitudinal and transverse field, so that the Do-
main I spots typically have lower form factors than Domain
II (illustrated more completely in Appendix C). Each value
represents the average taken over equivalent spots for a given
domain. The (Vi/V )|F (qi )|2 were calculated from the experi-
mental data using Eq. (4) and then fitted to Eq. (14) using two
different methods.

In the first approach, the intensities were fitted using
the theoretical values for the scattering vector q associ-
ated with the peak given that �ac = 7. For Domain I( ),
qx = (q�/2)(�VL)1/2 and qy = (q�/2)(3/�VL)1/2, while for

Domain II( ) qx = 0 and qy = (q�)/(�VL)1/2. In the sec-
ond approach, we used the experimentally measured values

for qx and qy. These two approaches yielded statistically
indistinguishable results, given the experimental errors (an
example is shown in Appendix D). This consistency increases
confidence in the robustness of our findings. In Fig. 6 only the
first approach is presented, as smooth fit lines can be calcu-
lated from Eq. (14) using the theoretical Bragg spot positions.

The fits show excellent agreement with the description of
the anisotropic superconductor given by Thiemann et al. [26],
indicating that the tendency for supercurrents to flow in the
ab-plane can be described in this way. The values obtained
for λ and ξ are given in Table II.

TABLE II. Fitted penetration depth and coherence length values
at each angle �. These were obtained by fitting the field dependence
of the form factor data measured at 1.5 K with the anisotropic
London model with core-size correction factor described in Eq. (14).

� (◦) λGM (nm) λab (nm) λc (nm) ξab,eff (nm)

30 277 ± 5 145 ± 3 1022 ± 28 19.5 ± 0.5
60 275 ± 3 144 ± 2 1014 ± 22 20.1 ± 0.2
70 270 ± 2 141 ± 1 995 ± 21 23.2 ± 0.4
80 273 ± 7 142 ± 4 1006 ± 32 34 ± 1
85 272 ± 10 142 ± 5 1001 ± 40 34 ± 1.5
87.5 273 ± 3 142 ± 1 1006 ± 21 24.6 ± 0.4
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Considering ξ first, ideally, the in-plane coherence length
ξab should represent the core size of the vortices, in which
case it can be related to the upper critical field if the
superconductivity is destroyed by orbital overlap, using the
Ginzburg-Landau expression B‖c

c2(0 K) = �0/2πξ 2
ab. By ex-

trapolating to 0 K, its value can be estimated from the
zero-temperature upper critical field B‖c

c2. This upper critical
field is well documented for NbS2, and for our sample, it
is 1.8 T [14]. If this is the orbital limit, then ξab (0 K) ∼
13.5 nm. Our fit results vary between 19.5 and 34 nm in size
for this parameter, and so we consider that our measured value
is an effective value, rather than the intrinsic value. This could
be because of flux pinning affecting the regularity of the vor-
tex lattice. This can be represented by a ‘static Debye-Waller
factor’ which arises from static disorder within the vortex
lattice which can include local wiggling of the vortices [38],
or zigzagging of the vortices between basal planes at higher
values of �. While we could not resolve ξc in our fits, we
note that using B⊥c

c2 (0 K) = �0/2πξabξc, if we take the orbital
value for the upper critical field of 24 T, as calculated by
Cho et al. [24] based on the Werthamer-Helfand-Hohenberg
model, this gives ξc ∼ 1 nm.

We now turn to the penetration depth, where the geometric
mean at all values of � is found to be angle independent,
as expected, with an average value of 272.3 ± 1.3 nm. From
this, λab = 141.9 ± 1.5 nm and λc = 1003 ± 20 nm. From
the literature, there is sparse agreement: λab values between
83 nm [29] and 590 nm [39] are reported. On our samples, a
value for λab of 131 nm was obtained by Majumdar et al. [14].

Recently, Kogan et al. [40] established a relationship be-
tween the zero-temperature penetration depth λ(0) and the
slope of the penetration depth λ−2(T ) near Tc, using a cal-
culation analogous to the Helfand-Werthamer relationship
between the zero-temperature upper critical magnetic field
and its slope at Tc. With further thermodynamic information,
they obtained

λ2(0) ≈
∣∣∣∣∣
(

dHc2

dT

)
Tc

∣∣∣∣∣
1

Tcγ
, (15)

where (dHc2/dT )Tc is the slope of the upper critical magnetic
field Hc2 with respect to temperature (T ) at Tc, Tc is the
critical temperature of the superconductor in question and γ

is the specific heat coefficient per unit volume. Kogan et al.’s
model has been developed for isotropic s-wave supercon-
ductivity with nonmagnetic scattering, and was successfully
cross-checked against experimental values for λ in V3Si and
Nb3Sn.

Using this model we have calculated λab(0)
≈142.9 nm for 2H-NbS2, taking as inputs Tc = 5.5 K ,
(dHc

c2/dT )T =Tc ≈ −0.25 × 104 Oe/K [12,24,28], and
γ = 0.494 × 104 erg/cm3K2 [41]. This is in excellent
agreement with our λab (1.5 K) as extracted from the fit.

On the face of it, this is surprising, as 2H-NbS2 is
an anisotropic two-band superconductor, which also makes
the field-independent superconducting anisotropy unexpected.
However, as Kogan et al. noted, their results should still be
applicable if the order parameter is constant over a Fermi
surface of any given shape. Indeed, Kogan et al. tested their

approach successfully on the two-band superconductor MgB2,
calculating λ(0) ≈ 176 nm, as compared to reported values of
180–185 nm.

We therefore suggest that over the field range explored
here at 1.5 K, there are no major changes in the contributions
from the two gaps, with the dominant response coming from
the large-gap band in 2H-NbS2, which has predominantly 2D
character, as proposed by Kačmarčík et al. [12]. Interestingly,
Noat et al. [15] have suggested that, in reality, only the large
gap sheets (the cylinders centered on the K points) are in-
trinsically superconducting and that the other gap develops
parasitically by coupling through the pancakelike sheet com-
ing from the chalcogen p-bands.

III. CONCLUSIONS

We have measured neutron diffraction by the vortex lattice
in 2H-NbS2 as a function of field angle and field magnitude at
1.5 K, and find that in fields up to 1.25 T, the intensity of the
observed diffraction from the vortex lattice can be described
extremely well by the Thiemann model using anisotropic Lon-
don theory [26], with the addition of a core-correction factor
to account for the finite size of the vortex core. This forms the
first full validation of this model. This process is aided by our
clear observation that the superconducting anisotropy is con-
stant and field-independent at �ac ∼ 7. From this, we extract
values for the London penetration depth of λab = 141.9 ± 1.5
nm and λc ∼ 1 µm. For λab, this experimental result fits with
the recent model developed by Kogan et al. [40].

The dominant Fermi sheets in these conditions are ex-
pected to be the cylinders around the K point in reciprocal
space, which hold most of the density of states at the Fermi
surface, and are highly two-dimensional. Coupling between
these sheets and the more three-dimensional cylinders around
the � point, therefore, controls the overall superconducting
anisotropy. The interband coupling for 2H-NbS2 has been
found by Noat et al. [15] to be half that in 2H-NbSe2, from
fitting tunneling spectroscopy data. It is therefore not sur-
prising that 2H-NbS2 shows a stronger 2D character with
a superconducting anisotropy of 7.07 ± 0.2, as compared to
the value of 3.2 ± 0.2 measured by Gammel et al. [19] for
2H-NbSe2 using the same method presented here.

The experimental data collected at the Institut Laue-
Langevin is publicly available [47]. Processed experimen-
tal data are available upon request to the corresponding
authors.
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APPENDIX A: METHODS

Thin platelets of 2H-NbS2 samples were grown using the
chemical vapor transport technique, yielding high-quality sin-
gle crystals with optically flat surfaces on the macroscopic
scale. A detailed description of this process for growing
TMD crystals is given by Chareev et al. [42]. The sample
quality was confirmed by specific heat measurements at zero
field, wherein a sharp jump centered at the superconducting
transition temperature Tc = 5.5 K is seen. This is considered
to be the most reliable way to check sample quality [43], and
matches well with the behavior reported for other samples
grown in the same laboratory [1].

The 2H-NbS2 polytype is hexagonal, with space group
P63/mmc and lattice parameters a = b ∼ 3.31 Å and c ∼
11.86 Å [43]. The platelets grow with the c axis normal to
the platelet surface. A mosaic of nine coaligned crystals was
made by mounting the platelets onto two aluminum sheets, so
that all the crystal faces lay within an area 10 × 10 mm2. The
mosaic had a total crystal thickness of 80 µm with a total mass
of 42.3 mg. The in-plane alignment (along the a∗ and b axes)
was carried out using an optical microscope, with the clearly
visible crystal hexagonal facets serving as points of reference.
Overall, the misalignment of the a∗/b axes was measured to
be less than 1◦.

To diffract off the vortex lattice, small angle neutron
scattering measurements were carried out at the D33 instru-
ment [44] at the Institut Laue-Langevin, Grenoble, France.
The incident neutrons had wavelength λn = 10 Å, collimation
of 10.3 m and a wavelength spread �λn/λn = 10% full-
width half-maximum (FWHM). The scattering patterns were
collected on a (256 × 128 pixels) two-dimensional position-
sensitive multidetector placed 10.0435 m after the sample,
which was mounted in a 9 T horizontal-field cryomagnet. The
crystals were aligned with the a∗ axis vertical and the b axis
horizontal. A schematic of the arrangement of a typical SANS
instrument when used for VL studies is shown in Fig. 1(a).

To create the vortex lattice, a magnetic field was applied.
As shown in Fig. 1(b), the magnetic field was applied essen-
tially parallel to the incoming neutron beam. The advantage
of this parallel field geometry is that by rocking the sample
and magnet together through small rocking angles about axes
perpendicular to the neutron beam, denoted φ and ω, the
diffraction conditions for all of the VL Bragg reflections can
be met to give diffraction peaks on the 2D detector. In the
work presented here, the sample and magnet were rocked
about the horizontal axis perpendicular to the beam direction,
i.e., the φ angle. At � = 0◦, the sample and magnet were also
rocked along the � angle.

To study the vortex lattice through the entire bulk of the
sample, a relatively well-ordered vortex lattice needs to be
prepared. To do this, the sample was field cooled from above
Tc to T = 1.5 K while oscillating the magnitude of the ap-
plied magnetic field by ± 1% about the desired value. This
procedure improves the orientational ordering of the VL, by
keeping the vortices away from local pinning potentials [45].
This was done for magnetic fields over the range 0.15 to
1.25 T.

To probe the superconducting anisotropy of 2H-NbS2, we
also rotated the magnetic field away from the c axis toward

the b direction by an angle �. These rotations were all carried
out above Tc. The experimental geometry is shown schemati-
cally in Fig. 1(c). As � is changed, the profile of the sample
with respect to the beam changes, and so different sample
apertures can be used at different angles; ideally only the
sample volume should be illuminated by the neutron beam.
For � = 0◦, 30◦, 80◦, and 85◦, a 12 mm diameter circular
aperture was used. For � = 60◦ and 70◦, a 7H × 10V mm2

rectangular aperture was used. For � = 87.5◦, the aperture
size was 3H × 10V mm2.

Background data were collected in the normal state at
6.5 K, using the same rotation and tilt angles as those of the
“foreground” measurements at 1.5 K. The background was
then subtracted from the foreground, leaving only the vortex
lattice signal. The analysis was done using the software pro-
gram GRASP [46]. Experimentally, the integrated intensity
of a Bragg peak from the VL is determined by counting the
number of neutrons detected in the region of the detector
where the peak appears as a function of the rocking angle. For
monitoring the form factor, only φ rocking scans were used,
so the Bragg condition for spots close to the horizontal axis
is not fully met. This means that for Domain I, the integrated
intensities of the four diagonal Bragg spots, represented by

, are used, whereas for Domain II, only the top and bottom
Bragg spots, , are included. For the form factor calculations,
the correct region of the detector to include for each peak
was tested iteratively to maximize the signal-to-noise ratio
after the background subtraction. The resulting rocking curves
were fitted to a Lorentzian function with the background set
to zero to give I (qi ). For � � 70◦, each Bragg spot gave
one maximum in the rocking curve. At higher angles, the
spin-splitting effect led to two maxima in each rocking curve.
The integrated intensity in these cases consists of the sum
of the intensities obtained from the two peaks, since each
represents half of the incident neutron flux, corresponding to
one direction of the neutron spin.

APPENDIX B: DERIVATION OF EXPRESSION FOR
VORTEX LATTICE ANISOTROPY �VL IN TERMS OF
INTRINSIC SUPERCONDUCTING ANISOTROPY �ac

AND ANGLE � BETWEEN B AND C AXIS

In the isotropic case where B ‖ c, the nearest neighbor
flux lattice vectors form a regular hexagon, sitting on a circle
centered at the origin. When the direction of B is tilted away
from the c axis, all x components of the flux lattice vectors are
multiplied by a factor γ (γ < 1 for planar materials such as
2H-NbS2), while the y components are divided by γ (Eq. (7)
in Ref. [25]). The flux lattice vectors then sit on an ellipse
centered at the origin with an axial ratio �VL = 1/γ 2. We note
that for a given value of B, the area of the ellipse is the same
as that of the circle, due to flux quantization [25].

The first-order reciprocal lattice vectors (the measured
diffraction spots) will be similarly distorted and sit on an
ellipse centered about the origin that is also described by
�VL, although that ellipse will be rotated by 90◦ about the B
direction.
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Following Eq. (9) from Campbell et al. [25],

1

γ 2
=

(
m3

mzz

)1/2

= �VL. (B1)

In our notation, Eq. (2) in Ref. [25] can then be reformulated
as

mzz = m1 sin2 � + m3 cos2 �, (B2)

which allows us to express �VL as

�VL =
(

m3

m1 sin2 � + m3 cos2 �

) 1
2

. (B3)

Now, by introducing the parameter to describe the in-
trinsic superconducting anisotropy, �ac, defined as �ac =
(m3/m1)1/2, the final relationship linking the vortex lattice
anisotropy with the intrinsic superconductor anisotropy is

�VL = �ac√
sin2 � + �2

ac cos2 �

. (B4)

APPENDIX C: LONGITUDINAL AND TRANSVERSE
MAGNETIC FIELD COMPONENTS OF THE FLUX LINE

LATTICE IN THE ANISOTROPIC 2H-NbS2

As indicated in Fig. 6, the Bragg reflections associated with
Domain I have noticeably lower form factors than those for
Domain II. This is due to the fact that there are two effects
of the angular rotation on the VL form factor that bring this
about. First, the penetration depth is changing as � changes.
Hence, the form factors of the observed Bragg spots on the left
and right in the SANS patterns for Domain I and the diagonal
spots for Domain II both decrease due to the longer due to
the longer penetration depth for currents in the c direction.
However, this effect is insignificant for the top and bottom
spots, whose form factor is primarily influenced by currents in
the basal plane and remains relatively stable with small field
rotations away from the c-axis. The second effect comes from
Bc2, as the field is rotated away from the c axis, the upper
critical field Bc2 increases since it is larger when the field
is closer to the basal plane. Consequently, a given magnetic
field strength represents a smaller fraction of Bc2, reducing
the core overlap effects in the superconductor. This reduction
in core overlap is uniform for all diffraction spots in the SANS
pattern. The combined result of these changes is an increase
in the form factor for the top and bottom spots, making them
more intense than the left and right spots, which diminish in
intensity upon rotation away from the c-axis. This specific
outcome is notably observed at rotation angles of 80◦, 85◦, and
87.5◦ as shown in Fig. 2. In Fig. 7 we show how the form fac-
tor in the form of transverse and longitudinal field components
bx, by, and bz is changing as a function of both rotation angle
(�) and applied magnetic field (B). The calculations involve
the diagonal spots of Domain I( ) and only the top and
bottom spots of Domain II( ) using �ac = 7 and Eqs. (6)–(8).
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FIG. 7. Magnetic field components bx , by, and bz generating the
form factor from the vortex lattice at the Bragg peaks from Domain

I and from Domain II, as a function of angle � taken at 1.5 K for
fields 0.15 and 1.25 T.

APPENDIX D: FIELD-DEPENDENT FORM FACTOR FIT
USING THE EXPERIMENTAL VALUES OF qx AND qy

(APPROACH II)

In Fig. 6, we illustrated the fit of the form factor data
using the theoretical definition for qx and qy (Approach I).
Here, we show our Approach II by fitting the data with the
experimentally measured values for qx and qy. As shown in
Fig. 8, we show the fit for angles � = 80◦, 85◦, and 87.5◦
as an example. The red data points are the results from the
fitting process using Approach II for each angle �. The black
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FIG. 8. Vortex lattice form factor for angles � = 80◦, 85◦, and 87.5◦ as a function of the field at 1.5 K.

dashed lines are from the Approach I fit shown in Fig. 6. This
shows that both fit procedures are robust and consistent, and

the output fit from both approaches yields the same λGM, ξab,
and ξc within the experimental error.
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