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Stefano Mangini ,1,2,* Marco Cattaneo ,1,2 Daniel Cavalcanti,1 Sergei Filippov ,1

Matteo A. C. Rossi ,1 and Guillermo García-Pérez1

1Algorithmiq Ltd, Kanavakatu 3C 00160 Helsinki, Finland
2QTF Centre of Excellence, Department of Physics, University of Helsinki, P.O. Box 43, FI-00014 Helsinki, Finland

(Received 15 February 2024; accepted 29 July 2024; published 26 August 2024)

Characterization of noise in current near-term quantum devices is of paramount importance to fully use their
computational power. However, direct quantum process tomography becomes unfeasible for systems composed
of tens of qubits. A promising alternative method based on tensor networks was recently proposed [Nat.
Commun. 14, 2858 (2023)]. In this paper, we adapt it for the characterization of noise channels on near-term
quantum computers and investigate its performance thoroughly. In particular, we show how experimentally
feasible tomographic samples are sufficient to accurately characterize realistic correlated noise models affecting
individual layers of quantum circuits, and study its performance on systems composed of up to 20 qubits.
Furthermore, we combine this noise characterization method with a recently proposed noise-aware tensor
network error mitigation protocol for correcting outcomes in noisy circuits, resulting accurate estimations even
on deep circuit instances. This positions the tensor-network-based noise characterization protocol as a valuable
tool for practical error characterization and mitigation in the near-term quantum computing era.
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I. INTRODUCTION

Near-term quantum computers are currently entering what
has been termed as the “utility era” [1]. This key advancement
has been possible thanks to quantum error mitigation [2], that
is, a collection of techniques for mitigating and eventually
eliminating the effects of noise in quantum computers with-
out relying on quantum error correction. Despite encouraging
recent progresses [3], quantum error correction is currently
out of reach for useful quantum computing.

Many error mitigation techniques require (ideally perfect)
knowledge of the noise channels on the device, i.e., of the
actual physical processes implemented on the real machine
instead of the ideal unitary gates or ideal sharp measure-
ments. Characterizing quantum processes for tens to hundreds
of qubits is, however, not a trivial task. Standard state and
process tomography [4] requires an exponential amount of
resources as a function of the number of qubits [5]. Dif-
ferent techniques have been proposed to overcome this key
issue and other inherent difficulties in tomographic methods,
such as the enforcement of physical constraints. Examples
include, but are not limited to, twirling methods that tailor
the investigated processes to specific simpler forms [6,7],
classical shadow methods to reconstruct quantum processes
[8,9], tensor network methods to characterize non-Markovian
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evolution processes [10,11], compressed sensing techniques
for low-rank quantum processes [12,13], and methods that
ensure meaningful tomography by appropriately restricting
the reconstructed process to physical subspaces, for instance
by means of constrained gradient descent [14] or by projection
onto the set of processes [15].

In this paper, we develop the recently introduced tensor-
network-based quantum process tomography method pro-
posed by Torlai et al. [16], and apply it to the problem of noise
characterization in near-term devices. This method consists in
finding an efficient tensor network representation [17–20] of
the quantum process under scrutiny. Torlai et al. benchmark
their method with ideal circuits (i.e., unitary transformations)
up to 10 qubits, and a noisy operation on five qubits subject
to single-qubit errors. However, some applications, such as
probabilistic error cancellation (PEC) [21,22] or tensor net-
work error mitigation (TEM) [23], require the knowledge of
the performance of individual gates or layers of gates. There-
fore, here we focus on the characterization of each individual
layer of a given circuit. Moreover, we exploit the fact that
the process can be split into an ideal and a noisy part, and
characterize only the latter. These two modifications have
the advantage of alleviating the numerical requirements of
the method. Finally, we consider realistic types of correlated
noise, including the noisy model observed on IBM devices,
and investigate systems of up to 20 qubits in size.

We study the tensor-network-based noise learning pro-
cedure by running several numerical experiments for the
characterization of various correlated noise channels with
brickwork-like structure and realistic noise parameters, which
are of great relevance in near-term quantum computing. While
our analysis is restricted to tensor networks with 1D con-
nectivity (such as MPOs), the proposed method could be
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FIG. 1. (a) Description of the tensor-network-based noise characterization pipeline. The goal is to characterize the noise map N unavoid-
ably accompanying an ideal unitary operation U (in the plot, a layer of CNOT gates) when this is executed on real quantum hardware. A number
of experimental tomographic samples obtained with random preparations and measurements are collected on the noisy quantum computer to
learn the noise map. For a single experimental shot, the noise channel N we aim to reconstruct (red rectangles) acts on the state that we denote
by tomographic state ρα, prepared by the single-qubit gates (green squares) followed by the unitary channel U . The state is then measured
through a collection of POVMs with effects �β (blue squares). (b) Representation of the tomographic experiment as tensor network, where
the noise channel under investigation is written as a locally purified density operator (LPDO) �θ parameterized by the quantities θ. The noise
channel is learned by training the LPDO according to a suitable cost function, so that it best explains the tomographic measurement statistics
observed on the quantum device. (c) Tensor network error mitigation (TEM) applied to the full noisy process E using the results of the noise
characterization experiment.

generalized to more complex topologies of qubit connectivity,
albeit at the cost of more demanding classical computations.

In this paper, we discuss the necessary amount of experi-
mental settings and measurement shots to obtain an accurate
reconstruction, and find that collecting statistics on just a
limited number of random experiments with informationally
complete states and measurements provides sufficient data to
accomplish the task. In particular, we observe that linearly
many experimental samples in the number of qubits suffice
to ensure very good reconstructions. Clearly, one can improve
the reconstruction by increasing the number of experimental
settings (input states and measurement bases) or the number
of allocated shots per setting. For example, only 103 different
experiments with 103 measurement shots each are sufficient
to characterize a correlated brickwork layer of depolarizing
noise channel on n = 20 qubits with an error of ≈10−4, as
measured in terms of Frobenius distance between the ideal and
reconstructed channels. We also confirm the good reconstruc-
tion accuracy by comparing values in the Pauli transfer matrix
of the true and the reconstructed processes, and again find a
good agreement. Additionally, we address the effect of state
preparation and measurement (SPAM) errors on reconstruc-
tion accuracy, demonstrating not only its robustness against
small errors but also that SPAM error-free performance can
be achieved by calibrating the quantum device using existing
quantum detector tomography methods [24].

We also investigate the performance of the method in
conjunction with the tensor network error mitigation (TEM)
protocol [23] in noisy Clifford circuits of up to 10 qubits
and 30 layers. The combined characterization and mitigation
approach is capable of mitigating noise and predicting the
expected value of heavy Pauli observables with high accuracy
(relative error of the order of 10−2). This suggests that the
characterization protocol is a valuable tool for practical error

mitigation in the near-term era. In Fig. 1 we summarize the
main idea of the presented analysis.

The paper is structured as follows. In Sec. II, we review
the tensor network representation of processes, along with
Torlai et al.’s process tomography method (with some tech-
nical modifications). In Sec. III, we introduce the numerical
experiments used to test the method, and describe the noise
models that we have taken into consideration. The results of
these numerical experiments are then presented in Sec. IV,
while Sec. V is devoted to analyzing the combination of the
process characterization method with the recently proposed
tensor-network-based error mitigation protocol (TEM). Fi-
nally, we offer some concluding remarks in Sec. VI.

II. TENSOR NETWORK PROCEDURE
FOR NOISE CHARACTERIZATION

In this section we introduce all the necessary tools for
describing the tensor network noise characterization protocol,
graphically summarized in Figs. 1(a) and 1(b).

A. Tensor network representation of noise

Let us consider a system of n qubits, the total Hilbert space
H of which has dimension 2n. We aim at estimating a generic
noise channel, which is formally described by the completely
positive and trace-preserving (CPTP) quantum map N [25]
belonging to the space of bounded operators acting on the set
of density matrices of the qubits.

Different representations of N are available [5,25,26], such
as the Choi matrix or the Liouville superoperator representa-
tion [27]. For our purposes, we choose to represent N through
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FIG. 2. (a) Kraus representation of the noise channel N applied
on a state ρ. (b) Tensor network representation of the channel N as
the locally purified density operator (LPDO) �N . (c) Tensor network
representation of the state ρ as matrix product operator (MPO).
The action of N on ρ in tensor network notation is obtained by
connecting the two tensor networks according to the indices as in
the figure.

its Kraus decomposition, defined implicitly by

N [ρ] =
∑

κ

Kκ ρ K†
κ , (1)

where ρ is a quantum state, and Kκ are Kraus operators
acting on the Hilbert space of the qubits, satisfying the trace
preserving condition

∑
κ

K†
κ Kκ = I . (2)

For any n-qubit map N , the Kraus operators can be chosen in
such a way that their number is at most 4n.

Each representation of N can be described in different
ways using the tensor network formalism [27]. In our case,
we focus on a tensor network representation of the Kraus
operators known in the literature as locally purified density
operator (LPDO) [16,28,29], which is depicted in Fig. 2. We
denote the LPDO representation of a channel N as �N , and
we refer to Appendix A 1 for the explicit expression of the
tensor components of such tensor network.

Let ρ ∈ C2n×2n
be the density matrix of a system of n

qubits. Such matrix can be written in matrix product operator
(MPO) form as [17,19,20,27,30]

ρ =
∑

λ1,...,λn−1

ρ
[1]
λ1

⊗ ρ
[2]
λ1,λ2

⊗ . . . ⊗ ρ
[n]
λn−1

. (3)

Then, using the LPDO representation for the quantum chan-
nel �N , and the MPO form for a state ρ, the action of
the quantum channel N [ρ] can be written in tensor network

notation as

�N [ρ] =
χκ∑

κ=1

χ∑
μ=1

(
A[1]

μ1,κ1
⊗ A[2]

μ1,μ2,κ2
⊗ . . . ⊗ A[n]

μn−1,κn

)

×
∑

λ

ρ
[1]
λ1

⊗ ρ
[2]
λ1,λ2

⊗ . . . ⊗ ρ
[n]
λn−1

×
χ∑

ν=1

(
A[1]†

ν1,κ1
⊗ A[2]†

ν1,ν2,κ2
⊗ . . . ⊗ A[n]†

νn−1,κn

)
, (4)

where A[m]
i, j,k ∈ C2×2 are local operators acting on

single-qubit sites, A[m]†
i, j,k := (A[m]

i, j,k )† are their transposed conju-
gates, and they interact with the corresponding local matrices
of ρ as shown in Fig. 2. The indices μ = (μ1, . . . , μn−1) and
ν = (ν1, . . . , νn−1) with μ j, ν j = 1, . . . , χ

( j)
b are the so-called

virtual bond indices of the LPDO, while κ = (κ1, . . . , κn)
with κ j = 1, . . . , χ

( j)
κ are called Kraus indices. The maximal

bond dimension of the LPDO is defined as the size of
the largest of the virtual bond indices, χb = max j χ

( j)
b .

Similarly, the maximal Kraus dimension is instead given by
χκ = max j χ

( j)
κ . The LPDO structure has also been used to

represent the positive Choi matrix of the channel N in a
very similar way [16,29]. Finally, the Kraus decomposition
expressed by the LPDO can be easily transformed into
an MPO, which is the superoperator representation of the
quantum channel in Liouville space [27], as described in
Appendix A 2.

It is important to stress that we consider the task of charac-
terizing shallow processes with a clear local structure, which
admit an efficient classical tensor network representation with
low bond dimensions. By shallow, we hereby refer to quantum
operations acting on n qubits that create only short-range
qubit-qubit correlations, with this range being independent of
n. For instance, a layer of CNOTs is shallow because it creates
entanglement between pairs of qubits only, so the range of the
correlations is 2, independently of the total number of qubits.
Our method may still be used to characterize noise in more
complex circuits but, in order to avoid an exponential scaling
of the bond dimension of their tensor network representations,
each deep quantum circuit should be divided into elementary
shallow layers, with our protocol applied independently to
each of them.

Applying the LPDO on the MPO ρ in Eq. (4) corresponds
to the action of the Kraus decomposition of the channel N on
a quantum state. Indeed, we can group the Kraus indices in
a single multi-index κ = {κ1, . . . , κn}, the upper summation
limit of which is equal to the product of all the dimensions of
the Kraus indices. Then, we obtain a single set of global Kraus
operators Kκ , the MPO structure of which is given by

Kκ =
∑

μ1,...,μn−1

A[1]
μ1,κ

⊗ A[2]
μ1,μ2,κ

⊗ . . . ⊗ A[n]
μn−1,κ

, (5)

and the action of the channel N on the state ρ in Eq. (4) is
equivalent to Eq. (1).

Note, however, that while the LPDO structure is com-
pletely positive by design, it does not automatically satisfy
the trace preserving condition of Eq. (2), which translates to
Trb,b′[�θ] = I in LPDO notation [27], where �θ is a generic
LPDO parameterized by quantities θ, and the indices b and
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b′ in the partial trace are as in Fig. 2. As proposed in [16],
one can enforce such property by adding a trace preservation
penalty term in the cost function at training time, but more
explicit constraints have also been proposed [31]. In addition,
as discussed in Sec. II C, one can initialize the tensor elements
θ in such a way that the resulting LPDO is at least correctly
normalized Tr[�θ] ≈ 2n in expectation value.

B. Data sampling

In what follows, we describe the tomographic sampling
strategy based on the recent paper by Torlai et al. [16]. It
consists in generating Nset experimental tomographic settings
in a randomized way in order to obtain sufficient informa-
tion about the quantum channel we aim to characterize. For
experiments on near-term quantum computers, we define an
experimental tomographic setting as a collection of n separa-
ble, single-qubit input states, and a collection of n choices of
measurement basis, one for each qubit of the device.

In our paper, for each qubit, we only use three possible
measurement bases, corresponding to the Pauli measure-
ments, i.e., we measure along the X , Y , or Z axes. The POVM
effects of the measurement along the X axis, for instance,
are |x〉〈x| and |−x〉〈−x|, where |x〉 (|−x〉) is the eigenstate of
X with eigenvalue +1 (−1), and equivalently for other axes.
Since the typical native measurement on a quantum computer
is in the computational basis, we can perform a measurements
in the X or Y directions by simply applying suitable single-
qubit rotations before the measurement.

Each single-qubit input state, which for the jth qubit is
denoted by ρ in

α j
, is drawn from an informationally complete

(IC) pool of states P = {ρ in
α j

} j , forming a basis in the space
of single-qubit density matrices. The minimum number of
states in the pool is 4, but this set may also be larger. For
instance, one may choose the overcomplete set comprising
the six Pauli eigenstates P = {|±x〉〈±x|, |±y〉〈±y|, |±z〉〈±z|},
which can be prepared by applying a single-qubit unitary gates
to state |+z〉 = |0〉. Alternatively, for the sake of employing
less experimental settings, one may also use a symmetric and
informationally complete (SIC) set of input states containing
only four elements, for example given by [32]

ρ j = 1

4
(1 + a j · σ ) , with

σ = (X,Y, Z ) ,

a0 = (+1,+1,+1)√
3

, a1 = (+1,−1,−1)√
3

,

a2 = (−1,+1,−1)√
3

, a3 = (−1,−1,+1)√
3

.

(6)

In practical scenarios, one usually seeks to characterize the
noise channel N accompanying an ideal unitary layer U .
Thus, we define the tomographic state as ρα = U [ρ in

α ], ob-
tained by evolving the initial randomly chosen input states
through the ideal unitary whose noise we want to characterize,
see Fig. 1(a).

An experimental setting is then defined in the following
way. We first draw one state ρ in

α j
for each qubit j = 1, . . . , n

from a uniform distribution over the pool P , which, for

simplicity, we assume to be equal for all qubits. Let us use the
collective index α = {α1, . . . , αn} to denote the choice of ini-
tial states for all the qubits. Next, we draw one measurement
basis β j ∈ {X,Y, Z} for each qubit j, again from a uniform
distribution, and use the collective index β = {β1, . . . , βn} to
indicate which measurement basis has been chosen on each
qubit.

A single tomographic experiment will then consist in
preparing the state ρ in

α = ⊗n
j=1 ρ in

α j
on all qubits, evolving it

through the full noisy process E = N ◦ U , and finally measur-
ing each qubit in the proper basis β j . Note that, since we know
the logical operation U the noise channel of which we are
characterizing, we isolate the noise channel N from the full
noisy process, and regard this experiment as the application
of an unknown channel N onto the known tomographic state
ρα = U [ρ in

α ]. Note also that the tomographic state is in general
entangled, but its spatial correlations (which impacts the bond
dimension of its MPO representation) are short range if the
unitary circuit U is shallow. This is the case we are interested
in, as we are considering noise affecting single-layer instruc-
tions. This means that we can represent ρα as a tensor network
efficiently.

A single-qubit Pauli measurement can be described by
a POVM with only two effects corresponding to outcome
ζ = +1 or ζ = −1, so the outcome of a single n-qubit to-
mographic experiment can then be represented as a vector
ζ = (ζ1, . . . , ζn). The probability of obtaining the outcome ζ

for a fixed experimental setting, defined by the choice of input
states α and measurement bases β, is given by the Born rule

p(ζ|α,β) = Tr

⎡
⎣N [ρα]

n⊗
j=1

�ζ j (β j )

⎤
⎦, (7)

where �ζ j (β j ) is the effect corresponding to the outcome ζ j

for a measurement in the β j basis performed on the jth qubit.
We point out that this sampling strategy assumes that

we know the input states and the measurements perfectly
well. It is, however, well known that this is not the case
on near-term quantum computers, where state preparation
and measurement (SPAM) errors are currently unavoidable
[33]. This consideration has led to different self-consistent
tomographic methods to determine the input states, the com-
putational gates, and the measurement outcomes consistently
and simultaneously [33,34]. Unfortunately, these procedures
are usually too resource-expensive for useful near-term appli-
cations (i.e., involving tens of qubits), even when considering
optimized strategies [35] (a more promising procedure is con-
sidered in Ref. [36], which performs SPAM-robust shadow
estimation of some properties of a gate set from random gate
sequences). For this reason, in the case of tensor network noise
characterization, one may adopt a more practical solution on a
real quantum computer: before running the noise tomography
experiment, one can perform a calibration of the machine
yielding a self-consistent description of the input states and
measurements, such as the one based on semidefinite pro-
gramming recently proposed by some of the authors [24].
Then, the output of the protocol, that is, a set of input states
and POVM effects that are self-consistent and capture what
is physically prepared and measured on the device, would be
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used in the noise characterization procedure, as in Eq. (7).
We point out that all the results of this paper, apart from
the ones discussed in Sec. IV C, do no take SPAM errors
into account and do not employ self-consistent tomography.
We leave a detailed study of the efficacy of self-consistent
strategies to ameliorate SPAM errors in the tensor network
noise characterization protocol for future works.

1. Efficiency of the sampling strategy

Let R = |P| be the number of possible input states in the
pool P , for which we know that R � 4. For each qubit we then
have a total of 3R possible different experimental settings,
given by all the possible combinations of input states (R)
and measurement bases (the three Pauli measurements). For a
system of n qubits and assuming independent preparations and
measurements, the total number of different settings therefore
is equal to (3R)n, which is a formidable number even for
n ∼ 10. Such exponential scaling, typical of quantum to-
mography, makes it unfeasible to implement all the possible
different settings in a tomographic experiment when a large
number of qubits is used.

We circumvent the issue by randomly generating only Nset

different tomographic settings using the procedure described
above, and allocating a number of Nshots measurement shots to
each of these settings. Therefore, a complete tomographic ex-
periment will use a total of N = Nshots × Nset measurements.
Despite not having the exponentially large tomographic data
required to reconstruct arbitrary channels, such limited infor-
mation can still be sufficient in our scenario, where we are
interested in learning processes with a local structure, which
can be effectively described using a only limited number of
values. Additionally, as already stated above, the local struc-
ture of the noise is also a key assumption for its efficient
description through a LPDO tensor network with a small bond
dimension.

We point out that here our analysis deviates from that
performed in Ref. [16], where the effect of number of shots
per setting is not taken into account. Instead, in this paper
we consider a scenario that is more realistic for near-term
quantum computers, and in particular for superconducting
quantum devices available on the cloud [37], where the total
measurement budget N is allocated by executing Nshots shots
on each of a limited number of experimental settings Nset. In
fact, given access constraints and the relatively long wall time
needed to compile instructions on current near-term hardware
[37,38], it is of paramount importance to be able to extract
relevant information out of only a limited number of distinct
experimental setups. The number of settings Nset is often the
practical bottleneck for current experiments, while the number
of shots per settings Nset comes at a much lower cost, both in
terms of accessibility and execution time.

We point out that such random sampling strategy, based on
generating only a reduced number of settings that in principle
is not sufficient for full process tomography of the quantum
channel, is equivalent to sampling for shadow tomography
[39–41] of quantum processes, which has been explored in
some recent papers [8,9,36,42]. The difference between our
method and shadow process tomography lies in the post-
processing of the sampled data. Instead of applying linear

inversion [8] or using more refined fitting methods [9,36,42]
starting from the raw data, we train the LPDO structure to
obtain the most accurate tensor network description of the
channel, by finding the parameters in the tensor network that
best explain the experimental data see Sec. II C. We leave
a direct comparison of our approach with those based on
shadow tomography as a topic for future studies.

2. Alternative local sampling strategies

The sampling strategy described so far generates different
global random settings for the tomographic experiment. How-
ever, one may also adopt a different strategy, which assumes
that the process N under investigation only generates local
correlations, and may therefore be well-characterized by using
only local information about the subsystems. Broadly speak-
ing, such methods select the tomographic settings in a way
that one is able to collect data on all reduced subsystems of
given locality, and then reconstruct the whole channel based
on such local information. Local tomographic strategies build-
ing on such ideas have been successfully used in the literature
to characterize quantum states with local correlations [43–45].

However, such strategies cannot be straightforwardly ap-
plied to the case of process tomography, where one has to
probe the channel under investigation not only with infor-
mationally complete measurements, but also input states (we
do not consider the reduction of channel to state tomogra-
phy via the Choi–Jamiołkowski isomorphism as this requires
the use of ancillary qubits [46]). Taking into account the
burden of state generation, one can check that the resources
needed to collect local tomographic data quickly become ex-
perimentally unfeasible, even for low locality. We refer the
interested reader to Appendix B, where we discuss in detail
possible tomographic strategies for accessing local data, also
based on lightcone arguments stemming from the brickwork
structure of the channel under investigation. In addition, in
Appendix B, we also provide preliminary numerical evidence
that the global random strategy performs better than a simple
local strategy, both in terms of total measurements needed and
reconstruction accuracy. All the numerical results presented in
the following are thus obtained following the random genera-
tion of tomographic settings described in Sec. II B.

C. Tensor network optimization

The optimization of the LPDO �θ over a set of parameters
θ is based on the approach proposed in Ref. [16], in which the
tensor network is trained so that the predicted distribution of
outcomes best matches the observed measurement statistics.

Formally, for N total experimental shots, let S =
{(ραm , �ζm

(βm)}N
m=1 be the tomographic dataset collected on

a real quantum device consisting of N pairs of tomographic
states ραm and corresponding measured effects �ζm

(βm),
where subscript m labels single experimental shots. Then, the
LPDO can be fitted to the experimental data by minimizing
the objective function [16]

DKL(θ; S) = − 1

N

N∑
m=1

log p(ζm|αm,βm; θ)

= − 1

N

N∑
m=1

log Tr
[
�θ

(
ραm

)
�ζm

(βm)
]
, (8)
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which is a Monte Carlo approximation to the Kullback-
Leibler divergence between the true probability distribution
of the quantum process under investigation (7), and the one
generated by the parameterized tensor network.

In addition, the authors in Ref. [16] propose to using an ad-
ditional penalty term in the loss function that favors physically
valid LPDO satisfying the trace preservation (TP) condition
(2). Such penalty term is given by the normalized Frobenius
distance between the identity and the MPO obtained by con-
tracting the outer legs in the LPDO (b and b′ in Fig. 2), namely

δTP(θ) = ‖Trout[�θ] − I‖F

2n/2
, (9)

where ‖A‖2
F := Tr[A†A] is the operator Frobenius norm.

Finally, the complete loss function used to drive learning
process is then given by

L(θ; S) = DKL(θ; S) + η δTP(θ) , (10)

where η ∈ R is a hyperparameter tuning the importance of
the TP condition in the training process. In all our nu-
merical simulations we set η = 1.2, which was heuristically
found to consistently ensure a good convergence to a prop-
erly normalized LPDO, Tr[�θ] ≈ 2n, at the end of training.
While different choices do not impact the end results sen-
sibly, these may result either in slower convergence times
towards physically meaningful solutions, or to solutions hav-
ing incorrect—but still close, if η ≈ 1—trace. Also, we note
that such hyperparameter could be itself adapted during train-
ing, but we leave this investigation as a topic for future studies.

Despite its effectiveness in training the LPDO, the loss
function (10) does not satisfy the symmetry requirement for
a true distance and has a limited physical interpretation. For
this reason, we measure the reconstruction error in the char-
acterization procedure through the quantity

�(�, �θ ) = ‖� − �θ‖2
F

22n
, (11)

consisting of a properly normalized Frobenius distance be-
tween the true channel � and the trainable one �θ , similar
to the fidelity-like error measure used in [16]. Needless to say,
this measure is only available in classical numerical simula-
tions, where the true channel is known.

1. Normalized initialization of the LPDO

At the start of the training procedure, the parameterized
LPDO is initialized with random values. However, this typi-
cally leads to unphysical quantum maps not respecting either
the TP constraint (9) or the normalization condition Tr[�] =
2n. In order to alleviate this issue, we first employ a parameter
initialization method that yields, in expectation value, a cor-
rectly normalized LPDO, and then variationally pre-optimize
the tensor network in order to appropriately satisfy the trace
preserving condition. Both these strategies were heuristically
found to improve convergence to good solutions and to sta-
bilize the training process by avoiding numerical instabilities
related to unphysical initializations of the tensor network.

The tensor elements θk ∈ C of the LPDO �θ are randomly
initialized from a complex Gaussian distribution

θk = Re(θk ) + i Im (θk )

with Re(θk ), Im (θk ) ∼ G(0, σ 2) , (12)

where G(0, σ 2) denotes a Gaussian distribution with zero
mean and variance σ 2. As proven in Appendix E 1, under such
circumstances, one can explicitly compute the expectation
value of the trace of the LPDO Tr[�θ] upon initialization,
which amounts to

Eθ[Tr[�θ]] = (8σ 2χκ )n χn−1
b , (13)

where n is the number of qubits, and χκ and χb are the Kraus
dimension and the virtual bond dimension of the LPDO, re-
spectively. Thus, by sampling the initial parameters according
to a Gaussian with variance

σ 2 = 2
/(

8χκχ
1−1/n
b

)
(14)

the LPDO is properly normalized to the correct value
Eθ[Tr[�θ]] = 2n on average upon random initialization.

Additionally, we further pre-optimize the initial LPDO
to satisfy the TP constraint by variationally minimizing the
penalty term δTP(θ) (9) by means of an optimizer before the
actual training of the LPDO starts.

2. Details on numerical simulations and optimization

All numerical experiments are run using the python tensor
network library quimb [47], in combination with libraries
for automatic differentiation and optimization jax [48] and
optax [49].

The trace preserving pre-optimization of the LPDO is run
using optimizer L-BFGS-B [50] provided in quimb. The train-
ing of the LPDO by minimization of the loss function L(θ; S)
(10) is done using the Adam optimizer [51], together with an
additional custom exponential decay schedule of the learning
rate, which was found to improve convergence. We refer to
Appendix E 2 for further details on the optimization process,
including details on the training batch size and dimension of
the test set.

III. NOISE TOMOGRAPHY EXPERIMENTS

For the sake of benchmarking our noise characterization
method, we consider the task of determining the noise N
accompanying the simple yet very common logical instruction
U consisting of an n-qubit even layer of CNOTs, as depicted
in Fig. 1(a). We simulate different noise models applied to
this circuit layer, which also take into account crosstalk errors
between nearby qubits. We run some classical simulations
of the tomographic experiment to characterize such a noisy
circuit, and we compare the results of the tensor network
reconstruction with the true noisy channel.

In the current section, we describe the different noise mod-
els we have employed in the classical simulation. The ensuing
Sec. IV is devoted to the study of the numerical results and
performance analysis. Finally, in Sec. V, we also validate the
accuracy of the channel characterization scheme by employ-
ing it to mitigate the noise on a noisy circuit through the
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recently proposed tensor network error mitigation protocol
(TEM) [23].

In our simulations, we choose three different realistic noise
models that are of particular importance for near-term quan-
tum computers: the sparse Pauli-Lindblad noise model [7], the
incoherent depolarizing noise model, and the coherent depo-
larizing noise model. Notably, all these multiqubit correlated
noise models can be graphically represented by the brickwork
circuit structure depicted in Fig. 1.

A. Sparse Pauli-Lindblad noise model

The sparse Pauli-Lindblad noise model is a locally corre-
lated noise model that was recently introduced as an effective
method to describe errors in superconducting quantum hard-
ware [7]. Such noise model is described by the map

NSPL[ρ] =
∏
k∈K

(ωk · + (1 − ωk )Pk · Pk ) ρ, (15)

where K is a poly(n)-size subset of the 4n n-qubit Pauli
operators, and · is a placeholder for the argument of the quan-
tum map, e.g., (Pk · Pk )ρ = PkρPk . The coefficients ωk are
defined as

ωk = (1 + e−2λk )/2 (16)

with λk � 0 being non-negative parameters defining the
strength of each Pauli interaction term in the Lindblad master
equation description of the noise NSPL[ρ] = exp[L](ρ), gen-
erated by L(ρ) = ∑

k∈K λk (PkρPk − ρ) [7]. These parameters
can be estimated, for instance, by cycle benchmarking [6,7],
which removes any preparation and measurement (SPAM)
errors [33]. However, this technique is known to provide only
an ambiguous reconstruction of the parameters [7,52]. The
sparse Pauli-Lindblad noise model is typically a faithful de-
scription of the noise channels on the device if one performs
randomized compiling [53] to approximately transform the
possibly coherent true noise to an incoherent Pauli channel.

The expression of the noise in Eq. (15) may take into
account crosstalk errors between very far away qubits, de-
pending on how we choose the set K. To opt for a more
realistic description of spatially correlated errors on the CNOT
layer, we choose K such that it only accounts for first-
neighbors crosstalk errors. That is, the coefficients k in K
can only refer to single- or two-qubit Pauli interaction terms
acting on adjacent qubits, an assumption that has been ex-
perimentally validated several times [1,7]. Importantly, in our
simulations we use realistic noise coefficients for SPL noise
found in current superconducting quantum hardware (see Ap-
pendix C for further details and explicit coefficients).

We point out that the Pauli-Lindblad channel gives rise to
a Clifford noise model [5], that is, the application of NSPL onto
a Pauli operator returns the same Pauli operator scaled by a
factor.

B. Incoherent depolarizing noise model

A two-qubit depolarizing noise channel is defined as

D(p)[ρ] = (1 − p) ρ + p

4
Tr[ρ] I, (17)

where p ∈ [0, 1] is the error rate. In the incoherent depolariz-
ing noise model, for each CNOT gate in the unitary layer U ,
we apply one two-qubit depolarizing channel with error rate p
on the target and control qubits. Moreover, in order to simulate
first-neighbors crosstalk errors, we consider another layer of
two-qubit depolarizing channels with error rate p/2 on the
nearby qubits that are not connected by a CNOT gate. This
then creates the brickwork structure of Fig. 1(a), as the noise
model consists of one even layer of two-qubit depolarizing
channels followed by an odd layer with a lower error rate.
Formally, the total noise channel on n qubits can be expressed
as follows:

N (p)
inc =

�(n−1)/2∏
k=1

D(p/2)
2k, 2k+1 ◦

�n/2∏
k=1

D(p)
2k−1, 2k , (18)

where the depolarizing channel D(p)
k, k+1 is acting on the qubits

k and k + 1.
For the simulations in the main text we set the depolariza-

tion strength to p = 10−3, which is only slightly lower than
two-qubit gate errors reported for state-of-art machines based
on, e.g., superconducting circuits [37,54], neutral atoms [3],
and ion-traps [55], and foreseeably achievable in the near
future. However, for completeness and as discussed in the
ensuing sections, we also report results for a stronger depo-
larizing rate in Appendix D.

We note that, as for the sparse Pauli-Lindblad noise model
(15), also the incoherent depolarizing noise model is a Clifford
map.

C. Coherent depolarizing noise model

We extend our analysis to coherent error sources by con-
sidering the more complex case where, in addition to the
brickwork depolarizing channel described above, the qubits
are also affected by undesired single-qubit unitaries. Specif-
ically, we assume that the overall noise process consists of a
first layer of single-qubit random rotations used to simulate
coherent noise, and the aforementioned correlated incoherent
depolarizing error channel.

The complete noise channel can then be written as

N (p)
coh = N (p)

inc ◦
n⊗

j=1

Uj , (19)

where Uj are single-qubit random rotations. Given three angle
parameters ψ , ϕ, and φ, these random rotations can be param-
eterized as

U (φ, ϕ,ψ ) =
(

eiϕ cos φ eiψ sin φ

−e−iψ sin φ e−iϕ cos φ

)
. (20)

A single-qubit Haar-random unitary rotation can then be ob-
tained by sampling uniformly ψ and ϕ from [0, 2π ], and
φ = arcsin

√
ζ where ζ is sampled uniformly from [0,1] [56].

Since we assume single-qubit errors to be small, we consider
restricted rotation angles given by ζ ← ε ζ and ϕ ← ε ϕ with
ε = 10−3.

We sample one different random rotation for each qubit.
If we apply the noisy circuit layer more than once, the ran-
dom rotations on each qubit are the same for all layers, that
is, we always associate the same noise channel to the same
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FIG. 3. Example training run of the parameterized LPDO �θ for
learning the brickwork depolarizing noise N dep

p in Eq. (18) with
p = 10−3 on a system of n = 10 qubits. The LPDO was trained
with a dataset of 106 samples (103 experimental settings, 103 shots
per setting), and with bond dimensions χκ = 2, χb = 16. Both the
reconstruction error �(�, �θ ) and the test loss L(θ) are minimized
and converge in a modest number of training epochs. The TP penalty
term in the cost function (9) helps the LPDO to converge to the
correct normalization.

logical instruction (the even CNOT layer in our cases). Con-
trary to the sparse Pauli-Lindblad and incoherent depolarizing
noise models, the coherent depolarizing noise model can be
non-Clifford.

IV. RESULTS

In this section we investigate the effectiveness of the pro-
posed tensor network noise characterization technique, and
analyze how its performance scales with the tomographic
dataset size, the number of qubits and the accuracy in estimat-
ing noise coefficients. Importantly, as discussed in Sec. II B,
we stress again that in our analysis we consider realistic
scenarios with a limited number of experimental settings and
multiple shots per setting, and we find that this is sufficient
to provide a reliable approximation of the noisy process. In all
the numerical results reported below, the tomographic data for
the channel reconstruction is obtained by sampling, for each
qubit, input states from the SIC set of four states defined in
Eq. (6), and measurements from the Pauli basis as described
in Sec. II B.

From the classical computational viewpoint, the number of
trainable parameters in the LPDO scales as Onχκχ

2
b , so the

learning process remains efficient as long as the bond dimen-
sions are small, which is the case for our task of characterizing
shallow noisy operations (the largest Kraus and virtual bond
dimensions used in our simulations are, respectively, χκ = 16
and χb = 4). Indeed, our largest training experiment with an
LPDO of n = 20 qubits, with bond dimensions χb = χκ = 4,
on a tomographic dataset consisting of N = 106 samples, can
be run in about one hour on a laptop.

In Fig. 3, we report an example of the characterization of a
brickwork depolarizing noise channel for n = 10 qubits with
N = 106 shots, using an LPDO with χκ = 2, χb = 16. The
reconstruction error (11) and the loss function evaluated on a

FIG. 4. Frobenius distance between true and reconstructed noise
channel as a function of the number of shots, for the different noise
models introduced in Sec. III, and with n = 10 qubits. We also plot
the expected “shot-noise” scaling, decreasing as 1/N . Each point in
the plot shows the best value obtained in three different training runs
of the LPDO initialized with different parameters, but on the same
training dataset. We note that all training runs eventually converge to
similar performances.

test set of samples both decrease along the training process
and converge to a minimum value in a few training epochs.
Also, after starting from the correct value (see Sec. II C 1),
the TP penalty (9) in the loss function enforces the LPDO to
converge to the correct normalization Tr[�θ] ≈ 2n by the end
of training.

In all the analyses presented below, we show the results
obtained with the trained LPDOs �θopt attaining the lowest
test error (10) during the training process, a measure, which is
accessible in real experiments and does not require knowledge
of the process under characterization. In all experiments with
brickwork depolarizing channels, χb = 2 and χκ = 16 were
used, while χb = 4 and χκ = 4 were used for experiments
involving sparse Pauli-Lindblad noise.

A. Accuracy vs number of shots

In order to evaluate the viability of tensor network
noise learning with random tomographic settings in realistic
experimental scenarios, we start by analyzing how the recon-
struction accuracy behaves with the size N of the tomographic
dataset. In particular, we consider a fixed budget of Nset = 103

experimental settings, and vary the number of shots allocated
to each measurement setting, Nshots ∈ {1, 10, 102, 103, 104}.
In Fig. 4, we report results for the characterization procedure
of the three realistic noise models discussed in Sec. III, for a
system of n = 10 qubits.

Interestingly, the reconstruction accuracy follows a shot-
noise behavior—we consider the square of the usual shot-
noise scaling

√
N to account for the square in the definition

of the reconstruction error � (11), which signals that the
learning procedure is able to take full advantage of additional
tomographic samples. However, when the number of shots per
setting is large enough Nshots = 104 (N = 107), the reconstruc-
tion accuracy starts deviating from the shot-noise scaling, at
which point it would be beneficial to increase the number of
settings rather than the shots per setting.

033217-8



TENSOR NETWORK NOISE CHARACTERIZATION FOR … PHYSICAL REVIEW RESEARCH 6, 033217 (2024)

× × ×

× × ×

FIG. 5. Frobenius distance between true and reconstructed noise
channels as a function of the number of qubits, for the different noise
models introduced in Sec. III, and with Nset = Nshots = 103 (then,
N = 106). The dashed lines are linear fits with parameters reported
in the figure. Each point in the plot shows the best value obtained
in three different training runs of the LPDO initialized with different
parameters, but on the same training dataset. We note that all training
runs eventually converge to similar performances.

This is especially evident for the sparse Pauli-Lindblad
noise model, for which not only the training yields in general
a slightly lower reconstruction accuracy, but the Frobenius
distance also displays a significant deviation at large number
of shots. We believe such behavior to be a consequence both
of the intrinsically more complex structure of the sparse Pauli-
Lindblad noise, and also of this channel being more noisy
overall (see the noise coefficients in Figs. 11 and 7 below).
In Appendix D we report results for the characterization of
brickwork depolarizing noise with stronger intensity p = 0.1
(much larger than current two-qubit error rates [1,54]). The
analysis is in agreement with similar but simpler results in
[16], where the reconstruction accuracy was found to decrease
in the presence of stronger noise sources. This could be un-
derstood as a consequence of the decrease of visibility of the
useful signal with increasing noise, indicating that either more
resources or a more fine-tuned training routine are needed to
distinguish the signal from a background white noise.

B. Accuracy vs number of qubits

We now turn our attention to the investigation of the be-
havior of the reconstruction accuracy as a function of size of
the system.

In Fig. 5, we report the accuracy obtained with N = 106

shots on systems of varying size, up to n = 20 qubits. We
observe a favorable linear scaling of the reconstruction error
with the number of qubits n for all noise models considered,
which indicates the feasibility of the proposed approach for
characterization purposes on near-term devices with a limited
amount of qubits. Overall, the results in Figs. 4 and 5 suggest
the use of linearly larger tomographic datasets to compensate
for the linear decrease in reconstruction accuracy for larger
system sizes.

C. Accuracy in the presence of SPAM errors

In this section we show how the proposed noise char-
acterization method can be used also in the presence of

FIG. 6. Effect of SPAM errors on the noise characterization pro-
cedure on n = 10 qubits subject to sparse Pauli-Lindblad noise, with
Nset = Nshots = 103. Both state preparation and measurement errors
are parameterized as single-qubit depolarizing channels with inten-
sities pprep and pmeas, respectively. Measurements error are mitigated
by using quantum detector tomography (QDT) [24] with 104 shots to
reconstruct the noisy POVM effects.

SPAM errors, by combining it with techniques aimed at
characterizing such state preparation and measurement noise.
In particular, we employ the quantum detector tomography
(QDT) procedure described in [24] to first reconstruct the
noisy POVM effects that are actually implemented on the
device, and then use such reconstructed effects in the noise
characterization procedure. In fact, if state preparation errors
are small compared to the other sources of error—as it is
usually the case in current quantum hardware, we observe
that the use of measurement tomography alone is already
sufficient to recover the reconstruction accuracy obtained in
the SPAM-free regime.

Quantum detector tomography is implemented by execut-
ing a set of circuits implementing only state preparation and
measurement instructions. Assuming state preparation errors
to be negligible compared to measurement errors, by probing
the chosen POVM with a set of informationally complete
states, one can realize a tomography of the quantum detector
and hence reconstruct the real noisy effects �ζ (β ) → �̃ζ (β )
composing the POVM. These effects are then used in the
loss function (10) to drive the noise characterization process.
In the experiments below, QDT is run using a set of four
informationally complete state to reconstruct the 6-outcome
POVM obtained by performing Pauli measurements. This re-
quires a total of 4 × 3 = 12 circuits, each of which is executed
with 104 shots. Note that the reconstruction of the effects
is itself only approximate, with better performance obtained
with larger measurement budgets [24]. Additionally, the QDT
procedure is run assuming an ideal preparation of the input
states, while these are in fact also subject to errors. These two
effects combined, namely the limited measurement budget
and the occurrence of unknown preparation errors, then result
in an imperfect reconstruction accuracy of the POVM effects.

In Fig. 6 we report the simulation results obtained by char-
acterizing the sparse Pauli-Lindblad noise on a system of n =
10 qubits in the presence of realistic SPAM noise, with and
without employing QDT to mitigate measurement errors. For
the sake of simplicity we consider only incoherent errors: both

033217-9



STEFANO MANGINI et al. PHYSICAL REVIEW RESEARCH 6, 033217 (2024)

FIG. 7. Some diagonal coefficients of the MPOs in Pauli transfer matrix (21) of the true (green circles) and reconstructed (orange crosses)
noise channels, for the different noise models introduced in Sec. III and n = 10 qubits. The numbers above the plot indicate the Pauli weight
(i.e., the number of nonidentities) of the operators. The mismatch between the green circles and orange crosses arises from the error in channel
tomography, obtained with a training set of N = 107 (Nset = 103, Nshots = 104) samples.

state preparation and measurement errors are parameterized
as single-qubit depolarizing channels, with state preparation
having depolarizing strength pprep = 10−4 (which is a reason-
able value for single-qubit gates on near-term computers), and
measurement error having pmeas ∈ {10−4, 10−3, 10−2, 10−1}.

When measurement errors are large, the noise learning
procedure is unable to provide an accurate description of the
noisy evolution, but this can be readily solved by using QDT
to calibrate the device and train the LPDO using the recon-
structed noisy effects. When SPAM errors are small enough
instead, noise characterization obtains good reconstruction ac-
curacy irrespective of the use of QDT. This can be understood
by noticing that the true and noisy effects are now very close
to each other, and QDT is unable of precisely distinguishing
them using a limited number of shots. Additionally, in the
regime where state preparation and measurement errors are
of the same order of magnitude, QDT yields incorrect noisy
effects since it was run assuming ideal state preparations,
which can then impact the noise learning procedure. This
issue may be solved by using self-consistent characterization
protocols [24,34], but we leave this as a subject of future
studies.

Overall, our results not only indicate the proposed ten-
sor network noise learning procedure is stable against small
SPAM errors, but also that is can be straightforwardly com-
bined with existing detector tomography methods to calibrate

the measurement apparatus and cancel the effects of large
measurement errors.

D. Reconstructed noise coefficients

While the Frobenius distance captures the overall differ-
ence between the two LPDOs, we investigate more physical
figures of merit as well, such as specific coefficients within
the tensor network representing the noise channel.

In particular, let us transform the LPDO representing the
channel into an MPO, i.e., let us switch to the superoperator
representation of the channel (see Appendix A 2 for details).
Moreover, we perform a suitable change of basis such that
this MPO is written in the basis of Pauli matrices, and then
consider the coefficients in the Pauli transfer matrix represen-
tation of the noise channel

ci j = 1

2n
Tr[Pi N [Pj]] , (21)

where Pi, j are n-qubit Pauli operators.
In Fig. 7, we report some values of these coefficients for

both the true and reconstructed noise channels, for the dif-
ferent noise models introduced in Sec. III defined on n = 10
qubits. As it is clearly unfeasible to investigate all the 42n Pauli
coefficients ci j , we restrict our analysis to diagonal terms (i =
j), and report data for some randomly sampled Pauli strings
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having different Pauli weight (number of nonidentities). Note
that while for the incoherent brickwork depolarizing (18) and
sparse Pauli-Lindblad noise models (15) the Pauli Transfer
matrix is indeed diagonal, this is not the case for coherent
brickwork depolarizing channel which also has nondiagonal
elements.

First of all, we note that all the reconstructed noise
channels display the correct necessary behavior for trace
preservation, as the coefficient belonging to the zero-weight
Pauli string (all identities) is correctly normalized to one, as
it holds Tr[IN [I]]/2n = 1. More importantly, we observe
that the errors in the learned noise coefficients are relatively
small, with a typical error of order 10−3 in all cases analyzed.
Interestingly, we note that larger coefficients belonging to
low-weight Pauli strings and larger noise levels are easier to
learn, a fact, which we will investigate more deeply in future
studies. We have also checked that the accuracy of the method
still holds when characterizing stronger noise, as discussed in
detail in Appendix D.

Overall, these results provide an additional and more direct
evidence of the potential of the tensor network approach to
characterize noisy processes.

V. APPLICATION TO ERROR MITIGATION

Despite their broad applicability and straightforward defi-
nition, distance measures like the norm in Eq. (11) may not be
directly relevant for practical scenarios when one is interested
in applying error mitigation techniques using characterized
noise. For example, when it comes to calculating rigorous
bounds for, e.g., estimation errors in experiments, the use of
distances may lead to very loose bounds of little practical
use [23].

In this section, we test the proposed noise learning pro-
cedure on the very timely task of error mitigation, showing
how the proposed approach is able to provide accurate enough
descriptions of the noise processes to achieve good noise-free
estimates of expectation values when used in tandem with
error mitigation techniques.

A. Tensor network error mitigation strategy

The error mitigation strategy we adopt in this paper is
the tensor network error mitigation (TEM) algorithm recently
introduced by some of the authors [23]. TEM relies on the
(ideally perfect) characterization of the noise channels that
affect the quantum circuit. This characterization is then em-
ployed to invert and cancel the effect of the noise channels,
in the same spirit as in one of the most successful methods
for quantum error mitigation, probabilistic error cancellation
(PEC) [7,21,22]. At variance with PEC, TEM is applied
completely in postprocessing and, moreover, it provides a
quadratic advantage in the sampling overhead with respect to
the former [23]. It also provides a sampling advantage with
respect to zero-noise extrapolation with probabilistic error
amplification (ZNE-PEA). In fact, for specific cases, it can
be shown that its sampling overhead is optimal [57].

Suppose that the circuit we want to run on the quantum
computer is composed of M layers represented by the ideal

unitaries

Cideal = UM ◦ . . . ◦ U1 . (22)

However, as a result of inevitable noise in the quantum pro-
cessor, the evolution we implement on hardware is instead
given by

Cnoisy = NM ◦ UM ◦ . . . ◦ N1 ◦ U1 , (23)

where N j is the noise channel associated with the ideal unitary
operation U j in the jth layer. After running the noisy circuit
on hardware and obtaining the final outcome through a proper
measurement procedure, our goal is to improve the accuracy
of the outcome by mitigating the detrimental effect of the
noise channels N j . The way we can achieve this through TEM
is the following.

First, we characterize the noise channels N j in tensor net-
work formalism. This characterization should be as accurate
as possible and, crucially, we should be able to characterize
the same layers we are using during the actual execution of
the quantum circuit in Eq. (23). That is, the noise on the
hardware should not change in the time between character-
ization and execution. Then, by computing the inverse of
the noise channels N−1

j (see Appendix F for more details),
we can finally postprocess the informationally complete mea-
surement results obtained from the noisy state by applying the
nonphysical map

CTEM = UM ◦ . . . ◦ U1 ◦ U−1
1 ◦ N−1

1 ◦ . . . ◦ U−1
M ◦ N−1

M ,

(24)

for which it is easy to see that CTEM ◦ Cnoisy = Cideal, that is,
we recover the ideal output.

The mitigation map CTEM is represented as a tensor net-
work and it is thus computed, i.e., contracted, on a classical
computer. If CTEM were as complex—from a tensor net-
work perspective—as Cideal, then TEM would not be of any
use, since we would only be able to mitigate noise through
classical tensor network methods if we were also able to
directly compute the evolution driven by Cideal through the
same techniques. The core idea of TEM, however, is that
only the inverse of the aggregated noise in the circuit must
be classically simulated. If the noise in the channels N j is
small enough, then the postprocessing map approaches the
identity operator CTEM ≈ I, and thus its contraction can be
computed efficiently through tensor network methods, even if
we are dealing with a large number of qubits. We refer the
interested readers to the original paper [23] for more details
and discussions about TEM.

B. Numerical results

To test the noise characterization method, we numerically
simulate a noise mitigation experiment on n = 10 qubits in
which we employ the noise channel returned by the charac-
terization protocol together with TEM to mitigate the noisy
circuit depicted in Fig. 8 (left).

The circuits we analyze consist in a repeated structure of
operations sampled from Clifford gates, which allows for an
easy computation of ideal noise-free expectation values from
the circuit [5]. In order to study the accumulation of errors
in deep circuits resulting from noise happening on several
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FIG. 8. (Left) Schematics of the noisy Clifford circuits we consider into account. One ideal layer consists of a random single-qubit Clifford
operations (green squares) followed by a (even or odd) CNOT layer. Each ideal layer is followed by the noise channel N , which is a sparse
Pauli-Lindblad noise channel introduced in Sec. III A, with coefficients sampled in order to resemble real experiments on IBM computers, see
Appendix C for details. (Right) Results of the numerical experiment of error mitigation applied to the noisy circuit on the left. The expectation
value of a different Pauli stabiliser at each circuit depth is shown, for either the unmitigated noisy circuit (gray diamonds), the mitigated circuit
through TEM based on the true noise channel (blue crosses), and the mitigated circuit through TEM based on the reconstructed noise channel
(orange circles) using a training set of 106 samples. (Inset) Mismatch between the mitigated results and the true result (equal to 1 for all
depths), for either TEM based on the true noise channel (blue line) or the TEM based on the reconstructed noise channel (orange line). The
blue line is different from zero because of the bond dimension truncation in the TEM method only. The orange line, in contrast, comprehends
errors arising from the inaccuracy in the channel reconstruction (dominant contribution), the bond dimension truncation, and also errors in the
inversion procedure of the MPO representing the noise necessary to run TEM. Nonetheless, the characterization procedure is able to provide a
remarkably accurate description of the noise, so that TEM is able to provide almost ideal noise-mitigated values even at large depth.

computational layers, we run the tensor mitigation strategy
on several circuits of different depths, obtained by iteratively
appending additional layers one after another.

One step of the ideal (noise-free) circuit comprises a layer
of random single-qubit Clifford gates followed by a layer
of CNOTs, with the CNOT gates in each layer acting either
on even or odd links between the qubits, depending on the
step. Note that such alternating brickwork circuit structure
is of practical interest as it can be used, for example, to
study properties of many-body quantum systems via Trot-
terized evolution, see e.g., [1,58]. At the end of the circuit,
we assume we are measuring the stabilizer Pauli operator O
having expectation value 〈O〉 = +1, which can be calculated
by evolving the initial Pauli string Z⊗n, whose +1 eigenstate
is the initial ground state |0〉⊗n of the computation, with the
Clifford operations in the circuit.

To take noise into account, we assume that each ideal
circuit layer is followed by a noise channel N , the effects of
which we aim to mitigate through TEM in post-processing.
For these experiments, we set the noise channel N to be
a sparse Pauli-Lindblad noise (15) with the coefficients as
in Appendix C, sampled to resemble publicly available data
by IBM on recent experiments leveraging SPL noise models
[1,7]. Notably, as discussed in Sec. III A, since such noise is
also a Clifford map, its effects on the output of the circuit can
be computed efficiently.

We perform the TEM experiments with both the exact
noise model used in the noisy simulations, and with the noise

model obtained with the characterization procedure using a
total of 106 random measurement shots, as in Fig. 4. In order
to use the characterized LPDO of the noise with TEM (24),
we first transform it into an MPO and then compute its in-
verse by combining the explicit linear-algebra-based approach
proposed in [29] together with an additional variational mini-
mization. We refer to Appendixes A 2 and F for further details
on the LPDO to MPO transformation and inversion of an
MPO, respectively. In the simulations below the bond dimen-
sion of the MPO used to represent the tensor error mitigation
map (24) is χ = 200.

As discussed before, the mean values of the different Pauli
operators O considered in the right panel of Fig. 8 are always
equal to +1 for the ideal noise-free circuits, as for each step
we are measuring the Pauli operator stabilized by that circuit.
The same expectation values but for the noisy circuit are also
shown (grey diamonds) up to 30 steps, with the signal almost
vanishing at the last step.

In the right panel of Fig. 8, we show the TEM-mitigated
results of the mean values of the Pauli operators using as an
input for TEM either the true noise channel (blue crosses),
which we can perfectly know only in a numerical experi-
ment, or the reconstructed noise channel obtained through
tensor-network-based noise characterization (orange circles).
The difference between the blue crosses and the ideal value
+1 arises from the truncation of the bond dimension in the
TEM method and, as shown in the inset of Fig. 8 (right),
it is small and noticeable only for higher circuit depths. In
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other words, for all practical purposes, TEM reproduces the
exact ideal result in the first circuit steps. In contrast, there
is a visible difference between the ideal noise-free estimates
and the mitigated ones obtained with the characterized noise
model. However, in the inset, we observe that such mismatch
is always of the order of 10−2 and, importantly, it does not
increase with the circuit depth, so we are able to recover an
almost perfect result even at step 30, where the noise almost
wiped out the signal entirely. This is remarkable, given that
three different sources of error are at play at the same time: (i)
reconstruction error inherent to the noise learning procedure,
(ii) errors in the inversion of the MPO of the characterized
noise, and eventually (iii) truncation errors introduced by
TEM to compute the tensor network mitigation map (24), with
the first one dominating over the other two.

Our results thus show that the tensor-network-based noise
characterization scheme studied in this paper can provide an
accurate description of the noise even with a modest number
of training experimental data, with direct applications in error
mitigation techniques that rely on the knowledge of the noise.

VI. CONCLUSIONS

Accurate noise characterization is of utmost importance
for attaining the best performance out of near-term quantum
computers, and especially for state-of-the-art error mitigation
methods, many of which rely on accurate knowledge of the
noisy gates physically applied [7,23]. Standard process to-
mography [5], however, is unfeasible in the era of quantum
utility, as circuit layers with tens or hundreds of qubits would
require a huge amount of tomographic resources (e.g., exper-
imental setups, state preparations, measurement shots, etc.),
the scaling of which is exponential in the number of qubits.

In this paper, we propose a protocol for noise characteri-
zation based on the tensor network procedure introduced by
Torlai et al. [16]. Our method not only avoids the exponential
scaling of measurement resources by sampling the different
possible tomographic settings in a randomized way, but it
also enables an efficient, meaningful, and scalable descrip-
tion of the reconstructed noise channel by means of tensor
network techniques (more specifically, a locally purified den-
sity operator structure, LPDO) with low bond dimension.
The investigated method does not require any twirling of the
noise maps [53], and is therefore suited to learn generic noisy
processes. As the output of our protocol is a tensor network
representation of the noise channel, it can be directly used
as an input for the tensor network error mitigation (TEM)
algorithm recently introduced in [23].

Whereas the original proposal in [16] mainly focused
on learning unitary processes coming from arbitrarily deep
quantum circuits, the originality of our approach lies in
specializing the channel tomography technique to the case
of learning shallow noise maps that accompany imperfect
circuit layer instructions. This makes the procedure practi-
cal, as it requires low bond dimensions, and highly relevant
for many noise-aware mitigation protocols. Additionally, we
extensively tested the method in several scenarios that are
experimentally relevant, including the effect of SPAM errors.
We also compared our method with a similar proposal based
on a local tomographic strategy, which demonstrated worse

performance. Finally, we tested the protocol for error mitiga-
tion, which is crucial for the success of near-term quantum
computation and the primary reason for needing need noise
characterization

Our protocol was tested through several numerical experi-
ments for realistic multiqubit correlated noise model learning.
We specifically addressed three different noise channels that
are of great relevance for current quantum computation,
namely the sparse Pauli-Lindblad noise model [7], the in-
coherent depolarizing noise model with crosstalk, and the
depolarizing noise model with crosstalk and coherent errors.

To assess the accuracy of the reconstruction, we used two
figures of merit: the Frobenius distance between the true and
reconstructed LPDOs, and the difference between the ele-
ments of the true and reconstructed superoperators expressed
in the Pauli basis. We found that a limited and experimentally
feasible number of shots (around 106 per characterization ex-
periment) suffices for accurate noise channel characterization.
We also explored how accuracy scales with the number of
shots and qubits, observing favorable linear behavior in both
cases.

Importantly, we have also tested the efficacy of the method
in the presence of SPAM errors, demonstrating its resilience
against small errors and how it can be combined with ex-
isting detector tomography techniques to mitigate undesired
measurement errors and retain good channel reconstruction
accuracies.

Moreover, we benchmarked the method with the timely
and relevant task of quantum error mitigation. Specifically, we
used the output of the noise characterization procedure as in-
put for the TEM protocol to mitigate measurement outcomes
from a noisy quantum circuit. We showed that TEM with
characterized noise is able to provide mitigated expectation
values with good accuracy (relative error of the order of 10−2),
even on deep circuit instances with tens of layers.

Summarizing, our analysis suggests that the tensor network
noise characterization protocol may be an valuable tool for
error mitigation for near-term quantum computers. The ac-
curacy of our method is corroborated by the precision with
which we can both reconstruct the noise channel as a tensor
network and recover the ideal result of a noisy circuit when
we employ this channel in conjunction with TEM.
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APPENDIX A: TENSOR NETWORK DETAILS

1. Explicit expression of the quantum channel
in tensor network notation

The diagrammatic representation of the LPDO in Fig. 2 can
be written in tensor network notation with explicit indices as

[�N ]b,b′
a,a′ =

∑
μ1,...,μn−1

∑
ν1,...,νn−1

∑
κ1,...,κn

n−1∏
j=2

× [A1]μ1κ1
b1a1

[A†
1]ν1κ1

a′
1b′

1
. . . [Aj]

μ j−1μ jκ j

b j a j
[A†

j ]
ν j−1ν jκ j

a′
j b

′
j

. . .

× [An]μn−1κn

bnan
[A†

n]νn−1κn

a′
nb′

n
. (A1)

The coefficients [Aj]
μ j−1μ jκ j

b j a j
are obtained by choosing a basis

for the single-qubit operators, and then decomposing each
global (i.e., acting on all the qubits) Kraus operator Kκ into
a linear combination of tensor products of single-qubit op-
erators, as given by Eq. (5). One general approach to split
each Kraus operator into single-qubit operators (and the cor-
responding index κ into local indexes κ1, . . . , κn) is based on
a recursive application of the singular value decomposition,
and the choice of [Aj]

μ j−1μ jκ j

b j a j
depends on the specific decom-

position one applies, see e.g., Ref. [17]. In practical cases.
however, the local decomposition is evident from the structure
of the channel under investigation. For example, a general
two-qubit Pauli channel reads

P[ρ] =
16∑

κ=1

cκ PκρPκ

=
4∑

κ1,κ2=1

cκ1κ2 (Pκ1 ⊗ Pκ2 ) ρ (Pκ1 ⊗ Pκ2 ) , (A2)

with Pκi ∈ {I, X,Y, Z} being single-qubit Pauli matrices. Such
channel has Kraus operators Kκ1κ2 = √

cκ1κ2 Pκ1 ⊗ Pκ2 , which
have a clear local structure. Starting from such decomposition,
one can realize that a LPDO representation of the channel as
in Eq. (5) is achievable starting from the local tensors

[A[1]]μκ1 =

⎡
⎢⎢⎣
I 0 0 0
0 X 0 0
0 0 Y 0
0 0 0 Z

⎤
⎥⎥⎦ ,

[A[2]]μκ2 =

⎡
⎢⎢⎣

√
c11 I

√
c12 X

√
c13 Y

√
c14 Z√

c21 I
√

c22 X
√

c23 Y
√

c24 Z√
c31 I

√
c32 X

√
c33 Y

√
c34 Z√

c41 I
√

c42 X
√

c43 Y
√

c44 Z

⎤
⎥⎥⎦. (A3)

Note, however, that such representation is nonunique, because
of the inherent gauge freedom of tensor networks (for exam-
ple, exchanging the two local tensors A[1] ↔ A[2] give rise
to the same channel). More complex channels arising from
combinations of single- and two-qubit channels—as the ones
discussed in the main text—can be obtained by combining and
contracting together the LPDO representation of each of these
channels.

2. From locally purified density operators (LPDO)
to matrix product operators (MPO)

In Fig. 9(a) it is represented the LPDO representation of
the quantum channel N we want to characterize. In many
applications (e.g., for running the TEM algorithm) we need
the superoperator representation of N in the Liouville space,
which consists of transforming the channel into a matrix act-
ing on the vectorized space of density matrices [27].

In the superoperator formalism, the action of some Kraus
operators Kκ acting on the state ρ like KκρK†

κ is represented
as Kκ ⊗ (K†

κ )T |ρ〉〉, where |ρ〉〉 is a suitable vectorization of
the density matrix. Then, the superoperator associated with
N in the tensor network formalism can be easily obtained
from the LPDO structure as shown in Figs. 9(b) and 9(c):
the indices of the Kraus operators acting on the left and on
the right of the density matrix are suitably reshuffled and then
merged to create a MPO representing N [27]. Additionally,
for the sake of running the tensor error mitigation (TEM) al-
gorithm described in Sec. V A, we need a MPO superoperator
representation of N in the Pauli basis. To do this we apply on
each site of the MPO a local change-of-basis unitary operator
that transforms the computational basis into the desired Pauli
basis, as depicted in Fig. 9(d). Finally, the MPO we will invert
to run TEM is shown in Fig. 9(e).

APPENDIX B: LOCAL SAMPLING STRATEGIES

The data sampling employed in this paper is based on the
random strategy described in Sec. II B. We have also explored
a different strategy that assumes that the correlations between
different sites of the tensor network representing the quantum
channel N are only � local, thus focusing on the reconstruct-
ing of �-reduced channels only. This strategy is motivated by
the similar methods that has been successfully applied to the
state tomography of matrix product states (MPS) [44,45] and
mixed states [43].

There is, however, a fundamental difference between the
local strategy for state tomography and for process tomogra-
phy. Suppose that we are employing the Pauli measurements
(i.e., three different measurement bases per qubit, as discussed
in the Sec. II B) for �-qubit state tomography; then we need
3� different experimental tomographic settings, corresponding
to six different POVM outcomes. As discussed in Sec. II B,
for �-qubit process tomography, in contrast, even in the best
possible scenario we need 12� settings in order to take into ac-
count also the preparation of informationally complete input
states. This means that the number of experimental settings
grows much faster than for state tomography as a function
of the locality �. For a real experiment on current near-term
quantum computers with limited access and capabilities, it is
already quite difficult to gather statistics on pretty low locality,
for example � = 4 implying 124 different experimental set-
tings (quantum circuits), and absolutely unfeasible to reach
locality � = 5.

Fixing the value of the locality �, a basic local sampling
strategy can be implemented by preparing all the possible
tomographic settings on subsets of � qubits. Specifically, as
described in Sec. II B, if we use a set of R informationally
complete input states and Pauli measurements, we will need
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FIG. 9. (a) LPDO representation of a quantum channel N , analogously to Fig. 2. (b) Indices are reshuffled according to the superoperator
representation. (c) The reshuffled indices are merged to give rise to a MPO representing N as a superoperator. (d) A change of basis
transformation is applied locally on each qubit to write the MPO in the Pauli basis (starting from the computational one). (e) Final MPO
representation of N in the Pauli basis.

to execute at least (3R)� different experimental settings. In
fact, for a linear chain of qubits, one can see that by us-
ing a scheme of correlated preparations and measurements
comprising (3R)� settings is enough to provide the necessary
�-local tomographic data on all � local reduced channels on
neighboring qubits.

For instance, suppose we want to characterize five qubits
and we choose locality � = 3. Consider experimental settings
where the qubits are prepared in a correlated fashion, that
is with input states of the form ρ = ρA ⊗ ρB ⊗ ρC ⊗ ρA ⊗
ρB, where ρA,B,C are sampled from a set of IC states; and
also measured on correlated bases, that is with measurement
operators of the form P = PA ⊗ PB ⊗ PC ⊗ PA ⊗ PB, where
PA,B,C are Pauli operators. Using such correlated tomographic
scheme, by considering all the (3R)3 tomographic settings
obtained by considering all combinations of states ρA,B,C and
measurements PA,B,C , one covers the experimental settings
needed to reconstruct all the 3-reduced channels acting on
subsets of qubits {0, 1, 2}, {1, 2, 3}, and {2, 3, 4}. This is be-
cause if states ρA ⊗ ρB ⊗ ρC on qubits {0, 1, 2} spans all
R3 possibilities, then also ρB ⊗ ρC ⊗ ρA on qubits {1,2,3}
will span all possibilities, and similarly for ρC ⊗ ρA ⊗ ρB

on qubits {2,3,4}. Same goes for the measurement opera-
tors. This optimal scheme holds for a linear chain of qubits,
for more complex topologies the choice of settings may be
different [59].

Alternatively, we may implement the local strategy by
keeping a different locality for the input states and the mea-
surement bases. This is motivated by lightcone arguments.
That is, if we want to characterize all the �-local outcomes
(i.e., we characterize up to �-local correlations in the mea-
surements over the n qubits), then the outcomes over � qubits
will in general depend on the input states over more than �

qubits, depending on the entangling structure of the channel.
For instance, consider a single layer of noisy CNOTs in which
crosstalk errors affect only the first neighbors, which is the
case treated in the main text and depicted in Fig. 1(a). Then,
it is easy to see that the outcomes on a single qubit can
be influenced by the initial states of at most four qubits. If
we aim to characterize 2-local outcomes instead, these will
depend on the input state of at most six qubits. This analysis

tells us immediately that the scaling of this lightcone-based
local strategy is again quite unfavorable: in the best scenario,
we need 46 × 32 = 36 864 settings for exactly characterizing
2-local correlations in the measurement outcomes, which is
hardly feasible on current near-term quantum computers.

Independent of the chosen strategy to collect local tomo-
graphic data, one could then still use the same machinery
discussed in Sec. II C to train a tensor network for the total
channel N starting, however, from tomographic data on the
�-local channels. Of course, as a general n-qubit quantum
channel cannot be written in terms of products of �-local
ones, the reconstruction accuracy of the whole channel will
be impacted, with good accuracy reached only when the
experiments locality used to collect the tomographic data ap-
proaches the actual locality of the channel [44,45].

For completeness, in Fig. 10 we report some numerical
results obtained by training the LPDO on local data of dif-
ferent locality � obtained using the basic sampling strategy
described above, to learn the brickwork depolarizing channel
(Sec. III B). As clear from the picture, the accuracy improves
when considering a larger locality for the data sampling, but
the global strategy still results in better reconstruction per-
formances despite using a smaller number of experimental
settings.

APPENDIX C: SPARSE PAULI-LINDBLAD NOISE MODEL

In Fig. 11 we report the coefficients used in the experiments
involving the sparse Pauli-Lindblad noise model, as defined in
Eq. (15). Such coefficients were sampled randomly to match
publicly available data by IBM on noise characterization
procedures run on superconducting quantum hardware [1,7].
Whenever we consider instances of such noise model on sys-
tems with less then 20 qubits (n < 20), we proceed by simply
restricting the noise model to those Pauli-Lindblad operators,
which act nontrivially on qubits q ∈ {0, . . . , n − 1}.

APPENDIX D: STRONG DEPOLARIZING NOISE

In this Appendix, we report numerical results for the char-
acterization of a stronger noise channel, namely the brickwork
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FIG. 10. Characterizing the brickwork depolarizing channel with
local data. Frobenius distance between true and reconstructed noise
channels through the local strategy, for different localities � ∈
{1, 2, 3}. The number of shots per setting in each scenario is tuned
so that all characterization experiments use roughly the same total
number of shots (≈106). The results are compared with the global
repeated strategy used in the main text (see Sec. II B), consisting of
103 settings and 103 shots per setting, for a total of 106 total shots.
The reconstruction error improves by considering larger localities,
but the global strategy achieves better performances. Each point in
the plot is obtained as the mean value of three different training runs
of the LPDO initialized with different parameters, with the error bars
being the standard deviation.

depolarizing channel of Eq. (18) but with noise parameter
p = 10−1, as opposed to p = 10−3 used in the main text. Note
that such error rate is widely larger than those found in already
available state-of-the-art quantum computers.

In Fig. 12 we show the scaling of the Frobenius distance
between the true and reconstructed channel as a function of
the number of shots, and compare it with the other noise mod-
els we have explored in this paper. As argued in the main text,
we witness a clear dependence of the reconstruction error on
the noise intensity, which can be understood as a consequence
of the whole learning procedure being unable to distinguish
the signal from a background white noise.

In addition, in Fig. 13 we report some coefficients of the
true and reconstructed noise channel in the MPO representa-
tion and in the Pauli basis. Despite the lesser performance in
terms of channel distance, we observe that the accuracy of our
reconstruction procedure is, however, once again remarkable
even in the strong noise scenario.

APPENDIX E: INITIALIZATION AND OPTIMIZATION
OF THE TENSOR NETWORK

In this Appendix we discuss the custom random initializa-
tion of the LPDO tensor network and provide details on the
optimization routines to train it.

1. Initialization of the LPDO parameters

The tensor elements in the LPDO �θ are initialized as
random complex variables with Gaussianly distributed real

and imaginary part, namely

θk = Re(θk ) + i Im (θk )

with Re(θk ), Im (θk ) ∼ N (0, σ 2) . (E1)

Given such choice, it is possible to compute the expectation
value of the trace of the LPDO upon initialization, which
amounts to

Eθ[�θ] = (8σ 2χκ )n χn−1
b , (E2)

where n is the number of qubits, and χκ and χb are the
Kraus bond dimension and the virtual bond dimension of
the LPDO, respectively. Then, by setting the variance to be
σ 2 = 2/(8χκχ

1−1/n
b ) one has that, in expectation value upon

random initialization, the LPDO is properly normalized to the
correct value Eθ[Tr[�θ]] = 2n.

In what follows we show how to derive Eq. (E2), with the
idea of the proof being diagrammatically depicted in Fig. 14.
We first start by computing expectation values of the form
E[Tr[A A†]], where A is a random matrix with normally dis-
tributed real and imaginary parts, and then proceed to show
how the trace of the whole LPDO results in a composition of
such quantities.

Let A ∈ C2×2 be a complex random normal matrix whose
entries are identically independently distributed (iid) variables
according to Eq. (E1). Then it holds

E[Tr[A A†]] = E

[
Tr

[(
a b
c d

)(
a∗ c∗
b∗ d∗

)]]

= E[|a|2 + |b|2 + |c|2 + |d|2]

= 4E[|a|2] = 4E[Re(a)2 + Im (a)2] (E3)

= 8σ 2

where in the third line we first made use of the fact that the ma-
trix elements are iid, and secondly that the real and imaginary
parts satisfy E[Re(a)2] = E[ Im (a)2] = σ 2. If instead one
considers the product of two different independent random
matrices A and B, then it is easy to show that E[Tr[AB]] = 0.

We now proceed computing the trace of the LPDO ten-
sor network Tr[�θ], which is diagrammatically shown in
Fig. 14(a). Let A[q]

μ,ν,κ ∈ C2×2 denote the local Kraus tensors
acting on each site, then starting from the definition of the
LPDO given in Eq. (4) and tracing over the physical indices
at each site of the tensor network results in

Tr[�θ] =
∑
μ,ν,κ

Tr
[(

A[1]
μ1,κ1

⊗ A[2]
μ1,μ2,κ2

⊗ . . . ⊗ A[n]
μn−1,κn

)

× (
A[1]†

ν1,κ1
⊗ A[2]†

ν1,ν2,κ2
⊗ . . . ⊗ A[n]†

νn−1,κn

)]
=

∑
μ,ν,κ

Tr
[
A[1]

μ1,κ1
A[1]†

ν1,κ1

]
Tr

[
A[2]

μ1,μ2,κ2
A[2]†

ν1,ν2,κ2

] · · ·

× Tr
[
A[n]

μn−1,κn
A[n]†

νn−1,κn

]
=

∑
μ,ν

A[1]
μ1,ν1

A[2]
μ1,ν1,μ2,ν2

. . . A[n]
μn−1,νn−1

, (E4)

where in the last line we introduced local tensors coming from
the contraction of the Kraus indices κ and the trace over the
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FIG. 11. Coefficients of the sparse Pauli-Lindblad noise model (15) considered in the numerical experiments, defined on a maximum of
n = 20 qubits with linear connectivity. We remark that these values are realistic noise coefficients sampled according to publicly available data
by IBM on noise characterization run on real superconducting quantum hardware.

physical indices at each site, namely

A[q]
μ,ν :=

χκ∑
κ=1

Tr
[
A[q]

μ,κ A[q]†
ν,κ

]
q ∈ {1, n} ,

A[q]
μ,ν,μ′,ν ′ :=

χκ∑
κ=1

Tr
[
A[q]

μ,μ′,κA[q]†
ν,ν ′,κ

]
q ∈ [2, n − 1] . (E5)

When each matrix A[q]
μ,ν,κ ∈ C2×2 in (E6) is a random ma-

trix with normal complex entries, then one can use Eq. (E3) to
compute the expectation values

E
[
A[q]

μ,ν

] =
χκ∑

κ=1

E
[
Tr

[
A[q]

μ,κ A[q]†
ν,κ

]]
︸ ︷︷ ︸

8σ 2 δμν

= 8σ 2 χκ δμν ,

and similarly for middle-sites tensors q ∈ [2, n − 2]

E
[
A[q]

μ,ν,μ′,ν ′
] =

χκ∑
κ=1

E
[
Tr

[
A[q]

μ,μ′,κA[q]†
ν,ν ′,κ

]]
︸ ︷︷ ︸

8σ 2 δμνδμ′ν′

= 8σ 2 χκ δμνδμ′ν ′ ,

FIG. 12. Same as in Fig. 4 in the main text, but with the strong
incoherent depolarizing noise channel introduced in Sec. III B with
noise strength p = 0.1.

thus having in total

E
[
A[q]

μ,ν

] = 8σ 2 χκ δμν , q ∈ {0, n − 1} ,

E
[
A[q]

μ,ν,μ′,ν ′
] = 8σ 2 χκ δμνδμ′ν ′ , q ∈ [1, n − 2] . (E6)

Note that we can consider expectation values independently
on each local tensor A[k] since each tensor is drawn indepen-
dently, and the expectation value factorizes over local sites,
that is

= E[Tr[�θ]]

= E

⎡
⎣∑

μ,ν

A[1]
μ1,ν1

A[2]
μ1,ν1,μ2,ν2

. . . A[n]
μn−1,νn−1

⎤
⎦

=
∑
μ,ν

E
[
A[1]

μ1,ν1

]
E

[
A[2]

μ1,ν1,μ2,ν2

]
. . . E

[
A[n]

μn−1,νn−1

]
. (E7)

Finally, using Eqs. (E6) inside Eq. (E7), one eventually
obtains

= E[Tr[�θ]]

=
∑
μ,ν

(8σ 2χκ )n δμ1ν1δμ1ν1δμ2ν2 . . . δμn−1,νn−1

= (8σ 2χκ )nχn−1
b , (E8)

where in the last line we used
χb∑

μ1,μ2,...,μn−1=1
ν1,ν2,...,νn−1=1

δμ1ν1δμ1ν1δμ2ν2 . . . δμn−1,νn−1

=
χb∑

μ1,μ2,...,μn−1=1
ν2,...,νn−1=1

δμ2ν2 . . . δμn−1,νn−1

=
χb∑

μ1,...,μn−1=1

= χn−1
b . (E9)

2. Optimization details

The parameterized LPDO �θ (A1) is trained with Adam
optimizer [51] combined with an exponential decay of the
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FIG. 13. Some coefficients of the MPOs in Pauli transfer matrix of the true (green circles) and reconstructed (orange crosses) noise
channels, for the strong incoherent depolarizing noise channel introduced in Sec. III B, with p = 0.1. The numbers above the plot indicate the
coefficient of the chosen Pauli operator (21). The mismatch between the green circles and orange crosses results from the error in channel
tomography, obtained with a training set N = 107 samples.

learning rate, which was found to stabilize training and en-
sure good convergence towards the end of the optimization
process.

Adam is a variant of stochastic gradient descent very
common in machine learning research, and consists of the
following update rules:

mt ← β1mt−1 + (1 − β1)gt

vt ← β2vt−1 + (1 − β2)g2
t

m̂t ← mt/(1 − βt
1)

v̂t ← vt/(1 − βt
2)

θt ← θt−1 − ηm̂t/(
√

v̂t + ε) ,

(E10)

FIG. 14. (Left) Tensor network representation of the trace of
the LPDO parameterized by θ, which represents the noise channel.
(Right) Tensor network representation of the expectation value of the
trace of the LPDO upon initialization.

where gt = ∇θ f (θt−1) is the gradient of the loss function f (θ )
to be minimized having tunable parameters θ , g2

t indicates its
element-wise square, and η is the step size (or learning rate).
In our simulations we used standard values for the hyperpa-
rameters, β1 = 0.9 and β2 = 0.999, ε = 10−8.

In addition to Adam, we used an exponential decay of the
learning rate

ηt = η0γ
t/T (E11)

where η0 is the initial learning rate at the start of training, γ

is the decay rate, t is the time step, and T is a decay time. In
our simulations we used η0 = 10−2, γ = 0.9, and the decay
time T was set equal to the number of training batches in an
epoch, which depends on the number of tomographic samples
N . The exponential decay stars only after a warm-up period of
500 gradient-descent steps.

Importantly, note that in our case the parameters to be
optimized are elements of the Kraus operators (A1), and they
consist of complex variables. Accordingly, the cost function
is minimized by taking steps in the direction of the conju-
gated gradient [60]. All optimization runs, including Adam
and the exponential decay of the learning rate, were imple-
mented as provided by the jax-based optimization library
optax [49].

As customary in machine learning, training was run by
gradient-descent updates on mini batches of data of size
250 (50 when the number of tomographic samples is scarce
N = 103). Of the whole tomographic dataset consisting of N
measurement samples, min (N/10, 12500) of them were used
as a test dataset to estimate the loss function. The stopping
criterion used during training was to stop the optimization if
the Frobenius distance between the optimized LPDO and the
target one did not change more than 10−7 over the last five
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training epochs. In the realistic case scenario where one does
not have the target LPDO to compare with, one can instead
monitor the loss function on the test set and stop training if
this stops improving.

APPENDIX F: INVERSION OF THE MPOS

In order to run the tensor error mitigation technique dis-
cussed in Sec. V, it is necessary to be able to compute the
inverse of MPOs representing the quantum channels (which,
however, is not a valid quantum channel [61]). That is, given a
matrix product operator �, one needs to find another operator
�−1 such that ��−1 = I. As proposed in [43], this can be done
by minimizing the error

�φ = ‖� ϒφ − I‖2
F (F1)

where ‖ · ‖2
F is the squared Frobenius distance, � the MPO

to be inverted, and ϒφ is a parameterized MPO the tensor
elements φ of which are tuned to approach �−1. As shown in
[43], this minimization problem can be reduced to a quadratic
problem in the local tensors, and then solved by sweeping over
the sites and solving local systems of linear equations at each
of them.

In addition to such explicit method, the error term �φ can
also be minimized by variationally tuning the parameters by
means of an optimizer. Indeed, in our simulations we noticed
that a combined approach of these two methods provides
better results, especially when the MPO to be inverted is
not sparse and contains many nonzero but small entries, as
is the case for the MPOs coming from the noise character-
ization procedure II B. Specifically, one can use a classical

optimization routine to find

φopt = arg min�φ = arg minφ‖� ϒφ − I‖2
F , (F2)

and the optimization task can be performed either globally by
minimizing all the parameters in ϒφ at the same time, or again
in a DMRG-like [17] fashion by dividing it into many local
subsequent optimization problems where only the parameters
belonging to one single site are optimized at each time, with
the others being fixed.

For the tensor error mitigation experiments on n = 10
qubits with the sparse Pauli-Lindblad noise reported in Sec. V,
the exact noise maps—that is those built explicitly from the
definition of the noise channels—were inverted with an MPO
with virtual bond dimension χb = 4 using the linear algebra
based inversion procedure proposed in [43], which was found
to converge to negligible inversion error �φ � 10−5. Instead,
for the MPOs associated with the noise channels coming from
the characterization procedure, the explicit inversion method,
again with an ansatz MPO of bond dimension χb = 4, con-
verged to �φ ≈ 6, and was followed by a round of global and
local variational minimization of the error function with opti-
mizer L-BFGS-B as provided by quimb [47], which improves
the inversion achieving a final error of �φ ≈ 0.6.

Even though the inversion of the MPOs is not perfect,
especially for the characterized noise channels, we note that
in our cases the error from the inversion procedure is usually
much smaller than the one from the characterization proce-
dure, as one can see by comparing the normalized inversion
error �φopt

/22n ≈ 10−7 with the normalized characterization
error �(�,�θopt ) ≈ 10−4 (see Fig. 4 with 107 shots). We leave
a more comprehensive analysis of the inversion error and their
impact of noise mitigation as a topic for future studies.
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[32] J. Řeháček, B.-G. Englert, and D. Kaszlikowski, Minimal qubit
tomography, Phys. Rev. A 70, 052321 (2004).

[33] S. T. Merkel, J. M. Gambetta, J. A. Smolin, S. Poletto, A. D.
Córcoles, B. R. Johnson, C. A. Ryan, and M. Steffen, Self-
consistent quantum process tomography, Phys. Rev. A 87,
062119 (2013).

[34] E. Nielsen, J. K. Gamble, K. Rudinger, T. Scholten, K. Young,
and R. Blume-Kohout, Gate set tomography, Quantum 5, 557
(2021).

[35] R. Brieger, I. Roth, and M. Kliesch, Compressive gate set to-
mography, PRX Quantum 4, 010325 (2023).

[36] J. Helsen, M. Ioannou, J. Kitzinger, E. Onorati, A. H.
Werner, J. Eisert, and I. Roth, Shadow estimation of gate-set
properties from random sequences, Nat. Commun. 14, 5039
(2023).

[37] IBM Quantum Documentation, https://docs.quantum.ibm.com/
(2023).

[38] Qiskit contributors, Qiskit: An open-source framework for
quantum computing, https://www.ibm.com/quantum/qiskit
(2023).

[39] S. Aaronson, Shadow tomography of quantum states, SIAM J.
Comput. 49, STOC18-368 (2020).

[40] H.-Y. Huang, R. Kueng, and J. Preskill, Predicting many prop-
erties of a quantum system from very few measurements, Nat.
Phys. 16, 1050 (2020).

[41] A. Acharya, S. Saha, and A. M. Sengupta, Shadow tomogra-
phy based on informationally complete positive operator-valued
measure, Phys. Rev. A 104, 052418 (2021).

[42] A. Acharya, S. Saha, S. Sridharan, Y. Bahroun, and A. M.
Sengupta, Learning the eigenstructure of quantum dynamics
using classical shadows, arXiv:2309.12631.

[43] Y. Guo and S. Yang, Scalable quantum state tomography
with locally purified density operators and local measurements,
arXiv:2307.16381.

[44] M. Cramer, M. B. Plenio, S. T. Flammia, R. Somma, D. Gross,
S. D. Bartlett, O. Landon-Cardinal, D. Poulin, and Y.-K. Liu,
Efficient quantum state tomography, Nat. Commun. 1, 149
(2010).

[45] B. P. Lanyon, C. Maier, M. Holzäpfel, T. Baumgratz, C.
Hempel, P. Jurcevic, I. Dhand, A. S. Buyskikh, A. J. Daley, M.
Cramer et al., Efficient tomography of a quantum many-body
system, Nat. Phys. 13, 1158 (2017).

[46] J. B. Altepeter, D. Branning, E. Jeffrey, T. C. Wei, P. G. Kwiat,
R. T. Thew, J. L. O’Brien, M. A. Nielsen, and A. G. White,
Ancilla-assisted quantum process tomography, Phys. Rev. Lett.
90, 193601 (2003).

[47] J. Gray, quimb: A python package for quantum information
and many-body calculations, J. Open Source Soft. 3, 819
(2018).

[48] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C.
Leary, D. Maclaurin, G. Necula, A. Paszke, J. VanderPlas, S.
Wanderman-Milne, and Q. Zhang, JAX: Composable trans-
formations of Python+NumPy programs, https://github.com/
google/jax (2018).

[49] DeepMind, I. Babuschkin, K. Baumli, A. Bell, S. Bhupatiraju,
J. Bruce, P. Buchlovsky, D. Budden, T. Cai, A. Clark et al.,
The DeepMind JAX Ecosystem, https://github.com/google-
deepmind (2020).

[50] R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu, A limited memory
algorithm for bound constrained optimization, SIAM J. Sci.
Comput. 16, 1190 (1995).

[51] D. P. Kingma and J. Ba, Adam: A method for stochastic opti-
mization, arXiv:1412.6980.

[52] S. Chen, Y. Liu, M. Otten, A. Seif, B. Fefferman, and L.
Jiang, The learnability of Pauli noise, Nat. Commun. 14, 52
(2023).

033217-20

https://doi.org/10.22331/q-2022-10-20-844
https://doi.org/10.1038/s41467-023-38332-9
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1016/j.aop.2014.06.013
https://doi.org/10.1088/1751-8121/aa6dc3
https://doi.org/10.1103/PhysRevLett.119.180509
https://doi.org/10.1103/PhysRevX.8.031027
https://arxiv.org/abs/2307.11740
https://doi.org/10.1103/PhysRevResearch.5.033154
https://dl.acm.org/doi/abs/10.5555/2871422.2871425
https://doi.org/10.1103/PhysRevLett.116.237201
https://doi.org/10.1103/PRXQuantum.3.040313
https://doi.org/10.1103/PhysRevLett.93.207204
https://neurips.cc/virtual/2021/36475
https://doi.org/10.1103/PhysRevA.70.052321
https://doi.org/10.1103/PhysRevA.87.062119
https://doi.org/10.22331/q-2021-10-05-557
https://doi.org/10.1103/PRXQuantum.4.010325
https://doi.org/10.1038/s41467-023-39382-9
https://docs.quantum.ibm.com/
https://www.ibm.com/quantum/qiskit
https://doi.org/10.1137/18M120275X
https://doi.org/10.1038/s41567-020-0932-7
https://doi.org/10.1103/PhysRevA.104.052418
https://arxiv.org/abs/2309.12631
https://arxiv.org/abs/2307.16381
https://doi.org/10.1038/ncomms1147
https://doi.org/10.1038/nphys4244
https://doi.org/10.1103/PhysRevLett.90.193601
https://doi.org/10.21105/joss.00819
https://github.com/google/jax
https://github.com/google-deepmind
https://doi.org/10.1137/0916069
https://arxiv.org/abs/1412.6980
https://doi.org/10.1038/s41467-022-35759-4


TENSOR NETWORK NOISE CHARACTERIZATION FOR … PHYSICAL REVIEW RESEARCH 6, 033217 (2024)

[53] J. J. Wallman and J. Emerson, Noise tailoring for scalable
quantum computation via randomized compiling, Phys. Rev. A
94, 052325 (2016).

[54] D. C. McKay, I. Hincks, E. J. Pritchett, M. Carroll, L. C. G.
Govia, and S. T. Merkel, Benchmarking quantum processor
performance at scale, arXiv:2311.05933.

[55] S. A. Moses, C. H. Baldwin, M. S. Allman, R. Ancona, L.
Ascarrunz, C. Barnes, J. Bartolotta, B. Bjork, P. Blanchard,
M. Bohn, J. G. Bohnet, N. C. Brown, N. Q. Burdick, W. C.
Burton, S. L. Campbell, J. P. Campora, C. Carron, J. Chambers,
J. W. Chan, Y. H. Chen et al., A race-track trapped-ion quantum
processor, Phys. Rev. X 13, 041052 (2023).

[56] M. Ozols, How to generate a random unitary matrix,
http://home.lu.lv/∼sd20008/papers/essays/Random%
20unitary%20[paper].pdf (2009).

[57] S. N. Filippov, S. Maniscalco, and G. García-Pérez, Scalability
of quantum error mitigation techniques: from utility to advan-
tage, arXiv:2403.13542.

[58] N. Keenan, N. F. Robertson, T. Murphy, S. Zhuk, and J. Goold,
Evidence of Kardar-Parisi-Zhang scaling on a digital quantum
simulator, npj Quantum Inf. 9, 72 (2023).

[59] B. G. M. Araújo, M. M. Taddei, D. Cavalcanti, and A. Acín,
Local quantum overlapping tomography, Phys. Rev. A 106,
062441 (2022).

[60] JAX documentation, the Autodiff Cookbook, https://jax.
readthedocs.io/en/latest/notebooks/autodiff_cookbook.html
(2023).

[61] S. Mangini, L. Maccone, and C. Macchiavello, Qubit
noise deconvolution, EPJ Quantum Technol. 9, 29
(2022).

033217-21

https://doi.org/10.1103/PhysRevA.94.052325
https://arxiv.org/abs/2311.05933
https://doi.org/10.1103/PhysRevX.13.041052
http://home.lu.lv/~sd20008/papers/essays/Random%20unitary%20[paper].pdf
https://arxiv.org/abs/2403.13542
https://doi.org/10.1038/s41534-023-00742-4
https://doi.org/10.1103/PhysRevA.106.062441
https://jax.readthedocs.io/en/latest/notebooks/autodiff_cookbook.html
https://doi.org/10.1140/epjqt/s40507-022-00151-0

