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Statistical properties of probabilistic context-sensitive grammars
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Probabilistic context-free grammars (PCFGs), which are commonly used to generate trees randomly, have
been well analyzed theoretically, leading to applications in various domains. Despite their utility, the distributions
that the grammar can express are limited to those in which the distribution of a subtree depends only on its root
and not on its context. This limitation presents a challenge for modeling various real-world phenomena, such as
natural languages. To overcome this limitation, a probabilistic context-sensitive grammar (PCSG) is introduced,
where the distribution of a subtree depends on its context. Numerical analysis of a PCSG reveals that the
distribution of a symbol does not constitute a qualitative difference from that in the context-free case, but mutual
information does. Furthermore, a novel metric introduced to directly quantify the breaking of this limitation
detects a distinct difference between PCFGs and PCSGs. This metric, applicable to an arbitrary distribution of a
tree, allows for further investigation and characterization of various tree structures that PCFGs cannot express.
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I. INTRODUCTION

Hierarchical structures underlie many real-world phenom-
ena, including natural languages. A context-free grammar
(CFG), a fundamental concept in formal language theory,
was originally introduced to analyze hierarchical syntactic
structures in natural languages [1]. Furthermore, it provides
a basis for describing more general hierarchical structures
that are not limited to natural languages. A CFG, defined
by a set of production rules, generates strings with trees in
a formal way. The strings correspond to sentences, whereas
the trees describe the hierarchical syntactic structures behind
the sentences. A probabilistic extension of a CFG, known
as a probabilistic context-free grammar (PCFG) or stochastic
context-free grammar [2], introduces probabilities into the
production rules. According to the rules, this model generates
trees in a probabilistic manner. This probabilistic grammar
has been used to model syntactic structures of a natural lan-
guage [3] or a programming language [4], and to study many
other phenomena with tree or hierarchical structures in fields
such as music [5,6], human cognition [7], a long-short-term-
memory network [8], RNA [9], cosmic inflation [10], or a
more abstract model [11–13]. Additionally, other frameworks
are closely related to a PCFG, including a branching process
and a Lindenmayer system (or L-system) [14–16].

An essential property of a PCFG is that the distribution of
a subtree depends only on its root, not on the context, which
we will designate as context-free independence. This prop-
erty allows an exact mathematical analysis of the statistical
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properties of PCFGs. Indeed, earlier studies have analyzed
and resolved various aspects of PCFGs, including the prob-
ability of symbol occurrence [17], the correlation function
[11,12], mutual information between nodes [8], the mean
sentence length [18], entropy [19,20], branching rates [19,20],
tree size [20], and the conditions for sentence generation to
terminate with probability 1 [18,21]. At the same time, this
property is too strict to impose on real-world phenomena. Par-
ticularly, it is well known in linguistics that some languages
in the real world cannot be described using a CFG because of
its inability to represent cross-serial dependencies [22,23]. In
natural language processing, empirical evidence suggests that
a naive parser relying on a PCFG is insufficient for inferring
syntactic structures [3]. Moreover, certain parsers that relax
context-free independence in technical manners can express
more complex distributions and can achieve higher accuracy
[24,25]. Outside of language-related domains, the possibility
that introducing context sensitivity is useful for describing
music is also discussed [5]. Therefore, the distributions that
a PCFG can express are regarded as severely limited.

To understand more realistic phenomena with hierarchical
structures, it is necessary to introduce and analyze a model
that captures the distribution of a tree beyond context-free
independence. For this purpose, one can naturally consider
context-sensitive grammars (CSGs) [26], which form the class
one level higher than CFGs in the hierarchy of expressive
power: the so-called Chomsky hierarchy. Similarly to a PCFG,
a probabilistic context-sensitive grammar (PCSG) can be for-
mulated as a probabilistic extension of a CSG. A PCSG
explicitly relaxes context-free independence. Consequently,
the theoretical analyses developed for a PCFG are not applica-
ble to a PCSG. The statistical properties of a PCSG have only
rarely been analyzed, either theoretically or numerically.

To address this point, for this work we defined a simple
PCSG and investigated its statistical properties by numerical
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simulations systematically, mainly examining whether a
qualitative difference from a PCFG exists, or not. To be more
precise, we implemented a PCSG to measure the distribution
of a symbol, mutual information between two nodes, and
mutual information between two pairs of children of nodes on
which the symbols are fixed. Here, we present a comparison
of the observed similarities and differences between PCFG
and PCSG: No qualitative difference was found in the
distribution of a symbol between a PCSG and a PCFG. This
result suggests that the properties observed in PCFGs are
likely to be preserved in PCSGs. Given that the absence of
a singularity in the distribution in an ensemble of PCFGs
has been proven [17], it is reasonable to infer that PCSGs
would not exhibit the singularity, similarly to PCFGs. This
singularity is relevant for the discussion on a phase transition
in the random language model (RLM) [27,28], which might
be analogous to discontinuity in human language acquisition
according to earlier research.

However, the behaviors of mutual information between
two nodes differ between a PCFG and a PCSG. The mutual
information in a PCFG decays exponentially with the distance
between two nodes, i.e., the path length in a tree graph. In con-
trast, in a PCSG, the mutual information decays exponentially
with the effective distance, which is defined by considering
the effect of context sensitivity.

Additionally, a more pronounced difference concerns the
mutual information between pairs of children of symbol-fixed
nodes. This novel metric, proposed in this research, quanti-
fies context-free independence breaking. From a theoretical
physics perspective, this metric represents the degree to which
the network of interactions deviates from a tree structure.
Linguistically, it represents the strength of mutual dependence
between the structures of two constituents or phrases of given
types. This metric not only detects whether context-free inde-
pendence is broken, it also quantifies where and how strongly
the breaking occurs. In a PCFG, the context-free indepen-
dence breaking is always zero. By contrast, in a PCSG, it is
positive and decays similarly to the mutual information be-
tween nodes. As a result, the most striking difference between
a PCFG and a PCSG is in this metric. This quantification is
intuitive and is definable for any distribution of a tree. Mea-
suring this metric in other mathematical models or real-world
phenomena will help deepen the understanding of them by
investigating how their behavior differs from that of a PCFG.

Here, we provide a brief summary of the main contribu-
tions made in this paper. Our first main contribution is the
systematic investigation of a PCSG, which is a simple model
for generating hierarchical structures beyond those produced
by PCFGs. A key distinction between a PCFG and a PCSG is
in the distance that determines the decay of mutual informa-
tion. Second, we propose a novel metric for the context-free
independence breaking, which has not been quantified previ-
ously. This metric allows for further quantitative investigation
of various hierarchical structures that violate the context-free
independence. Our results show that this metric decays ex-
ponentially for a PCSG while it remains zero for a PCFG,
demonstrating the usefulness of this metric.

This paper is structured as follows: The models, a PCFG
and a PCSG, are introduced in Sec. II. The analysis of the
distribution of a symbol in a PCSG and the argument about the

phase transition in the RLM are presented in Sec. III. Then,
in Sec. IV, a numerical analysis of the mutual information
between two nodes is presented, including the definition of
the effective distance. The introduction and analysis of the
quantification of the context-free independence breaking are
given in Sec. V. Finally, we summarize the results and briefly
discuss future works in the last section.

II. MODEL

A. Probabilistic context-free grammar

In formal language theory [26], a grammar G consists of
a vocabulary V and a finite set R of rules. A vocabulary V ,
a finite set of symbols, is divided into nonterminal symbols
A, B, . . . ∈ VN and terminal symbols a, b, . . . ∈ VT . Each rule
in R is of the form ϕ → ψ , meaning that a finite string ϕ in
V is rewritten as another finite string ψ . Also, the left-hand
side ϕ of the rule must include at least one nonterminal sym-
bol. The grammar G generates a sentence by the following
process: Initially, a special symbol S ∈ VN , called the starting
symbol, is given. Next, S is rewritten by a rule S → ϕ. When
a substring ψ of ϕ includes a nonterminal symbol, ϕ can be
rewritten by replacing ψ with another string ω according to a
rule ψ → ω. This process is repeated. Finally, if the string has
no nonterminal symbol, it can no longer be rewritten by any
rule. The final string is called a sentence. The whole process
of generating a sentence is called a derivation. The set of
sentences generated using a grammar G is a language of G.
The importance of the finiteness of symbols and rules is note-
worthy. If infinite sets V and R are allowed, then it becomes
trivially possible to construct a grammar that generates an ar-
bitrary language by introducing a symbol A and a rule A → ϕ

for each sentence ϕ in the language. The infinite number of
symbols or rules would make the concept of characterizing
and classifying languages in terms of grammars irrelevant.

A grammar G is a CFG [1] if every rule of G is of the form
A → ϕ with A being nonterminal. The derivation in a CFG can
be represented as a tree, which is analogous to the syntactic
structure of a sentence in a natural language analyzed by
immediate constituent analysis, as shown in Fig. 1. In fact,
any CFG can be transformed to an equivalent CFG where
every rule is of the form A → BC or A → a for A, B,C ∈ VN

and a ∈ VT , ensuring that the generated language remains un-
changed. This transformed form is referred to as the Chomsky
normal form (CNF) [29].

A PCFG [2] is a probabilistic version of a CFG. It is intro-
duced by assigning a probabilistic weight MA→ϕ to each CFG
rule A → ϕ, meaning that a nonterminal symbol A is rewritten
as ϕ with probability MA→ϕ . The PCFG specified by the set
of weights MA→ϕ determines the probability of a derivation,
which is the product of the weights of all rules applied in the
derivation. If we adopt the idea of simplifying a speaker or
a group of speakers of a language as an agent that generates
strings with syntactic structures probabilistically, then a PCFG
can be a simple mathematical model for a language. Indeed,
a PCFG has been used for modeling a natural language [3]
and a programming language [4]. In addition, because a PCFG
can be regarded as a simple mathematical model for randomly
generating trees or hierarchical structures, many studies have
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FIG. 1. (a) Example of a derivation generated using a CFG in CNF. A node with its children means that the node is rewritten as the children.
In this example, the initial string is C. Applying the first rule C → DA, the string becomes DA. The next rule D → BD (or A → FE ) rewrites
the string as BDA (or DFE ). The remainder of the derivation is similar. The final string, i.e., the sentence, is becda. (b) Syntactic structure
behind the sentence Colorless green ideas sleep furiously in terms of immediate constituent analysis. This diagram means, for instance, that
the noun phrase (NP) green ideas consists of the adjective (A) green and the noun (N) ideas. Roughly speaking, a nonterminal symbol in a
CFG corresponds to a constituent in syntax; a terminal symbol corresponds to a word.

used it as a model not only for a natural or formal lan-
guage but also for other phenomena [5–9,11–13]. A PCFG
also has a close relation to other physical and mathematical
frameworks [14–16].

By definition, the distribution of a subtree in a PCFG
depends only on the root. It is unaffected by the context,
i.e., the neighboring symbols of the root. Because of this
context-free independence, many properties of a PCFG can
be analyzed theoretically. For instance, the distribution of a
symbol or the joint distribution of several symbols at arbi-
trary nodes can be computed recursively from the root of the
entire tree, similarly to a Markov chain. Indeed, many ear-
lier studies have analyzed properties of a PCFG theoretically
and exactly [8,11,12,17–21]. The context-free independence
allows for the theoretical analysis of various properties of
PCFGs, but it also severely restricts the range of distributions
that a PCFG can express. In general, it is not reasonable to
expect a natural phenomenon to satisfy such a restriction.
Linguistically, for instance, some real-world languages cannot
be described by CFGs [22,23]. Moreover, natural language
processing researchers have found it necessary, empirically,
to relax the context-free independence for modeling the syn-
tactic structures of natural languages [24,25]. However, no
report of the relevant literature describes a systematic inves-
tigation of a simple mathematical model that goes beyond
the independence or a quantitative analysis of the degree to
which context-free independence is broken in any model or
phenomenon. This need for study prompts us to consider
such a model and to quantify how far the model is from the
independence.

B. Probabilistic context-sensitive grammar

A model introduced by allowing each rule in a CFG to refer
to the context is a CSG, which has one level higher expressive
power than a CFG in formal language theory [26]. In a CSG,
a rule is of the form ϕAψ → ϕωψ . In other words, the result
ω of rewriting A can depend on the substrings ϕ and ψ next
to A, i.e., the context of A. The class of languages generated
by CSGs is believed to be larger than the class of possible
natural languages [30]. Additionally, we can naturally define a

probabilistic version of a CSG, namely a PCSG, by assigning
a probabilistic weight to each rule, similar to the introduction
of a PCFG. A PCSG relaxes the context-free independence,
meaning that the distribution of a subtree in a PCSG depends
not only on its root but also on the context. The theoretical
analyses of a PCFG described above [8,11,12,17–21], all of
which impose the independence, are not applicable to a PCSG.
Consequently, the behavior of a PCSG and its characteristics,
such as which of its properties are similar to or different from
those of a PCFG, are unknown.

The class of all possible grammars defined as a probabilis-
tic extension of a CSG is too large and complicated to analyze.
We focus, therefore, on a simpler model within a CSG to
examine its behavior. First, we consider a CSG with a vocab-
ulary consisting of binary nonterminal symbols, VN = {0, 1}.
We do not consider terminal symbols. In the following, a
symbol simply means a nonterminal symbol unless otherwise
noted. Additionally, we restrict rules to the form of A → BC
or LAR → LBCR. The former is a nonterminal rule of a CFG
in CNF, whereas the latter is a CSG rule with context sensi-
tivity that refers only to the two symbols next to the rewritten
symbol. Consequently, the cause of the difference between our
model and the binary CFG or PCFG in CNF is, in essence,
the context sensitivity to L and R. In our notation, A, B, and C
represent symbols, whereas L and R can be symbols or nulls λ.
For example, if the rule λ01 → λ111 is applied to the leftmost
0 in the string 0110, then the string turns to 11110.

Our PCSG is defined as the probabilistic extension of this
CSG. The probabilistic weight MCF

ABC is assigned to each CFG
rule A → BC, and MCS

LAR,BC to each CSG rule LAR → LBCR.
Next, we introduce the probability q that a CSG rule is chosen
to control the degree of context sensitivity. More precisely,
symbol A in the context LAR is rewritten as BC by a CFG rule
A → BC with probability (1 − q)MCF

ABC , or as DE by a CSG
rule LAR → LDER with probability qMCS

LAR,DE . A PCSG with
q = 0 is a PCFG. Additionally, we must determine the order in
which rules are applied to a string because, in a PCSG, unlike
a PCFG, a derivation depends on the order. For this study,
we choose to apply rules in a uniformly random manner as a
neutral alternative. If the length of a present string is l , we first
generate a random permutation τ of {0, . . . , l − 1} according
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FIG. 2. Differences �(q, M ) between πA,i with q = 0 and that with q > 0 as functions of q, computed from 104 sampled trees of depth 10.
Different colors represent different M’s. Panels (a), (b), and (c), respectively, present results for M’s generated from the log-normal distribution
with ε = 10−2, 100, and 102.

to a uniform distribution, and then apply rules to the symbols
sequentially, from the τ (0)th one to the τ (l − 1)th one. After
all symbols of the preceding string are rewritten, the length
becomes 2l . The whole procedure to generate a tree is as
follows: The first step in the derivation is to choose a symbol
from a uniform distribution over VN . Subsequently, a string is
rewritten recursively. For each step, the order of application of
rules and each rewriting are determined randomly in the man-
ner we explained above. Because no terminal symbol exists in
this setting, a rule can always be applied to the string no matter
how many steps the derivation goes through. Consequently,
we stop the process when the step is repeated D times, which
is a value determined in advance [31].

Although the discussion in the remainder of this paper is
based on the above setting, we have found that the properties
of a PCSG remain qualitatively unchanged under alternative
settings. For example, the model exhibits similar behavior
when each rule refers to two left neighbors and two right
neighbors, or when symbols are rewritten in a different order,
such as left-to-right or inside-to-outside.

This type of PCSG is specified by the probability q
and the weights M = (MCF, MCS), where MCF = {MCF

ABC}ABC

and MCS = {MCS
LAR,BC}LAR,BC . The probabilistic weights are

sampled according to the log-normal distributions with nor-
malization conditions

MCF
ABC = M̃CF

ABC∑
B′,C′ M̃CF

AB′C′
, P

(
M̃CF

ABC

) ∝ e−ε ln2 M̃CF
ABC ,

MCS
LAR,BC = M̃CS

LAR,BC∑
B′,C′ M̃CS

LAR,B′C′
, P

(
M̃CS

LAR,BC

) ∝ e−ε ln2 M̃CS
LAR,BC .

Therein, ε is the parameter used to control the width of the
log-normal distributions.

For this study, we are interested in how the introduction of
context sensitivity affects the statistical properties of PCFGs.
Specifically, we implement PCSGs and conduct numerical
analyses of three statistical quantities. The first involves the
distribution of a symbol at a node, analogous to magnetization
in a spin model. This quantity is related to the phase transition
in the RLM [27,28]. The second specifically examines the
mutual information between two nodes, which is associated
with a two-point correlation. Finally, we introduce the mutual
information between the children of two symbol-fixed nodes.

This metric, which is zero for q = 0 by definition, reflects how
strongly the independence is broken.

III. DISTRIBUTION OF A SYMBOL

A. Distribution of a symbol

Primary emphasis should be on the distribution of a symbol
on a single node. We denote the probability that symbol A
occurs on node i as

πA,i(q, M ) ≡ 〈δA,σi〉q,M,

where σi is a symbol on node i, and 〈· · · 〉q,M represents the
average over trees under a PCSG with parameters (q, M ).
This quantity corresponds to the magnetization in the Potts
spin model [32], where each site i has a spin σi, and the
magnetization along the direction A is defined by the ratio
of sites with σi = A. In the case of q = 0, i.e., a PCFG, the
context-free independence enables us to apply the concept of
Markov chains. Because of this, the probability πA,i can be
computed. If node i is the left child of node j, then πB,i =∑

A(
∑

C MCF
ABC )πA, j . If node i is the right child, then it is the

same except that πB,i and
∑

C are replaced, respectively, with
πC,i and

∑
B. However, this no longer holds in the case of

q > 0 because of the broken independence.
To see the degree to which the distribution of a symbol

changes with the context sensitivity, we measured the Eu-
clidean distance � between {πA,i}A,i with q = 0 and that with
q > 0, expressed as

�(D, q, M ) ≡
√∑

i,A [πA,i(q, M ) − πA,i(0, M )]2

2(2D+1 − 1)
. (1)

Figure 2 presents the distances � as functions of q for ε =
10−2, 100, and 102. We sampled 20 M’s for each ε, and 104

complete trees for each PCSG, with depth D of a tree set to 10.
These figures show that � increases monotonically and con-
tinuously for any M. It can also be observed that the increase
is slower with larger ε. If ε is larger, most of the generated
MCF

ABC’s and MCS
LAR,BC’s are near 1/22. As a result, πA,i’s are

near 1/2 for any A and i with most M’s. This fact leads to the
slower increase. This behavior of � implies that the context
sensitivity drives {πA,i(q, M )}A,i farther away, monotonically
and continuously, from that for q = 0, and that no singularity
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FIG. 3. Binder parameter U of the mean ratio πA of symbol A as a function of the parameter ε (a) for depth D = 11 and context sensitivity
q = 0, 0.25, 0.5, 0.75, or 1, and (b) for D = 3, 5, 7, 9, or 11 with q = 1.

occurs at any point in 0 < q < 1. It is noteworthy that the
context sensitivity is not the only factor that contributes to
this behavior, at least qualitatively. Suppose we interpolate
between a PCFG MCF and another independently generated
PCFG MCF ′, instead of an MCS. Even in this case, � will
grow similarly with q. It is not possible to see any qualitative
difference between a PCFG and a PCSG in terms of the
distribution of a symbol.

The observations presented here are for finite trees. How-
ever, for most of the 20 M’s, � with D = 10 seems to
converge almost to that in the limit D → ∞. Consequently,
it is unlikely that � has a singularity, even in the limit of
infinite trees. Supplemental material [33] provides numerical
observations of how � converges as D increases.

B. Order parameter for the random language model

In our case, because the tree topology is always the same,
the mean ratio πA of symbol A in a whole tree is the average
of πA,i over nodes i. We denote it as

πA(D, q, M ) ≡
∑

i πA,i(q, M )

2D+1 − 1
.

The probability density of πA attributable to the randomness
of M, defined as

P(πA|D, q, ε) ≡
∫

dMP(M )δ(πA − πA(q, M )),

plays a crucially important role in the discussion of the phase
transition in the RLM, proposed in [27,28]. The RLM is
defined as an ensemble of PCFGs generated according to the
log-normal distribution, which is equivalent to the q = 0 case
in our model. An earlier study investigated the possibility of
a phase transition characterized by the singularity of an order
parameter as the parameter ε varies. This earlier study sug-
gested that the phase transition can be interpreted as a possible
discontinuity in human language acquisition. However, recent
findings in [17] have revealed that the singularity of their order
parameter, if any, is reduced to that of the probability density
of πA and that the probability density is an analytic function of
ε with finite vocabulary. In other words, the phase transition
does not exist as long as the number of types of symbols is
finite. This conclusion holds true for any analytic distribution

of M, irrespective of whether it follows the log-normal dis-
tribution or whether the sizes of trees are finite or infinite.
Because the proof relies on the assumption of context-free
independence, it cannot be extended to a context-sensitive
case with q > 0. Therefore, whether a phase transition exists
in the context-sensitive RLM remains a nontrivial question.

To investigate whether the distribution of πA in the context-
sensitive RLM has a singularity, we measured the Binder
parameter of πA, defined as

U (D, q, ε) ≡ 1 − [(�πA)4]ε

3[(�πA)2]2
ε

,

where �πA ≡ πA − 1/2, and [· · · ]ε means the average over
M’s according to the log-normal distribution determined by ε.
This parameter has been used to detect the transition in var-
ious statistical-mechanical models numerically [34,35]. This
parameter is zero when πA follows a Gaussian distribution
and nonzero when the distribution of πA is multimodal or
non-Gaussian. To compute the Binder parameter, we sampled
104 M’s for each ε and 103 trees for each M. Error bars
were computed using the bootstrap method [36,37] with 102

bootstrap sets.
Figure 3(a) shows the result obtained when the tree

depth is fixed at D = 11 and the context sensitivity is q =
0, 0.25, 0.5, 0.75, and 1. From these findings, the Binder
parameter seems to change analytically, but it changes more
dramatically if the context sensitivity is larger. Consequently,
if the singularity exists, it might occur for q = 1. We also
computed the Binder parameters for q = 1 while varying the
depth D of a tree, the result of which is shown in Fig. 3(b).
For all previously known cases of phase transitions detected
by this parameter, a discontinuous jump from zero to nonzero
is found at the transition temperature in the thermodynamic
limit. However, it is unlikely that such a transition occurs for
the limit D → ∞ because the Binder parameter for large ε

becomes farther away from zero as D increases. Note that
we do not rule out the possibility of another phase transition
detected by other methods, which remains an open problem.

IV. MUTUAL INFORMATION BETWEEN TWO NODES

As described in the preceding section, we examined the
distribution of a symbol on a node, but we could find no

033216-5



KAI NAKAISHI AND KOJI HUKUSHIMA PHYSICAL REVIEW RESEARCH 6, 033216 (2024)

FIG. 4. Mutual information I defined by Eq. (2) is the mutual
information between the red node i and the blue node j.

significant difference between a PCFG and a PCSG. For the
discussion in this section, we turn our interest to mutual
information, which has a close relation to the two-point cor-
relation function [38] and which has been used for measuring
correlation in symbolic sequences such as formal and natural
languages [8,39,40], music [8], birdsong [41], DNA [42], and
so forth. We denote the mutual information between nodes i
and j, as depicted in Fig. 4, as

Ii, j (q, M ) ≡
∑
σi,σ j

P(σi, σ j ) ln
P(σi, σ j )

P(σi )P(σ j )
. (2)

This measures the dependence between the two nodes. Al-
though the behavior of mutual information in a PCFG is well
known through theoretical analysis [8], this analysis is also
based on context-free independence. Consequently, under-
standing what occurs in a PCSG regarding the mutual infor-
mation, where the independence is broken, is nontrivial again.

Before presenting the results of the numerical analysis, we
introduce some notations and quantities. In the following, we
designate a node by a binary sequence that represents the path
from the root to the node by assigning 0 and 1, respectively,
to a left and right child. For example, nodes (), (0), and (0, 1)
represent the root, the left child of the root, and the right child
of the left child of the root, respectively. To characterize the
relative position of two nodes, we introduce the two distinct
distances described in Fig. 5. The first is the structural dis-
tance, i.e., the length of the path between the two nodes. The
second, designated as the horizontal distance, is the number
of nodes lying horizontally between the two nodes. If the
depths of the two nodes differ, then the horizontal distance
is the number of nodes between the higher node and the lower
node’s ancestor of the same depth as the former.

One of the two nodes was fixed at i = (1, 0, 0, 0, 0, 0),
which is the leftmost node of depth 6 in the subtree whose root
is the right child of the root of the whole tree. The other node
j could be any node in the whole tree. The relation between
structural and horizontal distances differs based on whether
node j belongs to the left or right subtree, as presented in
Fig. 5. Presuming that the depth of node j is fixed, then
when j is in the left subtree, i.e., j = (0, . . . ), the structural
distance is the same, irrespective of the horizontal distance.
However, when j is in the right subtree, i.e., j = (1, . . . ),
the horizontal distance is roughly exponential of the structural
distance.

In the context-free case with q = 0, the dependence of the
mutual information on the two distances is already known. Lin

FIG. 5. Structural and horizontal distances between node i and j
with i = (1, 0, 0, 0) and j = (0, 0, 0, 0, 0), (0, 1, 1, 0, 1), (1, 0, 0,

1, 1), or (1, 1, 1, 1, 0). Different colors and lines represent different
j’s. The structural distance is the path length from i to j, denoted
by the line along the edges. The horizontal distance is the number
of nodes lying horizontally between the higher node and the lower
node’s ancestor of the same depth as the former, as indicated by the
horizontal arrows. Nodes j = (0, 0, 0, 0, 0) and (0, 1, 1, 0, 1) are in
the left subtree. The horizontal distance is 8 in the former case and 2
in the latter case, whereas the structural distance is 9 in both cases.
Node j = (1, 0, 0, 1, 1) belongs to the right subtree. The structural
and horizontal distances between this node and i are, respectively, 3
and 1. Node j = (1, 1, 1, 1, 0) belongs to the right subtree, too. The
structural and horizontal distances are 7. When j belongs to the right
branch, the horizontal distance grows exponentially as the structural
distance increases.

and Tegmark [8] have proved that the mutual information de-
cays exponentially with the structural distance. Recalling that
the mutual information in a Markov chain decays exponen-
tially with the chain length, this result is intuitively reasonable
when considering context-free independence. When j is in the
left subtree, the mutual information is the same for any node
j of the same depth because the mutual information depends
only on the structural distance, which is independent of the
horizontal distance. However, when j is in the right subtree,
the mutual information decays according to a power law of
the horizontal distance because the horizontal distance grows
exponentially in the structural distance. One main claim of
Lin and Tegmark [8] was that this power law might be the
mechanism of the power-law decay of mutual information in
natural language texts.

In the context-sensitive case with q > 0, we examined
the behavior of the mutual information. We sampled 108

complete trees of depth D = 7 and estimated I . Because the
mutual information between X and Y is decomposed into
S(X ) + S(Y ) − S(X,Y ) where S(·) is Shannon entropy, we
computed the mutual information by estimating the entropy
from the empirical distribution. This estimate has a bias from
the entropy of the true distribution, resulting in biased mutual
information, which is not negligible in the region of the small
mutual information. Consequently, to compute the entropy in
the present and the subsequent sections, we used the bias-
reduced estimator proposed by Ref. [43]. This estimator is
represented by

Ŝ(X ) ≡ �(N ) − 1

N

∑
x

nx�(nx ).
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FIG. 6. Mutual information I defined by Eq. (2) against the distance between i and j. Weights M are generated with ε = 10−2. The context
sensitivity is set to q = 1. The position of i is fixed at (1, 0, 0, 0, 0, 0). Mutual information against the structural distance when node j is in the
left branch, i.e., j = (0, . . . ), is shown in (a). The same quantity when node j is in the right branch, i.e., j = (1, . . . ), is in (b). Similarly, plots
against the horizontal distance are shown in (c) for j = (0, . . . ) and (d) for j = (1, . . . ). The result when node j is the root, i.e., j = (), is in
(a). Markers and colors are different for different depths.

Therein, � is the digamma function, x represents a state which
X takes, nx denotes the number of samples such that X = x,
and N = ∑

x nx is the total number of samples.
Figure 6 shows I’s for an M generated with ε = 10−2

and q = 1, where rewriting always refers to the context. The
structural distance dependences of I for j belonging to the
left and right branches are shown, respectively, in Figs. 6(a)
and 6(b). The horizontal distance dependence is also shown
in Figs. 6(c) and 6(d). When j belongs to the right branch,
i.e., j = (1, . . . ), as shown in the right subfigures (b) and
(d), what is observed with a PCFG roughly holds. Here, I
decays exponentially in the structural distance and follows
a power law in the horizontal distance. However, different
behavior is observed when j belongs to the left branch, i.e.,
j = (0, . . . ), as shown in the left subfigures (a) and (c). In
Fig. 6(a), I has clearly different values even with the same
structural distances, whereas it decays in the power law of
the horizontal distance in Fig. 6(c), similarly to the case with
j = (1, . . . ). This result differs from the behavior found with
a PCFG.

The mutual information between nodes in a PCSG depends
explicitly on the horizontal distance. This observation can be
attributed to the context sensitivity inherent in PCSG rules. If
the context-free independence holds, then a node can correlate
with other nodes only along the path in the tree graph. This
result engenders the exponential decay with the structural
distance. In contrast, in a PCSG where each rule involves the
context L and R as well as A, a node can correlate with its left
and right neighbors directly, even in the absence of a direct

path between them. This horizontal correlation can bypass the
long structural distance between two nodes belonging to dif-
ferent subtrees, leading to the effective distance. As shown in
Fig. 7, the horizontal distance increases exponentially with the
effective distance. If the mutual information does not decay
exponentially with the structural distance, but instead with the
effective distance, then the mutual information will decay in a
power law in the horizontal distance, irrespective of whether
node j belongs to the left or the right branch.

The effective distance is definable as explained hereinafter.
Presuming that nodes i′ and j′ are ancestors of i and j, re-
spectively, and that i′ and j′ are the horizontal neighbors of
one another, then the effective distance between nodes i and j

FIG. 7. Structural and effective distances between nodes i =
(1, 0, 0, 0) and j = (0, 1, 1, 0, 1). The former is described by the red
line, whereas the latter is shown by the blue dashed line.
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FIG. 8. (a) Mutual information I defined by Eq. (2) against the effective distance between i and j. Weights M are generated from the
log-normal distribution. Markers and colors differ for different depths. (b) Averages and standard deviations of ln I over j’s of the same
effective distance and over 10 M’s generated. (c) Normalized histograms of ln I for 10 M’s for which the effective distance is 5. The red
vertical line represents the average. For all (a), (b), and (c), the parameter in the log-normal distribution is ε = 10−2, the context sensitivity is
q = 1, and node i is fixed at (1, 0, 0, 0, 0, 0).

is the sum of the path length from i to i′ and from j to j′.
Here, we assume that the effective distance is equal to the
structural distance if one of the two nodes is the ancestor of the
other. We plot the same I as in Fig. 6, but against the effective
distance, in Fig. 8(a). From this, it can be confirmed that the
mutual information decays exponentially with the effective
distance, as expected. This result indicates the existence of
a typical effective distance that corresponds to a correlation
length, which is the inverse of the decay rate. The mutual
information is small beyond this typical distance.

It is intuitively reasonable to infer that the mutual infor-
mation decays exponentially with the effective distance. Joint
probability P(σ0, . . . , σ2D+1−2) of all nodes is the product of
all 2D − 1 rewriting weights. For two nodes i and j, marginal-
izing the remaining nodes yields the joint probability P(σi, σ j )
of the two nodes. The greatest contribution to this is the
product of the weights on the shortest effective path, described
by the blue dashed line in Fig. 7. Although an effective path
and its corresponding weights depend on the order of applica-
tion of rules at each step, the length of the shortest effective
path asymptotically equals the effective distance. Therefore,
the joint probability of two nodes scales as an exponential
function of the effective distance. This result implies that the
mutual information scales in the same manner [8].

What we describe here is not unique to this instance. It is
typically observed across the M’s sampled. We measured I for
10 M’s under the same settings and computed the averages
and the standard deviations of ln I over j’s of each effective
distance and over M’s. Whereas mutual information is always
non-negative, the estimate by the method in [43] sometimes
takes negative values when the true value is small. We sim-
ply excluded nonpositive estimates to compute the logarithm.
This exclusion caused the average to be biased upward, but
this bias was slight in this case. The results presented in
Fig. 8(b) show that the exponential decay in the effective
distance discussed above for a single M is observed across
10 M’s. Figure 8(c) also presents histograms of ln I for the
effective distance 5, where the frequencies are normalized.
The points are distributed around the average. The deviations
in Fig. 8(b) and the distribution in Fig. 8(c) originate from dif-
ferences in j’s and M’s rather than from sample fluctuations.

The rate of decay and the correlation length depend on
weights M, causing the average rate to change as the parame-
ter ε varies. One can infer that, as ε increases, the distribution
of trees under generated weights M tends to approach the
uniform distribution. Therefore, the mutual information is
expected to decay faster, meaning that the correlation length
will become smaller. Additionally, the rate of decay depends
on the context sensitivity q. With larger q, rewriting operations
depends not only on the rewritten symbol but also on the
context, with higher probability. This dependence seems to
engender slower decay. The numerically computed mutual
information with different ε and q, as presented in the sup-
plemental material [33], follows these expectations.

V. QUANTIFICATION OF CONTEXT-FREE
INDEPENDENCE BREAKING

Finally, we investigate the effect of context sensitivity more
directly by quantifying the extent to which the context-free
independence is broken. This independence means that two
subtrees are mutually independent under the condition that
the symbols of their roots are fixed. Therefore, quantifying
the breakage of the context-free independence involves the
measurement of the mutual information between the subtrees
under this condition. However, it requires extremely large

FIG. 9. Context-free independence breaking J defined by Eq. (3)
is the mutual information between the red nodes k and l and the blue
nodes m and n.
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FIG. 10. (a) Degree of the context-free independence breaking, or parent-fixed mutual information J defined by Eq. (3) for A = B = 0
against the effective distance between i and j. Weights M are generated from the log-normal distribution. Markers and colors differ for
different depths. (b) Averages and standard deviations of ln J over j’s of the same effective distance, over the symbols A of node i and B
of j, and over 10 M’s generated. (c) Normalized histograms of ln J for 10 M’s with effective distance 5. The red vertical line represents the
average. For all (a), (b), and (c), the parameter in the log normal distribution is ε = 10−2, the context sensitivity is q = 1, and node i is fixed at
(1, 0, 0, 0, 0, 0).

amounts of data to obtain the distribution of a subtree when
the subtree is large. To overcome this difficulty, we instead
specifically examine the mutual information between the chil-
dren of their roots, as shown in Fig. 9. We denote this mutual
information as

Ji, j;A,B(q, M )

≡
∑

σk ,σl ,σm,σn

P(σk, σl , σm, σn|σi = A, σ j = B)

× ln
P(σk, σl , σm, σn|σi = A, σ j = B)

P(σk, σl |σi = A, σ j = B)P(σm, σn|σi = A, σ j=B)
.

(3)

Therein, k and l , respectively, represent the left and the right
children of i; m and n are the children of j. This quantity is
always zero for any i and j in a PCFG because of the context-
free independence. This is the requirement that must be met
for this quantity to be a meaningful metric of the breaking of
independence.

In addition to measuring the degree of context-free inde-
pendence breaking, the metric J has other interpretations. One
interpretation derives from theoretical physics. If the network
of interactions forms a tree, where every interaction in the
system is between a node and its child, then J is zero. In the
presence of loops in the network, as seen in a PCSG, J can
take a positive value. In this sense, J represents the degree
to which the network of interactions deviates from a tree. An-
other interpretation is linguistic: Suppose that two constituents
or phrases, i.e., subtrees of a derivation, are, for example,
a noun phrase and a verb phrase. Under this condition, the
structures of the noun phrase and the verb phrase are mutually
dependent; J represents the strength of this dependence.

We measured the context-free independence breaking J
in the same manner as for the mutual information I in
the preceding section, under the same setting, where i =
(1, 0, 0, 0, 0, 0), q = 1, ε = 10−2, and 108 trees of the depth
7 were sampled for each M. Our observations revealed that
J behaves very similarly to I . Figure 10(a) shows J for A =
B = 0 against the effective distance for an M generated from

the log-normal distribution. It is evident that J exhibits expo-
nential decay with the effective distance. Again, this finding
indicates that there exists a correlation length, or a typical
effective distance beyond which the dependence between two
subtrees is small. We computed the averages and the stan-
dard deviations of ln J over j’s of each effective distance,
over M’s, and over A and B, using the data size, i.e., the
number of generated trees satisfying σi = A and σ j = B, as
the weights. Additionally, we simply discarded nonpositive
estimates of J , which only led to a small bias. Figure 10(b)
presents the results, suggesting that the exponential decay of J
with the effective distance occurs across different M’s, as well
as different A’s and B’s. Figure 10(c) shows the normalized
histogram of ln J obtained for the effective distance 5, where
the data sizes were used as the weights. The distribution of
ln J’s centers around the red vertical line representing the
average.

The dependence of J on the parameter ε and the context
sensitivity q exhibits similar tendencies to those observed
for I . Particularly, as ε increases or q decreases, the decay
rate becomes more pronounced whereas the correlation length
becomes smaller. Supplemental material [33] provides addi-
tional results for different values of ε and q. In a general
system, I and J do not necessarily behave similarly. Indeed,
in a PCFG, I is positive and decays exponentially with the
structural distance, whereas J is always zero. It is somewhat
nontrivial that both I and J decay exponentially with the
effective distance in a PCSG.

VI. CONCLUSION

A PCFG, a simple mathematical model for randomly gen-
erating a tree, has been used to model various hierarchical
phenomena, including natural languages. This model satisfies
the assumptions of context-free independence. Although this
feature allows for the theoretical analysis of various properties
of a PCFG, the restriction is too strong for a PCFG to be
expressive of distributions.

We introduced the simple PCSG by relaxing the context-
free independence, and we analyzed its statistical properties
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systematically. First, we specifically examined the distribution
of a symbol on a single node. This distribution is to a PCSG
what magnetization is to a spin system. Although the con-
text sensitivity affects the distribution, its effect brings only
continuous and quantitative changes. Such changes can occur
even without context sensitivity, for example in the interpo-
lation between two PCFGs. Our numerical investigation also
shows that the Binder parameter of the mean ratio of a symbol,
which is an analytic function of ε in the context-free RLM, is
unlikely to be discontinuous in a context-sensitive case.

The second quantity of interest is the mutual information
between two nodes, which is related closely to the two-point
correlation function [38]. It is noteworthy that mutual in-
formation decays exponentially with the effective distance
between two nodes, which is a consequence of the horizontal
correlation because of context sensitivity. This feature con-
trasts with the fact that the decay of the mutual information in
a PCFG is exponential with respect to the structural distance,
i.e., the path length.

In addition, to quantify the degree to which context-free
independence is broken, we proposed the use of mutual infor-
mation between two pairs of nodes under the condition that
the parent symbols are fixed. This metric can also indicate
the degree to which the network of interactions deviates from
a tree in theoretical physics, and it can indicate the mutual
dependence between the structures of two constituents in lin-
guistics. This quantity emphasizes the most distinct difference
between a PCFG and a PCSG. The context-free independence
breaking decays exponentially with the effective distance in a
PCSG, similar to the mutual information between two nodes,
whereas the breaking always remains zero in a PCFG.

Possible future issues, in our view, are divisible into four
main directions. First, it is necessary to develop methods
for theoretical analysis and efficient numerical approximation
to confirm and further investigate the behaviors of PCSGs
observed in this study, such as the exponential decay of the
mutual information and the context-free independence break-
ing. The main challenges are the exponential growth of tree
sizes and the complex interactions due to context sensitivity.

Second, another important approach would be to examine
specific PCSGs, particularly those exhibiting atypical behav-
ior, in contrast to our analysis of the typical properties of
randomly sampled PCSGs. It might be true that PCSGs with
low probabilistic measures exhibit nonanalytic behavior in �

as a function of the context sensitivity q, or nonexponential
decay of the mutual information or context-free independence
breaking. The existence of such PCSGs and the mechanism
underlying their atypical behavior are left as intriguing open
problems.

Third, CSG is not the only linguistic framework beyond
CFG. Although the CSG framework makes tree structures

context-sensitive in a straightforward manner, modern lin-
guists do not consider a CSG to be a relevant model of
a natural language. This skepticism arises because a CSG
can generate a set of sentences extending beyond natural
languages [30]. Also, formal language theory predominantly
addresses surface sentences rather than syntactic structures
[44]. Conversely, several alternative models have been pro-
posed as grammars closer to natural languages, such as tree
adjoining grammar [45], combinatory categorial grammar
[46], and minimalist grammar [47]. The natural progression
is to introduce probabilistic extensions to these grammars
and to investigate their statistical properties, as examined
in this study. Particularly, all probabilistic extensions of a
CSG and the three grammars described above will vio-
late the context-free independence, but their independence
breaking J might decay exponentially, polynomial, or non-
monotonically, depending on the grammar. If the decay is,
for example, exponential in every model, then their de-
cay rates might differ. These probabilistic grammars can
be characterized by emphasizing the distinctions in their
independence breaking J , thereby contributing to a com-
prehensive understanding of the grammars from a physical
perspective.

As a fourth point, we discuss the application of our metric
J for the context-free independence breaking, which is ap-
plicable not only to probabilistic grammars such as PCFGs
but also to any distribution of a tree, including those un-
derlying human languages and birdsongs. Earlier research
has demonstrated that the behavior of mutual information in
PCFGs, human languages, and birdsongs is similar in that
it decays as a power-law function of the horizontal distance
or the sequence length [8,41]. However, J will allow us to
detect and quantify the distinction between human languages
and PCFGs, given the empirical knowledge that context-free
independence breaking occurs in natural languages [24,25].
It might also be possible to identify characteristics unique to
human languages, which are not present in birdsongs, using J .
By quantifying the degree of independence breaking, we can
more deeply compare tree structures among different mathe-
matical models or natural phenomena.
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