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Gate operations for superconducting qubits and non-Markovianity
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While the accuracy of qubit operations has been greatly improved in the last decade, further development is
demanded to achieve the ultimate goal: a fault-tolerant quantum computer that can solve real-world problems
more efficiently than classical computers. With growing fidelities even subtle effects of environmental noise
such as qubit–reservoir correlations and non-Markovian dynamics turn into the focus for both circuit design
and control. To guide progress, we disclose, in a numerically rigorous manner, a comprehensive picture of the
single-qubit dynamics in presence of a broad class of noise sources and for entire sequences of gate operations.
Thermal reservoirs ranging from Ohmic to deep 1/ f ε-like sub-Ohmic behavior are considered to imitate realistic
scenarios for superconducting qubits. Apart from dynamical features, fidelities of the qubit performance over
entire sequences are analyzed as a figure of merit. The relevance of retarded feedback and long-range qubit–
reservoir correlations is demonstrated on a quantitative level, thus, providing a deeper understanding of the
limitations of performances for current devices and guiding the design of future ones.
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I. INTRODUCTION

The last decade has witnessed impressive progress in de-
veloping quantum computing platforms, in particular based
on superconducting circuits: Coherence times [1,2] as well
as gate fidelities [3–5] have been substantially increased,
and multiqubit architectures have demonstrated quantum
supremacy under specific conditions [6–8]. This led to
the first implementations of quantum algorithms for noisy
intermediate-scale quantum (NISQ) devices [9–14].

It has become clear that further progress requires a much
better quantitative description of qubit operations in the pres-
ence of relevant noise sources. Indeed, with progressively
increasing coherence times and fidelities, even subtle details
of environmental effects, not seen in the previous generation
of devices, now turn into the focus. This applies specifically to
quantum correlations between individual qubits and thermal
reservoirs and retardation effects in time induced by quan-
tum fluctuations (non-Markovianity). It was pointed out that
a detailed understanding of these effects is crucial to fully
exploit error correction [15] and error mitigation [16] because
those techniques highly depend on elusive properties of noise
[17,18]. In addition, identification of the origin of noise-
induced errors (bit-flip and phase errors) through the analysis
of the qubit dynamics during sequences of gate operations
may trigger optimized pulse shapes, protocols, and circuit de-
signs. For this purpose, single-qubit devices may themselves
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function as ultrasensitive probes, for example, to monitor
the emergence of quasiparticle noise in superconducting
circuits [19–21].

An immediate consequence is that the development of the
next generation of qubit devices with the required high fideli-
ties has to go hand in hand with highly accurate numerical
simulations. Conventionally adopted methods, including the
Redfield equation and Lindblad equation, provide only quali-
tative results in this context (and in many cases not even this),
and it seems that those treatments should not be used in order
to contribute to the required improvements in the near future.
In fact, studies have already been conducted to go beyond
the imposed Born–Markov approximation and to account for
higher order quantum correlations. Recent examples include
studies of the population of steady states [22], leakage to
higher-excited states during pulse applications [23], experi-
mental protocols that can detect non-Markovianity [17,24],
origins of noise [18], accuracy of error correction codes [25],
and two-spin systems that mimic a spin bath to account for
both non-Markovian and non-Gaussian effects [26,27]. Most
studies are limited to a single pulse application or a single free
evolution (idle phase) though. It seems intuitive and has also
been suggested in a previous paper [22] that on the timescale
of a single-gate pulse, higher-order reservoir-induced quan-
tum effects are less relevant. However, this picture is expected
to drastically change when entire sequences consisting of
several subsequent gate pulses interleaved by idle phases are
considered: Time-retardation effects may then correlate the
qubit dynamics between different segments so that its dy-
namics at a certain time is affected by the entire past of the
compound. While memory effects of the reservoir after long
periods of time have been investigated in previous studies
[28–31], those effects for time-dependent system Hamiltoni-
ans including the switching-on and off of driving fields remain
unclear. Especially, quantitative predictions of the memory
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FIG. 1. Schematic of the pulse sequence considered in this paper.
The label d is introduced to indicate the end of each phase (d =
1, . . . , 5) as well as the initial time (d = 0).

effects in the parameter domain in which the qubit systems are
operated are desired for further improvement, as mentioned
above.

Studies in this direction and based on rigorous methods
have not been conducted so far, mainly because of highly
nontrivial conceptual and technical problems. Conceptually,
one has to accurately follow the quantum time evolution of
an open quantum system in the presence of complex ex-
ternal driving over relatively long timescales. This requires
nonperturbative techniques, which, and this is the technical
challenge, are sufficiently efficient, reliable, and allow for
versatile applicability.

Here, we attack these issues with the aid of a recent exten-
sion of the hierarchical equations of motion (HEOM) method
[32]. This method maps the formally exact Feynman–Vernon
path integral expression for the reduced density operator of the
qubit system onto a nested hierarchy of equations of motions.
With its recent extension (free-pole HEOM, i.e., FP-HEOM)
it is now possible to simulate open quantum systems for al-
most arbitrary reservoir spectral densities and over the entire
temperature range down to zero temperatures. In addition,
the FP-HEOM is so efficient that it allows us to accurately
monitor the long-time behavior as well. In the sequel, we ex-
ploit this technique to reveal a comprehensive and quantitative
precise picture of the noisy quantum dynamics of nontrivial
single-qubit operations, thus establishing the methodology as
a standard tool to guide further developments also for multi-
qubit structures.

More specifically, an extensive analysis is provided, which
comprises a broad class of thermal reservoirs relevant for
superconducting qubits from reservoirs with Ohmic charac-
teristics to those with deep sub-Ohmic behavior (relatively
large portion of low-frequency modes). Three different gate
operations with varying amplitudes and pulse durations are
considered according to sequences depicted in Fig. 1. We re-
veal intricate correlations between the dynamics during pulse
applications and idle phases. In this way, and in combination
with varying rotation angles and rotation axes, bath-induced
qubit errors are quantitatively investigated in terms of the
fidelity. By “numerically” factorizing the total system into
a system and a reservoir at certain times during a pulse se-
quence and by comparing the corresponding dynamics with
the exact ones, we reveal interphase correlations caused by
non-Markovianity. This opens ways to detect these subtle
effects in actual experiments.

This paper is organized as follows. In Sec. II, we introduce
a model Hamiltonian for single-qubit dynamics and explain
how rotation operators are expressed with a time-dependent
Hamiltonian. An exact time-evolution method, HEOM, is also

introduced. In Sec. III, we discuss quantities that character-
ize the reservoir and relations between those quantities and
noise models proposed in previous studies. Sections IV and
V are devoted to the numerical results: In Sec. IV, we study
detrimental effects induced by non-Markovian dynamics of
reservoirs in terms of the fidelity between an ideal state and
numerically obtained one. Dynamics of a single qubit subject
to a sequence of gate operations are considered there. In
Sec. V, we focus on the non-Markovianity of the reservoir.
Correlations between a pulse-application phase and an idle
phase and between two idle phases interleaved with an im-
pulsive pulse are investigated. We summarize the paper and
draw conclusions in Sec. VI.

II. MODEL AND METHODS

A. Open qubit dynamics and rotation operators

In this paper, we consider a single qubit (two-level sys-
tem) and its manipulation by external time-dependent pulses
described by

ĤS (�,φ; t ) = h̄ωq

2
σ̂z + h̄�

2
[σ̂x cos (ωext + φ)

+ σ̂y sin (ωext + φ)], (1)

where σ̂α (α ∈ {x, y, z}) are the Pauli matrices, and ωq is the
qubit frequency. The second term corresponds to the external
field that rotates the qubit with the amplitude �, angular
frequency ωex, and static phase φ. Note that this Hamiltonian
has also been derived for the pulse application on the basis of
the input–output theory [33].

In order to set the stage for rotations in the presence of
environmental degrees of freedom, let us first briefly recall
the bare situation. With the Bloch vector of a single qubit

〈σ̂α (t )〉 = tr{σ̂αρ̂S (t )}, α ∈ {x, y, z},
the qubit’s density operator can be written as ρ̂S (t ) = (1̂ +∑

α〈σ̂α (t )〉σ̂α )/2 with 1̂ being the identity operator. Thus, a
general rotation of the system on the Bloch sphere by an angle
θ around an α axis is given by R̂α (θ ) = exp[−iθσ̂α/2]. In
particular, the time dependence in ĤS (�,φ; t ) can be exactly
gauged away via a unitary transformation R̂z(−ωext ) to read

H̃S (�,φ) = h̄(ωq − ωex)

2
σ̂z + h̄�

2
(σ̂x cos φ + σ̂y sin φ).

Accordingly, setting ωq = ωex implies (cf. Appendix A,
Figs. 1 and 2) that, in the rotating frame, rotations R̂x(θ ) are
generated by H̃ (�, 0) and rotations R̂y(θ ) by H̃ (�,π/2). Us-
ing the back-transformation ρ̂S (t ) = R̂z(ωqt ) ρ̃S (t ) R̂z(−ωqt )
with the rotating-frame density operator ρ̃S (t ), one verifies
that in the laboratory frame rotation operations on the qubit
correspond one-to-one to the time evolution generated by
the Hamiltonian [Eq. (1)] with a certain choice of parameter
values � and φ. The rotation angle θ is set by θ = �τ with
the pulse duration τ . In practice, one fixes θ and � to adjust τ

accordingly.
The common modeling of qubit systems interacting with

reservoirs is formulated in the context of open quantum
systems. It starts from a system+reservoir Hamiltonian
Ĥtot (�,φ; t ) = ĤS (�,φ; t ) − V̂ X̂ + ĤR, where for the sake of
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FIG. 2. Schematics of time evolution of ideal Bloch vectors in the rotating frame. The right arrows (⇒) indicate the pulse applications.
Note that in the case ρ̂eq, the length of the Bloch vector is slightly smaller than 1 [from 0.92 to 0.97, depending on the spectral exponent s in
Eq. (9); see the inset of Fig. 11 below], while the direction of the vector is same as the direction in the case ρ̂g.

simplicity we assume a bilinear coupling between the qubit
system with coupling operator V̂ and a reservoir ĤR with X̂
[34,35]. Note that this assumption is not a severe constraint,
provided that systems subject to Gaussian noise with arbi-
trary intensity are exactly described with this model, which
is true for most of these qubit systems. In the sequel, we
consider bit-flip errors and adopt the same form for V̂ as in
a previous study [22], which is described as V̂ = h̄σ̂x. Note
that a different form, V̂ = h̄σ̂y, is also proposed in previous
studies [17,33].

Now, during the time evolution of the total system in the
presence of pulse sequences on the qubit part, the external
field with a nonzero amplitude of � rotates the qubit (gate
operation) and the time evolution without the external field
(� = 0) between two of these pulse operations, see Fig. 1, is
referred to as the “idle phase”. It must be taken into account,
for example, considering that there must be synchronizations
of qubits during a given multiqubit protocol. Of course, the
state of the isolated qubit in the rotating frame does not change
during idle phases. However, for a qubit interacting with reser-
voirs, decoherence sets in and correlations between qubits and
reservoirs evolve such that they are expected to influence the
next gate operation. Physically, these latter effects originate
from the retarded feedback of the reservoir onto the qubit
system, which always occurs at sufficiently low temperatures
and induces time nonlocality in the qubit dynamics. Below,
we will analyze these effects in more detail. In summary, we
vary the amplitude � during a pulse sequence as

� �= 0 (a fixed value during a pulse operation)

� = 0 (during idle phases),

with the coupling between the system and reservoir always
taken into account. For the sake of simplicity, we model the
switching-on and off of the external field as a step function;
improvements can be achieved by taking into account the rise
time [22,23].

In order to describe the open dynamics of the qubit during
pulse applications of the length τ , we have to take

Û (�,φ; t, τ ) = T+ exp

[
− i

h̄

∫ t+τ

t
dt ′Ĥtot (�,φ; t ′)

]
(2)

as the rotation operators instead of the bare system generator
Eq. (1). Here, T+ is the positive time-ordering operator. The
time evolution of the total density operator is then expressed
as

ρ̂tot (τ + t ) = Up(θ, φ)ρ̂tot (t )

= Û (� > 0, φ; t, τ ) ρ̂tot (t ) Û †(� > 0, φ; t, τ )
(3)

and the reduced density operator of the qubit follows by taking
the partial trace over the environmental degrees of freedom,
i.e., as ρ̂S (t ) = trR{ρ̂tot (t )}. Above, we have introduced the su-
peroperator for the pulse application Up(θ, φ) with the relation
θ = �τ . For the idle phase, we define

ρ̂tot (�t + t ) = Ui(�t )ρ̂tot (t )

= Û (�=0, φ; t,�t )ρ̂tot (t )Û †(�=0, φ; t,�t ).
(4)

Because the pulse amplitude is zero, an arbitrary phase φ

does not affect the time evolution of the system, and the
Hamiltonian is manifestly time independent.

During the course of this analysis, we also consider im-
pulsive pulses for which we take the limit � → ∞. In this
limit, we can ignore the coupling term between the system and
reservoir, and the pulse operation is expressed in the following
form:

ρ̂tot (t ) ← Uimp(θ, φ)ρ̂tot (t )

= R̂z(ωqt )R̂φ (θ )R̂z(−ωqt )

× ρ̂tot (t )R̂z(ωqt )R̂φ (−θ )R̂z(−ωqt ). (5)
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Here, the superoperator Uimp(θ, φ) denotes the application
of the impulsive pulse, and we have introduced the operator
R̂φ (θ ) = exp[−iθ (σ̂x cos φ + σ̂y sin φ)/2]. For more details of
the derivation, see Appendix A.

B. Exact time evolution: Extended Hierarchical Equations
of Motion (FP-HEOM)

Reservoirs with a macroscopic number of degrees of
freedom are dominantly characterized by Gaussian fluc-
tuations [36–38], i.e., by autocorrelation functions C(t ) =
〈X̂ (t )X̂ (0)〉R given that 〈X̂ (t )〉R = 0 and 〈•〉R = tr{• ρ̂R,eq}
with the equilibrium density operator of the reservoir ρ̂R,eq =
e−βĤR/tr{e−βĤR}, and β = 1/kBT . Equivalently, the noise
properties of a respective reservoir follow from its spectral
noise power

Sβ (ω) = 1

2π

∫ +∞

−∞
dtC(t )eiωt ,

where Sβ (ω) and Sβ (−ω) are related by the fluctuation-
dissipation theorem that can be represented as

Sβ (ω) = h̄[1 + nβ (ω)] J (ω). (6)

Here, nβ (ω) = 1/[exp(β h̄ω) − 1] is the Bose distribution,
and the spectral density J (ω) is an antisymmetric function
with finite bandwidth characterized by a cutoff frequency ωc.
Note that this spectral density is directly proportional to the
absorptive part of the dynamical susceptibility of the reservoir
that can be extracted experimentally. Hence, the spectral noise
power serves as the only ingredient required for describing
the impact of environmental degrees of freedom on the qubit
dynamics. Below, we will discuss in more detail the most
relevant noise sources for superconducting qubits and their
spectral densities. We already note here though that this mod-
eling is not only limited to reservoirs with underlying bosonic
degrees of freedom but, effectively, may also apply, for exam-
ple, to low-energy excitations of quasiparticles around Fermi
surfaces. However, non-Gaussian noise, including quasipar-
ticle tunneling induced by ionizing radiation [39] cannot be
described with this model: This is out of scope of this study
and is left for future work.

Studying the open quantum dynamics according to the
above pulse protocol is a highly nontrivial task since the com-
bined time evolution is not separable. Standard procedures are
then second-order perturbative approaches based on the Born–
Markov approximation, including the Bloch–Redfield and the
Lindblad equation, respectively. However, these approaches
turn out to be insufficient in light of the growing accuracy,
and in turn sensitivity, of actual qubit devices. For example, it
was suggested that a more elaborate method beyond the Born–
Markov approximation is needed when we consider dephasing
dynamics with 1/ f noise [40]. In addition, it was reported
that the Born approximation causes errors for simulations
with multiple pulses [41,42] and that it provides inaccu-
rate predictions for ground-state populations after a reset via
equilibration [22].

Hence, in order to conduct numerical simulations in a
rigorous manner valid in all ranges of parameter space and
applicable to a broad class of reservoirs, we adopt the hierar-
chical equations of motion (HEOM). Its derivation starts from

the formally exact Feynman–Vernon path integral represen-
tation of the reduced density operator (RDO) of the system,
where the impact of the reservoir is completely determined
by the correlation C(t ). The corresponding reduced quantum
dynamics can exactly be mapped onto a nested hierarchy of
equations of motion for auxiliary density operators (ADOs).
As we have shown recently [32], the key ingredient is the
barycentric representation of Sβ (ω), which provides, to any
given accuracy, a representation of the form

C(t ) =
K∑

k=1

dke−iωkt−γkt (t > 0) (7)

with a minimal number K of effective reservoir modes. These
are characterized by frequencies ωk , damping rates γk > 0,
and complex-valued amplitudes dk = d ′

k + id ′′
k . Thus, the cor-

relation C(t ) is described by a set of a moderate number
of damped harmonic modes even at zero temperature and
also for structured reservoir densities. While the conventional
HEOM was limited to higher temperatures and smooth reser-
voir spectral densities, the representation Eq. (7) turns it into
an extremely efficient simulation tool of general applicability.

Before we provide the explicit form of the equations of
motion, we briefly discuss the relation between the correlation
function and dynamics of the reduced systems. When the
autocorrelation is proportional to the Dirac delta function,
C(t ) ∝ δ(t ), the spectral noise power is reduced to a constant
function with respect to ω, leading to white noise. In this limit,
the time derivative of the RDO depends only on the current
state, and the process is “memoryless” in this sense. Hence,
the open quantum dynamics under the above condition are
referred to as the “Markovian” in the field of quantum statis-
tical physics. By contrast, when the autocorrelation function
is not a delta function, the dynamics of the RDO depend on
the previous states as well, which results from the retarded
feedback of the reservoir. We refer to this process as the
“non-Markovian” in this study.

Here, we display the structure of the new free-pole HEOM
(FP-HEOM): See Appendix B for more details. The dynamics
of the ADOs follow from

∂ρ̂ �m,�n(t )

∂t
= − iLSρ̂ �m,�n(t ) −

K∑
k=1

(mkzk + nkz∗
k )ρ̂ �m,�n(t )

− i
K∑

k=1

L+
k ρ̂ �m,�n(t ) − i

K∑
k=1

L−
k ρ̂ �m,�n(t ) (8)

with multi-index ( �m, �n) ≡ {m1, . . . , mK , n1, . . . , nK } associ-
ated with forward and backward system path in the original
path integral, complex-valued coefficients zk ≡ γk + iωk ac-
cording to Eq. (7), and raising and lowering superoperators
L+

k and L−
k , acting on the kth quasimode and involving V̂ .

The superoperator LS is the commutator of the system Hamil-
tonian, LS• = [ĤS (�,φ; t ), •]/h̄. It can be shown that, in fact,
this equation is the Fock state representation in an extended
Hilbert space including the qubit as well as the quasimodes
[43].

To obtain a closed set of equations for numerical cal-
culations, Eq. (8) is truncated by defining the depth of
the hierarchy as N = ∑K

k=1(mk + nk ), and always setting
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ρ̂ �m,�n(t ) = 0 for the ADOs with N > Nmax. We set Nmax

to a sufficiently large integer to obtain converged results.
The physical RDO of the qubit system appears as ρ̂S (t ) =
trR{ρ̂tot (t )} = ρ̂�0,�0(t ).

III. PRELIMINARIES: SPECTRAL DENSITIES
AND PARAMETERS

In this section, we specify a class of spectral densities
relevant for superconducting qubit platforms, particularly of
the transmon type. We note that a substantial number of
studies [18,20,40,44] have provided a quite accurate picture
of relevant noise sources on a broad range of timescales
from intrinsic qubit timescales of nanoseconds to macroscopic
scales of hours for rare events. Here, we are interested in
decoherence processes on frequency scales from GHz down
to the range of MHz or kHz. On these scales three dominant
noise sources have been identified:

(i) Electromagnetic fields: Fluctuations of electromag-
netic modes are typically modeled according to an Ohmic
reservoir (Ohmic resistor) with Jem(ω) ∼ ω up to some cutoff
frequency ωc [35,45,46].

(ii) Two-level fluctuators (TLFs): It has been suggested
that transmon qubits are affected by 1/ f ε (ε > 0) noise in the
low-frequency region f � 1 [40,44], and it was reported that
two-level fluctuators (random telegraph noise) in the circuits
work as a source of this noise [35,47–49].

(iii) Quasiparticles: Residual quasiparticles in supercon-
ductors have detrimental effects on the qubit performance;
under some approximations the spectral noise power of quasi-
particle noise has been shown to be of the form Sβ,qp(ω) ∼
1/

√
ω at low temperatures [50].

These major types of noise can be captured by the follow-
ing class of spectral densities:

Js(ω) = sgn(ω)
κω1−s

ph |ω|s
(1 + (ω/ωc)2)2 (9)

parameterized by a spectral exponent s. Here, κ is the cou-
pling rate between the system and reservoir, and ωc a cutoff
frequency. The “phononic reference frequency” ωph is usually
introduced to fix the unit of κ irrespective of the exponent
s: For example, the quantity κ corresponds to the viscosity,
and ωph determines the low-frequency behavior of J (ω) for
damped systems. As implied in Eq. (10), the scaled frequency
ω/ωph plays a crucial role in thermodynamics [34]. Note that
for the Debye model, the reference frequency ωph corresponds
to the Debye frequency ωD [34]. Here we put ωph = ωq so that
Js(ωq) takes the same value regardless of s. The sign function
sgn(ω) guarantees the property Js(−ω) = −Js(ω). For conve-
nience and following a previous study [22], the cutoff function
is chosen to be 1/(1 + (ω/ωc)2)2, where the dependence of
explicit results on this specific form is negligible as long as
ωc � ωq [35].

The above class of spectral densities includes the Ohmic
case (s = 1) as well as sub- (0 < s < 1) and super-Ohmic
(s > 1) baths, respectively. More specifically, in the low-
frequency range the corresponding spectral noise power
[Eq. (6)] saturates to a finite value in the Ohmic case (i), i.e.,
Sβ,s=1(ω = 0) = κkBT , while in the sub-Ohmic case it scales

according to

Sβ,s<1(ω → 0) � κkBT (ωph/ω)1−s. (10)

With the relation ε = 1 − s, this spectral noise power exhibits
1/ f ε-like behavior (ii), and it captures quasiparticle noise (iii)
for s = 1/2. It is worth noting that for the TLF-noise (ii), the
linear dependence on the temperature in Eq. (10) corresponds
to previous studies [51,52], while a T 2 dependence has also
been reported [53,54].

In this study, we particularly investigate how the qubit
dynamics changes with respect to the spectral exponent s,
by considering values s = 1, 1/2, 1/4, 1/8, and 1/14. Further,
we set ωq as the unit of frequency and fix parameter values to
low temperatures β h̄ωq = 5, high cutoff frequency ωc/ωq =
50, and weak coupling to the reservoir 2π h̄κ = 0.04. For
example, at a reservoir temperature of T = 30 mK, this cor-
responds to ωq ≈ 2π × 3.1 GHz. Pulse amplitudes � (pulse
durations τ accordingly) and durations of the idle phase �t
are tuned over a wide range of parameters.

IV. SEQUENCES OF GATE OPERATIONS

In this section, we analyze the performance of a single
qubit subject to sequences of gate operations in the presence
of noise sources according to Eq. (9). We emphasize that the
numerical simulations based on the FP-HEOM [Eq. (8)] pro-
vide highly accurate data including the full non-Markovianity,
that is, any higher-order system–reservoir correlations with in-
finitely long time memories beyond conventional perturbation
theories. By sweeping parameters over a wide range of values
we obtain a comprehensive picture of the qubit performance
and the relevance of qubit–environmental correlations.

More specifically, we consider pulse sequences that consist
of three gate operations separated by two idle phases, see
Fig. 1. For the gate operations our focus lies on three types
of operations, namely, (i) rotations with angle π about the x
axis, denoted Rx(π ), (ii) rotations with angle π/2 about the
x axis, denoted Rx(π/2), and (iii) a Hadamard gate, denoted
H . The duration of the three pulses τ is set equal during the
sequence as well as the time span �t for the two idle phases.
Each sequence of gate operations is then described by a set
of gate-specific superoperators Up(θ, φ) while during the idle
phases the time evolution is generated by Ui(�t ).

Numerically, we practice the following procedure: For
the first pulse application, the time evolution is calculated
for a fixed value φ up to the pulse duration τ = θ/�

by numerically integrating the FP-HEOM of Eq. (8). We
here symbolically represent the integration as ρ̂ �m,�n(τ ) ←
U(� > 0, φ; 0, τ )ρ̂ �m,�n(0). The following time evolution for
the first idle phase is calculated under the condition � =
0 up to �t , which is expressed as ρ̂ �m,�n(τ + �t ) ← U(� =
0, φ; τ,�t )ρ̂ �m,�n(τ ). We repeat these calculations for the sub-
sequent pulses/idle phases. In the situation of impulsive
pulses, Up(θ, φ) is replaced by Uimp(θ, φ), and this superoper-
ator is applied to all RDOs and ADOs. The latter is expressed
as ρ̂ �m,�n(t ) ← Uimp(θ, φ)ρ̂ �m,�n(t ), which corresponds to the re-
placement of ρ̂tot (t ) in Eq. (5) with ρ̂ �m,�n(t ). Note that we treat
the open quantum dynamics over the full sequence such that
the RDO and ADOs obtained at the end of a previous phase
are used as the initial states for the subsequent ones.
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For the initial states prior to the first gate operation, we
consider three initial states: (a) the qubit is in the excited
state, ρ̂�0,�0(0) = |1〉〈1| and ρ̂ �m �=�0,�n �=�0(0) = 0, (b) the qubit is
in the ground state, ρ̂�0,�0(0) = |0〉〈0| and ρ̂ �m �=�0,�n �=�0(0) = 0,
and (c) the qubit resides in the equilibrium state of the total
Hamiltonian. Here, we have introduced the ket-vector of the
ground (excited) state of the system as |0〉 (|1〉). The initial
states (a) and (b) correspond to factorized states |1〉〈1| ⊗
ρ̂R,eq and |0〉〈0| ⊗ ρ̂R,eq, respectively. For case (c), before
the pulse applications, the relaxation dynamics of the qubit
without the external field (� = 0) starting from |1〉〈1| ⊗ ρ̂R,eq

is evaluated until a steady state is reached. Since the sys-
tem reaches the same steady state irrespective of the initial
state, we identify this steady state with the correlated ther-
mal equilibrium state of the total compound, i.e., ρ̂c

S,eq =
trR{e−βĤtot (�=0,φ;t )}/tr{e−βĤtot (�=0,φ;t )} [55]. For more details
of the preliminary equilibration process, see Appendix D 1.
In short, we denote these three types of initial states as (a)
ρ̂0 = ρ̂e, (b) ρ̂g, and (c) ρ̂eq, respectively. Note that the initial
state ρ̂eq is a mixed state with |0〉〈0| and |1〉〈1| and is close
to |0〉〈0| (0.92 � 〈0|ρ̂c

S,eq|0〉 � 0.97, see the inset of Fig. 11
below) because of the low temperature we consider in this
study: Differences originating from small variations in the
initial states are illustrated through the comparison of cases
(b) and (c) in the following results.

From the perspective of experimental implementations, we
assume that the qubit prior to the gate sequence is equilibrated
with respect to the total Hamiltonian. In the domain, where
superconducting qubits are operated and at weak couplings
to the environment, this implies basically only weak qubit–
reservoir correlations in thermal equilibrium. An initialization
pulse can then be assumed to prepare the compound into either
(a) |1〉〈1| ⊗ ρ̂R,eq or (b) |0〉〈0| ⊗ ρ̂R,eq with equilibrium corre-
lations between the qubit and reservoir basically destroyed.
For case (c), we simply use the total equilibrium state as the
initial state, and no initialization pulse is required; the qubit
resides almost exclusively in its ground state correlated with
the reservoir (when projecting ρ̂c

S,eq onto |0〉〈0|).
To illustrate the described protocol, we show in Fig. 2 a

cartoon displaying the status of the qubit’s Bloch vector in
the rotating frame after the application of the respective gate
operation starting from a specific initial state. The dynamics
during the idle phases, which appear between the second and
the third and the third and the fourth snapshot, is not shown,
since the system in the rotating frame ideally remains in a
certain state during an idle phase.

The Bloch vector in the rotating frame is defined as

〈σ̃α (t )〉 = tr{σ̂αR̂z(−ωqt )ρ̂S (t )R̂z(ωqt )}
with the reduced density operator ρ̂S (t ).

In order to quantify the (detrimental) impact of reservoirs
onto the performance of the qubit under the gate operations,
we introduce the fidelity

F (t ) =
(

tr
{√√

ρ̂iso(t )ρ̂S (t )
√

ρ̂iso(t )
})2

.

Here the density operator for the isolated qubit system is intro-
duced as ρ̂iso(t ). For its evaluation identical pulse sequences
compared to the dissipative case are considered with the

only difference that we set V̂ = 0 with initial states ρ̂iso(0) =
|1〉〈1|, |0〉〈0| and ρ̂c

S,eq respectively.

A. Rx(π) gates

Expressed in terms of the superoperator introduced in
Eqs. (3)–(5), the sequence of three Rx(π ) gates is described
by the evolution

Up(π, 0)Ui (�t )Up(π, 0)Ui(�t )Up(π, 0).

We start by discussing typical dynamical features that re-
veal interesting physics and have direct impact on the fidelities
to be analyzed below. By way of example, we depict in Fig. 3
snapshots of the qubit dynamics during the first idle phase
(segment 1 < d � 2 in Fig. 1) for various driving amplitudes
�, i.e., pulse durations τ = π/�, and spectral exponents
s. Clearly, for τ = 0, the qubit starts after the impulsive
π -pulse in the ideally rotated state with 〈σ̂z〉/2 = ±0.5 (for
ground/excited state initial preparation). It then tends to re-
lax monotonously for reservoirs with s > 1/2 with the initial
states ρ̂0 = ρ̂g and ρ̂eq, while for smaller spectral exponents
(towards 1/ f noise) an oscillatory behavior sets in as a result
of the stronger portion of low-frequency modes, which induce
a sluggish dynamics and strongly retarded feedback of the
reservoir. For finite duration of the first gate pulse (finite �,
τ > 0), the qubit starts progressively further away from its
ideal value since relaxation happens to occur already during
the gate pulse and pursues in the subsequent idle phase. In
relative terms, this process is more pronounced when starting
initially from an excited state compared to a ground-state
preparation. Interestingly, deeper into the sub-Ohmic domain,
s � 1/8, and with increasing duration �t of the idle phase
[larger ωq(t − τ )/π in Fig. 3], the qubit dynamics for dif-
ferent τ interchange: Less ideal 〈σ̂z〉 values at the beginning
of the idle phase [e.g., a green curve in the upper-right panel
in Fig. 3 (ρ̂0 = ρ̂e, s = 1/14 and �/ωq = 1/2)] are overcom-
pensated by an oscillatory reservoir-induced dynamics such
as to exceed those with more ideal starting values [a cyan
curve in the same panel (�/ωq = 1/3)]. This “switching” may
lead to a somewhat counter-intuitive behavior of respective
fidelities as we will see now.

Figures 4(a)–4(c) display heatmaps of fidelities for the
three respective initial states. For each initial preparation, the
fidelity at the end of each of the five segments (d = 1, . . . 5) in
Fig. 1 is depicted for various values of the spectral exponent s,
from an Ohmic noise source (s = 1) to a reservoir with deep
sub-Ohmic fluctuations (1/ f noise). Each pair (d, s) defines
a supercell consisting of 4 × 4 cells, for which the driving
amplitude � and the duration of the idle phase �t are varied,
see Fig. 4(d).

Before we come to the details, we summarize the overall
picture: The tendency towards lower fidelities can be seen (i)
for weaker drive amplitudes (i.e., longer gate pulse durations),
(ii) for longer idle times (with some exceptions, see below),
and (iii) when starting from the excited state. The overall
dependence on the spectral exponent s (type of noise) is weak
for the Rx(π ) gate. In general, fidelities in case (c) are higher
than those in case (b), although the initial states ρ̂g and ρ̂eq are
close to each other, and the dynamics are similar (the middle
and bottom panels of Fig. 3). This is mainly caused by the
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FIG. 3. Dynamics of the expectation value 〈σ̂z(t )〉/2 during the first idle phase with various initial states ρ̂0 and spectral exponents s. The
sequence of Rx (π ) gates is considered. The gray-vertical-dashed lines indicate the time duration �tωq/π = 0, 1, 3/2, 2, respectively, which
corresponds to the time d = 2 in Fig. 1.

difference of the reference density operator ρ̂iso(t ); ρ̂iso(0) =
|0〉〈0| in case (b) and ρ̂iso(0) = ρ̂c

S,eq in case (c). However, this
picture is blurred as some counter-intuitive features appear.

This brings us to a more detailed discussion: We first men-
tion that at low temperatures, relaxation occurs predominantly
from an excited state toward the ground state. Hence, the
expectation is that whenever the qubit, after a gate pulse, is

ideally positioned in the excited state, the fidelity at the end
of an idle phase is smaller compared to the situation when it
is supposed to be in the ground state. This is confirmed by
comparing columns d = 2 in Figs. 4(b) and 4(a): For case
(b), the system is prepared into the excited state after the
first pulse, and the more significant decrease of the fidelity is
observed during the first idle phase (1 < d � 2) compared to

FIG. 4. [(a)–(c)] Heatmaps of the fidelity of the Rx (π ) gates measured at the end of each phase d with various spectral exponents s. The
initial states are given by (a) ρ̂e, (b) ρ̂g, and (c) ρ̂eq, respectively. The whole heatmap is divided into 5 × 5 supercells, and a supercell consists
of 4 × 4 cells. For each supercell, the values of � and �t are varied, while d and s are fixed. The circle and star symbols in the upper-left
corner of the supercell indicate the violation of the expected order: see the main text for the definition of the expected order. (d) Legend for the
supercell.
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FIG. 5. Dynamics of the expectation value 〈σ̂z(t )〉/2 during the
second idle phase for the Ohmic reservoir (s = 1) with the pulse
duration �/ωq = 1/3. The initial and terminal point of each curve
correspond to the time d = 3 and 4, respectively.

case (a), where the ideal state after the first pulse is the ground
state. One also observes that with increasing duration of the
idle phase for d = 2 in case (a) the fidelity generally increases
while it decreases with growing �t for d = 2 in case (b). Note
that the former tendency is opposed to the general tendency
(ii), i.e., this is the exceptional case mentioned above.

To analyze the tendency at d = 4, we display typical dy-
namics during the second idle phase in Fig. 5. Comparing
the fidelities at d = 3 and 4 for each gate sequence, which
correspond to the initial and terminal point of each curve
in Fig. 5, respectively, one expects qualitatively an opposite
behavior from cases at d = 2: loss of the fidelity in case (a)
(because the gate has positioned the qubit close to its excited
state) and partial recovery of the fidelity in case (b) (when the
second gate has positioned it back into the ground state). This
is indeed the case and leads to relatively larger fidelities at the
end of the sequence (d = 5) in case (b) compared to case (a).
In terms of the duration �t , the fidelity at d = 4 is expected
to shrink in both cases as �t grows: The relaxation behavior
directly results in this expectation in case (a). Although the
partial recovery occurs in case (b), the initial difference in
Fig. 5 with respect to �t is too large to be compensated. In
case (c), the same expectation as in case (b) holds.

However, there are deviations from this behavior. They
are indicated by the circle symbols in Figs. 4(a)–4(c) and
are because of the following two factors: (i) Instantaneous
gate pulses (τ = π/� = 0): In this situation, drastic changes
of the qubit–reservoir correlations emerge during the idle
phase and nonmonotonous behavior in the qubit populations
is observed (blue curves in Fig. 3). Note in passing that the
fidelities for τ = �t = 0 are always 1 because no relaxation
and decoherence occur in this case. (ii) Long-range qubit–
reservoir correlations (memory effects): Since the duration
of idle phases is much shorter than equilibration times of
the qubit, nonequilibrium dynamics appear throughout the
complete sequence. This implies that retardation effects in-
duce correlations between the dynamics in subsequent idle
phases (1 < d � 2 and 3 < d � 4) as well as between idle
phases and gate segments. These memory effects influence the

fidelities as well and, as detailed inspection reveals, lead in
some cases to deviations from the general picture described
above. For example, in the deep sub-Ohmic regime (s =
1/8, 1/14), the qubit and reservoir can coherently interact
with each other multiple times (for more details, see Ap-
pendix C). This non-Markovian effect induces oscillations in
the populations (Fig. 3) and a nonmonotonous trend in the
fidelities when sweeping pulse and idle-phase parameters. We
emphasize that within the Born–Markov approximation the
reservoir is treated such that it were always in the bare equi-
librium state ρ̂R,eq and nonmonotonous phenomena (i) and (ii)
are not predicted within the framework of Bloch–Redfield and
Lindblad simulations.

There is another very interesting observation that we stress
here. One expects that for longer gate pulses the fidelity de-
teriorates because of a longer interaction time between the
system and reservoir. We have confirmed this tendency within
the frame of Lindblad equations (results are not shown). This
implies that in Figs. 4(a)–4(c) the fidelity aligns in descend-
ing order from top to bottom at d = 1, 3, and 5. The star
symbols indicate the violation of this expectation. The reason
for this deviation is the following: Both, the angle between
the experimentally obtained and the ideal Bloch vectors, as
well as the length of the Bloch vector contribute to the fi-
delity. As depicted in Appendix D 2, the bare qubit frequency
ωq (no reservoir) differs from the effective qubit frequency
obtained from Ramsey experiments in the presence of a reser-
voir. If the frequency of the external pulse is misaligned with
the effective qubit frequency, the rotation axis changes from
the desired one, and the fidelity deteriorates at the end of the
pulse application, τ = θ/�. Furthermore, the effective qubit
frequency varies in time so that the pattern of the fidelity may
not be intuitive.

B. Rx(π/2) gates

Let us now turn to the Rx(π/2) gate, which follows from
the following sequences [cf. Eqs. (3)–(5)]:

Up

(π

2
, 0

)
Ui(�t )Up

(π

2
, 0

)
Ui(�t )Up

(π

2
, 0

)
. (11)

The qubit dynamics during the first idle phase can be seen in
Fig. 14 in Appendix E 1. They reveal again non-Markovian
behavior depending on the spectral exponents. Corresponding
fidelities are seen in Fig. 6 with the same structuring and
the same value of the parameters as above for the π gate.
However, the pulse duration is only half of that for the π gate,
of course, given by τ = π/(2�).

The final fidelity is the largest for the initialization (a).
As discussed in Sec. IV A, this is because at the beginning
of the second idle phase, the desired state of the qubit is
the ground state |0〉〈0| (Fig. 2), and the relaxation process
constructively supports this state. The cause of the differ-
ence of the fidelity between cases (b) and (c) is mainly
the difference of the reference state, which is the same as in
the case of the Rx(π ) sequence. With a fixed d , �, and �t , the
fidelity in general tends to take a maximum value for medium
sub-Ohmic reservoirs with s = 1/2 and 1/4 while minimum
values appear for exponents s = 1 (Ohmic) and 1/14 (deep
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FIG. 6. Heatmaps of the fidelity of the Rx (π/2) gates measured at the end of each phase d with various spectral exponents s. The initial
states are given by (a) ρ̂e, (b) ρ̂g, and (c) ρ̂eq, respectively. The parameter values of each cell are the same as Fig. 4. The circle and star symbols
in the upper-left corner of the supercell indicate the violation of the expected order, in the same way as Fig. 4.

sub-Ohmic), i.e., reservoirs with intermediate exponents have
the least detrimental impact on fidelities for Rx(π/2) gates.

Comparing the supercells of initial preparations ρ̂e and
ρ̂g in column d = 1, we find that the fidelity of the latter
exceeds that of the former. As depicted in Fig. 2, the first pulse
application corresponds in the rotating frame to the rotation of
the Bloch vector from (0,0,1) to (0,−1, 0) in case (a), and
from (0, 0,−1) to (0,1,0) in case (b). The positive 〈σ̂z(t )〉
(excited state) is converted to a superposition (coherence) via
the π/2-pulse in case (a), while the negative 〈σ̂z(t )〉 (ground
state) contributes in case (b): In any case, larger absolute
values, |〈σ̂z(t )〉|, result in larger fidelities after the pulse appli-
cation. Because decay of |〈σ̂z(t )〉| is more pronounced in the
excited state, a superposition with a lower fidelity is created
in case (a). This in turn suggests creation of superposition
states with higher fidelities starting initially from a ground
state.

Similar to the Rx(π ) gates, we expect the following ten-
dency of the fidelity in each supercell: In descending order
from top to bottom in d = 1, 3, and 5, and from left to right in
d = 2 and 4, respectively. In the case of the Rx(π/2) gates,
however, we cannot observe the violation of this expected
order in d = 2 [as is the case for the Rx(π ) gate]. Namely,
during the first idle phase, the 〈σ̃y〉 element of the Bloch vector
mainly contributes to the fidelity. Because the reservoir affects
the fidelity during this phase through the decoherence process
rather than the population-relaxation process, the tendency
of the order is different compared to the Rx(π ) gates. As
depicted in Appendix E 1, the peculiar behavior for � = ∞
or small s found in the Rx(π ) sequences is not observed here,
or rather, the expected order is obtained. In d = 4, the fidelity
is again determined mainly by 〈σ̂z〉, and the oscillatory pattern
of the populations again contributes to the development of the
fidelities. Similar to the Rx(π ) gates (Fig. 3 and Sec. IV A), the
intrasegment oscillations change the order for lower s when
the qubit state is close to the ground state, which is found in
case (a) for reservoirs with s = 1/4, 1/8, and 1/14.

Overall, a violation of the expected order during the pulse
application (d = 1, 3, and 5) is observed only in a smaller
number of supercells compared to the case of Rx(π ) gates.
The differences between initial and final states (Fig. 2), and
the length of the pulse duration may be responsible for this
different behavior.

C. Hadamard (H) gates

The third gate sequence that we analyze here consists of
three Hadamard gates according to Eqs. (3)–(5)

Up

(π

2
,−π

2

)
Ui(�t )Up

(π

2
,
π

2

)
Ui(�t )Up

(π

2
,−π

2

)
.

Note that the virtual Z gate [56] is considered here. In Fig. 7,
we depict corresponding heatmaps of the fidelity, where the
parameter values s, d , �, and �t for each cell are the same
as in Fig. 4 while the pulse duration is the same as the one in
Fig. 6.

Overall, the fidelity is maximum in the case of an equilib-
rium initial preparation ρ̂eq, while it takes minimum values
for the qubit being initially in an excited state ρ̂e: The value
F (t ) = 0.467 for Ohmic reservoirs (s = 1) in d = 5 with
�/ωq = 1/3 and ωq�t/π = 2 is the worst for all the cells
in Figs. 4, 6, and 7. This is mainly caused by two factors,
namely, the first pulse application (0 < d � 1) and the second
idle phase (3 < d � 4). As discussed in Sec. IV B, the rotation
with an angle π/2 starting from the excited state is most
subject to noise. This tendency was found to be independent
of the rotation axis. In addition, at the beginning of the sec-
ond idle phase the qubit ideally starts again from an excited
state when it was prepared there before the first gate pulse.
Since the relaxation process causes more detrimental effects
on the excited state than on the ground state, as discussed in
Sec. IV A, these two contributions add up to reduce the fidelity
substantially.

The reason for the better performance starting from an
initial state ρ̂eq compared to that for ρ̂g is the same as above
for the Rx(π ) and Rx(π/2) gates. In terms of the reservoir
exponent s, it is true also for H gates that the fidelity for
s = 1/2 and 1/4 is maximum while that with s = 1 and 1/14
is minimum for fixed d , �, and �t . In fact, this tendency is
here even more significant than in the case of Rx(π/2) gates.

It is worth noting that at d = 2, a violation of the expected
order for the fidelity is observed in the deep sub-Ohmic do-
main s = 1/8 and 1/14 for initial states ρ̂e and ρ̂g. Here, the
expected order is defined in the same way as in Sec. IV B. As
depicted in Appendix E 2, a significant decoherence that is not
observed in the Rx(π/2) gates contributes to this violation.
Namely, the different rotation axis leads to significantly dif-
ferent behavior during the first idle phase. During the second
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FIG. 7. Heatmaps of the fidelity of the Hadamard (H ) gates measured at the end of each phase d with various spectral exponents s. The
initial states are given by (a) ρ̂e, (b) ρ̂g, and (c) ρ̂eq, respectively. The parameter values of each cell are the same as Fig. 4. The circle and star
symbols in the upper-left corner of the supercell indicate the violation of the expected order, in the same way as Fig. 4.

idle phase starting with ρ̂g, the qubit is close to the ground
state. This situation is similar to that in Fig. 6(a) at d = 4:
Again the strongly non-Markovian behavior corresponding to
oscillatory qubit dynamics for s � 1/4 induces a violation of
the expected order, see Fig. 7(b) [cf. with Fig. 6(a)].

As for the pulse-application phase, a violation is observed
in different cells in Fig. 7 compared to Fig. 6. The static phase
of the external field φ induces differences in the appearance,
as gate operations R̂x(π/2) are used in Fig. 6 while R̂y(±π/2)
in Fig. 7.

D. Suggestion for experiments

As discussed above, the shortest operation time does not
always result in the best performance in terms of the fidelity.
From our results, we suggest the following for experiments:
Monitoring the gate fidelity with respect to the pulse duration
might be beneficial to find optimal gate times. For multiqubit
systems, extension of idling times for qubit synchronizations
might lead to improvement of the performance.

The spectral exponent s as well as the duration of the pulse
application and idle phase (τ and �t , respectively) plays a
crucial role for the final fidelity. Although the spectral ex-
ponent is intrinsic to each material and circuit and cannot
be controlled in general, methods to engineer the spectral
density have been proposed in previous studies, especially
for trapped-ion arrays [57]. Engineering of the reservoir is
also found in a recent study of transmon qubits to observe
transition from non-Markovian to Markovian behavior [58]:
Experiments with varying the exponent s might be feasible in
the future.

V. QUBIT–RESERVOIR CORRELATIONS

In this section we discuss in more detail means to mon-
itor directly feedback effects from the reservoir onto the
qubit dynamics (non-Markovianity) and demonstrate their
significance.

A. Interphase correlations

Here, we study the limitation of the Born–Markov approx-
imation through a deeper investigation of system–reservoir
correlations. Strictly, the dynamics of the qubit at a time t

are affected by its properties at previous times because of
the finite-time (finite-frequency) retardation of the reservoir
(non-Markovianity). In contrast, the Born–Markov approxi-
mation assumes an instantaneous interaction and can thus not
describe corresponding correlations. In our case, the qubit
dynamics during a certain phase of a specific gate sequence
are correlated with its dynamics during previous phases. We
refer to these correlations as “interphase correlations”.

In addition, when we consider a thermal initial state ρ̂0 =
ρ̂eq, static system–reservoir correlations at time t = 0 emerge
and also affect the future dynamics of the qubit.

To study these correlations, we conduct numerical simu-
lations in which we “decouple” the system and reservoir by
means of the projection operator P[ρ̂tot (t )] = trR{ρ̂tot (t )} ⊗
ρ̂R,eq at the end of each phase d as well as at time t = 0,
and compare results of these simulations with those of the
full dynamics, i.e., without projection operators. Note that
the above projection operator P[•] is the starting point to
derive the Nakajima–Zwanzig equation [59,60]. The same is
true for the time-convolutionless (TCL) master equation [34],
which, as was pointed out in recent paper, cannot describe
interphase correlations [41,42]. Considering that in the Born
approximation one always assumes a factorization ρ̂tot (t ) �
ρ̂S (t ) ⊗ ρ̂R,eq, the introduced projection operator provides di-
rect insight into the limitations of this approximate treatment.
Within the HEOM, the application of this projection operator
corresponds to the reset of the ADOs to 0 at the time t , which
is expressed by ρ̂ �m �=�0,�n �=�0(t ) → 0.

In order to analyze these correlations in more detail, we not
only consider the full dynamical expectation value 〈σ̂z(t )〉/2
but also introduce 〈ς̂z(t )〉(α)/2 (α = 1, 2). These describe z
elements of the Bloch vector during a pulse sequence with
the following decoupling scheme: (α = 1) only one projection
operator is applied at time t = 0, and (α = 2) this operator is
applied initially and at the end of each phase. Corresponding
time-dependent data are depicted in Fig. 8(a) for an Ohmic
reservoir as a representative. As the initial state the equilib-
rium state, ρ̂0 = ρ̂eq, is chosen, and the parameter values are
�/ωq = 1/3 and ωq�t/π = 2. The shaded areas correspond
to the pulse-application phase, in which the qubit ideally ro-
tates from |0〉 (〈σ̂z〉/2 = −0.5) to |1〉 (〈σ̂z〉/2 = 0.5) for the
first and third pulse (left and right shaded area), while |1〉 to
|0〉 for the second pulse (middle shaded area).
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FIG. 8. (a) Whole dynamics of the expectation value 〈σ̂z(t )〉/2,
〈ς̂z(t )〉(1)/2, and 〈ς̂z(t )〉(2)/2 with the Rx (π ) sequence. The initial
state is given by ρ̂0 = ρ̂eq, and �/ωq and ωq�t/π are set to 1/3
and 2, respectively. The shaded areas indicate the pulse-application
phase, which corresponds to the schematic of Fig. 1. We applied
the projection operator P[ρ̂tot (t )] = trR{ρ̂tot (t )} ⊗ ρ̂R,eq at times in-
dicated by the empty squares [at t = 0, 〈ς̂z(t )〉(1)] and filled circles
[〈ς̂z(t )〉(2)]. The dynamics without the projection operators 〈σ̂z(t )〉
are also depicted as a reference. As a representative, the case for the
Ohmic reservoir (s = 1) is depicted. (b) Time trace of the difference
of the expectation value between the dynamics with the projection
operators and exact dynamics.

To stress contributions of the interphase correlations, dif-
ferences between expectation values with projection operators
applied and the exact ones are shown in Fig. 8(b) for various
spectral exponents s. In the Ohmic case (s = 1), pronounced
step-like deviations are observed right after the application
of the projection operator, which tends to be smoother in the
moderate sub-Ohmic domain. Namely, for s = 1, owing to the
high-frequency modes of the reservoir, a fast reconfiguration
from ρ̂R,eq towards the correlated equilibrium state occurs. As
the exponent s becomes smaller, the intensity of the spectral
noise power Sβ (ω) in the high-frequency region gradually
decreases. This results in a slower reconfiguration process.
However, deviations increase again in the deep sub-Ohmic do-
main (s < 1/4), and we attribute this increase to the strongly
growing portion of low-frequency modes.

More specifically, without projection onto the bare equilib-
rium state of the reservoir ρ̂R,eq and with the parameter values
chosen here, we observed a monotonic decay of the Bloch
vector irrespective of the exponent s during the idle phases
(cf. Fig. 16 in Appendix E 3). The oscillatory behavior seen
in Fig. 8(b) for the dynamics with projection must be thus
attributed to the instantaneous change of the reservoir to ρ̂R,eq

each time in which the projection operator is applied. The
destruction of qubit–reservoir correlations induces for lower
spectral exponents s = 1/8 and 1/14 a sluggish oscillatory
response to reestablish them. Because the enhancement of this
oscillatory pattern is accompanied by a quantitative increase
of deviations, we conclude that these correlate with each
other.

For the dynamics of 〈ς̂z(t )〉(1), all interphase correlations
are taken into account, while the static initial system–reservoir
correlations are not. Notably, as seen in Fig. 8(b), deviations
to the exact dynamics can be observed even during the second
idle phase. This clearly shows the impact of static qubit–
reservoir correlations even in the long-time regime (here time
span 8 � ωqt/π � 10).

The general conclusion we draw from Fig. 8(b) is that the
static system–reservoir correlation at the initial time as well
as the interphase correlations significantly contributes to the
qubit dynamics and directly affects quantitatively predictions
for gate performances. For the precise study of the qubit
dynamics during pulse sequences, methods that go beyond the
Born approximation must be applied.

B. Periodic behavior for impulsive-pulse sequences

Here, we focus on the dynamics with the Rx(π ) sequence
with the impulsive pulses, i.e., � = ∞ and zero pulse-
duration τ = π/� = 0. Figure 9(a) displays the dynamics of
the expectation value 〈σ̂z(t )〉/2 with ρ̂e chosen as the ini-
tial state. The vertical lines correspond to the second pulse
application while, for the sake of clarity, the vertical lines cor-
responding to the first and third pulse application are omitted
(see Fig. 1 with segments 1 < d � 4 with two idle phases).
The duration of the idle phase after the impulsive gates �t is
varied from ωq�t/π = 1/3 to ωq�t/π = 2.

When one compares the dynamics of �t/π with the π -
shifted data (for example, ωq�t/π = 1/2 and ωq�t/π =
3/2), one observes a clear periodicity in the short-time re-
gion right after the beginning of the second idle phase in
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FIG. 9. (a) Dynamics of the expectation value 〈σ̂z(t )〉/2 during
the sequence of three Rx (π ) gates, with various �t and a fixed �

(�/ωq = ∞). The vertical lines at the beginning and end of the
sequence, which correspond to the first and third pulse, are omit-
ted. The initial states are the excited state, ρ̂0 = ρ̂e. (b) Dynamics
of 〈σ̂z(t )〉/2 with the two idle phases interleaved with one impul-
sive pulse [Eq. (12)]. The initial states are the equilibrium state,
ρ̂S (0) = ρ̂eq. As representatives, the dynamics with s = 1 and 1/14
are displayed. The dynamics of the first idle phase are not depicted,
because the expectation value 〈σ̂z(t )〉 takes a same value during this
phase, as inferred by the equilibrium initial states. (c) Same dynam-
ics as case (a), but the dynamics are calculated with the Lindblad
equation [Eq. (13)]. The dynamics during the first idle phase are not
depicted. The results are independent of the spectral exponent s.

the cases s = 1 and 1/2. Notably, this periodicity is not seen
anymore for small spectral exponents (see e.g., s = 1/14 for
ωq�t/π = 1/2 versus ωq�t/π = 3/2).

To better understand this behavior, we consider the dynam-
ics of the qubit according to a reduced sequence of the form

Ui(�t )Uimp(π, 0)Ui (�t ), (12)

taking now ρ̂0 = ρ̂eq as the initial state (rather than the ex-
cited one as above). The expectation value 〈σ̂z(t )〉/2 does not
change during the first idle phase because of the equilibrium
state; the right Ui(�t ) in Eq. (12) is introduced only to shift the
time of the pulse application, and we focus on the dynamics
during the second idle phase [left Ui(�t ) in Eq. (12)]. The
extreme cases of Ohmic (s = 1) and deep sub-Ohmic (s =
1/14) reservoirs are shown in Fig. 9(b). Now, the π periodicity
is observed also in the case for s = 1/14. The reason for
this different behavior can be traced back to the time depen-
dence of the density operators: In the equilibrium state, the
off-diagonal elements of the reduced density operator (RDO)
are negligibly small so that the application of an impulsive
π -pulse Uimp(π, 0) to the RDO is a time-independent trans-
formation. By contrast, because the off-diagonal elements of
the ADOs are not necessarily zero, the unitary transforma-
tion of the ADOs in Eq. (5) is time dependent owing to the
term R̂z(±ωqt ). Hence, we conclude that since off-diagonal
elements of all the ADOs are almost invariant in time when
the total system is in its equilibrium state, for the π rotations
considered here, the qubit exhibits a π -periodical behavior
for all spectral exponents. This is exemplified in Fig. 9(b).
Initialized in the excited state, however, this only applies to
s = 1 and 1/2 in Fig. 9(a), when the total state stays very
close to the equilibrium state during the first idle phase. By
contrast, when the reservoir becomes more sub-Ohmic, during
the first idle phase the qubit stays far from full equilibrium and
oscillatory behavior emerges with no π periodicity.

What happens when one simulates this situation within a
Born–Markov treatment? This is seen in Fig. 9(c): For the
application of the impulsive pulse, the unitary transformation,
Eq. (5), is applied to the RDO, so that during the idle phases
the dynamics follow from the Lindblad equation

∂

∂t
ρ̂S (t ) = − i

h̄
[ĤS (� = 0, φ; t ), ρ̂S (t )]

+ 2πSβ (ωq)

(
σ̂−ρ̂S (t )σ̂+ − 1

2
{σ̂+σ̂−, ρ̂S (t )}

)

+ 2πSβ (−ωq)

(
σ̂+ρ̂S (t )σ̂− − 1

2
{σ̂−σ̂+, ρ̂S (t )}

)
.

(13)

Here, [•, •] and {•, •} denote the commutator and anticom-
mutator, respectively. The parameter values for Sβ (ωq) are
identical to those of the HEOM calculations and independent
of s. Note that we have ignored the Lamb shift here because it
does not contribute to the dynamics of the diagonal elements.
We do not depict the dynamics during the first idle phase
in Fig. 9(c) because the expectation value 〈σ̂z(t )〉/2 in the
equilibrium state of the bare system ρ̂S,eq is very close to −0.5
and significant changes are not observed during this phase. In
terms of the numerical calculation, the ADOs are always zero
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within the framework of the Lindblad equation, and therefore
the time-dependent properties of the pulse application cannot
be described. For this reason, the dynamics of the RDO during
the second idle phase exhibits almost the same linear relax-
ation behavior irrespective of �t .

We further mention that in the exact treatment with the
HEOM, the total equilibrium state is sensitive to the di-
rection of the rotation axis of the qubit because of the
system–reservoir coupling. Namely, contributions of the terms
R̂z(±ωqt ) in Eq. (5) can be expressed through the initial
phase of the external field φ, and the change of the time
duration �t corresponds to the change of the direction of the
rotation axis. This sensitivity is absent in the framework of
the Born–Markov approximation approach and can thus not
been predicted by this treatment. It is a clear signature of
qubit–reservoir correlations.

We note in passing that in a previous study different dy-
namics of the RDO caused by different rotation axes were
numerically predicted [24]. The cause of these differences is
the same as the one for the π periodicity in this study. For the
dependence of the dynamics on �t with a finite amplitude �,
see Appendix E 3.

C. Feasibility of experiments

There are growing activities in observing non-Markovian
effects in specific set-ups, for example, we refer to Ref.
[58] for a most recent development. In previous studies,
experimental protocols to observe signatures of the non-
Markovianity were proposed [17,24]. Here, we point out that
the above protocols discussed in Secs. V A and V B may
provide additional means: The interphase correlations can be
detected if we can reset the reservoir to the decoupled equi-
librium state ρ̂R,eq. This might be achievable by application of
external fields, which is similar to the pulse application to the
system qubits. The protocol for the periodic behavior is much
easier: When we can prepare approximately impulsive pulses
with a negligible width, then we simply vary the duration of
the idle phase to obtain corresponding results.

VI. SUMMARY AND CONCLUSIONS

In this paper, high-precision quantitative predictions are
provided for various sequences of single-qubit gate opera-
tions for a broad class of thermal environments. Reservoirs
with spectral densities of the form Js(ω) ∝ ωs are considered,
i.e., from the Ohmic (s = 1) to the deep sub-Ohmic (s � 1)
domain, thus covering prominent noise sources for supercon-
ducting qubits such as electromagnetic fluctuations, two-level
fluctuators, and quasiparticle noise. As representative appli-
cations, gate sequences are chosen to consist of three pulses
(π , π/2, and H gate) of varying amplitudes separated by
two idle phases of varying lengths. In this way, we are able
to unfold a detailed and comprehensive picture of the dy-
namics and performance of major gate sequences for realistic
superconducting circuit implementations in domains, where
perturbative treatments (Lindblad, Redfield) fail. Our paper
clearly demonstrates the necessity to invoke highly advanced
simulations techniques such as the HEOM to provide a de-
tailed understanding of the intricate qubit–reservoir dynamics

and to deliver quantitative predictions for complex gate opera-
tions matching the growing accuracy achieved experimentally.

The main results can be summarized as follows:
(1) In the temperature domain, where superconducting

qubits are operated, retardation effects of the reservoir induce
long-range correlations during gate sequences, particularly
between subsequent idle phases. This impact grows for reser-
voirs with more prominent sub-Ohmic characteristics (low
to moderate frequency noise compared to qubit transition
frequencies).

(2) By varying parameters of gate sequences
(amplitude/pulse duration, duration of idle phase) and
depending on spectral exponents of reservoirs, we found
a nonmonotonous pattern for gate fidelities for all three
initial preparations (ground, excited, and thermal state). In
contrast to simple expectations, the recovery of fidelities
in subsequent idle phases originates from non-Markovian
dynamics of ρ̂S (t ). By choosing proper parameters in each of
these cases, our simulations lay the foundation for optimizing
gate performances.

(3) In most cases, we observed that fidelities for gate se-
quences starting from the qubit’s ground state or thermal state
exceed those starting from the excited state.

(4) Fidelities after the final pulse, decisive for the overall
gate performance, strongly depend on the loss or recovery of
fidelities during all preceding idle phases.

(5) The rotation axis of qubit gate operations on the Bloch
sphere relative to the qubit–reservoir coupling has substantial
influence on gate performances, as explicitly demonstrated for
Rx(π/2) and H gates.

(6) Long-range qubit–reservoir correlations were shown
to induce interphase correlations during gate sequences de-
pending on the relative portion of low-frequency modes in
the reservoirs. Monitoring the qubit’s population dynamics
upon application of impulse Rx(π ) gates interleaved by idle
phases of varying lengths allows us to reveal directly the sig-
nificance of non-Markovian feedback in actual circuits. The
latter appears to be imprinted in periodicities that are predicted
to occur when comparing the qubit dynamics for idle phases
ωq�t that differ by multiples of π .

(7) The developed and applied rigorous numerical simu-
lation technique is highly efficient and very versatile so that
it can be used in the laboratory to directly guide optimized
designs of circuitries and gate pulse shapes. For example, the
results reported here for a single run (a single cell in Fig. 4)
were obtained on a personal computer (Intel Core i9 CPU with
10 cores) within a few seconds (Ohmic case) up to a few hours
(very deep sub-Ohmic case). This can be further improved by
implementing matrix product state (MPS) techniques within
the FP-HEOM [32].

In this paper, we restricted ourselves to the simulations of
single-qubit gates. The pulse shape was also restricted to a
rotating external field, with the ideal switching given by a step
function. This can easily be extended by taking into account
derivative removal adiabatic gates (DRAG) [61] with a finite
rise time. Leakage effects of pulses to the second and higher
qubit excited states have also not been considered. Studies
of multiqubit dissipative systems must be conducted in the
same line as this study. However, because of its unique effi-
ciency combined with its versatile applicability the presented
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numerical approach allows us to investigate these topics as
well. Future extensions include two-qubit gate operations,
circuitries with more complex impedances, and multiqubit
correlations.
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APPENDIX A: ROTATION OPERATORS
AND TIME EVOLUTION

In this Appendix, we discuss in detail the rotation operators
and Hamiltonian. Following the main text, we move to the
rotating frame with the rotation axis and angular frequency
given by z and ωex, respectively. The system Hamiltonian is
transformed as

H̃S (�,φ)

= R̂z(−ωext )ĤS (�,φ; t )R̂z(ωext ) + ih̄ ˙̂Rz(−ωext )R̂z(ωext )

= h̄(ωq − ωex)

2
σ̂z + h̄�

2
(σ̂x cos φ + σ̂y sin φ).

Note that the system Hamiltonian in the rotating frame is time
independent, and we omit the argument t for H̃S . When we

choose ωq for the frequency ωex, as discussed in the main text,
the first term of this equation vanishes. Under this condition,
we can easily confirm the relations H̃S (�, 0) = h̄�σ̂x/2 and
H̃S (�,π/2) = h̄�σ̂y/2. This indicates that we can express the
rotation operator with the time-evolution operator as

R̂x(θ ) = exp

[
− i

h̄
H̃S (�, 0)τ

]
,

R̂y(θ ) = exp

[
− i

h̄
H̃S

(
�,

π

2

)
τ

]
,

where the frequency of the external field ωex is set to ωq. Note
that the pulse duration τ is determined with the condition
τ = θ/�. Accordingly, we can obtain the rotation operators
with the negative angle with φ = π for the x-axis rotation and
φ = −π/2 for the y-axis rotation. A rotation operator about
an arbitrary axis in the x–y plane is expressed as R̂φ (θ ) =
exp[−iθ (σ̂x cos φ + σ̂y sin φ)/2] and corresponds to the time-
evolution operator exp[−iH̃S (�,φ)τ/h̄].

By using the relation

exp

[
− i

h̄
H̃S (�,φ)τ

]

= R̂z(−ωq[t +τ])T+ exp

[
− i

h̄

∫ t+τ

t
dt ′ĤS (�,φ; t ′)

]
R̂z(ωqt ),

which transforms the time-evolution operator in the rotating
frame to that in the laboratory frame, the rotation operator in
the rotating frame is expressed as

ρ̃S (t + τ ) = R̂φ (θ )ρ̃S (t )R̂φ (−θ ) = exp

[
− i

h̄
H̃S (�,φ)τ

]
ρ̃S (t ) exp

[
i

h̄
H̃S (�,φ)τ

]

= R̂z(−ωq[t + τ ])T+ exp

[
− i

h̄

∫ t+τ

t
dt ′ĤS (�,φ; t ′)

]
R̂z(ωqt )ρ̃S (t )R̂z(−ωqt )

× T− exp

[
i

h̄

∫ t+τ

t
dt ′ĤS (�,φ; t ′)

]
R̂z(ωq[t + τ ]), (A1)

where the operators T± are the positive and nega-
tive time-ordering operator. Using the relation ρ̂S (t ) =
R̂z(ωqt )ρ̃S (t )R̂z(−ωqt ), we obtain the rotation operator cor-
responding to the time evolution with the Hamiltonian in
Eq. (1) in the laboratory frame. We utilize the laboratory frame
to introduce the reservoir operators. Accordingly, the sys-
tem Hamiltonian in Eq. (A1) is replaced with Ĥtot (�,φ; t ) =
ĤS (�,φ; t ) − V̂ X̂ + ĤR, and the time-evolution operator is
expressed by Eq. (2). The density operator is also replaced
with ρ̂tot (t ). There is no reason to assume that the reservoir
rotates about the z axis at the angular frequency ωq, and it is
plausible that the qubit system couples with the reservoir in
this form.

Next, we consider the application of impulsive
pulses. As mentioned in the main text, we can ignore
the system–reservoir coupling term when we consider
the impulsive pulses. Equation (A1) is then rewritten

as

ρ̃tot (t + τ ) = exp

[
− i

h̄
(H̃S (�,φ) + ĤR)τ

]
ρ̃tot (t )

× exp

[
i

h̄
(H̃S (�,φ) + ĤR)τ

]

= e−iĤRτ/h̄R̂φ (θ )ρ̃tot (t )R̂φ (−θ )eiĤRτ/h̄.

Note that the transformation with R̂z(−ωqt ) does not change
the reservoir Hamiltonian. For the impulsive pulse, we take
the limits � → ∞ and τ → 0, keeping θ a finite fixed value.
With this operation, we obtain the equation for the application
of the impulsive pulse in the rotating frame as follows:

ρ̃tot (t ) ← R̂φ (θ )ρ̃tot (t )R̂φ (−θ ).

When we go back to the laboratory frame from the rotating
frame, we obtain Eq. (5).
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APPENDIX B: DETAILS OF THE HEOM

In this Appendix, we illustrate the detailed derivation of
the HEOM. The total Hamiltonian consisting of the system
and reservoir is described with

Ĥtot (�,φ; t ) = ĤS (�,φ; t ) − V̂ X̂ + ĤR

= ĤS (�,φ; t ) − V̂
∑

j

c j x̂ j

+
∑

j

(
p̂2

j

2mj
+ 1

2
mjω

2
j x̂

2
j

)
. (B1)

The reservoir is represented by an infinite number of harmonic
oscillators, and p̂ j, x̂ j, mj , and ω j are the momentum, posi-
tion, mass, and angular frequency of the jth bath, respectively.
The coupling strength between the system and jth bath is
given by c j , which defines the spectral density as

J (ω) =
∑

j

c2
j

2mjω j
δ(ω − ω j ).

The system part of the coupling V̂ is set to h̄σ̂x as discussed in
the main text.

To obtain the equation for the open quantum dynamics
without any approximations, we exploit the Feynman–Vernon
path integral representation. The reduced density operator
(RDO) of the system ρ̂S (t ) = trR{e−iĤtott/h̄ρ̂tot (0)eiĤtott/h̄} is
expressed as

〈μ|ρ̂S (t )|μ′〉

=
∫

d2μid2μ′
i

N (μi )N (μ′
i )

∫ μ(t )=μ

μ(0)=μi

D[μ(·)]
∫ μ′(t )=μ′

μ′(0)=μ′
i

D[μ′(·)]

× exp

[
i

h̄

∫ t

0
dt ′LS (μ; t ′) − i

h̄

∫ t

0
dt ′LS (μ′; t ′)

]

× 〈μi|ρ̂S (0)|μ′
i〉F [μ,μ′; t].

Here, we consider the spin-coherent state |μ〉 [62], and
LS (μ; t ) is the Lagrangian of the system. The functional
F [μ,μ′; t] is the influence functional, which is given by

F [μ,μ′; t]

= exp

[
− 1

h̄2

∫ t

0
dt ′

∫ t ′

0
dt ′′V ×(μ,μ′; t ′)

× {C(t ′ − t ′′)V (μ; t ′′) − C∗(t ′ − t ′′)V (μ′; t ′′)}
]

(B2)

= exp

[
− 1

h̄2

∫ t

0
dt ′

∫ t ′

0
dt ′′V ×(μ,μ′; t ′)

× {C′(t ′ − t ′′)V ×(μ,μ′; t ′′) + iC′′(t ′ − t ′′)V ◦(μ,μ′; t ′′)
]
.

(B3)

The quantity 1/N (μ) = 2/{π (1 + |μ|2)2} is the normal-
ization factor for the spin-coherent states. The function
V (μ; t ) is the path-integral representation of the operator
V̂ , and V ×(μ,μ′; t ) = V (μ; t ) − V (μ′; t ) and V ◦(μ,μ′; t ) =
V (μ; t ) + V (μ′; t ) are the corresponding commutator and an-
ticommutator, respectively. The Lagrangian of the system

LS (μ; t ) is also defined in the path-integral representation.
For more details of the path integral in the spin-coherent
representation, we refer the readers to Ref. [63]. The function
C∗(t ) indicates the complex conjugate of C(t ), and we have
utilized the relation C∗(t ) = C(−t ) to obtain the expression
of Eq. (B3). The real and imaginary part of the two-time cor-
relation function are defined as C(t ) = C′(t ) + iC′′(t ). Here,
we assume the factorized initial state ρ̂tot (0) = ρ̂S (0) ⊗ ρ̂R,eq.

We express the two-time correlation function C(t ) with the
complex-valued exponential functions [Eq. (7)]. The original
free-pole HEOM (FP-HEOM) [32] is based on the represen-
tation of Eq. (B2), and its form is expressed in Eq. (8), where
the auxiliary density operators (ADOs) are not Hermitian
operators. In this paper, we derive the HEOM with Hermitian
ADOs to reduce the computational costs. To achieve this goal,
we utilize the representation of Eq. (B3) and the generalized
form of the HEOM [64].

First, we expand Eq. (7) in the following form:

C(t ) =
K∑

k=1

e−γkt {d ′
k cos ωkt + d ′′

k sin ωkt}

+ i
K∑

k=1

e−γkt {d ′′
k cos ωkt − d ′

k sin ωkt}

=
K∑

k=1

{φk (t ) + iψk (t )}.

Here, we have introduced the real and imaginary part of the
coefficient dk as dk = d ′

k + id ′′
k . Utilizing the superoperator

�k (μ,μ′; t, s) = φk (t − s)
−i

h̄
V ×(μ,μ′; s)

+ψk (t − s)
1

h̄
V ◦(μ,μ′; s)

for k = 1, . . . , K , we can express the influence functional in
Eq. (B3) as

F [μ,μ′; t] = exp

[ ∫ t

0
dt ′

∫ t ′

0
dt ′′ −i

h̄
V ×(μ,μ′; t ′)

×
K∑

k=1

�k (μ,μ′; t ′, t ′′)

]
.

By introducing �̄k (μ,μ′; t, s) as

�̄k (μ,μ′; t, s) = φ̄k (t − s)
−i

h̄
V ×(μ,μ′; s)

+ ψ̄k (t − s)
1

h̄
V ◦(μ,μ′; s),

where φ̄k (t ) and ψ̄k (t ) are given by

φ̄k (t ) = e−γkt {−d ′
k sin ωkt + d ′′

k cos ωkt},
ψ̄k (t ) = −e−γkt {d ′′

k sin ωkt + d ′
k cos ωkt},

we obtain the following equation:
∂

∂t
�k (μ,μ′; t, s) = −γk�k (μ,μ′; t, s) + ωk�̄k (μ,μ′; t, s),

∂

∂t
�̄k (μ,μ′; t, s) = −γk�̄k (μ,μ′; t, s) − ωk�k (μ,μ′; t, s).

(B4)
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Defining the ADO and its time derivative as

〈μ|ρ̂ �m,�n(t )|μ′〉 =
∫

d2μid2μ′
i

N (μi )N (μ′
i )

∫ μ(t )=μ

μ(0)=μi

D[μ(·)]
∫ μ′(t )=μ′

μ′(0)=μ′
i

D[μ′(·)]
K∏

k=1

1√
mk!nk!

(∫ t

0
dt ′′�k (μ,μ′; t, t ′′)

)mk

×
(∫ t

0
dt ′′�̄k (μ,μ′; t, t ′′)

)nk

exp

[
i

h̄

∫ t

0
dt ′LS (μ; t ′) − i

h̄

∫ t

0
dt ′LS (μ′; t ′)

]
〈μi|ρ̂S (0)|μ′

i〉F [μ,μ′; t]

and

∂ρ̂ �m,�n(t )

∂t
=

∫
d2μd2μ′

N (μ)N (μ′)
|μ〉 lim

�t→0

〈μ|ρ̂ �m,�n(t + �t )|μ′〉 − 〈μ|ρ̂ �m,�n(t )|μ′〉
�t

〈μ′|,

respectively, we obtain the HEOM in the following form through the use of Eq. (B4):

∂

∂t
ρ̂ �m,�n(t ) = − i

h̄
Ĥ×

S (�,φ; t )ρ̂ �m,�n(t ) −
K∑

k=1

(mk + nk )γk ρ̂ �m,�n(t )

+
K∑

k=1

ωk
{√

mk (nk + 1)ρ̂ �m−�ek ,�n+�ek (t ) −
√

(mk + 1)nk ρ̂ �m+�ek ,�n−�ek (t )
}

− i

h̄
V̂ ×

K∑
k=1

√
mk + 1ρ̂ �m+�ek ,�n(t )

+
K∑

k=1

[√
mk

{
− id ′

k

h̄
V̂ × + d ′′

k

h̄
V̂ ◦

}
ρ̂ �m−�ek ,�n(t ) + √

nk

{
− id ′′

k

h̄
V̂ × − d ′

k

h̄
V̂ ◦

}
ρ̂ �m,�n−�ek (t )

]
. (B5)

The vector �ek is the unit vector of the kth element, and
ρ̂�0,�0(t ) corresponds to the RDO ρ̂S (t ). The symbols × and
◦ denote the commutator and anticommutator respectively,
as Ô×

1 Ô2 = Ô1Ô2 − Ô2Ô1 and Ô◦
1Ô2 = Ô1Ô2 + Ô2Ô1. Note

that the last line of Eq. (B5) corresponds to �(μ,μ′; t, t )
and �̄(μ,μ′; t, t ). Furthermore, the third and fourth line
of Eq. (B5) correspond to L+

k and L−
k in Eq. (8), respec-

tively. The superoperator LS in Eq. (8) is defined as LS =
Ĥ×

S (�,φ; t )/h̄ in Eq. (B5). The dynamics following from
Eqs. (8) and (B5) are same, but Eq. (B5) is computation-
ally more advantageous because of the Hermitian ADOs:
We only need to treat upper (or lower) triangular elements
of density matrices. Computationally, we can exploit this
advantage through the use of (generalized) Bloch-vector
representation [65].

APPENDIX C: TWO-TIME CORRELATION FUNCTION
AND DEPTH OF HEOM

Here, we depict the two-time correlation function of the
reservoir. The spectral density is given by Eq. (9), and the
parameter values are the same as in the main text. The corre-
sponding two-time correlation function is evaluated as Eq. (7)

TABLE I. The number of modes for the two-time correlation
function K and the maximum depth of the hierarchy Nmax for various
spectral exponents s.

s 1 1/2 1/4 1/8 1/14

K 10 24 18 8 7
Nmax 3 3 4 8 10

with the aid of the barycentric representation. The number
of modes for the two-time correlation function K is listed in
Table I. Figure 10 displays the dynamics of the real part of the
two-time correlation function, C′(t ). In the Ohmic case, the
fast decay caused by the large portion of the high-frequency
modes ω � ωc is observed in the short-time region, ωqt � 0.1
(inset of Fig. 10), and the function approaches 0 around the
time ωqt � 5. In the sub-Ohmic case, the fast decay in the
short-time region is suppressed. As the spectral exponent de-
creases, slower decay in the long-time region is observed. In
the case with s � 1/4, the correlation function takes a finite
value even at the time ωqt = 100. This slow decay results
from the low-frequency modes of the spectral noise power,

FIG. 10. Real part of the two-time correlation function of the
reservoir, C′(t ), with arbitrary (arb.) units. Only the region around 0,
i.e., −0.05 � C′(t ) � 0.05, is plotted to depict the detailed profile.
The whole profile is exhibited in the inset.
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FIG. 11. Dynamics of the expectation value 〈σ̂z(t )〉/2 with
various spectral densities. We do not consider pulses, which cor-
responds to � = 0, and the excited initial state is adopted (ρ̂0 =
ρ̂e). The dashed-horizontal line indicates the value 〈σ̂z(t )〉/2 =
−0.5 tanh(β h̄ωq/2), which corresponds to the equilibrium value ob-
tained from the Boltzmann distribution of the bare system. The inset
displays the expectation value in the long-time region.

which is approximated with 1/ω1−s. As discussed in the main
text, the slow decay causes non-Markovian effects.

As implied by the form of the influence functional in
Eq. (B2), the sluggish decay of C(t ) allows the system and
reservoir to interact many times. Within the framework of
HEOM, the depth of the hierarchy Nmax needs to be large
in order to describe these multiple interactions. For this rea-
son, Nmax increases as the spectral exponent s decreases
in Table I. Note that since the multiple interactions cannot
be described within the second-order perturbation theory,
higher-order terms must be taken into account when one
considers 1/ f -type noise with perturbative methods, e.g.,
time-convolutionless master equations.

Technically, simulations with lager Nmax demand more
computational resources, and the cost for the simulations for
s = 1/8 and 1/14 is prohibitively expensive. For this reason,
we reduced the number of the elements K with the aid of the
method of least squares in those cases. The values of K for
s = 1/8 and 1/14 in Table I indicate the number of modes of
the approximate set.

APPENDIX D: DYNAMICS OF A SINGLE QUBIT
WITHOUT PULSES

In this Appendix, we investigate dynamics of a single qubit
without pulses. We consider the same Hamiltonian as in the
main text [Eq. (B1)], with the amplitude � = 0. The param-
eter values of the spectral density are also the same as in the
main text, and we used the HEOM to obtain the results.

1. Population relaxation

Here, we focus on the dynamics of the population re-
laxation. The excited state ρ̂e is chosen as the initial state.
Figure 11 displays the dynamics of the expectation value
〈σ̂z(t )〉/2 with the Ohmic and sub-Ohmic spectral densities.
In the sub-Ohmic cases, we consider four exponents, s = 1/2,
1/4, 1/8, and 1/14, in the same way as the main text. As

is clear from the inset of Fig. 11, the system reaches the
equilibrium state up to the time ωqt � 200. We adopted the
RDO and ADOs at the time ωqt = 200 as the equilibrium
initial states, ρ̂eq, which were used in the simulations of the
pulse sequences in the main text.

Overall, the dynamics of the population relaxation is
qualitatively similar irrespective of the spectral exponent s.
This is because we chose the parameter values such that
Sβ (±ωq), which corresponds to the decay rate within the
Bloch–Redfield theory [cf. Eq. (13)], takes the same value
regardless of s. Conversely, the discrepancy of these dynamics
indicates the effects beyond the Born–Markov approximation.

First, we focus on the dynamics in the short-time
region, ωqt � 1. The slower decay is observed as the
spectral exponent decreases, which results from the “uni-
versal decoherence” [22,66] as follows: In the short-time
region, the contribution of the system Hamiltonian ĤS

to the dynamics is negligibly small. Because we assume
the condition ĤS � 0, the commutation relation [ĤS, V̂ ] = 0
holds. With this condition, the time evolution of the
expectation value in the short-time region is evaluated
as

〈σ̂z(t )〉 = exp

[
−4h̄

∫ ∞

0
dωJ (ω) coth

β h̄ω

2

1 − cos ωt

ω2

]
.

Here, the initial state ρ̂e is considered. This decay in the
short-time region is referred to as the universal decoherence.
When we consider further shorter-time region, ωct � 1, we
can approximate the term (1 − cos ωt )/ω2 with t2/2, and the
decay rate is proportional to J (ω) coth(β h̄ω/2). We confirmed
that the area decreases as the spectral exponent decreases.
Although the region 0.1 < ωqt < 1 in Fig. 11 does not fulfill
the condition ωct � 1, which corresponds to the condition
ωqt � 0.02 in our case, we found the similar tendency of
the decay in this region: the decay is slower as the exponent
decreases.

After the universal decoherence, relatively fast decay is
observed around the time ωqt � 3 for the deep sub-Ohmic
reservoirs. The subsequent oscillatory behavior is found in the
cases for s = 1/8 and 1/14. These oscillations are caused by
the slow dynamics of the two-time correlation function of the
reservoir and reflects the non-Markovianity of the reservoir.

Now, we turn to the analysis of the equilibrium states, the
inset of Fig. 11. The dashed line in Fig. 11 is the expectation
value for the equilibrium state obtained from the Born–
Markov approach [〈σ̂z(t )〉/2 = −0.5 tanh(β h̄ωq/2)], and ev-
ery result deviates from this. The system–reservoir coupling
is ignored for the equilibrium states within the Born–Markov
approximation, while included for the total equilibrium states.
This difference leads to the deviation, which is smallest in the
case for s = 1/4, while largest in the case for s = 1/14.

2. Ramsey experiments

In this section, we illustrate the numerical results of the
Ramsey experiments. The initial state is given by ρ̂tot (0) =
(|0〉 + |1〉)(〈0| + 〈1|)/2 ⊗ ρ̂R,eq.

We depict the time evolution of the Bloch vectors
projected onto the 〈σ̃x〉–〈σ̃y〉 plane in Fig. 12. The ini-
tial state corresponds to the point (0.5, 0). Decoherence
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FIG. 12. Time evolution of the Bloch vectors projected onto the
〈σ̃x〉–〈σ̃y〉 plane.

occurs during the time evolution, and the system reaches the
equilibrium state, in which the off-diagonal elements are zero,
corresponding to the point (0, 0). Here, the rotating frame
R̂z(−ωqt )ρ̂S (t )R̂z(ωqt ) is considered. If the off-diagonal el-
ements, 〈σ̂x〉 and 〈σ̂y〉, oscillate with the frequency ωq, the
projected Bloch vector in the rotating frame is always in the
direction of 〈σ̃x〉. In the Bloch–Redfield theory, the frequency
changes from ωq because of the Lamb shift, and the projected
Bloch vector rotates. Because the Lamb shift is time indepen-
dent within this approximation and the length of the vector
decreases because of the decoherence, the locus is a spiral. In
our case, however, the oscillatory behavior along the spiral is
observed. This implies that we cannot express the oscillation
behavior with a single frequency.

Figure 13 displays the Fourier transform of 〈σ̂x(t )〉 ob-
tained with the Ramsey experiments, which is defined as

S (ω) = Re

{∫ ∞

0
dt

〈σ̂x(t )〉
2

e−iωt

}
.

The upper bound of the integral is replaced with a sufficiently
large value (t = 400/ωq in this case). The effective frequency
of the qubit increases as the spectral exponent decreases. It
is smaller than ωq in the cases s = 1 and 1/2, while larger
in the cases s = 1/4, 1/8, and 1/14. This corresponds to the
direction of the rotation of the spiral in Fig. 12. In addition,
the absolute value of the frequency shift reflects the degree

FIG. 13. Fourier transform of 〈σ̂x (t )〉 obtained with the Ramsey
experiments, S(ω), with arbitrary (arb.) units.

of the deviation of the locus from the 〈σ̃x〉 axis. As discussed
above, even if we choose the effective frequency obtained in
Fig. 13 for ωex, the oscillatory behavior cannot be removed
completely.

APPENDIX E: DETAILED DYNAMICS OF A QUBIT
DURING IDLE PHASES

In Sec. IV A, dynamics of the first idle phase af-
ter the Rx(π )-gate application were discussed (Fig. 3).
Here, we report other interesting dynamics during idle
phases.

1. Rx(π/2) gates

Figure 14 displays dynamics of the 〈σ̃y〉 element of the
Bloch vector during the first idle phase of the Rx(π/2)-gate
sequence. In contrast to the case of the Rx(π ) gates (Fig. 3),
the oscillatory behavior is universally observed. It is found
that this oscillation has a π periodicity with respect to ωqτ

[= πωq/(2�)]. The relative angle of V̂ ∝ σ̂x and σ̃y deter-
mines this periodicity. The fast decoherence around the time
t � τ is observed with � = ∞ for the reservoir s = 1, which
is gradually suppressed as the spectral exponent decreases.
High-frequency modes of the spectral density cause steep
decay of both population and coherence. The amplitude of the
oscillation tends to be smallest for s = 1/2 and 1/4, while
largest for s = 1 and 1/14. This reflects the effective Larmor
frequency obtained from Fig. 13 and appears to be related to
the tendency of the fidelity in terms of s discussed in the main
text.

The peculiar oscillation, which was found in the Rx(π )-
gate cases (Sec. IV A), is not observed in Fig. 14. This leads
to the emergence of the expected order in all the cases in
Figs. 6(a)–6(c) at d = 2.

The time t = τ corresponds to the end of the first pulse ap-
plication, d = 1. The absolute value |〈σ̃y〉| mainly contributes
to the fidelity and is in general smaller with the initial state
ρ̂e than with the state ρ̂g and ρ̂eq for a fixed �. As discussed
in the main text, the rotation from (0,0,1) to (0,−1, 0) is
disadvantageous compared to the rotation from (0, 0,−1) to
(0,1,0).

2. Hadamard (H) gates

Dynamics of the 〈σ̃x〉 element of the Bloch vector dur-
ing the first idle phase of the H-gate sequence are depicted
in Fig. 15. In the cases for s � 1/4 with ρ̂0 = ρ̂e and ρ̂g,
periodical oscillations are no longer observed, while oscil-
latory behavior similar to the Rx(π/2)-gate case is observed
in the other cases. For the nonperiodical results, one finds
intense decay of the expectation value around the time ωq(t −
τ )/π � 0.5 with the amplitude �/ωq = ∞ and 1, while
ωq(t − τ )/π � 1.5 with �/ωq = 1/2 and 1/3, which leads
to the violation of the expected order defined in the main
text. The slow decay of the two-time correlation function
appears to contribute to this behavior. It is also enhanced in
the instantaneous-pulse case: the slow reestablishment of the
system–reservoir correlations contributes. This argument is
also supported by the fact that this behavior is suppressed in
the case ρ̂0 = ρ̂eq.
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FIG. 14. Dynamics of the expectation value 〈σ̃y(t )〉/2 in the rotating frame during the first idle phase with various initial states ρ̂0 and
spectral exponents s. The sequence of Rx (π/2) gates is considered. The gray-vertical-dashed lines indicate �t in Fig. 6.

The initial phase of the oscillation behavior is differ-
ent with π from the case of Rx(π/2) gates, and the fast
decoherence around the time t = τ with � = ∞ for s =
1 is not observed because of this difference of the initial
phase.

In the same manner as the Rx(π/2) gates, the absolute
value |〈σ̃x〉| mainly contributes to the fidelity, and it is worse
in case ρ̂e than in the other two cases. The disadvantage of
the π/2-rotation from the excited state is independent of the
rotation axis.

FIG. 15. Dynamics of the expectation value 〈σ̃x (t )〉/2 in the rotating frame during the first idle phase with various initial states ρ̂0 and
spectral exponents s. The sequence of three H gates is applied. The gray-vertical-dashed lines indicate �t in Fig. 7.

033215-19



KIYOTO NAKAMURA AND JOACHIM ANKERHOLD PHYSICAL REVIEW RESEARCH 6, 033215 (2024)

FIG. 16. Dynamics of the expectation value 〈σ̂z(t )〉/2 during the
second idle phase of the sequence of three Rx (π ) gates. As repre-
sentatives, the cases for s = 1 and s = 1/14 are depicted. The initial
states are given by ρ̂0 = ρ̂g and ρ̂eq, respectively. The pulse amplitude
is chosen as follows: (a) �/ωq = 1, (b) �/ωq = 1/3.

3. Asymptotic behavior with respect to the pulse duration

Figure 16 displays the dynamics of the 〈σ̂z〉 element of
the Bloch vector during the second idle phase of the Rx(π )-
gate sequence. The cases with ρ̂0 = ρ̂g and ρ̂eq for s = 1 and
1/14 are depicted as representatives. We varied the ampli-
tudes and durations of the idle phase, as �/ωq = 1 and 1/3

[(a) and (b) in each panel], and ωq�t/π = 1, 3/2, and 2,
respectively.

The decay is nearly linear irrespective of �t in the Ohmic
case (s = 1, left panel), and further, the rate is almost inde-
pendent of �t , while similar behavior is only observed in
the deep sub-Ohmic case (s = 1/14, right panel) with the
condition �/ωq = 1/3 and ρ̂0 = ρ̂eq. This indicates that when
the pulse duration is sufficiently large and the initial state
is prepared into the equilibrium state, the decay with an al-
most same rate irrespective of �t and s occurs. From this
result, we can interpret this behavior as asymptotic behavior
with respect to the pulse duration. As discussed above, the
reconfiguration process is less significant with the initial state
ρ̂0 = ρ̂eq compared to ρ̂e and ρ̂g. In addition, the process
is completed in a shorter period of time when the decay of
the two-time correlation function is faster. We found that the
asymptotic behavior tends to be observed in the cases where
the impact of the reconfiguration is small, and we suggest
that the Markovianity of the reservoir (instantaneous response
of the reservoir without memory effects) contributes to this
asymptotic behavior.

Note that during a sequence with the impulsive pulses, the
above asymptotic behavior is not observed even in the Ohmic
case. The reconfiguration process does not occur during the
pulse application, and hence the dynamics during the second
idle phase are directly affected by those during the first idle
phase.

Finally, we comprehensively mention the behavior during
the second idle phase. In the case for s � 1/2, the asymp-
totic behavior is always observed for the pulse amplitude
�/ωq = 1, 1/2, and 1/3, with the initial state ρ̂0 = ρ̂e, ρ̂g, and
ρ̂eq, while in the case for s � 1/8, this behavior is only ob-
served for �/ωq = 1/3 with ρ̂0 = ρ̂eq. The case for s = 1/4
is intermediate of these two cases: the asymptotic behavior is
observed for �/ωq = 1/3 with all the initial states.
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