
PHYSICAL REVIEW RESEARCH 6, 033211 (2024)

Orientation-dependent yield and Bauschinger effects in two-dimensional Yukawa solids
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Langevin dynamics simulations of two-dimensional (2D) Yukawa solids are performed to investigate the
orientation-dependent yield and Bauschinger effects in solid 2D dusty plasmas. The yield stress of 2D Yukawa
solids under different conditions is determined from the corresponding stress-strain response curve, defect
fraction, and deviation from the affine displacement. It is discovered that both the shear modulus and yield
stress are orientation dependent, exhibiting the significant anisotropic behaviors. It is found that the dependence
of the calculated atomic elastic constant on the lattice orientation completely agrees with those of the shear
modulus and yield stress. It is also found that, for different initial lattice orientations, the Yukawa solid exhibits
the significant regular or reverse Bauschinger effects, or even non-Bauschinger effect.
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I. INTRODUCTION

For most solid materials beyond the elastic limit, a plastic
deformation occurs and strains are not totally recoverable,
which is termed as yield [1]. The stress that is necessary to
initiate the plastic deformation is called the yield stress or
yield point [1–3]. In crystal materials, the fundamental mecha-
nism of the plastic deformation is believed to be the motion of
dislocations [4,5], and the yield stress is the minimum stress at
which the plastic deformation occurs for the studied material.
In other words, the yield stress is equivalent to the critical
stress under which the dislocation inside the material starts
to move in the steady state [2]. Under an external loading,
the dislocation would move along one of the slip systems [4],
i.e., a preferred orientation of crystal planes and directions,
so that an originally isotropic crystal may become anisotropic
in many physical properties [6]. For example, the yield stress
of the crystal material often exhibits significant anisotropic
behaviors, like the Bauschinger effect [2,3,7].

The Bauschinger effect was first proposed for a steel
material, which has a lower yield stress under the compres-
sional loading after having been subject to a tension [7].
More generally, the Bauschinger effect is used to describe
the lowering of the yield stress under the reverse loading
following the previous forward loading [3]. The Bauschinger
effect has been evidenced in most materials [8–15], such as
single-crystal metals [8], polycrystalline metals [9], polymers
[10], and amorphous materials [11]. When the deformation
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is loading history dependent, the Bauschinger effect plays an
important role in the failure of materials, which has several
important practical implications [8]. Therefore, understanding
the fundamental origin of the Bauschinger effect is crucial
in material processing and other related fields. For various
materials or systems, quite a few theoretical models are
proposed to interpret the origin of the Bauschinger effect,
as in Refs. [8–11,13,16,17]. For example, the origin of the
Bauschinger effect in metals is attributed to the back stress
induced by the dislocation pileup [16]. In amorphous solids,
the Bauschinger effect is associated with the anisotropic elas-
ticity due to the deformation history [17], and the asymmetry
distribution of the local residual strength [11]. In fact, until
now, the origin of the Bauschinger effect is still a debated
topic in various fields.

Dusty plasma, also termed as complex plasma, refers to a
collection of µm-sized dust particles in the plasma environ-
ment [18–36]. In the typical laboratory conditions performed
on the earth, tens of thousands dust particles are highly
charged to ∼−104e, forming a single-layer suspension in the
plasma sheath, i.e., the two-dimensional (2D) dusty plasma
[37–39]. Since these dust particles are highly charged, the
potential energy between neighboring dust particles is much
higher than their kinetic energy, so that these dust particles
are strongly coupled, exhibiting the collective properties of
liquids [40–45] or solids [46–53].

Based on the individual particle identification and tracking
in experiments, dusty plasma is an excellent physical sys-
tem to study various mechanical properties of solids at the
individual particle level, including the elasticity [54–59] and
plasticity [51–53]. Laser modulations are often used to apply
external forces in 2D dusty plasma experiments to study the
uniform melting [44,60], the shear deformation [52,53,61,62],
the shear flows [63–65], and the shear-induced melting [66].
The yield stress of the solid 2D dusty plasma is also theo-
retically studied using numerical simulations [55], where the
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shear force in two rectangular regions is applied to mimic
the laser manipulation in experiments. However, in our lit-
erature search, we have not found any investigations of the
orientation-dependent yield or the Bauschinger effect in dusty
plasmas, as we study here. In addition to their underlying
mechanisms, we also would like to investigate the relationship
between the orientation-dependent yield and the Bauschinger
effect in 2D solid dusty plasmas.

This paper is organized as follows. In Sec. II, we briefly in-
troduce our Langevin dynamics simulations of the 2D Yukawa
system to mimic 2D solid dusty plasmas under the shear de-
formation. In Sec. III, we determine the orientation-dependent
shear modulus and yield stress from the stress-strain curves
and the defect dynamics. We also provide our interpretation of
the observed orientation-dependent yield using the calculated
atomic elastic constants. Furthermore, we also present our
found regular or reverse Bauschinger effects in 2D Yukawa
solids. Finally, a brief summary is given in Sec. IV.

II. METHODS

We perform Langevin dynamics simulations of 2D Yukawa
solids to mimic 2D solid dusty plasmas under the external
shear deformation. The equation of motion for each particle
i is [59]

mr̈i = −∇�φi j − νmṙi + ζi(t ) + Fex. (1)

Here, the first term on the right-hand side is the interparticle
Yukawa repulsion φ(r) = Q2exp(−r/λD)/4πε0r, where r is
the distance between two particles, Q is the charge on each
particle, and λD is the screening length. The remaining three
terms are the frictional gas drag [67], the Langevin random
kicks [68], and the force from the externally applied shear,
respectively. Our simulations are performed using Large-scale
Atomic/Molecular Massively Parallel Simulator (LAMMPS)
[69]. Note that, in addition to the Yukawa repulsion studied
here, the bi-Yukawa [70] and even more complicated interac-
tions [71] are also considered to mimic complex plasmas in
other studies.

Traditionally [53,55], we use the coupling parameter 	 and
the screening parameter κ to characterize the simulated 2D
Yukawa systems. The coupling parameter 	 is defined as 	 =
Q2/(4πε0akBT ) [55], where T is the kinetic temperature of
dust particles, kB is the Boltzmann constant, and a = (πn)−1/2

is the Wigner-Seitz radius for the 2D areal number density of
n [23]. The screening parameter κ is defined as κ = a/λD. To
normalize the time and length scales, we use the nominal 2D
dusty plasma frequency ωpd =

√
Q2/2πε0ma3 [65], and the

Wigner-Seitz radius a, respectively.
As shown in Fig. 1, the external shear is applied within

two shaded rectangular regions with the width of 10 a in
the ±x directions. In these two regions, the forces from the
applied shear are expressed as Fex = ±F0maω2

pd, where F0

is the magnitude of the force, while maω2
pd are the units of

the force. Following the previous experimental studies with
the shear modulation in 2D dusty plasmas [53,65], we choose
the similar region between two laser modulation areas for the
data analysis. To generate a larger uniform shear region, we
specify the width between two laser manipulation areas to be
8a, as shown in Fig. 1, larger than previous shear simulation

FIG. 1. Sketch of shear deformation of a 2D Yukawa solid under
external modulations in our simulation. The constant shear force Fex

is applied within the two shaded regions in the opposite directions.
We specify different lattice orientations in our simulations, where
the angle between the shear direction and the principal axis of the
lattice is labeled as θ . In the latter data analysis, the shear stress
is calculated from the central region between two shaded regions,
while the shear strain is determined from the displacement gradient
calculated from the contribution of all particles inside the two strain
analysis regions indicated by the dashed rectangle regions. Each
simulation run always starts from the perfect crystal without defects
in the central region of the simulation box. Note, only 6.25% of the
total simulation box in the central portion is plotted here.

studies in 2D dusty plasmas [55,59]. To study the anisotropic
property of 2D Yukawa solids, the angle θ between the lattice
orientation of the initial configuration and the shear direction,
as marked in Fig. 1, is specified from θ = 0 to θ = π/3 with
a step π/36 in our simulations. For each θ value, we keep the
initial configuration of the 2D Yukawa solid unchanged, while
varying the amplitude of Fex slightly to obtain different shear
deformation processes for the variation of various physical
quantities in the latter data analysis. For example, the value of
F0 varies from 0.0028–0.0036 for θ = 0, while it varies from
0.0048–0.0056 for θ = π/6.

Here are some details of our simulations. The simulation
box size is set as 243.792a × 211.130a, containing 16384
particles, and the periodic boundary conditions are used in
the both x and y directions. Each simulation run always starts
from a typical solid state [72] of 	 = 2000 and κ = 0.5, with
a perfect crystal without defect in the central region of the
simulation box, as shown in Fig. 1. Thus, we are able to
exclude the effect of defects on the mechanical response of 2D
Yukawa solids before the plastic deformation occurs. The gas
damping rate ν is specified as ν = 0.036ωpd, a typical value
in 2D dusty plasma experiments [53,65]. The integration time
step is chosen as 1.41 × 10−3ω−1

pd , small enough to respond
to the maximum shear deformation studied here. When the
external shear forces are applied, the positions and velocities
of all particles are recorded from the initial elastic regime to
the latter plastic flow process.
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To investigate the elastic and plastic mechanical behaviors
of 2D Yukawa solids, we mainly focus on the relationship
between the shear stress and shear strain, similar to Ref. [59].
The shear stress τxy is calculated as [55]

τxy = 1

S

M∑
i=1

⎡
⎣mvixviy − 1

2

∑
j �=i

xi jyi j

ri j

∂φ(ri j )

∂ri j

⎤
⎦, (2)

where S and M are the area and the number of particles in the
analysis region, similar to Ref. [59]. The particle velocities vix

and viy here are just the fluctuating portions, where the local
drift velocity is removed, as in Ref. [59]. The stress is nor-
malized by τ0 = Q2/4πε0a3. Note that, for various θ values,
the number of particles in this analysis region is always larger
than 600, so that the mechanical response of these particles
under shear deformations is sufficient to reflect the collective
properties of our simulated system.

The shear strain is defined as the displacement gradient
along the shear direction [59], which is calculated as γ =
(utop − ubottom )/�d . Here, utop and ubottom are the averaged
displacements over all particle within the top and bottom
regions with a width of 4a, respectively, as indicated by two
dashed rectangle regions in the inset of Fig. 1. The separation
between the centers of the top and bottom regions is specified
as �d = 8a, which is just the same as the analysis region of
the shear stress. For these two strain analysis regions, we use
the cloud-in-cell algorithm [44] to average the displacement
along the shear direction for all particles inside, as compared
with their initial positions. Thus, the shear strain is calculated
as the displacement gradient of the central portion between
two applied external force regions. Note that we test that a
slight change in the width of the strain analysis region does
not have a significant effect on the obtained results of shear
modulus.

III. RESULTS

A. Determination of yield point

Two typical stress-strain curves from the elastic to plastic
deformations of the 2D Yukawa solid under the conditions
of θ = π/12 and θ = π/4 are presented in Fig. 2(a). In the
elastic deformation, for either θ = π/12 or θ = π/4, the
stress-strain relationship is just a straight line with a constant
slope until the shear stress reaches the proportional limit, as
labeled by the circle in Fig. 2(a). The slope of the straight line
of the stress-strain relationship represents the corresponding
shear modulus. However, when the shear stress exceeds the
proportional limit of the circle in Fig. 2(a), the curve of
the stress-strain relationship starts to change to a different
direction with either a steeper or a slower increasing rate,
corresponding to the shear hardening and softening features,
respectively. Note that these shear hardening and softening
features still exist within the elastic limit before the maximum
shear stress, at which our studied 2D Yukawa solids are able
to recover their original states after unloading.

As shown in Fig. 2(a), for our studied 2D Yukawa solids,
the difference between the proportional limit and the elastic
limit is significant, so that it is easy to distinguish them. In
fact, for most materials, such as most metals [73] and some

FIG. 2. (a) Calculated shear stress τxy, (b) defect fraction, and

(c) the average deviation from the affine displacement D2
min as the

functions of the shear strain γ of the 2D Yukawa solid, for two
typical lattice orientation angles of θ = π/12 and θ = π/4. In our
data analysis, the shear modulus G is determined from the slope
of the stress-strain response curve within the proportional limit, as
labeled in (a). The yield stress is obtained from the location where
the plastic deformation just occurs, corresponding to the generation
of defects. Thus, at the yield point, dislocations appear inside the
analysis region, so that the defect fraction is not zero anymore as in
(b), corresponding to the approximate maximum of τxy in (a), as well
as the transition point of D2

min in (c), as the two vertical dashed lines
shown in (a)–(c).

soft matters [74], the proportional limit, the elastic limit, and
the yield stress are very close, as a result it is quite difficult to
distinguish their exact values from the stress-strain diagram
[73]. In Fig. 2(a), the yield stress and the elastic limit are
very close around the maximum of the shear stress, so that
we cannot distinguish them directly from the stress-strain
curve. To accurately determine the yield stress of 2D Yukawa
solids, we need to use other sensitive diagnostics obtained
from individual particles.
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To determine the yield point of the 2D Yukawa solid more
precisely, here we use two microscopic diagnostics of the
defect fraction and the deviation from the affine displacement
[75], respectively, as shown in Figs. 2(b) and 2(c). Since
the plastic deformation is directly related to the dislocation
motion for crystals [4], the yield point should be able to be
accurately determined from the dislocation dynamics. Here,
we calculate the time series of the defect fraction of the
total stress analysis region during the whole deformation pro-
cess, as shown in Fig. 2(b) for the conditions of θ = π/12
and θ = π/4, respectively. Clearly, for either θ = π/12 or
θ = π/4, the defect fraction is always zero during the initial
elastic deformation, since the initial configuration is defect
free. With the further increase of γ , the defect fraction is
not zero anymore, and the defect fraction starts to increase
rapidly, indicating that the system reaches a steady plastic
deformation. Since the initial configuration of the analysis
region is defect free, it is reasonable to choose the condition
where defects just appear as the yield point, as indicated by
two vertical dashed lines in Fig. 2. From the stress-strain
curves in Fig. 2(a), for each yield point determined by the
transition point from zero to nonzero of the defect fraction in
Fig. 2(b), the corresponding shear yield stress τyield is always
nearly the maximum of shear stress. Note that to determine the
defect fraction, we calculate Voronoi diagrams at all moments
using all particle positions in the analysis region, where the
defect fraction is defined as the number ratio of non-six-sided
polygons to all polygons.

Another diagnostic is the deviation from the affine dis-
placement D2

min [75], which is commonly used in amorphous
solids to quantify the nonaffine deformation. For each particle
i, D2

min is defined as the minimum over all possible linear
deformation tensors ε of [75]

D2(i, γ , 0) =
∑

j

[ri j (γ ) − (I + ε) · ri j (0)]2. (3)

Here, the index j denotes nearest neighbors of the reference
particle i, I is the identity matrix, ri j (γ ) is the distance vector
between the particles i and j in a snapshot of the specified
γ value. Here, we choose the initial configuration of γ =
0 as the reference configuration without any deformations.
The value of D2

min is very sensitive to the local irreversible
shear deformation [75,76], which is able to identify the yield
point. Instead of observing the distribution of D2

min(i) for
one snapshot like in Refs. [75,76], we take the average of
D2

min(i) for all particles in the analysis region to quantify
the nonaffine deformation of the whole system, calculated as
D2

min = 1
M

∑M
i=1 D2

min(i).
To investigate the relationship between the plastic defor-

mation and the nonaffine displacement, we calculate the time
series of the averaged deviation from the affine displace-
ment D2

min, as presented in Fig. 2(c). For either θ = π/12

or θ = π/4, the value of D2
min nearly keeps ≈0.05 during

the elastic deformation. This low value of D2
min indicates that

the displacements of most particles are almost reversible, i.e.,
the deformation is recoverable for the elastic deformation.
When the shear strain γ further increases, the calculated D2

min
increases suddenly and sharply, suggesting the significant
irreversible deformation occurs. The point where the value

FIG. 3. (a) Obtained orientation-dependent shear modulus G(θ )
and (b) yield stress τyield(θ ). In (a), the shear modulus varies approx-
imately sinusoidally with the angle θ , as the fitting curve shown.
While choosing G(θ = 0) as the reference, then the G(θ ) results ex-
hibit the significant hardening and softening features in the ranges of
0 < θ < π/6 and π/6 < θ < π/3, respectively. In (b), the variation
trend of the yield stress with θ is also approximately sinusoidal, while
there is a phase difference 0.17π between the variations of τyield(θ )
and G(θ ), as the fitting curve shown there.

of D2
min begins to increase dramatically just corresponds to

the yield point determined from the defect fraction, i.e., the
vertical dashed lines in Fig. 2. Our observed results above
indicate that, in addition to the defect fraction in Fig. 2(b),
the average deviation from the affine displacement D2

min in
Fig. 2(c) is also sensitive enough to determine the yield point
of 2D Yukawa solids.

B. Orientation-dependent shear modulus and yield stress

As the major result, we discover anisotropic behaviors of
the shear modulus G and yield stress τyield of a 2D Yukawa
hexagonal crystal, as well as our obtained dependence of G
and τyield on the lattice orientation θ presented in Fig. 3.
In Fig. 3(a), when θ increases from 0 to π/3, the obtained
orientation-dependent shear modulus G(θ ) varies approxi-
mately sinusoidally with the angle θ . We find that the obtained
G(θ ) is able to be fitted as G/τ0 × 103 = 41 + 7.3sin6θ .
Here, due to the hexagonal symmetry of the 2D Yukawa
lattice, the period of the orientation angle θ in the fitting
expression is specified to be π/3. For our specified κ = 0.5,
from the expression of the sound speed of a perfect 2D
Yukawa crystal [77], the theoretical transverse sound speed
CT is about 0.25aωpd . As a result, the corresponding theoret-
ical shear modulus of the 2D Yukawa crystal is G0 = ρC2

T =
0.040τ0 [58], where ρ is the mass density. This theoretical
value of the shear modulus well agrees with the value of
G ≈ 0.042τ0 when θ = 0, θ = π/6, and θ = π/3 in Fig. 3.
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The maximum of the shear modulus in Fig. 3 occurs when θ =
π/12, i.e.,G(θ = π/12) = 0.049τ0 is substantially larger than
G0 = 0.040τ0, while its minimum occurs when θ = 2π/9
with the corresponding value of only 0.033τ0. While choosing
G(θ = 0) as the reference, the orientation-dependent G(θ ) ex-
hibits the significant shear hardening and softening properties
in the ranges of 0 < θ < π/6 and π/6 < θ < π/3, respec-
tively.

The orientation-dependent yield stress τyield(θ ) of the 2D
Yukawa solid also varies approximately sinusoidally with the
orientation angle θ , as shown in Fig. 3(b). Similar to Fig. 3(a),
since the period of the orientation angle θ is π/3, we find
that the orientation-dependent yield stress τyield(θ ) can be
fitted as τyield/τ0 × 103 = 8.8 + 3.9 sin(6θ − 0.17π ), with a
phase difference 0.17π behind the shear modulus G(θ ). In
Fig. 3(b), as θ increases from 0 to π/9, the yield stress τyield

increases from 0.00677τ0 to 0.0125τ0. When θ increases from
π/9 to 5π/18, the value of τyield decreases from 0.0125τ0 to
0.00479τ0. The maximum of τyield(θ ) is about 2.6 times larger
than its minimum, indicating that the effect of the lattice orien-
tation on the yield stress in Fig. 3(b) is much more significant
than that on the shear modulus in Fig. 3(a). The error bars in
Fig. 3 are obtained from five different runs for each θ . Note
that this anisotropic yield behavior of 2D Yukawa solids is
further confirmed under various conditions, as presented in
Ref. [78].

To quantitatively interpret the observed anisotropic be-
haviors of the shear modulus and the yield stress above,
we calculate the time series of the atomic elastic constant
Cxyxy for various lattice orientations, as presented in Fig. 4(a).
As in Eq. (3) of Ref. [59], we calculate the atomic elastic
constant Cxyxy(i) from individual particle positions, and then
average Cxyxy(i) over all particles in the stress analysis region.
In Fig. 4(a), the obtained time series of Cxyxy exhibit two
completely different variation trends for various θ values, cor-
responding to either the shear hardening or softening features.
Especially for the conditions of the maximum and minimum
of τyield(θ ), i.e., θ = π/9 and 5π/18, the Cxyxy results change
with γ the most significantly. The results in Fig. 4(a) indicate
that the anisotropic yield may be caused by the anisotropic
elasticity of our studied 2D Yukawa solids.

To further investigate the results of the yield stress in
Fig. 3(b), we extract the value of Cxyxy corresponding to the
yield point for different θ values, as the star symbols pre-
sented in Fig. 4. We find that the variation trend of Cxyxy

with θ under γ = γyield is also able to be fitted as a si-
nusoidal form of Cxyxy/τ0 × 103 = 38 + 42sin(6θ − 0.23π ),
with the phase angle slightly behind that of the orientation-
dependent yield stress τyield(θ ) in Fig. 3(b). To compare with
the orientation-dependent shear modulus in Fig. 3(a), we also
extract the value of Cxyxy when γ is specified as 0.1, al-
ways within the proportional limit for different θ values. As
shown in Fig. 4(b), the value of Cxyxy for γ = 0.1 also varies
sinusoidally with the fitting expression of Cxyxy/τ0 × 103 =
42 + 18sin(6θ − 0.09π ). The phase difference between the
variation of Cxyxy with θ under the conditions of γ = 0.1 and
γ = γyield is 0.14π , well consistent with the phase difference
of 0.17π between the orientation-dependent shear modulus
G(θ ) and yield stress τyield(θ ) in Fig. 3. The results in Figs. 3

FIG. 4. (a) Calculated results of the elastic constant Cxyxy of one
particle in 2D Yukawa solids as functions of γ for various θ values,
and (b) the results of Cxyxy under specified γ values for different θ

values. In (a), with the increase of the shear strain γ , the elastic
constant Cxyxy exhibits either the shear hardening or the shear soft-
ening, for different orientation angles. In (a), the star symbol in each
Cxyxy curve indicates the yield point determined by the increase of the
defect fraction, and the corresponding strain value is labeled as γyield.
We also draw a dashed line of γ = 0.1 within the typical proportional
limit. In (b), for γ = 0.1 and γ = γyield, the variations of Cxyxy both
vary approximately sinusoidally with θ , in good agreement with the
shear modulus and yield stress in Fig. 3, respectively.

and 4 further suggest that the orientation-dependent yield in
2D Yukawa solids is caused by their elastic anisotropy.

From our understanding, for our studied 2D defect-free
Yukawa crystal here, the yield stress is equivalent to the criti-
cal shear stress, under which the first dislocation is generated.
In this case, the yield behavior corresponds a rigid slip be-
tween any two adjacent atomic layers, so that the theoretical
yield strength can be estimated as τt = G

2π
b
d [2], where b is

the lattice constant, and d is the spacing between two adjacent
atomic layers. For a 2D triangular lattice of our studied 2D
Yukawa solids, the ratio between b and d is just 2/

√
3. Sub-

stituting this ratio and the theoretical shear modulus G0 of the
2D Yukawa crystal into the above equation, we obtain the cor-
responding theoretical yield strength of τt/τ0 = 7.35 × 10−3.
For our current theoretical derivation, the lattice orientation
is the same as the shear direction, i.e., θ = 0, so that we are
able to compare the obtained yield stress τyield(θ = 0) with
this theoretically derived yield strength τt . We find that the
theoretically derived value τt/τ0 = 7.35 × 10−3 agrees with
the yield stress of τyield(θ = 0)/τ0 = 6.77 × 10−3 obtained
from Fig. 3(b). This agreement further suggests that our ob-

033211-5



LU, HUANG, LIANG, AND FENG PHYSICAL REVIEW RESEARCH 6, 033211 (2024)

FIG. 5. Stress-strain response during three forward (solid lines) and three backward (dashed lines) shear modulations for the initial
orientation angle of (a) θ ≈ 0, (b) θ ≈ π/18, and (c) θ ≈ 2π/9, respectively. In the first forward shear deformation cycle, the shear deformation
is applied in the +x direction until the plastic deformation is achieved, then the applied deformation is completely released, so that the shear
stress is fully relaxed to nearly zero. Next, the reverse shear deformation is applied and released similarly. This back and forth deformation is
performed continuously several times. For the initial configuration of θ ≈ 0 in (a), the stress-strain curves obtained by multiple repeating shears
are nearly the same, i.e., almost no significant Bauschinger effect is observed. For the initial configuration of θ ≈ π/18 in (b), the yield stresses
of forward shears are much larger than those of reverse shears, i.e., the significant Bauschinger effect is observed. For the initial configuration
of θ ≈ 2π/9 in (c), the yield stresses under forward shears are always lower than those under reverse shears, i.e., a reverse Bauschinger effect
is clearly observed.

tained yield stress is just the critical shear stress to generate
dislocations in 2D Yukawa solids.

C. Regular and reverse Bauschinger effects

The Bauschinger effect is a plastic behavior directly re-
lated to the yield stress, which is generally considered to be
strongly dependent on the loading history. Especially during
cyclic loading, the Bauschinger effect may have a significant
influence on some mechanical properties of systems, such as
the yield strength. Thus, we would like to report our obtained
relationship between the anisotropic yield and Bauschinger
effect next.

To examine the existence of the possible Bauschinger ef-
fect in 2D Yukawa solids, we also apply the repeating shear
deformations in the forward and reverse cycles. The shear de-
formation cycles are performed as follows. The first forward
shear with a uniform amplitude is applied in the +x direction
until the system reaches the plastic deformation, then the
applied shear is removed completely, so that the shear stress is
relaxed to nearly zero. Next, the reverse shear with the same
uniform amplitude is applied in the −x direction to generate
the plastic deformation in the opposite direction, and then the
shear deformation is completely removed similarly, so that the
shear stress is relaxed to zero again. In our simulations, these
forward and reverse shear deformations are continuously per-
formed several times on the 2D Yukawa solid as described
above.

The stress-strain response curves during three forward and
backward shear modulations for the three typical initial θ

values are presented in Fig. 5. For the initial configuration
of θ ≈ 0 in Fig. 5(a), during the three forward and reverse
shear deformations, the orientation angle θ between the shear
direction and the lattice orientation in the initial configuration

does not change at all. As a result, the obtained stress-strain
curves are nearly unchanged, suggesting that there is almost
no significant Bauschinger effect at all. Although the initial
configuration is defect free before the shear deformation is ap-
plied, during subsequent shear modulations, a few generated
dislocations always exist, no matter how the shear stress is
relaxed. The results in Fig. 5(a) also indicate that the presence
of defects in the second and third cycles does not have a
significant effect on the yield stress. Note that we also perform
test runs with more shear cycles, as reported in Ref. [78], and
the resulting stress-strain curves are almost the same as those
in Fig. 5, no matter how the number of shear cycles increases.

In Fig. 5(b), we observe a significant Bauschinger effect
for initial configuration of θ ≈ π/18. In this case, the angle θ

in the initial configuration is about π/18 for the forward shear
deformation, while for the latter reverse shear deformation,
the angle θ changes to 5π/18 immediately. In Fig. 5(b), for
either the forward or reverse shear deformation, we find that
three obtained stress-strain curves almost overlap together.
Furthermore, the yield stress of the forward shear is much
larger than that of the reverse shear, just corresponding to the
significant Bauschinger effect. In fact, during several shear
deformation cycles, the lattice orientation does not change,
the sudden change of θ is just due to the reversal of the shear
direction. Thus, our observed Bauschinger effect is mainly
induced by the orientation-dependent yield of the 2D Yukawa
solid.

In addition, we also observe that there is a reverse
Bauschinger effect for 2D Yukawa solids, as shown in
Fig. 5(c). Here, the initial value of θ is about 2π/9 for the
forward shear deformation, while this value changes to π/9
immediately for the latter reverse shear deformation. From
the obtained stress-strain curves in Fig. 5(c), the yield stress
of the forward shear deformation is obviously smaller than
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that of the reverse shear, exhibiting the completely oppo-
site property as compared with Fig. 5(b), i.e., a significant
reverse Bauschinger effect. Similarly, the observed reverse
Bauschinger effect is also caused by the orientation-dependent
yield of the 2D Yukawa solid. Our findings in Fig. 5 provide
a reasonable interpretation of the Bauschinger effect in sin-
gle crystals. In 2D dusty plasma experiments, it is feasible
to apply the forward and reverse shear deformations using
laser manipulations, so that our observed regular and reverse
Bauschinger effects may be experimentally verified in future.

IV. SUMMARY

We perform Langevin dynamics simulations of 2D Yukawa
solids to investigate the orientation-dependent yield and the
corresponding Bauschinger effects in solid 2D dusty plas-
mas under shear deformations. From the obtained stress-strain
curves and the resulting defect fractions, we determine the
yield stress of 2D Yukawa solids under different conditions.
We discover that the observed yield behavior in 2D Yukawa
solids is accompanied by the formation of new dislocations,
resulting in the rapid increase of the nonaffine displacement.

We find that both the shear modulus and yield stress are
strongly dependent on the lattice orientation, exhibiting the
significant anisotropic behaviors. To interpret the underlying
mechanism, we calculate the atomic elastic constant, whose
orientation dependence almost completely agrees with those
of the shear modulus and yield stress. We also find that,
for different initial lattice orientations, the 2D Yukawa solid
exhibits the significant regular or reverse Bauschinger ef-
fects, or even non-Bauschinger effect. The regular and reverse
Bauschinger effects observed in our simulations may be ver-
ified in future 2D dusty plasma experiments, since the shear
deformation cycle is able to be achieved using the laser ma-
nipulation method.
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