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Efficient computation by molecular competition networks
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Most biomolecular systems exhibit computation abilities, which are often achieved through complex networks
such as signal transduction networks. Particularly, molecular competition in these networks can introduce
crosstalk and serve as a hidden layer for cellular information processing. Despite the increasing evidence of com-
petition contributing to efficient cellular computation, how this occurs and the extent of computational capacity
it confers remain elusive. In this study, we introduced a mathematical model for molecular competition networks
(MCNs) and employed a machine learning-based optimization method to explore their computational capacity.
Our findings revealed that MCNs, when compared to their noncompetitive counterparts, demonstrate superior
performance in both discrete decision-making and analog computation tasks. Furthermore, we highlighted
the nonnegligible role of weak interactions and limited amounts of resources and examined how biological
constraints influence the computational capacity of MCNs. The study suggested the potential of MCNs as
efficient computational structures and provided new insights into cellular information processing.
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I. INTRODUCTION

Life senses and processes diverse signals to adapt to con-
tinuously changing environments, using minimal energy and
molecular resources [1]. Even single cells can exhibit intricate
computational behaviors, as observed in phenomena like bac-
terial chemotaxis [2] and cell differentiation [3]. Unveiling the
general mechanisms of such computational behaviors can not
only help understand how cells efficiently process information
but also inspire the design of artificial biological systems and
in silico computation modules.

Cells process information with biomolecular networks,
where different molecules often exhibit promiscuous in-
teractions. Competition for limited molecules thus arises,
introducing crosstalk among molecules without direct inter-
actions and forming a hidden regulation layer of the networks
[4]. Some studies suggested that the promiscuous interactions
in signal transduction networks may introduce subtle regula-
tion or enhance signal processing capacity [5–7]. By modeling
the bone morphogenetic protein (BMP) pathway quantita-
tively, researchers found that the promiscuous interactions in
the BMP pathway can serve as a signal processing module
[8]. The response function of the BMP pathway varies based
on cell-type-specific receptor levels [8], enabling context-
dependent combinatorial logic [9] and cell addressing [10].
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Theoretical studies have been carried out to uncover the
role of molecular competition in cellular computation. Com-
petition accompanied by positive feedback was proved to
be able to recognize general patterns through a winner-
take-all (WTA) manner [11]. By modeling a large-scale
ligand-receptor system as a dynamic multiple inputs-multiple
outputs system, researchers found that the system can effi-
ciently sense the concentration of ligands with the temporal
sequence of ligand-receptor binding and unbinding events
[12]. Some recent research conceptualized the computation
role of competitive protein dimerization networks as “com-
putational capability” and tried to reveal the principles behind
the computation [13,14].

However, these studies focused on either specific bi-
ological systems or specific variants of competition. The
characterization of molecular competition networks (MCNs)
as a generalized computational module has not yet been re-
vealed. In this study, we raised several questions originating
in but transcending cell biology: whether MCNs can serve as
universal computational modules, and if so, how strong their
computational capability is and what are the key factors that
guarantee the capability? We formulated a general, abstract,
minimal mathematical model of abstract MCN and employed
a machine learning-based optimization method to explore the
computational capability of MCNs. The results indicated that
MCNs outperformed linear and noncompetition models in
both discrete decision-making and analog computation tasks.
Limited amounts of competed-for resources and promiscuous
interactions are crucial for the computational capability. Weak
binding affinities are non-negligible in many cases, especially
for implementing complex computations. These findings
highlighted the critical role of competition in cellular compu-
tation and suggested that MCNs can benefit the construction
of efficient computation modules both in vivo and in silico.
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FIG. 1. (a) The schematic diagram of the promiscuous binding
molecular system. (b) The illustration of molecular competition net-
works (MCNs), which consists of a competition layer and a linear
layer.

II. THE MATHEMATICAL MODEL OF MCNs

Competition is widespread in cells, taking part in various
biological processes, such as transcription, post-transcription,
and translation [4]. We previously proposed a minimal model
to illustrate the competition among competitors for one
species of resources [4]. Here, we extended the model to
describe the competition among multiple competitors Ai (i =
1, ..., nA) for multiple resources Bj ( j = 1, ..., nB) [Fig. 1(a)].
The system is similar to a bipartite graph, which is the shared
structure in many biological molecular competition systems,
such as the BMP pathway [8] and the competing endogenous
RNA (ceRNA) network [15], both of which can be regarded
as multicompetitor multiresource systems. The bipartite graph
structure is also employed by the restricted Boltzmann ma-
chine (RBM), a famous artificial neural network (ANN) [16].

We considered MCNs as a general complex network struc-
ture and thus proposed a minimal model where reactions other
than binding and dissociation are not considered and focused
on the equilibrium state of the system. This simplification
can well fit real biological scenarios when the interactions
operate much faster than other reactions, and is widely used
in studying various biological systems [17–19]. Such a model
can also be suitable for describing many other scenarios, such
as chemical reaction systems in which thermodynamic equi-
librium prevails, as well as in silico computations.

In this model, each Ai can reversibly bind with each Bj to
form complexes Ci j ,

Ai + Bj � Ci j . (1)

We used [Ai], [Bj], and [Ci j] to denote the equilibrium con-
centration of Ai, Bj , and Ci j . When the system comes to
equilibrium, we have

[Ci j] = Ki j[Ai][Bj], (2)

where Ki j is the equilibrium constant. Since the amount of
molecules can hardly be regarded as unlimited in cells, we
used AT

i , BT
j to denote the total concentration of Ai, Bj . By the

conservation of mass, we got

AT
i = [Ai] +

∑

j

[Ci j], (3)

BT
j = [Bj] +

∑

i

[Ci j]. (4)

Taking AT
i as inputs and the equilibrium concentrations as

outputs, the competition system performs like a computation

module with parameters Ki j and BT
j . We named it a “competi-

tion layer.”
We supposed each complex molecule Ci j has a linear effect

on the downstream signal Y with weights Wi j ,

Y =
∑

i, j

Wi j[Ci j] + b, (5)

where b is an offset. We named this a “linear layer.” Here, a
positive Wi j means that Ci j can activate Y , and vice versa. It
should be noticed that the linear layer is a simplified model to
describe the effect of Ci j to the final output without synergistic
or antagonistic effects, as we here focused on the computa-
tional capacity contributed by MCNs. This assumption was
adopted in previous studies to describe the phosphorylation
of SMAD proteins in BMP pathways [8]. In other biological
scenarios such as the Hill equation, the relationship between
[Ci j] and Y may be nonlinear, and we can modify Eq. (5) to
describe them.

A competition layer and a linear layer compose the mini-
mal computational model of MCNs [Fig. 1(b)]:

Y = linear(competition(AT |BT , K )|W , b). (6)

It should be noticed that the competition layer with
nB > 1 is much more complicated than that with nB = 1
which we studied before [4]. Considering Eqs. (2)–(4) as
an equation set, the order of any variable is

(nA+nB

nA

)
, which

dramatically increases with nA when nB > 1. This makes the
system hard to analyze. We proposed an iterative method for
solving the steady state of the competition layer.

The functions of a biological network highly depend on its
parameter configurations. Numerous studies have employed
methods such as parameter scanning [4] and random sampling
[20] to elucidate the functions of these networks. However,
these exploration-based approaches tend to be inefficient
in high-dimensional parameter spaces. Recent advancements
in machine learning, particularly physics-informed neural
networks (PINNs), have shown considerable potential in solv-
ing both forward and inverse problems in dynamic systems
[21,22]. As a result, these methods are increasingly utilized
for parameter optimization in biological systems [23–25].
Here, we proposed a learning-based approach that first defines
all functional targets as shown in Eq. (6), then optimizes the
parameters to assess whether these targets can be achieved.

Details of the iterative method and the parameter optimiza-
tion technique are provided in the Supplemental Material [26].
The code is available in Ref. [27].

III. THE COMPUTATIONAL CAPACITY OF MCNs

Here we defined the computational capacity of a model as
its ability to fit different functions. Discrete decision making
such as Boolean operations are fundamental functions in gen-
eral information processing, DNA computing, and synthetic
gene circuits [11,28,29]. The information processing of cells
was also simplified as Boolean operations in many studies
[30,31]. Thus, we examined all 2-input Boolean functions,
3-input Boolean functions, and 2-input 3-quantized Boolean
functions as tasks to evaluate the computational capacity of
MCNs [Fig. 2(a)]. For 2-input Boolean functions, we con-
sidered the input AT

i at 10−1 (low) or 101 (high), forming
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FIG. 2. (a) Examples of target functions in different tasks.
(b) The outputs of MCNs trained by the corresponding targets func-
tion in (a), visualized on a 10 × 10 grid at the logarithmic scale, same
as the corresponding figure in (a). Figures in different rows show
MCNs with different nB. (c) The diagram of MCN variants. “One-
to-one” means the model only has one-to-one specific interactions.
“All-same” means all the binding affinities are the same. “Constant-
A” means the concentrations of all molecules Ai are determined
by the environment. “Constant-B” means the concentrations of all
molecules Bj are determined by the environment.

22 = 4 input tuples. Each output could be either 0 (low) or 1
(high), so there are 24 = 16 possible functions in total. Simi-
larly, 3-input Boolean functions have input in {0.01, 100} and
output in {0, 1}, and 2-input 3-quantized Boolean functions
have input in {0.01, 1, 100} and output in {0, 1}. There are 16,
256, and 512 different Boolean functions in these task sets,
respectively.

We restricted all Ki j and BT
j between 10−4 and 104, and

all Wi j and b between −10 and 10, to make the parame-
ters close to biological or implementable scenarios. To better
accommodate these Boolean classification tasks, we add a
sigmoid function layer at the end of every model. Sigmoidlike
functions can be easily implemented in biology, such as the
Hill function-type response, except for their different input
ranges. In this study, when the output is constrained to be non-
negative, we set the last layer of the model as a Hill function
with coefficient = 1. All these parameters were optimized to
minimize the crossentropy loss between the output and the
target. We trained each model several times independently and
chose the best result for further analysis. We considered the fit

successful if the discretized output is the same as the target
function. We visualized the output on a 10 × 10 grid within
the range of inputs at the logarithmic scale to investigate the
computation pattern [Fig. 2(b)].

We selected a linear model and a multilayer perceptron
(MLP) as the baseline model. The linear model only contains
one linear layer of Y = ∑

i WiAT
i + b, which describes the

computation directly driven by inputs AT
i without any inter-

mediate processing. The MLP is the most simple ANN which
consists of one hidden linear layer including two nodes with
sigmoid activation. The outputs of Y of these models were also
processed by a sigmoid layer. As shown in Fig. 3, the linear
model can only fit linear separable functions, while the MLP
can fit more functions because of its nonlinear activation.

By contrast, we found that MCNs show great performance
on these tasks (Fig. 3). MCNs with only one type of B (nB =
1), though a bit weaker than the linear model, can already
fit some linear inseparable functions such as XOR. MCNs
with nB = 2 can fit all 2-input Boolean functions (100%),
nearly all 3-input Boolean functions (98%), and more than
half of 2-input 3-quantized functions (67%). Linear insepa-
rable functions like 2-input XOR and XNOR can be fitted.
This result significantly outperforms the linear model and has
a similar performance to the MLP, demonstrating that com-
putational capacity gains from the competition layers. MCNs
with nB = 3 can fit even more functions, about 100%, 100%,
and 91%, respectively. The performance of MCNs increases
rapidly with nB, corroborating the findings in [14]. While
MCNs do not contain a nonlinear “activation function” in the
machine learning sense, MCNs are still able to fit nonlinear
target functions, because competition layers effectively im-
plement nonlinear interactions between inputs. All the results
suggested the high computational capacity of MCNs in deal-
ing with discrete decision-making tasks, which is particularly
evident when facing linear inseparable functions.

IV. PROMISCUOUS BINDING AND LIMITED
AMOUNTS OF RESOURCES ARE CRUCIAL

FOR COMPUTATIONAL CAPACITY

As mentioned above, promiscuous binding coupled with
limited amounts leads to molecular competition. We won-
dered whether the computational capabilities of MCNs are
endowed by these characteristics. We proposed a model
variant without promiscuous binding named “one-to-one
MCN” where a type of molecule A only specifically
binds with a type of molecule B. The competition layer
of the one-to-one MCN could be regarded as a nonlin-
ear activation layer based on the molecular titration effect
[32] without crosstalk. We also proposed another model
variant with homogeneous promiscuous binding named “all-
same MCN” where all the promiscuous binding affinities
are the same without any specificity, which, in other
words, means that Wi j is independent from both i and j.
We investigated the performance of these MCN variants with
the same method (Fig. 3). The one-to-one MCNs and all-same
MCNs just performed exactly the same as the linear model
for fitting 2-input and 3-input Boolean functions. They are
slightly different in 2-input 3-quantized functions, where the

033208-3



CAI, ZHANG, QIAO, WANG, AND WEI PHYSICAL REVIEW RESEARCH 6, 033208 (2024)

2-input 3-input 2-input 3-quantized

linear

1-hidden layer MLP

MCN 1
MCN 2
MCN 3

one-to-one MCN 2
3

2

all-same MCN 2
constant-A MCN 2
constant-B MCN 2

non-negative MCN 2
+ input-inverter 2

+ BC-driven 2

nB N = 16 N = 256 N = 512

FIG. 3. The number of perfectly fitted functions of different models in different tasks. The blue part represents the proportion of perfectly
fitted functions in this model. For the 1-hidden layer MLP, nB denotes the number of nodes in the hidden layer. For the one-to-one MCN, nB is
determined by the number of inputs. N denotes the total number of functions. The exact numbers are shown in Supplemental Table 1 [26].

one-to-one MCNs could fit a little more than the linear model,
but the all-same MCNs can fit less.

We further investigated MCNs with unlimited amounts of
molecules. We considered a scenario where molecule A has
unlimited amounts, e.g., A is an extracellular ligand, and its
concentration is only determined by the environment. We set
[Ai] = AT

i in this model and referred to it as a “constant-A
MCN:”

[Ci j] = Ki j[Ai][Bj] = Ki jAT
i BT

j

1 + ∑
i Ki jAT

i

. (7)

Likewise, if molecule B has unlimited amounts, we set [Bj] =
BT

j and referred to it as a “constant-B MCN.” In a constant-B
MCN, both [Ai] and [Ci j] are directly proportional to the input
Ai, and the output Y is merely a linear combination of inputs
AT

i :

[Ci j] = Ki j[Ai][Bj] = Ki j
1

1 + ∑
j Ki jBT

j

AT
i BT

j = linear
(
AT

i

)
.

(8)

As shown in Fig. 3, the constant-A MCNs exhibited great
performance across all tasks, only marginally worse than the
original MCNs. It is similar to a previous conclusion that
many-to-many protein interaction networks with the constant-
A assumption retain good behaviors [13]. The constant-B
MCNs performed just like the linear model with no surprises.
All these results suggested that promiscuous binding with
sophisticated specificity and limited amounts of resources are
necessary for complex computation in MCNs.

V. MCNS WITH STRONG BIOLOGICAL CONSTRAINTS
RETAIN A PORTION OF COMPUTATIONAL CAPACITY

There are sometimes realistic constraints in biological net-
works. For instance, some competition scenarios may consist
of molecules that drive the downstream response in the same

trend [8,15], where inhibition always occurs through com-
petition with activating molecules. In this assumption, the
linear layer weights Wi j in MCNs should be non-negative
(non-negative MCNs). This constraint significantly reduces
the computational capabilities of MCNs. When all inputs AT

i
are low, the equilibrium concentrations [Ci j] must be low, and
the non-negative weights will result in a low output. As a
result, the model theoretically fits at most half of the Boolean
functions. In practice, the model fits nine 2-input Boolean
functions and 99 3-input Boolean functions (Fig. 3).

The constraint can be compensated by slightly modifying
the model structure. The input Ai can be inverted by other
biological processes before joining the competition, in which
case the non-negative MCNs can fit all 16 2-input functions
and 242 3-input functions (Fig. 3). The resource B can also
drive downstream signals in some other biological systems. In
this case, when all AT

i are low, [Bj] ≈ Bj and has the ability
to drive a high output. Such B, C-driven non-negative MCNs
can fit 15 2-input functions and 156 3-input functions, ex-
hibiting a significant improvement compared to the C-driven
non-negative MCNs (Fig. 3).

VI. ROBUSTNESS OF MCNS WITH ALTERING
AMOUNTS OF RESOURCES

Concentrations of molecular species in biological systems
may show great variation among different cells due to in-
trinsic and extrinsic noise. Here, we explored whether the
computational capabilities of MCNs change when the total
amount of molecule B is altered. As shown in Fig. 4(a),
most MCNs can preserve the performance with about 20%
multiplicative noise. MCNs are more sensitive in decreasing
BT compared with increasing BT , and the complex func-
tions are more sensitive compared with simple functions.
It reveals that MCNs showed fairly good noise resis-
tance when performing Boolean operations, corroborating the
findings in [14].
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FIG. 4. (a) The robustness of MCNs with altering BT . (b) Parameters and model outputs of nB = 2, C-driven, and non-negative weight
MCNs that fit the XOR function. Black lines represent strong interactions and gray lines represent weak interactions. Left: no modification;
middle: K12 set as zero; right: K21 set as zero. (c) Parameter distributions of nB = 3, C-driven, and non-negative weight MCNs that fit all 3-input
Boolean function. (d) Visualization of MCN outputs trained for fitting analog-input Boolean-like-output functions. (e) Visualization of a sharp
dose-response curve of (d). (f) Performance of models on multiclass classification tasks.

VII. WEAK INTERACTIONS BETWEEN COMPETITORS
AND RESOURCES ARE FUNCTIONAL IN MCNS

Weak interactions are widespread in biological networks.
Though they are usually regarded as the result of off-target
effects, several recent studies have demonstrated that these
weak interactions have specific biological functions [4,33].
We wonder whether the weak interactions between competi-
tors and resources are functional in MCNs. Here, we focused
on the parameter settings of the non-negative, C-driven MCN
with nB = 2. We illustrated the parameters of the MCN which
fits the XOR function [Fig. 4(b) left]. We found that K12 and
K12, which drive the production of C12 and C21, respectively,
are quite low. Meanwhile, both C12 and C21 greatly contribute
to the output Y (high W12 and W21). This corroborates a pre-
vious discovery that the anticorrelation between the binding
affinity and the activity to drive downstream signals can ben-
efit the computational power [10]. We then investigated the
role of these weak interactions by setting them as zero. When
setting both W11 and W22 as zero, the model could still fit the
XOR function [Fig. 4(b) middle], but when setting K21 as zero,
the model failed to fit XOR anymore [Fig. 4(b) right].

We also analyzed the distribution of parameters in all
MCNs that successfully fit any 3-input Boolean function
[Fig. 4(c)]. We found that about 60% Wi j are exactly zero,
while Ki j and BT

j are more widely distributed. The results
indicated that the linear layer is always sparse, while the
competition layer is not. We then set the minimum Ki j as
zero in every successfully fitted MCN. We found that 21%
(21/99) of these MCNs cannot keep their functions anymore
for fitting 3-input Boolean functions. These findings indicated
weak interactions in the competition layer are common and
functional in MCNs.

VIII. MCNS CAN FIT ANALOG-INPUT FUNCTIONS
WITH CLEAR AND ACCURATE BOUNDARIES

In the above sections, we only focused on binarized
outputs corresponding to binarized or ternarized inputs. How-
ever, biological systems usually employ analog information
processing, because molecular concentrations change contin-
uously [34,35]. It is necessary to examine how MCNs perform
under the requirements of more continuous inputs and more
precise outputs. We followed the same method we used to
train 2-input Boolean-like functions, with the only difference
being that we generated 10 × 10 grid points for training in-
stead of only four endpoints. As shown in Fig. 4(d), MCNs
with nB = 2 can fit all 2-input analog-input Boolean-like-
output functions well. With more training samples, the model
outputs are more similar to the target functions, with more
clear and accurate boundaries.

The clear boundaries are consistent with previous studies
which demonstrated that competition can induce ultrasensi-
tivity in dose-response curves [4,32,36,37]. Here, we further
investigated how sharp the transition boundary can be, gen-
erated by MCNs. As shown in Fig. 4(e), MCNs with nB = 2
can generate dose-response curves with Hill coefficients near
six, and larger nB cannot contribute more to the ultrasensi-
tivity. The result showed that MCNs can be used to generate
analogous patterns and revealed the upper bound of the ultra-
sensitivity that MCNs can achieve.

IX. MCNS ARE CAPABLE OF PERFORMING
CLASSIFICATION TASKS

We further explored the performance of MCNs in perform-
ing multiclass classification tasks. We applied MCNs to the
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Iris dataset [38] and the MNIST dataset [39]. Each type of
molecule A corresponds to one input feature, and each type of
molecule Y corresponds to one class. Thus, MCNs for the Iris
dataset have nA = 4 and nY = 3, while MCNs for the MNIST
dataset have nA = 784 and nY = 10. The training objective
is to maximize the output of the Y node corresponding to
the correct category while minimize the output of the other
Y nodes. The inputs were normalized and transformed to
the logarithmic scale. We split each dataset into training and
test subsets. Specifically, for the Iris dataset, which contains
150 samples, we selected 100 for training. For the MNIST
dataset, which contains 60 000 samples, we used 1000 for
training. With these settings, MCNs with nB = 2 achieved
both accuracy and AUROC close to 1.0 on the Iris dataset,
and an accuracy of 0.830 and an AUROC of 0.978 on the
MNIST dataset [Fig. 4(f) and Table 2 in the Supplemental
Material [26]]. The performance of MCNs is slightly better
than that of the classical logistic regression model. These re-
sults indicate that MCNs are capable of performing multiclass
classification tasks.

X. DISCUSSION

This study explored the computational capabilities of
molecular competition networks using a machine learning op-
timization method. Our findings confirmed the computational
capacity of competition networks and identify critical terms
for competition computation. Biological systems, constrained
by evolutionary pressures and resource limitations, inherently
exhibit promiscuous interactions, thus making competition an
inevitable phenomenon [40–42]. We propose that rather than
being a detrimental factor, competition within promiscuous
networks could act as an effective mechanism for cellular
information processing.

Influenced by the modular design concept of electronic
circuits, synthetic biology also uses basic modules to build
complex genetic circuits. This methodology necessitates
seven gates and 55 biobricks to assemble a 3-input consensus
circuit [43]. Such complex hierarchical structures with
cascading modules inevitably lead to more competition
and crosstalk [44]. In contrast, MCNs with only two
competitors (nB = 2) can execute all 3-input Boolean
functions. Notably, MCNs consider and utilize the inherent
competition. We believe that leveraging competition in
gene circuit design could significantly advance synthetic
biology. With the rapid development of AI-assisted design
of DNA, RNA, and protein [45,46], it will be feasible

to realize optimized MCNs through synthetic biology
techniques.

We supposed that MCNs could be also conceptualized as a
generalized network structure for in silico applications. The
restricted Boltzmann machine (RBM), which utilizes a bi-
partite graph structure similar to MCNs, is a well-established
artificial neural network model that computes the probability
distribution of each node based on “energy.” Analogously,
MCNs, as natural systems, determine the probability distri-
bution of each molecule according to the energies associated
with all chemical reactions. Consequently, we hypothesize
that MCNs could match or surpass the efficacy of RBMs in
machine-learning applications. We assessed the performance
of MCNs on standard machine learning tasks, such as the
classification of the Iris and MNIST datasets. The results, de-
tailed in the Supplemental Material [26], indicate that MCNs
demonstrate robust performance in these contexts.

Different from traditional methods which explore the
functionality of biological systems by assigning parame-
ters randomly or based on prior knowledge, our machine
learning-based optimization method first hypothesizes what
function the networks behave, and then optimizes parameters
to achieve the goal. This approach can also be easily applied
in synthetic gene circuit design where a desired function
comes first and then the parameters are optimized. Besides,
it is worth calculating the equilibrium constants Ki j in natural
MCNs as well as their changes in the evolutionary process and
comparing them with the parameters optimized by machine
learning to know whether real biological systems employ
similar optimizing approaches to achieve certain information
processing behaviors. It would be also interesting to further
investigate and optimize more characteristics of MCNs by this
method, such as dynamic behaviors, energy consumption, and
robustness. Last but not least, in this study, we introduced
a linear layer to simplify the relationship between the com-
ponents in the competition layer and the output. We believe
that an MCN cooperating with other network structures, or
another MCN, may produce more complex results, which can
be further explored in the future.
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