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Particle creation in left-handed metamaterial transmission lines
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Transmission lines (TLs) are excellent examples of quantum simulators of quantum fields. By appropriately
driving-specific circuit elements, these devices can reproduce relativistic and quantum phenomena such as
particle creation due to the nonadiabatic stimulation of the quantum vacuum. We investigate particle creation
in left-handed TLs induced by the modulation of the Josephson energy in superconducting quantum interference
devices. Our results show that, as a consequence of the peculiar dispersion relations present in these systems,
particle production occurs with much more favorable conditions with respect to the usual right-handed TLs.
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I. INTRODUCTION

Quantum field theory in flat [1] and curved [2–4] spacetime
is the best available mathematical apparatus that underpins
our comprehension of relativistic and quantum many-body
phenomena. Among its most successful predictions, one finds
highly energetic processes such as the dynamical Casimir
effect (DCE) [5–8], the Unruh effect [9–12], and Hawking ra-
diation [13–15]. Unfortunately, due to the considerable energy
scales and the extreme conditions necessary to witness such
phenomena, their direct observation has not been possible to
date. Nevertheless, in the last decade, impressive advance-
ments in quantum technologies based on quantum simulation
platforms have led to the successful fabrication of devices
that mimic well the main features of such highly energetic
phenomena [16–21].

Quantum simulators are powerful tools for the study of
quantum processes whose reproduction and control in the
laboratory is, in many case, unfeasible [22,23]. Among the
vast range of possible quantum simulating devices, here, we
want to focus our attention on one specific class, which can
describe well the dynamics of quantum fields in nonadiabatic
scenarios, namely, superconducting circuits based on trans-
mission lines (TLs) [24–29]. In the frameworks of quantum
field theory and cosmology, these platforms find many the-
oretical and experimental applications in the engineering of
space-time analogs [21,30,31] as well as the simulation of par-
ticle creation phenomena [32–34], such as the DCE [35–37]
and Hawking radiation [38–40].

In general, the dynamics of quantum scalar fields and
particle creation phenomena are always described in an
environment characterized by a positive dielectric constant
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and magnetic permeability. However, in the last decades,
particular dedication has been made to theoretically and
experimentally engineering metamaterials characterized by
left-handed dispersion relations [41–43]. In left-handed meta-
materials, the phase velocity has the opposite sign with respect
to the Poynting vector, which stems from the fact that both
the dielectric constant and the magnetic permeability of the
medium are negative [44].

In one-dimensional systems, such as TLs, the left-
handedness emerges when the dispersion law displays a
negative group velocity. A standard left-handed TL (LHTL),
such as that depicted in Fig. 1(a), can be assembled starting
from the model of a right-handed TL (RHTL) by interchang-
ing capacitors and inductors [45] [see also Fig. 2(a)]. As a
consequence, LTHLs can be seen as duals of RHTLs [46,47].
Among other uses, LTHLs and hybrid platforms can find
applications in circuit quantum electrodynamics for the simu-
lations of multimode quantum systems [47–51].

We propose two platforms based on LHTLs, whose dy-
namics is regulated by a set of superconducting quantum
interference devices (SQUIDs) [52,53]. The difference be-
tween the two schemes relies on the placement of the SQUID,
which leads to two different spectra. As first, we show that
the proper quantization of LHTLs leads to unusual commuta-
tion relations of the bosonic ladder operators. Indeed, unlike
standard RHTLs, the commutator between the annihilation
and the creation operators in LHTLs explicitly depends on
the mode wave vector. We will see that this has astonishing
consequences on the time evolution of the ladder operators.
We will explore the dynamics of such TLs by studying the
dynamics of the quantum magnetic flux �̂, showing that
we can stimulate the quantum vacuum of the TL and generate
pairs of bosonic excitations. Interestingly, we can attribute
a different physical interpretation to the particle production
depending on the placement of the circuit elements.

This paper is structured as follows: In Sec. II, we introduce
the two LHTLs and calculate the dispersion relations starting
from the linear Lagrangians of the circuits. In Sec. III, we
present the protocols to quantize the magnetic flux field along
the two TLs. In Sec. IV, we show our main results: The nona-
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(a)

(b)

(c)

FIG. 1. Schematic representations of the left-handed transmis-
sion line (LHTL). (a) Standard LHTL. (b) Circuit 1: LHTL with a
set of superconducting quantum interference devices (SQUIDs) in
parallel. (c) Circuit 2: LHTL with a set of SQUIDs in series.

diabatic modulation of the Josephson energy at the SQUIDs
stimulates the creation of bosons along the TL. Finally, in
Appendix A, we briefly discuss standard RHTLs present in
the literature, while in Appendixes B and C, we present details
about calculations, with particular focus on the input-output
formalism and the multiscale analysis.

II. CLASSICAL LHTLS

We introduce three LHTLs based on the presence or ab-
sence of capacitors and inductors: We refer to Fig. 1(a) as a
standard scheme, to Fig. 1(b) as circuit 1, and to Fig. 1(c) as
circuit 2. The difference between the last two platforms relies
on the placement of the SQUID: Circuit 1 is characterized by
a set of SQUIDs placed in parallel, whereas in circuit 2, all
SQUIDs are placed in a series. Each circuit consists of N cells;
each thereof has length �x.

We assume that each SQUID is characterized by the ca-
pacitance CJ, the Josephson energy E (t ), and the phase ϕ =
2π�J/φ0, where �J is the magnetic flux at the SQUID, and
φ0 = π h̄/e is the magnetic flux quantum. Importantly, we
will assume small amplitude of the plasma oscillation in the
SQUID, i.e., �J/φ0 � 1, and that all SQUIDs work in the
phase regime E (t ) � (2e)2/2CJ [36,54], thereby expanding
the Josephson energy at the lowest order in �J/φ0 [55]. Fi-
nally, we make the identification �J = �, where � is the
magnetic flux on the TL [37,54].

The Josephson energy can be externally driven to have
a time-dependent dispersion relation. In each platform dis-
cussed in this paper, we will modulate the Josephson energy
via E (t ) = E0[1 + 4η sin(�t )] around the constant value
E0 = Icφ0 [5], where Ic is critical current, � is the oscillation
frequency, and η � 1 is dimensionless oscillation amplitude.

Note that, in contrast with any right-handed platforms
discussed in the literature (see, for instance, Refs. [33,34]),
the mathematical description of LHTLs must account for the

(a)

(b)

(c)

FIG. 2. Schematic representations of the right-handed transmis-
sion line (RHTL). (a) Standard RHTL. (b) Circuit 1: RHTL with a
set of superconducting quantum interference devices (SQUIDs) in
parallel. (c) Circuit 2: RHTL with a set of SQUIDs in series.

infrared bound of the dispersion relations [47], as we will
discuss later. Therefore, we cannot describe the space along
the TL in the continuous limit �x → 0, as normally accom-
plished for RHTL, since this would cause the divergence of
the frequency at long wavelengths.

A. Circuit 1: SQUIDs in parallel

As a first case, we want to study the LHTL pictorially
represented in Fig. 1(b). At each node, we replace the induc-
tors of the standard LHTL shown in Fig. 1(a) with a SQUID
having capacitance and Josephson energy CJ and EJ = E (t ),
respectively, whereas a capacitor with capacitance C is placed
between two nodes.

In the linearized limit of the SQUID [37,54], the
Lagrangian of the system expressed in terms of the magnetic
flux is

L = 1

2

N∑
n=1

[
C

(
�̇n − �̇n+1

)2 + CJ�̇
2
n − Ẽ (t )�2

n

]
, (1)

where �n indicates the magnetic flux field at node n, and
Ẽ (t ) = (2π/φ0)2E (t ).

To describe the dynamics of the TL, we need to solve the
equations of motion obtained via the Euler-Lagrange equa-
tions d

dt ∂L/∂�̇n − ∂L/∂�n = 0. These equations admit a set
of solutions of the form exp(in�x k − iωt ). We then compute
the dispersion relation of the TL and obtain

ω j (t ) =
√√√√ Ẽ (t )

4C sin2
(

k j�x
2

)
+ CJ

, (2)

where the wave vector k j = 2π j
N�x is bounded within the first

Brillouin zone j = ±1, . . . ,±N/2 [47]. The left-handedness
of the TL clearly emerges from the group velocity defined
as vg = ∂ω/∂k, which is negative. We note that the infrared

limit of the TL is ωIR =
√

Ẽ/(4C + CJ) �
√

Ẽ/4C, which
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is reached at the border of the first Brillouin zone, where
kN/2 = π/�x, and is valid when 4C � CJ [47].

B. Circuit 2: SQUID in series

The second scheme we want to analyze is illustrated in
Fig. 1(c). In this scheme, we replaced each capacitor of the
standard LHTL in Fig. 1(a) with a SQUID having capacitance
CJ and Josephson energy E (t ). The Lagrangian of the TL in
the linearized limit of the SQUID is

L = 1

2

N∑
n=1

[
C

(
�̇n+1 − �̇n

)2

− �2
n

L
− Ẽ (t )(�n+1 − �n)2

]
, (3)

where we made the identification C ≡ CJ, and L is the in-
ductance. Assuming as before a solution of the equations of
motion of the form exp(in�x k − iωt ), we find the following
dispersion relation:

ω j (t ) =
√√√√ 1

4CL sin2
(

k j�x
2

) + Ẽ (t )

C
, (4)

where again the wave vector is k j = 2π j
N�x , with j =

±1, . . . ,±N/2.
Note that this dispersion relation structurally differs from

Eq. (2), and in fact, it describes a different left-handed quan-
tum field. Indeed, the frequencies in Eq. (4) consist of two
parts: The first term inside the square root gives the standard
relation between the frequency and wave vector in LHTLs;
the second term does not depend on the wave vector, and it
is identical for each mode. In field theory, the presence of
the latter is the signature of a massive field [1]. Therefore,
once we quantize the magnetic field flux, its excitations will
behave as massive particles with a left-handed group velocity
and time-dependent quadratic mass M2(t ) ∝ Ẽ (t )/C. Note
that, in contrast with the standard (right-handed) dispersion
relation of the Klein-Gordon field wherein the massive term
of the field becomes negligible in the ultrarelativistic limit
(k � Mc/h̄, with c speed of light), in this LHTL, the massive
term becomes negligible in long-wavelength modes where
k2

j � 1/[(�x)2 CLẼ (t )].

III. QUANTIZATION PROCEDURE

In this section, we discuss the formalism employed for
the quantization of the two LHTLs presented in this paper,
starting from basic circuit equations. Our goal is to achieve a
quantized expression of both modes of the quantum magnetic
flux fields and the Hamiltonian at t < 0, namely, before the
beginning of the modulation of the Josephson energy. For
this reason, we conveniently omit the time-dependence in the
Josephson energy and write Ẽ = E0(2π/φ0)2.

As a first step, we solve the equations of motion of the
two TLs. These can be achieved from the two Lagrangians in
Eqs. (1) and (3), respectively, for circuits 1 and 2, by means

of the Euler-Lagrange equations. At any node 1 < n < N , the
equations of motion become

�̈n+1 + �̈n−1 − 2�̈n − CJ

C
�̈n

= Ẽ

C
�n, (5)

�̈n+1 + �̈n−1 − 2�̈n

= �n

CL
+ Ẽ

C
(2�n − �n+1 − �n−1), (6)

for circuits 1 and 2, respectively. In Eq. (6), we made the
identification CJ ≡ C. Assuming plane-wave solution of the
form exp(in�x k − iωt ), the magnetic flux is described by
the expression:

�(n, t ) =
N/2∑

| j|=1

[
φ j (n, t )a j + φ∗

j (n, t )a∗
j

]
, (7)

where the modes are defined by φ j (n, t � 0) =√
h̄

2CNω0 j
exp[i(k jn�x − ω0 jt )], and ω0 j ≡ ω j (t � 0) are

the mode frequencies [these will correspond to either Eq. (2)
or (4) depending on the considered scheme]. Note that, since
the minimum distinguishable wavelength is λmin = 2�x
[47], the sum over all modes runs up to N/2. The modes are
normalized via the relation:

− iC

h̄

N∑
n=1

[
φi(n, t )

∂φ∗
j (n, t )

∂t
− ∂φ∗

i (n, t )

∂t
φ j (n, t )

]
= δi j,

(8)

where we made use of the representation of the Kronecker
delta δlh = 1

N

∑N
n=1 exp[2π in(l − h)/N].

The Hamiltonian of the TLs is achieved from the
Lagrangian by means of the Legendre transformation H =∑

n[Pn�̇n − L], with conjugated momenta:

Pn = ∂L
∂�̇n

= C
(
2�̇n − �̇n+1 − �̇n−1

) + CJ�̇n,

Pn = ∂L
∂�̇n

= C
(
2�̇n − �̇n+1 − �̇n−1

)
, (9)

for circuits 1 and 2, respectively.
We take advantage of both the mode expansion in Eq. (7)

and the definition of the conjugate momentum in Eq. (9)
to perform the discrete Fourier transform of both the field
and the conjugate momentum, thereby obtaining the classical
amplitude of the field in terms of �n and Pn. This reads

ah = ζh

N∑
n

exp[−i(khn�x − ωht )]

×
[
�(n, t ) + iχ−1

h

ωh
P(n, t )

]
, (10)

with ζh =
√

ωhC
2h̄N . The parameter χh strictly depends on the

scheme we are considering. It has the expression:

χh =
{

4 sin2
( kh�x

2

) + CJ
C for circuit 1,

4 sin2
( kh�x

2

)
for circuit 2.
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The quantization of field and the canonical momen-
tum are accomplished by imposing the equal time com-
mutators [�̂(n, t ), P̂(m, t )] = ih̄δnm and [�̂(n, t ), �̂(m, t )] =
[P̂(n, t ), P̂(m, t )] = 0. We then use these commutators, to-
gether with Eq. (10) and the discrete representation of the
Kronecker delta provided before, to obtain the commutation
relation of the quantized amplitude, promoted to annihilation
and creation operators:

[â j, â†
h] = χ−1

j δ jh. (11)

The presence of the factor χ j in the denominator is key, as can
be seen below.

We can now express the Hamiltonian Ĥ in terms of the
ladder operators. By substituting the mode decomposition in
Eq. (7), exploiting the normalization condition in Eq. (8), and
taking advantage of the commutation rule in Eq. (11), the
Hamiltonian reduces to

Ĥ = h̄
N/2∑

| j|=1

ω0 j

[
χ j â

†
j â j + 1

2

]
. (12)

Note that the commutation relation in Eq. (11) preserves the
correspondence principle, as the Heisenberg equation for the
annihilation operator reads

dâ j

dt
= i

h̄

[
Ĥ, â j

] = −iω j â j . (13)

The form of both modes at t < 0 and the Hamiltonian
in Eq. (12) are valid for both LHTLs under consideration.
The difference between the two schemes relies only on the
dispersion relations and the Hamiltonian eigenenergies. The
explicit form of the time-dependent eigenenergies ε

(�)
j (t ) is

ε
(1)
j (t ) = h̄

√
χ j Ẽ (t )

C
, (14)

ε
(2)
j (t ) = h̄

√
χ j Ẽ (t )

C

√
χ j + 1

LẼ (t )
. (15)

for circuits 1 and 2, respectively.
We notice that, due to the discrepancy between eigenener-

gies and frequencies in LHTLs, the eigenenergies of LHTLs
and RHTLs behave in a similar manner: The lower the wave
vectors, the lower the eigenenergies. This is evident in Fig. 3,
where we plotted both the eigenenergies and the frequen-
cies of the massless modes of LHTL 1 and RHTL 2, and
in Fig. 4, where we plotted both the eigenenergies and the
frequencies of the massive modes of RHTL 1 and LHTL 2.
We remind the reader that, unlike LHTLs, the eigenenergies
of the Hamiltonian in RHTLs coincide with the mode frequen-
cies ĤR = ∑

j ε j (υ j )(b̂
†
j b̂ j + 1

2 ) ≡ ∑
j h̄υ j (b̂

†
j b̂ j + 1

2 ), where
the right-handed frequencies are given in Eq. (A1) for the
right-handed circuit 1 in Fig. 2(b) and in Eq. (A2) for the
right-handed circuit 2 in Fig. 2(c).

Before concluding this section, we want to stress that
the discrepancy between eigenenergies and frequencies in
LHTLs has relevant consequences on the dynamics of the
ladder operators. Indeed, the Heisenberg equation in Eq. (13)
demonstrates that the time evolution of the ladder operators
strictly depends on the mode frequencies. Therefore, due to

FIG. 3. Eigenenergies and dispersion relation of the transmis-
sion line showing a massless dispersion relation. Plots refer to
Hamiltonian eigenenergies of the left-handed circuit 1 (red) and
the right-handed circuit 2 (blue), as well as the dispersion relations
of the left-handed circuit 1 (purple). Parameters are C = 0.4 pF,
L = 60 pH, CJ = 0.02 pF, Ic = 1.25 µA, and N = 200.

the commutation relation in Eq. (11), the higher the mode
frequency, the lower the energy required to excite it. Crucially,
this quantum feature of LHTLs also plays a decisive role, for
example, in the description of resonant interactions between
bosonic modes or in particle creation phenomena, as we will
see in the next section.

IV. PARTICLE CREATION

The time-dependent Josephson energy acts as an external
drive in the dynamics of the TLs. When the modulation fre-
quency � is of the same order of magnitude of the TL mode
frequencies, particle creation phenomena can occur due to the
presence of a resonance [2]. To describe such phenomena,
we need to solve the equation of motion with respect to the
magnetic flux field modes, or in other words, we need to find

FIG. 4. Eigenenergies and dispersion relation of the transmission
line showing a massive dispersion relation. Plots refer to Hamiltonian
eigenenergies of the right-handed circuit 1 (orange) and the left-
handed circuit 2 (black), as well as the dispersion relations of the
left-handed circuit 1 (cyan). Parameters are C = 0.4 pF, L = 60 pH,
CJ = 0.02 pF, Ic = 1.25 µA, and N = 200.
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the relation between the annihilation and creation operators of
the magnetic flux modes before the beginning of the dynamics
(input operators) and the ladder operators obtained once the
modulation of the Josephson energy ceases (output operators).
Since the Hamiltonian describes linear dynamics for small
modulations of the Josephson energy, the input and output
ladder operators are related by Bogoliubov transformations
[2–4], which have the generic form:

âout
i =

N/2∑
|l|=1

(
α ji âin

j + β∗
ji â†in

j

)
, (16)

where the explicit expression of the coefficients αi j and βi j

depend on the specific TL. A more detailed description of
the input-output formalism, as well as the solution of the
equations of motion achieved by means of multiscale analysis
[8,56], is reported in Appendixes B and C.

The phenomenon of particle creation is strongly connected
to the coefficients βi j in Eq. (16). Indeed, when these coef-
ficients are nonzero, the initial vacuum state of the quantum
field does not correspond to the quantum vacuum at the
end of the dynamics, and the output operators in Eq. (16)
do not act as annihilation operators of the initial quantum
vacuum [2].

In the TLs under consideration, when the modulation
frequency of the Josephson energy is exactly twice the fre-
quency of one of the TL modes � = 2ωh, the coefficient
β∗

hh in Eq. (16) does not vanish, and the operator âout
h acts

on the input state as a squeezed annihilation operator. If
the system is initially prepared in the vacuum state |0〉 =
|0−N/2, . . . , 0−1, 01, . . . , 0N/2〉, we can estimate the average
number of particles in the resonant mode ωh created during
the squeezing process as the expectation value of the output
number operator N̂h = (âout

h )†âout
h . Therefore, the output num-

ber of particles 〈N̂h(τ )〉 and the average energy 〈Ĥ(τ )〉 at time
τ = ηt are respectively given by Nh(τ ) = ∑

j |β jh(τ )|2 =
|βhh(τ )|2 and Eh(τ ) = εhNh(τ ).

Before studying these quantities numerically, we first no-
tice that the analytical expression for the output photon
number Nh(τ ) does not depend on the left- or right-
handedness of the TL, but it only depends on the massive or
massless character of the Josephson energy in the dispersion
relation (see Appendix C). The number of particles created is
given by

Nh(τ ) = sinh2 (κhτ ), (17a)

Nh(τ ) = sinh2

(
Ẽ0τ

Cκh

)
, (17b)

for the massless and massive cases, respectively, with κ =
ω, υ. We notice that, although Eq. (17a) is formally identi-
cal to the number of photons created via DCE in a cavity
confining a quantum scalar field [5], the wave vector of the
TLs is not time dependent; therefore, the Josephson energy
does not simulate the modulation of the cavity length [57,58].
We can provide a more accurate physical interpretation by
analyzing the modes in the proximity of the infrared limit
ω j � ωIR. Indeed, in this limit, the TL can simulate scenarios
wherein the time dependence of the Josephson energy mimics
the modulation of the speed of light [34,59].

FIG. 5. (a) Expected population of massive excitations and
(b) relative average energy at time τ of the mode h by activating the
resonance condition � = 2ωh in the left-handed transmission line
(LHTL) and � = 2υh in the right-handed transmission line (RHTL).
Plots refer to left-handed circuit 2 (black) and right-handed circuit
1 (orange). Parameters are C = 0.4 pF, L = 60 pH, CJ = 0.02 pF,
Ic = 1.25 µA, N = 200, and τ = 1 ps.

The result in Eq. (17b) can be interpreted through the lens
of quantum field theory as the creation of particles due to the
modulation of the mass of the quantum field. In right-handed
quantum fields, the time modulation of the massive term can
be associated to the time dependence of the metric describing
the structure of the space-time [2,32,33]. In case of the LTHL
in circuit 2, Eq. (3) does not correspond to the Lagrangian of
a Klein-Gordon scalar field, and the investigation of gravita-
tional effects on quantum fields with left-handed dispersion
relation would require a more comprehensive analysis that is
beyond the scope of this paper.

We now want to study the behavior of Nh(τ ) and Eh(τ )
in the two LTHLs depicted in Figs. 1(b) and 1(c) as well
as in the two RHTLs in Figs. 2(b) and 2(c). Results of our
investigation are plotted in Figs. 5 and 6. In these graphs, each
value represents the expected particle number and the energy
of the mode h at time τ , assuming that this mode is resonant
with the Josephson energy of the SQUID via the resonance
condition � = 2ωh (or � = 2υh in the case of RHTLs).

A. Creation of massive particles

We first discuss the particle creation in the two de-
vices characterized by a massive dispersion relation, namely,

033204-5



FERRERI, BRUSCHI, AND WILHELM PHYSICAL REVIEW RESEARCH 6, 033204 (2024)

FIG. 6. (a) Expected population of massless excitations and
(b) relative average energy at time τ of the mode h by activating the
resonance condition � = 2ωh in the left-handed transmission line
(LHTL) and � = 2υh in the right-handed transmission line (RHTL).
Plots refer to left-handed circuit 1 (blue) and right-handed circuit
2 (red). With the same set of circuit parameters in all LTHLs and
RHTLs, the use of our left-handed circuit 1 leads to the creation
of the highest number of particles among the platforms under con-
sideration (see also Fig. 5). Parameters are C = 0.4 pF, L = 60 pH,
CJ = 0.02 pF, Ic = 1.25 µA, N = 200, and τ = 1 ps.

left-handed circuit 2 and right-handed circuit 1. The graph in
Fig. 5(a) shows that the LHTL generates a greater number of
massive particles at higher mode number, whereas the RHTL
favors particle creation in long-wavelength modes.

The comparison between the number of particles in
Fig. 5(a) and the average energy in Fig. 5(b) demonstrates
that, at the peak of the photon number curves, the maximum
of the output average energy is higher in the LHTL than in
the RHTL. This suggests that the creation of massive particles
results energetically more convenient in right-handed circuit 1
(orange curve) than in left-handed circuit 2 (black curve).

We also notice that the creation of particles in the LHTL
is drastically suppressed in modes having low mode number,
namely, those modes characterized by low eigenenergies but
high frequencies. The suppression of the particle creation de-
spite the activation of the resonant condition can be exploited
for the implementation of quasiadiabatic high-frequency reso-
nant processes. Such processes can be of interest, for instance,
in quantum thermodynamics, particularly in the study of adi-
abatic phenomena characterized by inner friction [60].

B. Creation of massless particles

The graph in Fig. 6(a) shows the different trends of the
particle creation in LHTL and RHTL having a massless dis-
persion relation. We observe that the resonant mode υh of
the RHTL emits on average more particles at higher mode
numbers (red dots), while in LHTL, the number of massless
particles in the resonant mode ωh drastically increases at lower
mode numbers (blue dots). This is due to the fact that the
number of output particles Nh(τ ) in Eq. (17a) increases with
the mode frequency and not with the mode eigenenergy.

We remind the reader that the number of particles gen-
erated via resonant processes in the RHTL increases with
the frequency/energy of the mode. However, this has two
important consequences: On the one hand, the creation of
low-frequency particles leads to the creation of few particles.
On the other hand, the creation of high-frequency particles
would require the resonant stimulation of a highly energetic
mode, with the inevitable enhancement of the energy cost.

The blue dotted curve in Fig. 6(a) shows that, with the
same set of circuit parameters, left-handed circuit 1 per-
mits the creation of the highest amount of particles among
the platforms analyzed in this paper [see also Fig. 6(a)],
paying a reduced energy cost with respect to right-handed
circuit 2, which also generates massless bosons. This becomes
clearer in Fig. 6(b), where we plotted the average of the
output energy with respect to the resonant mode assuming the
usual resonance conditions. Despite both the higher frequency
and the higher number of created particles, the energy cost
of the particle creation results are lower in the LHTL than in
the RHTL. This is evident from the fact that the peak of the
blue dotted line in Fig. 6(b) is lower than the peak of red curve.
This demonstrates that platforms based on LHTLs drastically
facilitate the investigation of particle creation, making this
phenomenon more accessible experimentally. Furthermore,
beyond further theoretical speculations, these results suggest
that the LHTL in Fig. 1(b) can find useful applications, for
example, in the resonant amplifications of standard (right-
handed) low-energetic signals.

V. CONCLUSIONS

In this paper, we aimed at quantizing left-handed meta-
material TLs and studying their quantum dynamics. We used
quantum field theory to quantize the magnetic flux field in
LHTLs, providing the commutation rules for the ladder opera-
tors and demonstrating the presence of a discrepancy between
frequencies and eigenenergies. In this framework, we then
investigated the creation of particles due to resonant modu-
lation of the Josephson energies and compared the number of
particles generated in LHTLs and RHTLs.

Our results demonstrate not only that particle production
in RHTLs and LTHLs shows strong mathematical similarities
but also that, due to the peculiar dispersion relation in LHTLs,
this phenomenon is drastically amplified in LHTLs for
low-energetic massless modes. The amplification of particle
creation at lower energies allows for an easier experimental
accessibility to the phenomenon, which can in turn provide
several concrete advantages. For these reasons, we believe
that these platforms could find interesting applications in
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quantum technologies, such as sensing and amplification of
low-frequency signals. This paper also paves the way to
future investigations of quantum field simulators based on
left-handed metamaterial TLs.
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APPENDIX A: RHTLS

In this section, we want to make a comparison between our
two LHTLs and the equivalent RHTLs illustrated in Figs. 2(b)
and 2(c). The first scheme we want to consider, which we
have named right-handed circuit 1, is represented in Fig. 2(b),
and it is achieved from the standard RHTL in Fig. 2(a) by
replacing all capacitors with SQUIDs. A similar circuit was
already proposed as an analog of a scalar field interacting with
the the gravitational field [33]. The dispersion relation of such
an RHTL is

υ j (t ) =

√√√√4 sin2
(

p j�x
2

)
LC

+ Ẽ (t )

C
, (A1)

with C ≡ CJ. In this paper, υ j and p j always indicate the
frequency and the wave vector in the RHTL, respectively.
In the framework of quantum field theory, this expression
suggests that the second term inside the square root is re-
lated to the presence of a massive term with mass parameter
M2(t ) ∝ Ẽ (t )/C, see Ref. [39].

The second RHTL, which we refer to as right-handed cir-
cuit 2, is illustrated in Fig. 2(c) and is implemented from the
scheme in Fig. 2(a) by replacing all inductors with a set of
SQUIDs [61]. A similar scheme was realized for the study of
nonlinear effects in the bare frequencies of the Hamiltonian
(Kerr effect) [54]. The dispersion relation in this TL reads

υ j (t ) = 2 sin

(
p j�x

2

)√√√√ Ẽ (t )

C + 4CJ sin2
(

p j�x
2

)

� 2 sin

(
p j�x

2

)√
Ẽ (t )

C
, (A2)

where we assumed 4CJ � C.
The Hamiltonian of RHTLs under consideration takes the

same form for both schemes in Figs. 2(b) and 2(c), namely,

ĤR = h̄
N/2∑

| j|=1

υ j b̂
†
j b̂ j . (A3)

A direct comparison between the dispersion relations in
LHTLs [see Eqs. (2) and (4) in the main text] and in RHTLs
[see Eqs. (A1) and (A2)] shows interesting analogies. For
instance, the Josephson energy can play the role of a massless
or massive term in both types of TLs. Finally, the fact that
the dispersion relation of left-handed circuit 1 shares the same
form of the dispersion relation of right-handed circuit 2, and
analogously for the other two schemes, is a further signature
of the duality between LHTLs and RHTLs.

APPENDIX B: DYNAMICS AND BOGOLIUBOV
TRANSFORMATION

To study the dynamics at t > 0, we use the procedure em-
ployed in Refs. [8,56]. Arguments presented in this section are
valid for both LHTLs considered in this paper. When the
modulation of the Josephson energy starts, each mode can be
written as

φ j (n, t > 0) =
N/2∑
|l|=1

√
h̄

CN
Qjl (t ) exp(ikln�x), (B1)

where Qjl (t )’s are solutions of the equations of motion
with continuity conditions Qjl (0) = δ jl/

√
2ω0 j and Q̇ jl (0) =

−iδ jl
√

2ω0 j , with ω0 j ≡ ω j (t � 0).
The explicit expressions for Qjl (t ) are achieved by solving

the equations of motion. The substitution of Eq. (B1) into the
equations of motion yields

N/2∑
|l|=1

[
Q̈ jl (t )

ω2
j (t )

+ Qjl (t )

]
exp(in�xkl ) = 0. (B2)

Multiplying both sides of the equation by exp(−in�xkh)/N ,
summing over n, and exploiting the representation of the
Kronecker delta provided before, we obtain

Q̈ jh(t ) + ω2
h(t )Qjh(t ) = 0. (B3)

To solve it, we employ the multiple scale analysis. Details
about this strategy as well as the solutions of this equation are
reported in the next section. Once the Josephson energy re-
turns to its original value at time tf, E (tf ) = E (0) ≡ E0, and
remains constant, the solution of the equation of motion sim-
ply becomes

Qjh = Ajh exp(iω0ht ) + Bjh exp(−iω0ht ), (B4)

where the coefficients Ajh and Bjh are determined by the
continuity condition of each Qjh at the end of the motion. The
explicit form of the coefficients Ajh and Bjh is calculated for
the two LHTLs in the next section.

Note that the input and out put modes determine the
quantum vacuum at different times, and their relation is
described by Bogoliubov transformations in Eq. (16). Substi-
tuting Eq. (B4) into Eq. (B1), we achieve the form of output
Fourier mode expansion of the field with respect to the input
modes. Recombining all terms properly and comparing with
respect to Eq. (16), we observe that

α jh =
√

2ω0hB jh,

β jh =
√

2ω0hA jh. (B5)
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These formulas relate both Bogoliubov coefficients to the
coefficients Ajh and Bjh.

APPENDIX C: MULTIPLE SCALE ANALYSIS

In this section, we present the solution strategy to solve
Eq. (B3) for the two LHTLs. This formalism is presented in
Ref. [56]. As first, we define a new time scale τ = ηt and
expand Qjh(t ) with respect to η:

Qjh(t ) = Q(0)
jh (t, τ ) + ηQ(1)

jh (t, τ ),

Q̈ jh(t ) = ∂2
t Q(0)

jh (t, τ ) + η
[
2∂2

τ t Q
(0)
jh (t, τ ) + ∂2

t Q(1)
jh (t, τ )

]
,

(C1)

where ∂2
t ≡ ∂2/∂t2 and ∂2

τ t ≡ ∂2/(∂τ∂t ). We now substitute
Eq. (C1) into Eq. (B3) and solve this equation at different

orders in τ . At the zeroth order in τ , we simply achieve

Q̈(0)
jh + ω2

h0Q(0)
jh = 0, (C2)

whose solution is

Q(0)
jh (t, τ ) = Ajh(τ ) exp(iωh0t ) + Bjh(τ ) exp(−iωh0t ). (C3)

From the continuity conditions for Qjh(t ), we have the follow-
ing initial conditions for Ajh(τ ) and Bjh(τ ):

Ajh(0) = 0,

Bjh(0) = 1√
2ωh0

δ jh. (C4)

We now focus on circuit 1, describing a quantum magnetic
flux field with massless excitations and dispersion relation
given in Eq. (2) of the main text. Considering only the first
order in τ , Eq. (B3) becomes

2∂τ t Q
(0)
jh + ∂2

t Q(1)
jh + ω2

h0Q(1)
jh + 4ω2

h0 sin(�t )Q(0)
jh = 0. (C5)

Substituting the solution of the zeroth order, Eq. (C3), into Eq. (C5), we obtain

∂2
t Q(1)

jh + ω2
h0Q(1)

jh = −2∂τ t Q
(0)
jh − 4ω2

h0 sin(�t )Q(0)
jh

= −2iωh0
[
(∂τ Ajh) exp(iωh0t ) − (∂τ Bjh) exp(−iωh0t )

]
+2iω2

h0[exp(i�t ) − exp(−i�t )]
[
Ajh exp(iωh0t ) + Bjh exp(−iωh0t )

]
= −2iωh0 exp(iωh0t )

{
(∂τ Ajh) − ωh0Bjh exp[i(� − 2ωh0)t]

}
+2iωh0 exp(−iωh0t )

{
(∂τ Bjh) − ωh0Ajh exp[−i(� − 2ωh0)t]

}
. (C6)

We now seek a solution of such an equation without secularities. Secularities are all those terms proportional to exp(±iωh0t ),
namely, all those term that are already solutions of the homogeneous equation. To avoid such secularities, we need the coefficients
of exp(±iωh0t ) to vanish, thereby obtaining the following set of differential equations:{

∂Ajh

∂τ
− ωh0δ(� − 2ωh0)Bjh = 0,

∂Bjh

∂τ
− ωh0δ(� − 2ωh0)Ajh = 0,

or

{
∂Ajh

∂τ
= ωh0δ(� − 2ωh0)Bjh,

∂Bjh

∂τ
= ωh0δ(� − 2ωh0)Ajh.

(C7)

These sets of equations are solved by differentiating one, substituting it into the other one, and exploiting the initial conditions
in Eq. (C4). Finally, we obtain

Ajh = 1√
2ωh0

sinh (ωh0τ )δ jhδ(� − 2ωh0),

Bjh = 1√
2ωh0

cosh (ωh0τ )δ jhδ(� − 2ωh0). (C8)

We proceed similarly for circuit 2, describing a quantum field with massive excitations. At the zeroth order in τ , the equation for
Qjh is identical to Eq. (C2), where now ωh0 corresponds to Eq. (4) of the main text at t = 0. At the first order, the equation is

2∂τ t Q
(0)
jh + ∂2

t Q(1)
jh + ω2

h0Q(1)
jh + 4E0

C
sin(�t )Q(0)

jh = 0. (C9)

Moving the zeroth order to the right side and replacing the solution of the zeroth order, Eq. (C3), into Eq. (C9), we obtain

∂2
t Q(1)

jh + ω2
h0Q(1)

jh = −2∂τ t Q
(0)
jh − 4Ẽ0

C
sin(�t )Q(0)

jh

= −2iωh0
[
(∂τ Ajh) exp(iωh0t ) − (∂τ Bjh) exp(−iωh0t )

]
+2iẼ0

C
[exp(i�t ) − exp(−i�t )]

[
Ajh exp(iωh0t ) + Bjh exp(−iωh0t )

]
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= −2i exp(iωh0t )

{
ωh0(∂τ Ajh) − Ẽ0

C
Bjh exp[i(� − 2ωh0)t]

}

+2i exp(−iωh0t )

{
ωh0(∂τ Bjh) − Ẽ0

C
Ajh exp[−i(� − 2ωh0)t]

}
. (C10)

As done above, we seek a solution without secularities, and therefore, we need to solve the pair of differential equations:

∂Ajh

∂τ
= Ẽ0

Cωh0
δ(� − 2ωh0)Bjh, (C11)

∂Bjh

∂τ
= Ẽ0

Cωh0
δ(� − 2ωh0)Ajh, (C12)

whose solutions are

Ajh = 1√
2ωh0

sinh

(
Ẽ0τ

Cωh0

)
δ jhδ(� − 2ωh0),

Bjh = 1√
2ωh0

cosh

(
Ẽ0τ

Cωh0

)
δ jhδ(� − 2ωh0). (C13)

A crucial consequence of the duality between LHTLs and RHTLs is that, by repeating the same procedure and solving the
equations of motion for RHTLs, we exactly obtain Eqs. (C8) and (C13) in the massless and massive cases, respectively (with
υ0h instead of ω0h).
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