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What are the fundamental limits and advantages of using a catalyst to aid thermodynamic transformations
between quantum systems? In this paper, we answer this question by focusing on transformations between
energy-incoherent states under the most general energy-conserving interactions among the system, the catalyst,
and a thermal environment. The sole constraint is that the catalyst must return unperturbed and uncorrelated with
the other subsystems. More precisely, we first upper bound the set of states to which a given initial state can
thermodynamically evolve (the catalyzable future) or from which it can evolve (the catalyzable past) with the
help of a strict catalyst. Secondly, we derive lower bounds on the dimensionality required for the existence of
catalysts under thermal process, along with bounds on the catalyst’s state preparation. Finally, we quantify the
catalytic advantage in terms of the volume of the catalyzable future and demonstrate its utility in an exemplary
task of generating entanglement and cooling a quantum system using thermal resources.
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I. INTRODUCTION

Classical thermodynamics is a theory of macroscopic sys-
tems in equilibrium, whose description relies on quantities
with fluctuations negligible compared to their average val-
ues [1,2]. As a byproduct, it gives a clear picture of what
state transformations are allowed in terms of a small number
of macroscopic quantities, such as work and entropy. Specif-
ically, at constant temperature and volume, transformations
between equilibrium states are governed by a simple func-
tion, the so-called Helmholtz free energy [3]. However, going
beyond the original scenario of equilibrium thermodynamics
has profound consequences. For finite-dimensional quantum
systems far from equilibrium, state transformations are no
longer governed by a single second law but by an entire
family of conditions known as the “second laws of quantum
thermodynamics” [4].

Under this paradigm, the existence of a family of general-
ized free energies, which indicate what states can be reached
from a given one (referred to as the present state), naturally
decomposes the space of states into three distinct parts: the
set of states to which the present state can evolve, known as
the future thermal cone T+; the set of states from which the
present state can be reached, or the past thermal cone T−;
and the set of states that are neither in the past nor the future
thermal cone, constituting the incomparable region T∅ [5,6]—
three regions analogous to the structure of the light cone in
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special relativity, which divides the space–time into future,
past, and space-like region (see Fig. 1). Consequently, the
issue of thermodynamic transformations in finite-size systems
is characterized by the emergence of a finite-size effect known
as incomparability.

Interestingly, one can reduce this effect by introducing a
catalyst—a system that allows us to perform otherwise im-
possible transformations, but is not modified itself, i.e., at the
end of the process it is returned unchanged [7,8]. Remarkably,
if we allow the catalyst to become correlated with the main
system while keeping its local state intact, transformations
are once again described by a single function, the standard
nonequilibrium free energy [9–12].

Over the last two decades, catalytic transformations have
become increasingly relevant in the context of quantum in-
formation science [7,8]. Their first appearance focused on
entanglement manipulation [7,13–20], which then broad-
ened to include quantum thermodynamics [4,9,12,21–31],
and many other facets of quantum theory [32–43]. The
only constraint of a catalytic process—returning the catalyst
unperturbed—leads to the classification of catalytic processes
into two main different types: (i) allowing it to become corre-
lated with the main system, or (ii) keeping it uncorrelated. As
pointed out earlier, the former case of correlated catalysis is
powerful enough to close the gap between the future and past
thermal regions. The latter, referred to as “strict catalysis”,
is much closer to the original idea of returning the catalyst
unperturbed. It is thus natural to ask about limitations of strict
catalysts—a problem we will discuss in this paper.

Arguably, one of the fundamental problems in quan-
tum thermodynamics concerns quantification of the catalytic
advantages in a given transformation. This issue can be ap-
proached by investigating the behavior of the thermal cones
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FIG. 1. Thermodynamic arrow of time. The second law of ther-
modynamics introduces an ordering in the space of states such that,
for a given initial state, it divides the space into past (blue), incompa-
rable (red), and future (green) regions. By allowing a catalyst c, the
future and past regions grow as the incomparable region shrinks.

when a catalyst is introduced. In this scenario, the catalyst
cannot change future into the past or vice-verse, nor can it
shrink both regions. Consequently, the growth of the past and
future thermal cones occurs at the expense of the incompa-
rable region. However, determining the set of states that can
be achieved with the aid of a catalyst has been considered a
highly nontrivial problem.

A complementary problem is that almost nothing is known
about the precise form of the catalyst state required for a
given transformation. Although in many cases the necessary
(and sometimes sufficient) conditions for the existence of a
catalyst are known, the theory remains agnostic regarding
the precise form and properties of the catalytic state itself.
The first steps towards addressing this problem were made in
Refs. [44,45] within the realm of entanglement theory, where
the authors focused on pure state transformations governed
by entanglement-assisted local operations and classical com-
munication (ELOCC). Therein, the authors consider bounds
for the entanglement of a catalyst necessary to catalyse trans-
formation between a given pair of otherwise incomparable
states. Furthermore, they established a lower bound for the
dimension of the catalyst required for a specific ELOCC trans-
formation. As these results rely on the notion of majorization,
they automatically extend to the resource theory of coherence,
as well as to so-called noisy operations, or incoherent ther-
mal operations at infinite temperature. For finite temperatures,
state transformations between specific quantum states (those
that are diagonal in the energy eigenbasis) are described by
a more general notion known as thermomajorization order.
This concept does not have an equivalent physical counter-
part in either entanglement or coherence theories. Currently,
understanding any relationship between the dimensionality or
form of the catalyst in a given thermal process aided by a strict
catalyst remains an open problem.

In this paper, we extend our understanding of the interplay
between quantum thermodynamics and catalysis. Our main
question can be framed as:

What are the ultimate limits for the set of states achiev-
able from a given initial state, with the aid of catalyst, under
the most general energy-conserving interactions between the
system and the thermal bath?

FIG. 2. Catalyzable regions. For a three-level system with pop-
ulation given by p = (0.42, 0.51, 0.07), represented by a black dot
•, and energy spectrum E1 = 0, E2 = 1, and E3 = 2 for β = 0.2,
we plot its (a) catalyzable future C+(p) (yellow) and (b) past C−(p)
(purple), together with their respective past and future thermal cones.
In (c) we show the catalyzable future for the four-level system with
p = (0.05, 0.28, 0.40, 0.27) and energy spectrum E1 = 0, E2 = 1,
E3 = 2, and E4 = 3.

This question can be tackled by defining the catalytic future
thermal cone TC+. This set represents the states to which a
given initial state p can be transformed with the aid of a cata-
lyst. Similarly, one can also define the catalytic past thermal
cone TC− by considering p as the target state of a transfor-
mation to be catalysed. We shed light on the answer to this
question by bounding the catalytic past and future cones—in
other words, we construct a catalyzable past and future. More
precisely, for a d-dimensional energy-incoherent state, we
present an explicit construction of the catalyzable past C− and
the catalyzable future C+, along with a characterization of its
extreme points. These results reveal fundamental limits on the
advantages achievable with uncorrelated catalysts (see Fig. 2
for a warm-up example, where we present the future and past
regions with and without catalyst for a three-and four-level
systems). As these results are general and do not rely on any
specific assumptions regarding the catalytic state, our second
focus is on the dimensionality and populations of the catalyst.
We derive lower bounds on the dimensionality required for
catalysts under thermal operations, together with bounds on
the catalysts population. Our results allows us to construct
a catalytic state given two incomparable states. Surprisingly,
our findings show that the no-go result from [45] formulated
for the resource theory of entanglement and applicable for the
infinite-temperature setting, stating that catalysis has no effect
under local operations and classical communication for a main
system of dimension three, ceases to apply in the context of
thermodynamics at finite temperatures.

Using the above framework, we also quantify the catalytic
advantage in terms of the volume of the catalyzable future.
In this context, we offer a detailed discussion on its behavior
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as a function of the ambient temperature. As an application,
we demonstrate the benefits of employing a catalyst in the
generation of entanglement. Recently Ref. [46] identified the
set of states that cannot become entangled under thermal oper-
ations. In this analysis, we elucidate the catalytic advantages
by identifying the set of states that, once catalysed, enable
entanglement generation under thermal operations.

The paper is organized as follows. In Sec. II, we introduce
the resource-theoretic approach to thermodynamics, review
known results concerning the conditions for state transforma-
tion under thermal operations, and establish the notation of
the paper. Section III, collecting our main results, begins with
the construction of the catalyzable past and future regions,
giving a simple method for generating all the extreme points
of the catalyzable future, thus providing the closest analog to
the Birkhoff theorem for the problem of catalysis in thermal
operations. Next, we state our second main result, which es-
tablishes a lower bound on the dimensionality of the catalyst
and introduces a constraint on its population vector for any
pair of incomparable states. In Sec. III C we discuss a quantifi-
cation of the catalytic advantage by volume of the catalyzable
future and past regions. Then, in Sec. IV A, we provide an
application of our results to entanglement generation under
thermal operations. Then, in Sec. IV B we provide additional
application in catalytic cooling. Finally, we conclude with an
outlook in Sec. V. The technical derivation of our results can
be found in the Appendices.

II. FRAMEWORK

In this paper, our aim is to investigate how the structure of
thermal cones is modified when a catalyst is introduced. We
approach this problem using the resource-theoretic framework
of thermodynamics [47,48]. In this section, we briefly review
well-known results without going into details and set the scene
by introducing the relevant notation.

A. Thermal operations

We consider a composite system comprised of a finite-
dimensional system and a thermal environment at temperature
T = β−1, where we set kB = 1. The main system is described
by a Hamiltonian H =∑d

i=1 Ei|Ei〉〈Ei| and is prepared in a
state ρ; while, the thermal environment, with Hamiltonian
HR, is assumed to be in a thermal equilibrium state, γR =
e−βHR/ZR, where ZR = tr(e−βHR ) is the partition function.

The evolution of the composite system is modeled by con-
sidering the set of thermal operations (TOs) [48–50]. These
are quantum channels defined upon minimal assumptions,
such as that the joint system is closed and evolves via an
energy-preserving unitary. This is captured by completely
positive trace-preserving (CPTP) maps that act on ρ as

E(ρ) = TrR[U (ρ ⊗ γR)U †], (1)

where U is a joint unitary that commutes with the to-
tal Hamiltonian of the system and the bath [U, H ⊗ 1R +
1⊗ HR] = 0.

The fundamental question within the resource-theoretic
approach is to identify the set of states that a given state ρ can
be transformed to under thermal operations. The reachability

of states under TOs can be studied by introducing the notion
of thermal cones [6]. Given ρ, the set of states achievable
under a thermal operation is referred to as the future thermal
cone T+(ρ). Conversely, the set of states that can evolve into
ρ is called the past thermal cone T−(ρ). The set of states
that are neither in the past nor the future of ρ is termed the
incomparable thermal regionT∅(ρ). The general characteriza-
tion of thermal cones is not known beyond the simplest qubit
case [51,52].

However, for states that are block diagonal in the energy
eigenbasis, also known as energy-incoherent states, a simple
construction based on thermomajorization relation exists. For
this class of states, the existence of a thermal operation be-
tween two states ρ and σ is equivalent to the existence of
Gibbs preserving (GP) matrices acting on their eigenvalues
p = eig(ρ) and q = eig(σ ) [49,53]. Furthermore, the exis-
tence of a GP matrix connecting two states can be expressed
by thermomajorization relations between p and q [50].

The framework of thermal operations naturally incorpo-
rates the phenomenon of catalysis by simply assuming that
the system ρ is given by a joint and uncorrelated system ρ =
ρS ⊗ ωC with Hamiltonian H = HS ⊗ 1C + 1S ⊗ HC [54].
Thus, we consider catalytic thermal operations (CTOs) to be
transformations of the following form:

E(ρ ⊗ ωC) = σ ⊗ ωC. (2)

When ρ and σ are energy-incoherent states, the necessary
conditions for the existence of a transformation as in Eq. (2)
is captured by a set of quantities called α-free energies

Fα (ρ, γ ) � Fα (σ, γ ) , ∀α � 0, (3)

where Fα (ρ) := [Dα (ρ‖σ ) − log Z]/β, with Dα (ρ‖σ ) being
the quantum Rényi divergence [55,56]. Nevertheless, a com-
plete characterization of the catalytic future thermal cone has
not yet been addressed.

B. Mathematical preliminaries

In our analysis we focus on d-dimensional states that are
diagonal in the energy eigenbasis and are equivalently de-
scribed by probability vectors corresponding to populations
assigned to respective energy levels,

ρ =
d∑

i=1

pi|Ei〉〈Ei| �−→ p = (p1, ..., pd ). (4)

Thus, the states under consideration live in the d-dimensional
probability simplex,

�d =
{

p = (p1, ..., pd ) ∈ Rd
�0 :

∑
i

pi = 1

}
. (5)

Unless stated otherwise, throughout this paper, we will work
under the assumption that the energy levels are nondegenerate,
i.e., i �= j ⇒ Ei �= Ej .
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Furthermore, we define the thermal distribution γ and slope
vector s(p) associated with a probability vector p as

γ := 1

Z

(
e−βE1 , ..., e−βEd

)
and s(p) :=

(
p1

γ1
, ...,

pd

γd

)↓

︸ ︷︷ ︸
(s1(p),...,sd (p))

,

(6)

where the down arrow denotes the vector arranged in nonin-
creasing order. Next, we define the β order of p.

Definition 1 (β ordering). Given p and γ , the β ordering
of p is defined by a permutation πp that satisfies

sπp(i)(p) = pi

γi
. (7)

Thus, the β-ordered version of p is given by

pβ = (pπ−1
p (1), . . . , pπ−1

p (d )

)
. (8)

Note that each permutation belonging to the symmetric group,
π ∈ Sd , defines a different β ordering on the energy levels of
the Hamiltonian H .

The above definition allows us to define a thermomajoriza-
tion curve.

Definition 2 (Thermomajorization curve). Given p, a ther-
momajorization curve f β

p : {0, 1} → {0, 1} is a piecewise
linear function composed of segments connecting the point
(0,0) and the points defined by consecutive subsums of the
β-ordered form of the probability pβ and the Gibbs state γβ ,(

k∑
i=1

γ
β

i ,

k∑
i=1

pβ
i

)
:=
(

k∑
i=1

γπ−1
p (i),

k∑
i=1

pπ−1
p (i)

)
, (9)

for k ∈ {1, . . . , d}.
Finally, we define the notion of thermomajorization in

terms of the respective thermomajorization curves.
Definition 3 (Thermomajorization). Given two

d-dimensional probability distributions p and q, and a
fixed inverse temperature β, we say that p thermomajorizes q
and denote it as p �β q, if the thermomajorization curve f β

p

is above f β
q everywhere, i.e.,

p �β q ⇐⇒ ∀x ∈ [0, 1] : f β
p (x) � f β

q (x). (10)

Let us make a few comments about the above definition.
First, at the infinite-temperature limit (or when β = 0), the
thermal distribution vector γ becomes the uniform state

η = 1

d
(1, ..., 1). (11)

Consequently, the concept of β ordering simplifies to ar-
ranging the probability vectors in nonincreasing order. Thus,
thermomajorization reduces to the well-known concept of
majorization [57]. Second, thermomajorization does not intro-
duce a total order (or even fails to be a partial order in some
cases, as proven in Ref. [58]), a given pair of states p and q
is said to be incomparable when neither p thermomajorizes q,
nor q thermomajorizes p. We denote incomparable states as
p ⊥β q.

The concept of incomparability can be studied by introduc-
ing the family of tangent vectors, a concept stemming from the
idea of tangent function. To gain some intuition about their

FIG. 3. Majorization curves of the tangent vectors. For the initial
state p = (0.43, 0.37, 0.18, 0.02), we plot the majorization curve of
p (black curve) along with the tangent vectors t (1), t (2), t (3), and t (4).

properties and interpretation, we first present its construction
for the simple case of β = 0 and then generalise to β > 0.

For any vector p, a tangent vector t (p) ≡ t is defined by
imposing that all its components, except the first and the
last are equal, ti = t j for all 1 < i < j < d . Furthermore, we
require that the majorization function ft agrees with fp at
no more than two consecutive elbows, i.e., ft (i/d ) = fp(i/d )
and ft (x) > fp(x) for x ∈ (0, i/d ) ∪ (i/d, 1) or ft (x) = fp(x)
for x ∈ [i/d, (i + 1)/d] and ft (x) > fp(x) elsewhere. The two
imposed conditions follow the intuition of tangency and, by
construction, satisfy the majorization relation t � p.

Assuming equality between ft (x) and fp(x) on a single
linear segment, x ∈ [i/d, (i + 1)/d], limits the tangent vectors
to a set of d unique probability vectors t (n), defined as follows:

t (n) = (t (n)
1 , p↓

n , ..., p↓
n , t (n)

d

)
, (12)

for 1 � n � d , where the first and last components are given
by

t (n)
1 =

n−1∑
i=1

p↓
i − (n − 2)p↓

n , t (n)
d = 1 − t (n)

1 − (d − 2)p↓
n .

(13)

An exemplary set of tangent vectors is depicted in Fig. 3.
Note that the tangent vectors t (n), which agrees with the

majorization curve of p at two successive points, can be used
to construct all possible tangent vectors t that meet the condi-
tion of agreement at least at a single point, ft (i/d ) = fp(i/d ).
The fact that t (n) may be a quasi-probability distribution does
not pose a problem as this vector can always be projected back
onto the probability simplex.

The intuition behind tangent vectors can now finally be
generalized to the case of finite temperatures. This is achieved
as follows.

Definition 4 (Thermal tangent vectors). Given an energy-
incoherent state p and a thermal state γ , consider distributions
t (n,π)(p) ≡ t (n,π) in their β-ordered form, constructed for each
permutation π ∈ Sd and n ∈ {1, ..., d},

[t (n,π)]β = (t (n,π)
π(1) , snγπ(2), ..., snγπ(d−1), t (n,π)

π(d )

)
, (14)
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with

t (n,π)
π(1) =

n∑
i=1

pβ
i − sn

(
n∑

i=1

γ
β

i − γπ(1)

)
, (15a)

t (n,π)
π(d ) = 1 − t (n,π)

π(1) − sn

d−1∑
i=2

γπ(i), (15b)

where sn := sn(p).
Given that the previous definition naturally includes the

case of β = 0, we will, from now on, simply refer to thermal
tangent vectors as tangent vectors.

Finally, notice that the same intuition as the case of β = 0
holds for β � 0: a tangent vector t (n,π ) is a probability distri-
bution with β order given by of almost-constant slope, such
that s[t (n,π )]i = sn(p) for 1 < i < d , with the first and last
slope adjusted such that t (n,π ) �β p and there exists a point x
at which ft (n,π ) (x) = fp(x). For a very large dimension d such
a state indeed looks like a tangent at point x.

III. MAIN RESULTS

In this section, we present our main results, which are di-
vided into two parts. First, we provide a condition that allows
one to characterize the set of states that can be catalyzable for
a given initial state. These results are general and do not rely
on any specific assumptions regarding the catalyst’s structure,
including its dimension, Hamiltonian, or state. Subsequently,
the second part of our results complements the first by estab-
lishing bounds on dimensionality and the region of the state
space within which a catalyst can be found.

A. Catalyzable past and future regions

We start by defining the catalytic thermal cones.
Definition 5 (Catalytic thermal cones). For a

d-dimensional energy-incoherent state p, we define the
catalytic future/past thermal cone TC+/− as subsets of the
incomparable region T∅(p) such that

TC+(p) ≡ {q ∈ �d : q ⊥β p, ∃k�2,c∈�k : p ⊗ c �β q ⊗ c}, (16)

TC−(p) ≡ {q ∈ �d : q ⊥β p, ∃k�2,c∈�k : q ⊗ c �β p ⊗ c}, (17)

In what follows, if q ∈ T∅(p), we will say that transfor-
mation p → q is catalysed, or that q is catalysed, omitting
explicit relation to p whenever it is clear from the context.

The following result establishes a necessary condition for
any state q to belong to the catalytic future thermal cone of a
state p.

Lemma 1 (Catalytic condition). Consider a pair of incom-
parable states q ⊥β p. The state q is catalysed (with respect
to p), ie. q ∈ TC+(p) [or, equivalently, p ∈ TC−(q)], only if it
satisfies

s1(p) > s1(q) and sd (p) < sd (q). (18)

Proof. Let us take a potential catalyst state c ∈ �k . The
slope vectors will be given as

s(p ⊗ c) = (s1(p)s1(c), . . . , s1(p)sk (c), . . . ,

sd (p)s1(c), . . . , sd (p)sk (c))↓, (19)

and same for q ⊗ c. In order for one state to thermomajorize
the other, p ⊗ c �β q ⊗ c, we need

s1(p ⊗ c) > s1(q ⊗ c), sdk (p ⊗ c) < sdk (q ⊗ c). (20)

From the definition of β-ordering we know instantly that
si(p) � s j (p) whenever i � j, similarly for q and c. Conse-
quently, we can state that

s1(p ⊗ c) = s1(p)s1(c), sdk (p ⊗ c) = sd (p)sk (c), (21)

and, again, analogously for q. Thus, we have

s1(p ⊗ c) > s1(q ⊗ c) ⇒ s1(p) > s1(q),

sdk (p ⊗ c) < sdk (q ⊗ c) ⇒ sd (p) < sd (q), (22)

which completes the proof. �
Combining Lemma 1 with the tangent vectors introduced

in Sec. II B enables us to provide a simple upper bound for
the catalytic thermal cones and characterize the catalyzable
regions as:

Theorem 2 (Catalyzable regions). Consider an energy-
incoherent state p and its associated tangent vectors t (n,π )(p).
We define two auxiliary sets

Ti(p) = conv
[{

t (i,π )(p)
}

π∈Sd

]
, (23)

where Sd is the set of all possible d-element permutations.
The catalyzable future and past regions are bounded by

C+(p) = [T1(p) ∩ Td (p)] \ T+(p), (24)

C−(p) = T∅(p) \ [T1(p) ∪ Td (p)]. (25)

That is, C−/+(p) ⊂ TC−/+.
Proof. The above follows from the fact that t (i,π )(p) by

construction thermomajorizes all q with β-order π such that
si(q) = si(p). In particular, t (1,π )(p) and t (d,π )(p) thermoma-
jorize all q that satisfy first and second part of Lemma 1,
respectively. As a consequence, q thermomajorized by both
t (d,π )(p) and t (d,π )(p) satisfies Lemma 1. The proof is com-
pleted by noticing, that⋃

π∈Sd

T+[t (i,π )(p)] = conv
[{

t (i,π )(p)
}

π∈Sd

]
. (26)

�
Theorem 2 establishes a fundamental limit for when an

incoherent strict catalyst is allowed to be used in a thermo-
dynamic process. In other words, there is no thermodynamic
process aided by a strict catalyst that can bring the initial state
out of the catalyzable future C+. Hence, the advantages gained
from using a catalyst are captured by such a region. However,
it is important to emphasize the limitations of such a result,
namely given a state q belonging to such a region, whether
there exists a catalyst c and a thermal operation E, such that
E(p ⊗ c) = q still remains an open problem.

In what follows, when we appeal to the sets Ti(p), we will
drop the argument whenever it is clear from the context.
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FIG. 4. Catalyzable regions for d = 3. For a three-level system with a state given by p = (0.34, 0.59, 0.07), represented by a black dot
•, and a thermal state γ , represented by a black star�, with an energy spectrum E1 = 0, E2 = 1, and E3 = 2, we plot its catalyzable thermal
cone for β ranging from (a) β = 0.2 to β → ∞.

Finally, the extremal points of the catalyzable set can be
derived directly from its thermomajorization curve.

Corollary 3 (Extreme points of C+). Consider an energy-
incoherent state p and an extreme point vπ of its catalyzable
future region C+(p), corresponding to the β-order π. The
elbows of its thermomajorization curve fvπ are determined by

fvπ (
i ) = min[ ft (1,π) (p)(
i ), ft (d,π) (p)(
i )], (27)

where we have 
i =
∑i

j=1 γπ ( j).
Proof. It follows directly from translating Theorem 2 to

thermomajorization curves. �
It is interesting to note that the full catalyzable future C+

of any given state will have much fewer extreme points than
the corresponding future thermal cone.

Lemma 4 (Number of extreme points). Consider a state
p ∈ �d . The number of extreme points of the full catalyzable
future thermal cone CT+(p) ≡ T+(p) ∪ C+(p) of any given
state p ∈ �d is upper-bounded by

|Ext(CT+(p))| �
⌈

d

2

⌉(
d⌈
d
2

⌉)� d!, (28)

where d! � |Ext(T+(p))| is the upper bound on the number
of vertices of the future thermal cone of p.

The proper proof of this geometric insight is given in the
Appendix C. However, an intuition for the upper bound can
be found by considering a ball B(R, c) of radius R centered
at the center c of the simplex �d . First, for some R = Rd−1

the ball becomes inscribed, with a single common point with
each hyperface of the simplex. Next, we have R = Rd−2,
when the ball touches each hyperedge at exactly one point.
For Rd−1 < R < Rd−2, we find a (d − 1)-dimensional ball on
each of the hyperfaces. Replacing the ball with an inscribed
inverted simplex yields the desired result.

The analogy drawn between special relativity and Gibbs-
preserving matrices introduces a causal structure into the
probability simplex �d , suggesting a “light cone” for each
point within �d that divides the space into past, incomparable,
and future regions. This analogy implies that, much like in
special relativity, a specific division of space-time exists. This
division separates space-time into future, past, and space-like
regions. This allows for the identification of the generating
event, which is referred to as the present. Furthermore, there
exists a one-to-one correspondence between events and the
space-time divisions they induce. This concept is mirrored in

the thermal cones for β > 0: given a specific configuration of
the incomparable region along with future and past thermal
cones, one can precisely determine the current state of the
system [see black dot • in Figs. 4(a)–4(d)]. This is in sharp
contrast to the situation with β = 0, where each division
into past, future, and incomparable has a d!-fold symmetry,
making it impossible to deduce the present state of the system
based solely on this division without additional details such as
the permutation that arranges the probabilities in nondecreas-
ing order. Interestingly, in certain temperature regimes, the
structure of the catalyzable future mimics this feature, where
the past and future regions meet again [see Figs. 4(a)–4(d)].

The concept of catalyzable regions applies also to other
majorization-based resource theories, such as entanglement
and coherence theories, where they proceed from the [45] di-
rectly in combination with the tangent vectors. These theories
are defined by sets of free operations and free states: local op-
erations and classical communication (LOCC) with separable
states in entanglement theory [59], and incoherent operations
(IO) with incoherent states in coherence theory [60]. In each
theory, quantum states can be represented by probability dis-
tributions, which are crucial for defining state transformation
conditions under free operations. However, in both cases, the
partial order that emerges is precisely the opposite of the ther-
modynamic order in the infinite temperature limit [61,62]. As
a result, what constitutes the catalyzable thermodynamic past
and future in thermodynamics becomes the future and past in
entanglement and coherence theories, while the incomparable
region remains unchanged. Nevertheless, it is important to
highlight that there is no fully equivalent physical situation
in either entanglement or coherence theories where thermo-
majorization is applicable.

B. Dimensionality bounds for thermal catalyst

Our second main result concerns general bounds on the cat-
alyst dimension for thermal operations, extending the bounds
described in Ref. [45] for local operations and classical
communication. Notably, unlike the entanglement scenario,
catalysis is possible even when the main system is a three-
level system.

Theorem 5 (Dimensionality criteria). For two incompara-
ble energy-incoherent states p ⊥β q, we define a maximal
interval L as

L = {x ∈ (0, 1) | fp(x) − fq(x) < 0}, (29)
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and denote m = min(L) and n = max(L). Consider a cata-
lyst r ∈ �k with Hamiltonian Hc. The transformation can be
catalysed by r, that is, p ⊗ r �β q ⊗ r, only if its dimension
satisfies the required conditions

k > k∗ = log b

log a
+ 1, (30)

with the coefficients a, b defined as

a = min

(
s1(p)

f ′
p(m−)

,
f ′

p(n+)

sd (p)

)
> max

v∈(0,1)

(
f ′
r (v−)

f ′
r (v+)

)
, (31)

b = max
l∈L

(
f ′

p(l−)

f ′
p(l+)

)
<

s1(r)

sk (r)
, (32)

where for brevity we use f ′(x) ≡ d f (x)/dx and f ′(xi ) ≡
f ′(x)|x=xi . Furthermore, we denote the left and right deriva-
tives as f ′(x±) = limy→x± f ′(y).

The full proof of the above theorem is given in Ap-
pendix B. Therein, we present a heuristic proof in which
we treat (thermo)majorization curves as continuous objects,
and an exact proof based on the notion of an embedding
map [50], where thermomajorization �β is equivalent to ma-
jorization � in the (embedded) higher-dimensional space.
Both approaches agree in the obtained extension of the re-
sults presented in [45]. Crucial insight leading to the results,
however, is that catalyzability of thermal states is encoded
in the slopes of thermomajorization functions, which may
be obtained directly from the relation between the state of
the system and the underlying Gibbs distribution. This stands
in contrast with the standard understanding that transition
from majorization to thermomajorization requires generically
infinite-dimensional system.

We may further simplify the expressions above to remove
optimization over an interval in favor of a finite set of points.

Lemma 6 (Interval to point optimization). For a given
state p, we define an auxiliary set of indices L′ ⊂
{1, . . . , d} as

L′ =
{

l ∈ {1, . . . , d} | 
l =
l∑

i=1

γ
β

i , fp(
l ) − fq(
l ) < 0

}
, (33)

where γβ is assumed to be ordered according to the β-order
of p. Then we find that

max
l ′∈L′

sl ′ (p)

sl ′+1(p)
= max

l∈L

(
f ′

p(l−)

f ′
p(l+)

)
= b. (34)

Proof. The ratio between left and right derivative is equal
to one whenever the function is differentiable. Therefore, the
only points where we might find nontrivial values are for the
elbows of the thermomajorization curve fp, described entirely
by the set L′. �

Theorem 5 has notable implications for the catalyzability
of low-dimensional systems. Specifically, we derive the fol-
lowing two corollaries:

Observation 7 (Thermal noncatalyzability for d = 2).
Consider two states described by population vectors
p, q ∈ �2 such that p ⊥β q. There exists no state r ∈ �k ,
which can catalyse the transformation.

Proof. A heuristic argument can be given based on the
embedding lattice introduced in [6]—any two states p, q of
dimension d = 2, for β > 0 and different β orders, have an
effective dimension d̃ = |{∑i∈I γi|I ∈ 2{1,2}}| − 1 = 3, where
by | · | we denote the size of the set, and they fall within the
scope of Property 2 from [45].

For the more formal proof, we start by assuming that p and
q have different β orders. From their incomparability we find
that they have to satisfy

q2 � p1
γ2

γ1
, q2 + q1

γ1 − γ2

γ1
� p1. (35)

By simple manipulation, the second inequality is turned into

1 − q1 + q1
γ1 − γ2

γ1
� 1 − p2, (36)

q1
γ2

γ1
� p2. (37)

Together with the first inequality we have

s1(q) = q2

γ2
� p1

γ1
= s1(p), s2(q) = q1

γ1
� p2

γ2
= s2(p), (38)

which contradicts the necessary condition expressed in
Eq. (18) for catalyzability. �

The more interesting case occurs in dimension d = 3.
Observation 8 (Thermal catalyzability in d = 3). There

exist pairs of states described by population vectors p, q ∈ �3

such that q ∈ C+(p) and a catalyst r ∈ �k such that
p ⊗ r �β q ⊗ r.

Proof. An explicit example can be given by considering a
pair of incomparable vectors p = (0.42, 0.51, 0.07) and q =
(0.52, 0.13, 0.05), both with energy spectrum E0 = 0, E1 =
1, and E2 = 2 and inverse temperature β = 0.2. Then, a two-
dimensional catalyst, described by a state r = (0.55, 0.45)
with trivial Hamiltonian Hc = 0, catalyses the transformation,
since p ⊗ r �β q ⊗ r. More generally, it is simple to see that
as soon as β > 0, we find that for a generic state p, the
catalyzable future is nonempty C+(p) �= ∅. �

Furthermore, using Theorem 5 we can formulate certain
bounds on qubit catalysts, limiting the corresponding proba-
bility vector r to a specific interval.

Corollary 9 (Trivial qubit catalysts). Consider a pair of in-
comparable states p, q ∈ �d such that q ∈ C+(p). A qubit
catalyst in a state r = (1 − t, t ) with t � 1/2 and described by
a trivial Hamiltonian Hc = 0 can catalyse the transformation,
p ⊗ r � q ⊗ r only if

1

1 + a
� t � 1

1 + b
(39)

with a, b defined as in Theorem 5.
In contrast to [45], the provided bound on qubit catalyst

is expressed in terms of coefficients a, b, which are implicitly
functions of both the underlying probability vector p and the
underlying energy level structure given by the Gibbs state γ .
Moreover, similar bounds can be given for qubit catalysts with
nontrivial energy level structure.
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Corollary 10 (Nontrivial qubit catalysts). Consider a pair
of incomparable states p, q ∈ �d such that q ∈ C+(p) and a
qubit catalyst in a state r = (1 − t, t ) with Hamiltonian such
that the Gibbs state is given by γ r = (1 − γr, γr). For t � γr

it can catalyse the process only if

γr

a(1 − γr) + γr
� t � γr

b(1 − γr) + γr
; (40)

for t � γr it can catalyse the transformation only if

1 − γr

bγr + 1 − γr
� 1 − t � 1 − γr

aγr + 1 − γr
, (41)

where in the above we take a, b from Theorem 5.
It is worth noting that the two bounds above are symmetric

with simultaneous replacement of t ↔ 1 − t and γr ↔ 1 − γr

and thus, in a certain sense, the allowable region for qubit
catalysts retains the symmetry with respect to the Gibbs state.

C. Quantifying catalytic advantages

The characterization of the catalyzable regions naturally
enables the quantification of the catalytic advantage through
their respective relative volumes. Given a state p, we define

Vi(p) = Vol[Ci(p)]

Vol(�d )
for i ∈ {+,−}, (42)

as the volumes of the catalyzable past and future, where Vol(·)
denotes the Euclidean metric volume. Both volumes also help
us to understand the behavior of the catalytic set for a given
choice of state and temperature.

We begin our analysis of the volumes of catalyzable ther-
mal cones by presenting general properties that can be directly
read from our results. The starting point is a straightforward
result that follows directly from Theorem 2, namely

Corollary 11 (Zero volume for nonfull rank states). the
catalyzable past thermal cone of a nonfull rank state has zero
volume.

Proof. Without loss of generality, consider a nonfull
rank state p = (p1, ..., pd−1, 0). Applying Eq. (14) yields
t (d,π)
i (p) = δπ(1),i, for all π ∈ Sd . Consequently, the incom-

parable region is given by all points in the interior of the
probability simplex, except those that are in the future of p.
Then, all the points of the past will be located at the edge.
Therefore according to Theorem 2 there is no catalyzable past
and its volume is zero. �

The above result also enables us to state a general behavior
for sharp states vk with (vk ) j = δ jk :

Corollary 12 (Zero volume for sharp states). The catalyz-
able future thermal cone of a sharp state vk has zero volume.

Proof. We proceed by showing that the extreme points of
the catalyzable set coincide with the extreme points of the
future thermal cone of the sharp state. First, we consider
the slope vector s(vk ) of a sharp state vk . We readily determine
that s j (vk ) = δ j1

γk
. From this, it is straightforward to conclude

that the corresponding dth tangent vectors are represented
by sharp states, i.e., t (d,π)(vk ) = vπ (1). The components of

the first ones are expressed as t (1,π)
i (vk ) = γi/γk for i < d .

Second, upon defining a projection operator P̂ that acts on
a probability vector, we ensure that the thermomajorization
function at each elbow is defined to be

fP̂t (
i) = max [1, fP̂t (
i )], ∀
i =
i∑

j=1

γπ ( j). (43)

Using the above projection onto the simplex �d one finds that
either P̂t (1,π)(vk ) = vk or P̂t (1,π)(vk ) is an extreme point of
the future thermal cone T+(vk ). Thus, we find that T+(vk ) =
T1(vk ) and, in consequence, T1(vk ) ∩ Td (vk ) \ T+(vk ) = ∅,
which completes the proof. �

Note that there is an interplay between the volumes of the
catalyzable future and past, and the volume of the incompa-
rable thermal region. Understanding the general behavior of
their volumes is complex as it depends on the state under con-
sideration. Nevertheless, a significant insight can be obtained
by resorting to the fact that the state of nonfull rank with the
smallest future thermal cone is known [6]. For this state, the
following result can be proven.

Corollary 13 (Noncatalyzable state). The nonfull rank
state with the smallest future thermal cone

g = 1

Z g

(
e−βE1 , ..., e−βEd−1 , 0

)
where Zg =

d−1∑
i=1

e−βEi ,

(44)

cannot be catalysed, i.e., the volume of its catalyzable future
is zero.

Proof. Given the assumption that if i > j ⇒ Ei < Ej , we
conclude that γi � γ j . From this, we observe that that either
t (d,π)(g) = g or t (d,π)(g) is an extreme point of the future
thermal cone T+(g). Therefore, we find that T+(g) = Td (g),
leading to the conclusion that T1(g) ∩ Td (g) \ T+(g) = ∅. �

The analysis and discussion of the volumes has proceeded
without explicit computation. Several algorithms are known
for calculating the volumes of convex polytopes [63,64]. More
specifically, it is observed that the catalyzable future is given
by the intersection of two simplices, which reduces the com-
plexity of volume calculation thanks to the reduction of the
number of vertices (see Lemma 6) in comparison to the full
thermal future cone.

One might ask about the states in �d that possess the high-
est volumes of catalyzable future. Answering this question
generally is highly nontrivial. The challenge arises because
the volumes depend significantly on the initial state, and
computing them for higher dimensions is not straightforward.
However, by resorting to low-dimensional systems, we can
still gain some insights into how catalyzability behaves as a
function of inverse temperature. In this regard, we illustrate
the profile of the catalyzable future’s volume as a function of
β in Fig. 5 for a three-level system. It is observed that states
with the highest volumes are concentrated near the edges of
the probability simplex, and the volume of the catalyzable
future tends to be higher for states that are not of full rank.
Interestingly, in the extreme cases of β = 0 and β → ∞,
catalysis has no effect.
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FIG. 5. Isovolumetric curves for d = 3. For a three-level system described by an equidistant energy spectrum with E1 = 0, E2 = 1, and
E3 = 2, we plot the volume of the catalyzable future for several regimes of β. The lines indicate states with equal volumes, and the colors
represent their magnitudes as a fraction of the maximal volume, V+/(max�3 V+). The yellow star depicts the thermal state, and the dashed
line indicates the boundaries between the six possible β orderings, dividing the simplex into six chambers. Note that at the boundaries V+
goes to zero, while maxima are located at the outer edges of each chamber.

IV. APPLICATIONS

A. Entanglement generation under thermal operations
with catalyst

As a direct application of our results, we demonstrate the
catalytic advantages of generating entanglement from sepa-
rable bipartite states under thermal operations. Throughout
this section, we will focus on a composite system consist-
ing in two two-level systems with identical energy levels
H = diag(0, δ). For this reason, the total Hamiltonian of the
system, HAB = H ⊗ 1+ 1⊗ H has a degenerate energy sub-
space corresponding to E01 = E10 = δ, and without loss of
generality we may set δ = 1. Within this subspace any unitary
operation remains Gibbs-preserving, which allows for genera-
tion of entanglement while simultaneously respecting the laws
of thermodynamics.

Recently, the necessary and sufficient conditions for
producing bipartite qubit entanglement from an initially
separable states via thermal operations were addressed in
Ref. [46]. States that cannot get entangled under thermal oper-
ations are said to belong to the thermally nonentanglable set,
mathematically denoted by TN. Conversely, states that can
get entangled under thermal operations lie in the entanglable
set TE. By using the results on the catalyzable future region
C+, we may now answer the natural question whether bor-
rowing catalyst allow more states to get entangled. Defining
the catalytically nonentanglable set CN as the set of states
that cannot be entangled even with the aid of catalysis, the
question can be reframed—Is the set CN smaller than TN,

or in terms of volumes,V(CN )/V(TN )
?
< 1 for a given β?

To begin with, we focus on the infinite temperature case
β = 0. Remarkably, in this regime, the thermally nonen-
tanglable set TN reaches its maximum volume and can be
analytically constructed. In order to investigate the catalyti-
cally nonentanglable set CN, we start by using Theorem 2,
where we construct the catalyzable future for two qubits and
verify whether it lies within the thermally nonentanglable set.
Next, by employing a numerical bisection-based algorithm
inspired by vacuum-packaging, we generate an approximation
of the boundary ∂CN. This allows us to estimate the ratio of

the volumes V(CN )/V(TN ) ≈ 0.88. In Fig. 6(a), we show
the thermally nonentanglable set without (left panel) and with
(right panel) a catalyst.

It is interesting to note that for β > 0, although the set TN
remains convex as verified by numerical approximations, the
set CN becomes nonconvex [see Fig. 6(b) for an example
considering β = 0.5]. In fact, by reverse engineering the nu-
merical approximations, we find that CN is a set sum of a
certain convex set CN0 and a future of a certain distinguished
subspace-thermalized state, p∗. First, concerning the distin-
guished state, we have

Proposition 14 (Partially thermalized state and nonen-
tanglability). The future thermal cone T+(p∗) of the partially
thermalized state

p∗ = 1

4 + 2 cosh(β )
(eβ, 1, 1, 2 + e−β ) (45)

is fully contained in the catalytically nonentanglable set,
T+(p∗) ⊂ CN.

We give the entire proof of this fact in Appendix D. Fur-
thermore, based on numerics we put forward the following

Conjecture 15 (Nonentangable decomposition). The cat-
alytically nonentanglable set can be decomposed into

CT = CT 0 ∪ T+(p∗), (46)

where

CT 0 = CT \ [T+(p∗) \ T+(p∗∗)], (47)

with p∗∗ = 1
4+2 cosh(β ) (eβ, 3, 1, e−β ).

The conjecture is based on numerical approximations with
high precision, and we believe it to hold true. Furthermore, it
can be partially supported by noting that for a ball B(p∗, δ) of
radius δ around the state p∗ any state q ∈ [B(p∗, δ) \ T+(p∗)]
does not belong to CN by simple arguments of either not
belonging to TN or by the fact that C+(q) \ TN �= ∅.

Using the introduced numerical approximations we derived
the dependence of the volumesV(TN ) andV(CN ) for both
thermal and catalytically nonentanglable sets and their ratio as
a function of β, demonstrated in Fig. 7.
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FIG. 6. Thermally nonentanglable states with (and without) catalyst. Two-qubit states that cannot become entangled under thermal
operations are illustrated for two scenarios: without a catalyst (shown in the left panel in blue) and with a catalyst (shown in the right panel in
red), for (a) β = 0 and (b) β = 0.5.

B. Optimal cooling with a catalyst

As a second application of our findings, we explore the
task of cooling a three-level system with the aid of a catalyst.
Our setup comprises a three-level system, a thermal environ-
ment, and a catalyst. We assume that the composite system
forms a closed system and evolves unitarily under an energy-
preserving interaction (as discussed in Sec. II). Consequently,
the energy exchange in the process is account for as heat,
which can be determined by calculating the energy difference
between the initial and final states after the interaction. Thus,
our figure of merit is defined as follows:

Qc(ρ) = min
σ ∈T+(ρ)

tr[H (σ − ρ)]. (48)

where ρ and σ are energy-incoherent states. In other words,
we ask for the optimal thermal operation, which cools down
the system Qc(ρ) < 0, while heating up the environment. As
discussed in Sec. II, the set of achievable states under thermal
operation is convex and one can prove that the optimal cooling
(when it happens) occurs when the initial state is mapped to
one of the extreme points of its future thermal cone. Now one
can ask, what is the optimal cooling that can be achieved when
we allow a strict catalyst? This question can be answered

FIG. 7. Thermally nonentanglable volume with(out) catalyst. Nu-
merical estimates for the volumes V(CN ) (blue line), V(TN )
(orange line), and their ratio (green line), with the axis on the left
for volumes and on the right for the ration. The character of the
curves shows that, even though the volumes of both thermally and
catalytically nonentanglable sets both go to zero together with β

going to infinity, the ratio of the volumes also diminishes, pointing
to an increasing catalytic advantage in entanglement generation.

by employing Theorem 2 and evaluating the extreme point
of the catalyzable set. Since answering such a question in a
general manner is highly nontrivial due to the state-dependent
character of the problem, we can assume that we have access
to the initial state preparation of the system and use our
results to find the optimal cooling. Consider, for instance,
an initial state denoted by p = (0.1, 0.2, 0.7), characterized
by a Hamiltonian with an equidistant spectrum: E0 = 0,
E1 = 1, and E2 = 2. Additionally, let us assume that the sys-
tem can interact with a thermal environment prepared at an
inverse temperature of β = 0.2. This state has β-ordering
πp = (3, 2, 1). To effectively cool the system, the optimal
strategy is to send it to the extreme point of its future thermal
cone with β-ordering π
 = (1, 2, 3). Consequently, the initial
state p transforms to pπ
 ≈ (0.78, 0.15, 0.07). This transfor-
mation results in a heat exchange of approximately Qc ≈
−1.3135, effectively cooling the system down. Allowing a
strict catalyst to aid the process, as given in Theorem 2, we
observe a shift in the extreme point with β-ordering π
 =
(1, 2, 3). This shift allows for a more “substantial cooling”.
According to Corollary 3, our results suggest that the initial
state p could now be transformed to p
 ≈ (0.85, 0.08, 0.07)
(see Fig. 8). In this process, the heat exchange is approx-
imately Q


c ≈ −1.38, surpassing |Qc| in magnitude. This
simple example illustrates the fundamental limits for cooling
a quantum system under thermal operations.

A more general statement can be made by considering a
d-dimensional system described by an equidistant Hamil-
tonian H =∑d−1

n=0 n|n + 1〉〈n + 1|, with n ∈ {0, d − 1}, in
contact with a thermal bath at an inverse temperature β.
Assuming that the system is prepared in a thermal state
at some hotter inverse temperature βh < β, its β-ordering
is (d, d − 1, . . . , 1) and its slope vector has entries given
by s(p)i = exp[(β − βh)Ed−i]/ZhZ , where Zh =∑d−1

i=0 e−βhEi .
The optimal cooling is generically achieved by transforming
the state p into a state q with β-order (1, 2, . . . , d ). Observing
that for each j ∈ {0, d − 1}, there exists an mj ∈ {0, d − 1}
such that the inequality

mj∑
i=1

γd−i+1 �
j∑

i=1

γi �
mj+1∑
i=1

γd−i+1 (49)
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FIG. 8. Catalytic cooling. For a three-level system with a pop-
ulation given by p = (0.1, 0.2, 0.7), represented by a red dot, and
energy spectrum E1 = 0, E2 = 1, E3 = 2 for β = 0, the optimal
cooling (without a catalyst) consists of mapping p to the extreme
point of its future thermal cone with β ordering (1, 2, 3) (dark blue
point). When a catalyst is allowed, its future thermal cone expands,
and the optimal cooling is achieved by sending p to the extreme point
of the catalyzable set with the same β-ordering (light blue dot). The
arrow from the dark blue point simply indicates that a catalyst allows
for bringing the initial state closer to the ground state compared to
the case without a catalyst.

holds, we can state that
∑m1

i=1 pd−i+1 � q1 �∑m1+1
i=1 pd−i+1

is valid for the population of q corresponding to the ground
state. On the other hand, we can consider the catalytic trans-
formation p ⊗ c → qc ⊗ c, where qc represents the optimal
target state achieved with the catalyst. Taking into account
Theorem 2, we find that

(qc)1 � s(p)1γ1 = 1

Zh
e(β−βh )Ed−βE1 . (50)

Given our assumption that the system Hamiltonian is de-
scribed by an equidistant spectrum, we ensure that (qc)1 � q1

when the following inequality holds:

1 − e−βd

1 − e−β

1 − e−(mj+1)βh

1 − e−βh
� e(β−βh )(d−1). (51)

While there is no closed-form solution to the above inequality,
one can still numerically evaluate critical temperatures β

↓
h , for

which the catalytic advantage is guaranteed. Conversely, if

e(β−βh )(d−1) � 1 − e−βd

1 − e−β

1 − e−mjβh

1 − e−βh
, (52)

we obtain a no-go result indicating that no catalytic advantage
for cooling starting from a hot Gibbs state can be achieved
above a certain inverse temperature β

↑
h . For very high tem-

peratures, i.e., when βh < β � 1, we can expand both β and
βh in Eqs. (51) and (52) to linear order to obtain approximate
critical temperatures as

β
↓
h = d[3β(d − 1) − 2](mj + 1) + 2

2d − mj − 2
,

β
↑
h = d[3β(d − 1) − 2]mj + 2

2d − mj − 1
. (53)

Consequently, catalytic advantages in cooling the initial sys-
tem are guaranteed for βh � β

↓
h . Conversely, for βh � β

↑
h , we

encounter a no-go result indicating that such cooling cannot

occur. Finally, let us mention that there have been several
studies on the problem of cooling, either using the resource-
theoretic approach to thermodynamics or under a different
umbrella of quantum thermodynamics [65–68]. In particular,
Ref. [22] uses the approach of catalytic thermal operations
for the task of cooling. However, their focus is on providing
sufficient and necessary conditions on the amount of resources
needed to cool a system close to its ground state. Additionally,
the catalyst is allowed to return ε away from its initial state.
Therefore, the results presented in this section complement
the previous ones by finding the optimal bounds on the heat
exchange, which leads to cooling the initial system.

V. SUMMARY AND DISCUSSION

In this paper, we explore the fundamental limits on state
achievability with the aid of a strict catalyst under a thermal
process. We propose an approach to address this question by
constructing the sets of states that can be achieved from a
given energy-incoherent state under catalytic thermal opera-
tions, as well as the sets of states that can, through catalytic
thermal operations, achieve the initial state. These regions
naturally highlight the advantages of using a strict catalyst
in general thermodynamic processes, whose only assump-
tion is energy conservation. Our construction enables us to
characterize the catalyzable past and future for main sys-
tems of arbitrary dimensions. This analytical approach is
based solely on thermomajorization relations and calculation
of slopes of the resulting thermomajorization curves, pro-
viding a way of verifying noncatalyzability in finite number
of steps. Furthermore, we established general bounds on the
catalyst dimension for thermal operations and demonstrated
that catalysis is effective under thermal operations even for
systems of dimensionality as small as d = 3. The catalytic
advantages were quantified by the volume of the catalyzable
future, with a detailed discussion on its behavior as a func-
tion of temperature. Moreover, we applied our findings to
address two practical questions: the generation of entangle-
ment under thermal operations and the optimal cooling of
a quantum system.. In the first application, we showed that
thermal processes, which were once incapable of generating
entanglement, allows its generation when a strict catalyst is
employed. While in the second, we discussed the ultimate
limits of cooling aided by catalysts.

To address this problem, we overcome several challenges.
Firstly, there is no efficient method for characterizing the set
of allowed state transformations under catalytic thermal oper-
ations. A comprehensive analysis for inexact catalysis (where
the catalyst is allowed to be returned with some minor error)
was performed in [23]; while, in Ref. [28], the authors solved
the characterization problem for three-dimensional systems
and for a subset of initial states of generic dimensions in
the context of catalysis in elementary thermal operations.
Secondly, keeping track of the the set of achievable state
after “decoupling” the catalyst without specifying the precise
form of the catalyst state required by the transformation is a
highly difficult mathematical problem. Approaching from the
perspective of lattice theory, this problem can be framed by
asking (i) how to characterize the higher-dimensional lattice
for composite systems (main system plus catalyst) and (ii)
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how to project back to the native lattice of the main system
while preserving the catalytic effects in the native lattice of the
initial state. For small-dimensional systems (such as d = 3),
the entire convex polytope p ⊗ c can be constructed, and
intersections between such a polytope and plane equations en-
forcing the catalyst recovery condition can be numerically
identified. However, this method does not scale well and de-
pends heavily on the initial state of the system and the catalyst.
In contrast, our approach requires only constructing a set of
quasi-probability vectors or determining the extremal points
through thermomajorization relations.

There are many possibilities for extending our results.
For instance, they can be leveraged to study catalysis within
the framework of elementary thermal operations. Note that
the characterization of the catalyzable past and future relies
entirely on the concept of tangent vectors, which tightly ther-
momajorize p. On the other hand, the extreme points of set
of states achievable under elementary thermal operations are
known to be β-swaps that tightly thermomajorize the initial
distribution. Consequently, one could explore how to adapt
the technical aspects of our findings to this specific context.
In a similar spirit, we could relax the condition requiring the
catalyst to be returned unperturbed and allow for some small
error. A natural quantifier for this error is the trace distance,
and the problem could be reframed by asking for the set of
states achievable with a given catalyst up to this specified
amount of error [23].

It is tempting to suggest that the results obtained in this
paper, as an extension of prior results of Grabowecky and
Gour [45], may point to even more general statements. Noting
that majorization and thermomajorization curves are, in fact,
totally ordered set of monotones, one may imagine the fol-
lowing statement: given two states, X and Y , are such that the
first and last monotones for X are greater than that of Y , then
the transformation is catalyzable, thus providing a method for
constructing the catalyzable past and future for more general
resource theories. This, however, is beyond the scope of this
paper.

Finally, our results imply that one can potentially (for a
fixed finite dimension) replace an infinity family of second
laws by a finite set of conditions. As it can be checked, within
the catalyzable region the second laws are fulfilled and as soon
as we get out of it, they are broken. So, an ambitious question
is whether our results can be reformulated (or adapted), so that
given p and q, one can check a finite number of conditions to
verify whether p can catalytically thermomajorizes q. Note
that, our results shows that for every p, we have a method
to calculate the extended future thermal cone. For each β

order, this cone is defined by an extreme point of the catalyz-
able set. While membership in this region does not guarantee
the existence of a catalyst, nonmembership guarantees its
nonexistence.
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APPENDIX A: REFRAMING ENTANGLEMENT
CATALYSIS BOUNDS FOR THERMAL OPERATIONS

We start by revisiting the results presented in Ref. [45] and
adapt them to the context of thermal operations at the infinite
temperature limit. First, we establish a simple necessary con-
dition: For a pair of vectors p and q, a catalyst r such that
p ⊗ r � q ⊗ r exists only if p↓

1 < q↓
1 and p↓

d > q↓
d . Based on

this assumption, we then restate the main theorem from the
aforementioned study.

Theorem 16 (Theorem 1 of Ref. [45]). Consider two states
described by population vectors p, q ∈ �d , which are incom-
parable, p ⊥ q (ie. neither p ≺ q nor q ≺ p) and p↓

1 > q↓
1 and

p↓
d < q↓

d . We define a set of indices L as

L =
{

l ∈ {1, 2, ..., d} |
l∑

i=1

p↓
i − q↓

i < 0

}
(A1)

and take m = min(L) and n = max(L). The catalyst r ∈ �k

can catalyse the transformation, ie. p ⊗ r � q ⊗ r, if and only
if its dimensionality satisfies

k > k∗ = log b

log a
+ 1 (A2)

with the coefficients a, b defined as

a = min

(
p↓

1

p↓
m

,
p↓

n+1

p↓
d

)
> max

v∈{1,2,...,k−1}

(
r↓v

r↓v+1

)
, (A3)

b = max
l∈L

(
p↓

l

p↓
l+1

)
<

r↓1
r↓k

, (A4)

and provide bounds for the entries of the catalyst state r.
Note that the bound depends explicitly only on the entries

of the initial state p, with the target state q entering the picture
indirectly via the set L, which defines the range of the entries
taken into consideration for optimization purposes. In a more
recent study bounds using both p and q entries explicitly have
been proposed [69]; however, the bounds introduced therein
are necessarily weaker than the ones introduced in [45], and
therefore redundant.

We also recall the resulting limitations of the catalytic
processes for β = 0.

Observation 17. For incomparable states of dimension
d � 3 catalysis with incoherent catalyst is not possible for
noisy operations.

The proof is given in Ref. [13]. Moreover, in Ref. [45], we
find two further corollaries of interest.

Corollary 18. Whenever p↓
1 = p↓

m or p↓
n+1 = p↓

d , catalysis
is impossible.

Proof. In either case we have a = 1, and hence by Theo-
rem 16 one finds that k∗ → ∞. �

Finally, it is important to note that the results immediately
define an admissible region for an incoherent qubit catalyst.
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Corollary 19. Consider a pair of incomparable states
p, q ∈ �d such that p ⊥ q, p↓

1 < q↓
1 and p↓

d > q↓
d . A qubit

catalyst in a state r = (1 − t, t ) with t � 1/2 can catalyse the
process, p ⊗ r � q ⊗ r only if

1

1 + a
� t � 1

1 + b
(A5)

with a, b defined as in Theorem 16.
It has to be stressed, however, that it is only a necessary

condition. As has been already noticed in [45], not only the
actual catalysis happens for a smaller sub-interval, but may
also happen in several disjoint sub-intervals.

APPENDIX B: PROOF OF THEOREM 5

Below we provide two approaches to extend the Theo-
rem 16 to the thermal operations. First, we focus on a heuristic
approach by treating the majorization and thermomajorization
curves as continuous functions, which allows us to reformu-
late the expressions in terms of slopes instead of probabilities.
The second, more formal approach, takes advantage of the
embedding scheme introduced in [50], which relates ther-
momajorization relation with a majorization relation in an
extended space of potentially infinite dimension.

1. Heuristic approach via derivatives

Let us consider a state p and the corresponding majoriza-
tion curve fp(x). In what follows, for brevity of notation,
we will use primed notation f ′(x) ≡ d f (x)/dx for derivative
of a function and f ′(xi ) ≡ f ′(x)|x=xi . For β = 0, we find a
simple relation between probabilities and derivatives of the
majorization curve, namely

d · p↓
i = f ′

p(x)
∣∣

i−1
d <x< i

d

≡ f ′
p(xi ), (B1)

where we define xi ∈ [(i − 1)/d, i/d] as an arbitrary point
from the interval between the consecutive elbows of the ma-
jorization curve. Using the relation given by Eq. (B1) in
Eqs. (A3) and (A4), we find that the coefficients a and b can
be expressed in terms of derivatives as follows:

a = min

(
f ′

p(x1)

f ′
p(xm)

,
f ′

p(xn+1)

f ′
p(xd )

)
> max

v∈{1,2,...,k−1}

(
f ′
r (xν )

f ′
r (xν+1)

)
,

(B2)

b = max
l∈L

f ′
p(xl )

f ′
p(xl+1)

<
f ′
r (x1)

f ′
r (xk )

. (B3)

Now, the expressions above remain valid when we replace
the subset L, over which we maximize, with an open interval
L = (m′, n′) = {x : f ′

p(x) − f ′
q(x) < 0}; the same substitution

can be applied to the right-hand side (B2). However, to main-
tain the correct interpretation, we must substitute the ratios of
subsequent points with the ratios of the left and right deriva-
tives, specifically focusing on the left-hand side of Eq. (B3).
As result, leads to the following:

b = max
x∈L

f ′
p(x−)

f ′
p(x+)

. (B4)

where we used shorthand notation for left and right deriva-
tives f ′(x±) ≡ limy→x± f ′(x). Note that, whenever a function

is differentiable at point x, the ratio between left and right
derivative is equal to one. Therefore, any ratio value differing
from one can be considered indicative of nondifferentiability.
This is a characteristic observed exclusively at the elbows
of majorization curves—a property we will later exploit to
further simplify our calculations.

Finally, we return to the discussion of thermomajorization
curves by reintroducing β > 0, which establishes the connec-
tion between the derivatives and probabilities,

pβ
i = γ

β
i f ′

p(x)
∣∣

i−1<x<
i

, (B5)

where we used the subsums of the Gibbs distribution 
i =∑i
j=1 γ

β
j , which correspond to the locations of the elbows

on the thermomajorization curve fp(x). While all inequalities
remain valid, they now depend not only on the probability
vectors p and r but also on the respective underlying Gibbs
distributions γ and γ r.

Now, let us focus on the derivation of lower bound on
catalyst dimensionality k∗ from the derivatives’ perspective.
In the original approach the starting point was to note the
following chain of bounds:

b <
r↓1
r↓k

=
k−1∏
i=1

r↓i
r↓i+1

<

[
max

v∈{1,2,...,k−1}

(
r↓v

r↓v+1

)]k−1

< ak−1.

(B6)
Unfortunately, the heuristic approach does not allow us to
extend this result directly, as we shifted our perspective from
piecewise-linear curves defined solely by their elbows to
continuous functions. However, by taking the logarithm of
Eq. (B3), one can observe that it involves the ratio between
the first and last slope. This allows for the computation of the
left derivative at x1 = 0 and the right derivative at xk = 1,

log

(
f ′
r (0+)

f ′
r (1−)

)
= log[ f ′

r (0+)] − log[ f ′
r (1−)]. (B7)

The above can also be reformulated as the integral of a deriva-
tive,

log

(
f ′
r (0+)

f ′
r (1−)

)
= lim

δ→0

∫ 1−δ

δ

[− log ( f ′
r (x))]′dx. (B8)

Next, we observe that the logarithmic terms appearing in
Eq. (B8) can be explicitly expressed as

log ( f ′
r (x)) =

k∑
i=1

log (si(r))(�(x − 
i−1) − �(x − 
i )),

(B9)

[log ( f ′
r (x))]′ =

k∑
i=1

log (si(r))(δ(x − 
i−1) − δ(x − 
i ))

= log (s1(r))δ(x) − log (sd (r))δ(x − 1)

+
k−1∑
i=1

δ(x − 
i )[log (si+1(r)) − log (si(r))].

(B10)

In Eqs. (B9) and (B10), �(x) represents the Heaviside step
function, and δ(x) denotes the Dirac delta function, respec-
tively.
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Thus, using Eqs. (B9) and (B10), one can compute the
integral given in Eq. (B8) as follows:

lim
δ→0

∫ 1−δ

δ

[− log ( f ′
r (x))]′dx =

k−1∑
i=1

log

(
si(r)

si+1(r)

)

� (k − 1) max
i

log

(
si(r)

si+1(r)

)
.

(B11)

where we recall that s(r) is the slope vector corresponding to
the population of the catalyst r. Finally, using (B2), we retrieve
the bound on the dimensionality of the catalyst state r,

k � log b

log a
+ 1 = k∗, (B12)

within the heuristic approach.

2. Embedding map approach

We start by recalling the embedding map [50] (see
Ref. [48] for a detailed discussion). This allows us to draw a
connection between thermomajorization and majorization in
a space of larger dimension.

Definition 6 (Embedding map). Consider a thermal distri-
bution γ with rational entries, γi = Di/D and Di, D ∈ N, the
embedding map � sends a d-dimensional probability distribu-
tion p to a D-dimensional probability distribution p̂ := �(p)
as follows:

p̂ =
[

p1

D1
, . . . ,

p1

D1︸ ︷︷ ︸
D1 times

,
p2

D2
, . . . ,

p2

D2︸ ︷︷ ︸
D2 times

, . . . ,
pd

Dd
, . . . ,

pd

Dd︸ ︷︷ ︸
Dd times

]
.

(B13)
A generic thermal distribution γ will not fall within the

scope of Definition 6. Nevertheless, since the rational numbers
Q are dense subset of the real numbers R. Thanks to this
the limit limD→∞

�Dγi�
D = limD→∞

 Dγi!
D = γi exists. With this

chain of approximations in mind, we proceed to work within
the limit of D → ∞.

It follows from the above definition that the majorization
between embedded vectors coincides exactly with the notion
of thermomajorization

p̂ � q̂ ⇐⇒ p �β q. (B14)

Now, we introduce a function ϕ that maps elements of the
embedded distribution to the corresponding elements of the
original one

p̂↓
j = pϕ( j)

Dϕ( j)
, (B15)

which, as a consequence of nonincreasing ordering, yields

j > k ⇒ pϕ( j)

Dϕ( j)
� pϕ(k)

Dϕ(k)
. (B16)

The function φ is used in order to convert the ordering of the
embedded vector p̂↓ to the β-ordering of pβ . Suppose, for ex-
ample, that pβ

1 = p3. Knowing this, we find that φ( j) = 3 for
all 1 � j � D3. More generally, it is defined to be, we find that
φ( j) = π−1(i) for

∑i
n=1 Dπ−1(n) + 1 � j �∑i

n=1 Dπ−1(n).

Focusing on the expression (A4) for b and applying it to
the embedded vector p̂, we substitute

p̂↓
l

p̂↓
l+1

= pϕ(l )

Dϕ(l )

Dϕ(l+1)

pϕ(l+1)
(B17)

= pϕ(l )

Dϕ(l )/D

Dϕ(l+1)/D

pϕ(l+1)
(B18)

D→∞−→ pϕ(l )

γϕ(l )

γϕ(l+1)

pϕ(l+1)
= sπ (ϕ(l ))(p)

sπ (ϕ(l+1))(p)
(B19)

where in the last expression π is the permutation responsible
for the beta ordering of pβ . Treating all the remaining ratios
in (A3), (A4), we retrieve the full form of Theorem 5.

APPENDIX C: UPPER-BOUNDING NUMBER
OF INTERSECTIONS BETWEEN D-POINT SIMPLICES

We start by considering a regular d-point simplex �d

spanned by vertices vi for i = {1, . . . , d}, with the central
point c = 1

d

∑
i vi. In what follows, we will consider the

rescaled versions of the simplex defined as

t�d = conv
({tvi + (1 − t )c}d

i=1

)
. (C1)

First, consider the intersection �d ∩ t�d for t � 0, which,
in fact, defines an inverted or dual simplex. This will be
denoted as td∇d with td = −t , a choice whose rationale will
soon become apparent. For td ∈ [0, 1/(d − 1)], we observe
that there is no intersection between the boundaries, ∂�d ∩
∂ (td∇d ) = ∅. The first intersection occurs at t = −1/(d − 1),
at which point there is only a single extreme point per d-
dimensional face of �d , since

1

d − 1
∇d = conv

⎛
⎜⎝
⎧⎨
⎩

d∑
j=1

1 − δ j

d − 1
v j

⎫⎬
⎭

d

i=1

⎞
⎟⎠. (C2)

For td � 1/(d − 1), the intersection points of −t∇d with
each of the d faces of �d —which are effectively (d −
1)-dimensional simplices result in a (d − 1)-dimensional in-
verted simplex, denoted as td−1∇d−1. Here, we define td−1 =
d−1

d min(0, td − 1
d−1 ). Consequently, there are exactly (d − 1)

intersections per face of �d , continuing until td−1 = 1/(d −
2). The analysis then continues for the (d − 2)-dimensional
faces of �d .

Based on the reasoning above, we can identify only two
types of situations:

(1) The intersection �d ∩ t∇d has a single vertex per k-
dimensional face of �d .

(2) The intersection �d ∩ t∇d has exactly (d − k) vertices
per k-dimensional face of �d .

This results in either
(d

k

)
vertices or k

(d
k

)
vertices in total,

with the latter being the larger one and attaining maximum at
k = � d

2 �. This completes the reasoning for simplices with a
common center c.

The heuristic approach for the translations defined as

�d + δ = conv
({vi + δ}d

i=1

)
(C3)

is based on the following reasoning. Let us focus on the inter-
section with a single face F from �d and assume that td−1 <

2
d−2 . Any shift in a direction parallel to the plane the face is
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contained in, δ ‖ F , will result in translating the intersection
points between t∇d and F + δ. Similarly, the shift in the
perpendicular direction will result in scaling the “intersection
simplex”. This observation indicates that the general structure
of the intersections remains unchanged, confirming that the
upper bound on the number of vertices from concentric �d

and td∇d holds.

APPENDIX D: PROOF OF PROPOSITION 14

In this section, we assume that the Gibbs state is given
by γ = (γ1, γ2, γ2, γ4). As a result, arbitrary unitary oper-
ation in the subspace span(|01〉, |10〉) is energy-preserving,
and thus an admissible thermal operation (TO). Under these
assumptions there exists a subset of states that can be-
come entangled under TOs. In particular, for two-qubit states
with populations p a state can be entangled using energy-
preserving unitaries if and only if 4p1 p4 − (p2 − p3)2 < 0.
Furthermore, as shown in [46], a state p can be entangled by
TOs if and only if the extreme point of its future thermal cone
pπ ∈ T+(p) with β-order given by π = (2134). We denote
by TN the set of states p for which no point of the future
cone T+(p) can become entangled under energy-preserving
unitaries; this set is called thermally nonentanglable set. Sim-
ilarly, we define a set of catalytically nonentaglable set CN
as set of states for which no state from either their future
cone or the catalyzable set C+(p) can become entangled under
energy-preserving unitaries.

In order to prove Proposition 14, we need to show that the
boundary of set CN always contains a subspace-thermalized
state of the form

∂CN # p∗ = (1 − t ′)(0, 0, 0, 1) + t ′

Z123
(γ1, γ2, γ2, 0),

(D1)

with Z123 = γ1 + 2γ2. This state by itself is clearly nonen-
tanglable by using only energy-preserving unitaries, as it is
proportional to identity on the subspace span(|01〉, |10〉) and
as such, does not admit generation of any coherences within
the aforementioned subspace. However, its future thermal
cone T+(p∗) may contain states that are entanglable.

In particular, one of the extreme points of T+(p∗) is a
subspace-thermalized state of the form

p∗∗ = (1 − t )(0, 1, 0, 0) + t

Z124
(γ1, 0, γ2, γ4), (D2)

with Z123 = γ1 + γ2 + γ4. This admits the distinguished β

order of π = (2, 1, 3, 4), and thus, by Theorem 2 from [46],
if this is not an element of the entanglable set, p∗∗ ∈ TN It is
easy to find t for which this state becomes nonentanglable by
solving

4
t2

Z2
124

γ1γ4 −
(

1 − t − t

Z124
γ2

)2

= 0, (D3)

which is solved by setting

t = γ1 + γ2 + γ4

2
√

γ1
√

γ4 + 1
. (D4)

Now we would like to find a state p∗, which tightly
majorizes the state p∗∗, p∗ � p∗∗. It is achieved by setting
t ′ = Z123

Z124
. By reinstating γ1 = 1, γ2 = γ3 = e−β, γ4 = e−2β ,

we retrieve Proposition 14.
According to the above derivation, we can say that

T+(p∗) ⊂ TN, but also T+(p∗) ⊂ CN, as C+(p∗) = ∅ and
for all q ≺ p∗ we find that C+(q) ⊂ T+(p∗). However, by
explicit check one can verify that for q′ ∈ B(p∗, ε) ∩ T+(p∗)
and ε � ε∗, where B(p∗, ε) is a ball of radius ε centered at p∗
and ε∗ � 1 a certain critical value, we find q′ ∈ CE.
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