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Inferring general links between energetics and information with unknown environment
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Identifying general links between energetics and information in realistic open quantum systems is a long-
standing problem in quantum thermodynamics and quantum information processing. However, the generality
of existing efforts is often impeded by their specific assumptions about environments. Here we address the
problem by developing a trajectory-level thermodynamic inference theory to establish general links using just
the knowledge of the system, enabling a single framework applicable to a diverse range of environments.
Underpinning the framework is a notion of excess energy introduced for inferring the net energy gain of
the system after completing an information processing trajectory. We show that fluctuation behaviors of the
excess energy encode general links between energetics and information with a conceptual advantage that they
completely avoid a priori assumptions about environments and system-environment coupling forms. Crucially,
we obtain a single thermodynamic inequality that integrates upper bounds on heat dissipation and extracted work
in terms of system’s information content change, providing complementary constraints that greatly expand the
context of existing well-adopted results based on the second law of thermodynamics. We also uncover lower
bounds on the precision of the fluctuating system’s energy and information content changes in terms of their
Fano factors and a correlation function between them. By extending relations between energetics and information
to higher-order fluctuations, we thus reveal a trade-off that a more precise inference of energy or information
content changes requires a looser energetic-information link. We showcase the implications of these general
links in a number of quantum information and thermodynamic tasks of application relevance. Our framework
provides a toolkit for analyzing the interplay between energetics and information from the trajectory level in
generic quantum systems, thereby adding an indispensable structure to the thermodynamics of information.
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I. INTRODUCTION

Questing for the physical nature of information has led to
profound insights into the understanding of information stored
in both classical and quantum systems [1,2]. On the one hand,
one can associate information which lacks a unique definition
with meaningful operational interpretations [3–5], mapping
it to an embodied physical entity that enables manipulation
and transformation. A recent development that aligns with this
research line focuses on quantum information engines [6–10]
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which build upon thermodynamic operations of information
flows. On the other hand, information processing is generally
carried out by dynamical systems [11], entangling information
with physical observables of the information-bearing system.
This promotes us to explore the physical nature of information
in relation to physical observables. Since the seminal works in
the context of Maxwell’s demon [11], Szilard’s engine [12],
and Landauer’s principle [13], understanding how thermody-
namics and information intertwine in dynamical systems has
become an established research area with renewable interests
emerging at the intersection of quantum thermodynamics and
quantum information [14,15].

Realistic dynamical systems are generally open and expe-
rience continuous changes in energy and information due to
the coupling to surrounding environments [16]. Hence, iden-
tifying the energetic fingerprint of the information represents
a natural goal to pursue towards a complete framework of
the thermodynamics of information [15,17]. Along this line,
the comprehension of quantum information processing has
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recently brought up an intriguing problem of characterizing
their associated energetic cost [18–20], with preliminary ex-
perimental attempts [21–23] being accomplished. It is now
well appreciated that changes in the system’s energy and
von Neumann entropy which quantifies the information con-
tent of the system [24] are inherently linked [25,26], leading
to thermodynamic constraints that information processing
tasks should obey [11,13,26]. To establish relations between
energetics and information, one usually assumes the environ-
ment to be thermal with a homogeneous temperature [15]
so as to implement the second law of thermodynamics
in a straightforward manner [26]. This basic thermal bath
assumption underlies a notable number of theoretical ex-
tensions [27–42] and experimental investigations [43–49].
Despite the progress, a general formulation of the relation
between energetics and information is still far from being
achieved.

In many scenarios, the involved environment is not char-
acterized by a single thermodynamic temperature, rendering
the common assumption of a single thermal bath inapplicable.
Notable examples include nonthermal environments [50–60]
and dissipation-engineered reservoirs [61–67], which are rou-
tinely utilized as intriguing quantum resources in quantum
thermodynamics and quantum information processing. In the
absence of a homogeneous temperature, identifying the rela-
tions between energetics and information becomes intricate as
it goes beyond the usual scope of the thermodynamics of in-
formation involving a single thermal bath [15,68]. To date, no
general consensus has been reached regarding how to develop
a description without invoking assumptions on temperatures
or other information of environments so as to cover a wide
range of contexts. Aiming for a complete solution, a desirable
route would be conceiving relations between energetics and
information that depend only on the system’s observable de-
grees of freedom, which, however, remain vague.

Moreover, existing theoretical efforts have been largely
devoted to relations between averaged values of energetic
and information-theoretic quantities [27,28,31–40], missing
their higher-order fluctuations which could encode extra
information. In contrast, relevant experiments are usually pre-
formed by collecting an ensemble of trajectories (see, e.g.,
Refs. [69,70]) and thus capable of extracting behaviors of not
only averaged values but also higher-order fluctuations which
can become significant in small quantum systems [69–72].
This discrepancy between experiment and theory emphasizes
a need for theoretical tools building upon single trajectories
which mimic the results of experiments.

Here we put forward a framework that is capable of satisfy-
ing the needs by offering a general strategy to link energetics
and information from the trajectory level for systems coupled
to environments of diverse types. To lift the conventional
assumptions of knowing ad hoc details of environments and
system-environment couplings, we frame the identification of
intrinsic links as a problem of inference, where the actual
relation between energetics and information is hidden and
will be reconstructed given just the knowledge of the system.
Reifying this inference perspective, we harness solely the sys-
tem’s dynamical information (e.g., time-dependent state and
Hamiltonian) to introduce a notion of excess energy which
underpins our framework. The excess energy connects the

energetics and information of the system in a way that it
quantifies the net energy gain of the system at the trajectory
level by taking into account an energetic cost responsible for
a change in system’s information content enabled by thermo-
dynamically inferred reference states.

Leveraging the techniques of stochastic thermodynam-
ics [73,74], we obtain the cumulant generating function of the
excess energy. We demonstrate that the fluctuation behaviors
of the excess energy encode general links between energetics
and information content of the system in forms of universal
thermodynamic bounds which hold irrespective of details of
the system, the environment, and their coupling. These bounds
differ from existing ones exclusively derived from the second
law of thermodynamics and thus serve as complementary
descriptions. More importantly, these bounds have concep-
tual advantages that they can be sufficiently evaluated using
only the dynamical information of the system which can be
obtained from numerical simulations or experimental obser-
vations, and they cover a wide range of contexts, as Fig. 1(a)
indicates.

Specifically, focusing on the first-order fluctuation of the
excess energy, we reveal a single inequality that integrates
intriguing upper bounds on averaged heat dissipation and
extracted work from the dynamical system, which are two
main energetic quantities of the system using the averaged
system’s information content change. From analyzing the
second-order fluctuation of the excess energy, we also receive
universal lower bounds on the precision of the fluctuating
system’s energy and information content changes in terms of
their Fano factors and a correlation function between them,
owing to a unique feature of the framework that fluctuations
of energetic and information-theoretic quantities are treated
to the same order. We remark that these lower bounds imply
an intriguing trade-off relation that a more precise inference
of energy or information content changes requires a looser
energetic-information link. We thus extend relations between
energetics and information to account for higher-order fluctu-
ations. We exemplify these general thermodynamic links in a
number of quantum thermodynamic and quantum information
processing tasks covering a diversity of environments and
contrast them with available existing results, highlighting the
promising potential of our framework.

Our results are not only of theoretical interest, as we
propose a systematic approach to treat the fluctuating sys-
tem’s energy and information content on equal footing, and
add an additional structure to the collection of thermody-
namic constraints on energetics and information [27,31–
36,38,39,68], thereby greatly expanding the application range
of the thermodynamics of information [15], but also of exper-
imental relevance, as we provide a trajectory-level description
which avoids accessing information of complex environ-
ments, thereby facilitating experimental implementations.

The paper is organized as follows. In Sec. II, we present our
thermodynamic framework in detail. We first specify single
trajectories in our consideration and define trajectory-level
energetic and information-theoretic quantities of interest. We
then introduce the notion of excess energy that underpins the
framework by resorting to thermodynamically inferred refer-
ence states. We finally derive an analytical expression for the
cumulant generating function of the excess energy. Then, in
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FIG. 1. Schematic of the study. (a) Open quantum systems (QS, orange shaded region) can couple to a diversity of environments (E,
green shaded region), such as a single thermal bath with temperature TE , multiple thermal baths with different temperatures, nonthermal
environments, and even complex unknown environments whose detailed information remains inaccessible to measurement. (b) To understand
the interplay between energetics and information in the scenarios shown in (a) with a unified viewpoint, we develop a general thermodynamic
inference framework using the knowledge of the system only. Underpinning the framework is a notion of an excess energy Ẽ (t ) [Eq. (5)] which
connects a trajectory-level system’s energy change �Ẽs(t ) and a system’s information content change �S̃(t ) through a parameter Tr (t ) inferred
from solely system observables. We determine this parameter by developing two thermodynamic inference schemes to introduce a Gibbsian
reference state ρI

r (t ) [ρII
r (t )] that has maximum von Neumann entropy S�(t ) or minimum information content [minimal energy E �

s (t )] over a
surface of fixed energy Es(t ) [fixed information content S(t )]; see details in Sec. II. (c) From analyzing fluctuation behaviors of the excess
energy, we establish general links between energetics and information that apply to a wide range of scenarios, such as a single inequality
integrating universal upper bounds LQ(t ) and LW (t ) on the averaged heat dissipation 〈Q(t )〉 and extracted work 〈W (t )〉 from the system with
a contribution from the averaged system’s information content change 〈�S̃(t )〉, respectively; see details in Sec. III.

Sec. III, we exploit the cumulant generating function of the ex-
cess energy to uncover universal links between energetics and
information encoded in the fluctuation behaviors of the excess
energy. We elaborate the distinct nature of obtained links by
comparing them with their existing counterparts, which all
require the knowledge of environments to some extent. To
corroborate the promising potential of our framework, we
examine these universal relations in Sec. IV by considering
a number of representative quantum setups whose realiza-
tions are within current experimental capabilities, including
a driven qubit system immersed in a single thermal bath used
to implement a quantum information erasure process, a dou-
ble quantum dot system coupled to two electronic and one
phononic baths of different temperatures used for studying an
inelastic heat transfer process, and a coupled Rydberg atom
system used to realize a dissipative quantum state prepara-
tion process through dissipation engineering. We conclude the
study in Sec. V with some final remarks. We set h̄ ≡ 1 and
kB ≡ 1 throughout this paper.

II. THERMODYNAMIC FRAMEWORK

We now lay out our framework, as sketched in Fig. 1(b),
that allows us to link energetics and information during a
generic quantum process. The framework does not impose
assumptions on the type of environments and thus applies to

various setups, as Fig. 1(a) shows. We specify how to generate
trajectories using a one-time measurement scheme [75–77]
which imposes minimum measurement back-action on the
system. We also define trajectory-level quantities of interest
and introduce the notion of excess energy to quantify the
net energy gain of the system after completing an informa-
tion processing trajectory by exploiting thermodynamically
inferred reference states. Finally, we present an analytical
expression for the cumulant generating function of the fluc-
tuating excess energy.

A. Measurement, trajectory, and quantities

Without loss of generality, we consider an open quan-
tum system described by a time-dependent Hamiltonian Hs(t )
whose spectrum is nondegenerate. The system undergoes a
quantum evolution captured by a time-dependent reduced sys-
tem density matrix ρs(t ). We thrive in establishing general
relations between energetics and information of the system
from the trajectory level by using solely the knowledge of
Hs(t ) and ρs(t ), without further requiring knowledge of the
environments.

We prepare single trajectories by adopting the one-time
measurement scheme [75–77] in which one just performs an
initial energy measurement on the system. Single trajecto-
ries are then obtained by evolving the measured eigenstates.
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The quantum coherence generated during the evolution is
preserved as compared with the two-time measurement
scheme [73]. We stress that the trajectories we consider are
distinct from the quantum jump ones introduced to stochas-
tically unravel quantum master equations [78–80] and the
classical ones describing Markov jump processes in stochastic
thermodynamics [74]. To avoid initial measurement back-
action, we require [ρs(0), Hs(0)] = 0, with ρs(0) the initial
system state before the measurement. A straightforward
choice would be a Gibbsian initial state ρs(0) = e−β0Hs (0)/Z0

with Z0 = Tr[e−β0Hs (0)] and β0 = T −1
0 > 0. We note that this

form of initial state can be experimentally prepared through
designed state-preparation algorithms [60,81]. Hence, T0 is
not necessarily a bath temperature.

Suppose at t = 0, the initial energy measurement selects
an energy eigenstate |ε0〉 of Hs(0) with measurement outcome
ε0 and measurement probability p0 = e−β0ε0/Z0; p0 varies
between nondegenerate energy eigenstates. The evolved state
for such a single trajectory reads ρ̃s(t ) = Ut [|ε0〉〈ε0|], with
Ut a completely positive trace-preserving map which is the
same for every trajectory. By definition, the ensemble average
〈̃ρs(t )〉 reproduces the evolved full state ρs(t ) = Ut [ρs(0)] due
to the linearity of the quantum channel Ut . Throughout the
paper, we use the notation Õ to mark an arbitrary quantity at
the trajectory level and denote its ensemble average as 〈Õ〉 ≡∑

p0
p0Õ, which is evaluated over the complete set of initial

measurement probabilities {p0} whose number of elements
depends on the dimension of the system Hamiltonian.

We introduce a microscopic energy change at the trajectory
level [76]:

�Ẽs(t ) ≡ Ẽs(t ) − ε0. (1)

Here, we have denoted Ẽs(t ) = Tr[Hs(t )̃ρs(t )] as the internal
energy of the system along a single trajectory. We remark
that 〈�Ẽs(t )〉 = Tr[Hs(t )ρs(t )] − Tr[Hs(0)ρs(0)], with 〈ε0〉 =
Tr[Hs(0)ρs(0)], namely, the ensemble average 〈�Ẽs(t )〉 of
�Ẽs(t ) recovers the correct expectation value of the system’s
energy change during the full quantum process of ρs(0) →
ρs(t ).

As for the information-theoretic quantity of interest, we
focus on the information content of the system. In this regard,
we notice that the von Neumann entropy quantifies the num-
ber of qubits needed to store the information encoded in the
system state [82], in a way similar to the Shannon entropy
for classical systems. We hence follow the convention in the
quantum information theory by adopting the von Neumann
entropy as the measure for the information content of the
system [24]. Accordingly, we refer to a change in the von Neu-
mann entropy as a change in information content hereafter.
To ensure that the correct value of the system’s information
content change S(t ) − S(0) with S(t ) = −Tr[ρs(t ) ln ρs(t )]
during the full process can be recovered, we identify

�S̃(t ) ≡ −Tr[̃ρs(t ) ln ρs(t )] + ln p0 (2)

as the microscopic system’s information content change at
the trajectory level. It can be readily checked that 〈�S̃(t )〉 =
S(t ) − S(0). On the contrary, the system’s information content
change S̃(t ) − S̃(0) with S̃(t ) = −Tr[̃ρs(t ) ln ρ̃s(t )] during a
single trajectory of |ε0〉〈ε0| → ρ̃s(t ) does not recover the cor-
rect expectation value, namely, 〈S̃(t ) − S̃(0)〉 �= S(t ) − S(0).

We point out that the definition �S̃(t ) in Eq. (2) preserves
the quantum coherence generated during the evolution, as we
use density matrices instead of probabilities at finite times.
When the quantum coherence vanishes completely during the
evolution as in the case of a Markov jump process, both
ρ̃s(t ) and ρs(t ) become diagonal in the energy basis. In this
special scenario, suppose the system reaches one of energy
eigenstates |εt 〉 at time t during a single trajectory—one finds
�S̃(t ) = − ln pt + ln p0 with pt = 〈εt |ρs(t )|εt 〉, which is just
the frequently used definition for trajectory-level entropy pro-
duction in stochastic thermodynamics [74].

B. Thermodynamic inference schemes and reference states

We aim to link �Ẽs(t ) and �S̃(t ) defined in the above sub-
section. From a dimensional analysis, we note that �Ẽs(t ) and
�S̃(t ) can be transformed into quantities of the same dimen-
sion once we invoke a parameter of the same dimension as the
thermodynamic temperature. By considering an isothermal
setup involving a single thermal bath, Refs. [75,76] introduced
a thermal state by maximizing the von Neumann entropy of
the system-bath composite system [83]. They utilized this
thermal state as a reference point for evaluating thermody-
namic quantities to have a thermodynamic description that is
compatible with the one-time measurement scheme. However,
since we avoid making the assumption of a single thermal
bath, we cannot define a reference thermal state with a ther-
modynamic temperature.

In light of recent refinements of the notion of reference
states in the studies of quantum thermodynamics [39,84–89],
we instead introduce a thermodynamic inference scheme in
which one infers a reference state ρr (t ) from solely measur-
able system observables. The reference state ρr (t ) we consider
does not need to have a meaningful thermodynamic interpre-
tation but rests its foundation in experimental observations on
system observables. The dimensional requirement promotes
us to consider a reference state of the Gibbsian form ρr (t ) =
e−βr (t )Hs (t )/Zr (t ), with Zr (t ) = Tr[e−βr (t )Hs (t )] determined by a
single time-dependent parameter βr (t ). To bridge the Gibb-
sian reference state or, equivalently, the single parameter βr (t )
and system observables, we recall the intriguing properties
of a Gibbsian state, that it possesses minimum energy (in-
formation content) among states of the same dimension and
information content (energy). For the sake of completeness,
we relegate details of the proof to Appendix A.

Given the aforementioned features of a Gibbsian state,
we then summarize two single-parameter inference schemes
by exploiting the knowledge of the system state and Hamil-
tonian only. The first inference scheme, which we dub an
equal-energy one, yields a Gibbsian reference state ρI

r (t ) with
minimum information content (maximum von Neumann en-
tropy) under the fixed energy constraint (time dependence is
suppressed for simplicity):

ρI
r : max

ρr

[S(ρr )]|Tr(Hsρr )=〈Ẽs〉. (3)

Here, S(ρr (t )) = −Tr[ρr (t ) ln ρr (t )] denotes the von Neu-
mann entropy of an arbitrary state ρr (t ) living in the system
Hilbert space. The energy of state ρr (t ) is fixed by the sys-
tem actual averaged energy 〈Ẽs(t )〉. The alternative inference
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scheme, which we dub an equal-information-content one,
amounts to identifying a Gibbsian reference state ρII

r (t ) that
yields minimal averaged energy Tr[Hs(t )ρr (t )] among states
with the same information content fixed by S(t ) of ρs(t ) (time
dependence is suppressed for simplicity):

ρII
r : min

ρr

[Tr(Hsρr )]|S(ρr )=S. (4)

These two single-parameter inference schemes can be ef-
ficiently implemented subject to numerical simulations or
experimental observations on the system. Notably, we obtain
Gibbsian reference states by using the full system dynamics
such that they are equally applicable for all trajectories. More-
over, they provide unbiased single reference points as they
reflect extreme values of the energy and information content
that the system can attain under the given constraints. We
stress that the existence of Gibbsian reference states does not
imply the system stays in a true thermal equilibrium state.
Despite its virtual nature, the Gibbsian reference state can find
its relevance in information-preserving and energy-preserving
operations on the system [87].

Specifically, the single parameter βr (t ) of the Gibbsian
reference states ρI

r (t ) and ρII
r (t ) can be determined by in-

voking the equal-energy condition Tr[Hs(t )ρI
r (t )] = 〈Ẽs(t )〉

and the equal-information-content condition S[ρII
r (t )] = S(t ),

respectively. Hence, we relate the inferred parameter βr (t )
with measurable quantities, thereby laying an experimental
basis for inferring a Gibbsian reference state. We note that
βr (t ) obtained using the latter condition was referred to as
an intrinsic temperature of the system by Ref. [87]. However,
we avoid such a nomenclature here and treat βr (t ) just as an
inferred parameter from the knowledge of the system since the
reference state is virtual, in general. With the initial Gibbsian
state ρs(0) introduced before, both inference schemes predict
ρI,II

r (0) = ρs(0) with βI
r (0) = βII

r (0) = β0. At finite times, we
expect ρI

r (t ) �= ρII
r (t ) [or, equivalently, βI

r (t ) �= βII
r (t )], in gen-

eral, as the actual full state ρs(t ) can deviate from a Gibbsian
form such that the averaged internal energy and information
content of the system could yield distinct inferences for the
single parameter βr (t ). An exception is a quasistatic isother-
mal process where we always have ρI

r (t ) = ρII
r (t ) since the

system stays in an instantaneous thermal state.

C. Excess energy

Noting the dimension of the inferred parameter Tr (t ) ≡
β−1

r (t ) and previously defined trajectory-level quantities, we
are ready to introduce a notion dubbed excess energy Ẽ (t ),
which plays a vital role in linking energetics and information
within our framework:

Ẽ (t ) ≡ �Ẽs(t ) − Tr (t )�S̃(t ). (5)

Crucially, this quantity involves only the system’s dynam-
ical information. To elaborate the physical meaning of the
excess energy, we recall that for quasistatic isothermal pro-
cesses the inferred parameter Tr (t ) is fixed by the environment
temperature TE . Therefore, in this scenario the ensemble av-
erage Tr (t )〈�S̃(t )〉 = TE 〈�S̃(t )〉 recovers exactly the bound
on energetic cost in the context of the Landauer’s princi-
ple [13,25,89]. We thus interpret the term Tr (t )�S̃(t ) in
Eq. (5) generally as an inferred energetic cost paid to increase

the system’s information content by an amount of �S̃(t ) dur-
ing an arbitrary process. As �Ẽs(t ) denotes a system’s energy
gain, the excess energy Ẽ (t ) as a whole then functions as a
quantifier for the net energy gain of the system after complet-
ing an information processing trajectory with a change in the
information content. We emphasize that the notion of excess
energy has no existing counterparts. In particular, we point
out that the excess energy does not equal a change in a gen-
eralized nonequilibrium free energy F̃ (t ) = Ẽs(t ) − Tr (t )̃S(t )
of the system along a single trajectory [89] since �S̃(t ) �=
S̃(t ) − S̃(0) in Eq. (2). We also note that the excess energy
is unbounded by the second law of thermodynamics. There-
fore, the excess energy provides an independent perspective
for the understanding of energetic fingerprint of information
processing [20] from the trajectory level.

In addition, the excess energy includes the system’s ener-
getic and information-theoretic quantities with the same order,
allowing us to treat the fluctuations of energetics and informa-
tion on equal footing. With this conceptual advance, we are
able to uncover distinct links between energetics and infor-
mation that complement and extend existing results by just
analyzing the fluctuation behavior of the excess energy (see
Sec. III). We finally remark that the excess energy defined in
Eq. (5) remains form invariant for the two inference schemes.
However, the two inference schemes would yield different
values for the parameter Tr (t ) as well as the excess energy in
detailed models. We can thus contrast the performance of the
two inference schemes and select the tighter one in specific
scenarios, as we will show in Sec. IV.

D. Cumulant generating function

We resort to the cumulant generating function [73] to de-
scribe the fluctuation behavior of the excess energy. To this
end, we introduce a counting field χ and consider the scaled
fluctuating quantity βr (t )Ẽ (t ) [recall that the parameter βr (t )
does not fluctuate between trajectories by its definition]. We
then define the corresponding cumulant generating function
of βr (t )Ẽ (t ) as G(χ, t ) ≡ ln〈exp[−χβr (t )Ẽ (t )]〉 [73].

We aim to derive an expression for the cumulant
generating function G(χ, t ) that is amenable to analytical and
numerical treatments. We first note that the trajectory-level
energy change defined in Eq. (1) can be reexpressed as
�Ẽs(t ) = Tr (t )̃S(t ) + F̃ (t ) − ε0 by using the generalized
nonequilibrium free energy introduced below Eq. (5).
We then have βr (t )Ẽ (t ) = −D[̃ρs(t )||ρs(t )] + βr (t )F̃ (t ) −
βr (t )ε0 − ln p0, with D(ρ1||ρ2) = Tr[ρ1(ln ρ1 − ln ρ2)]
denoting the quantum relative entropy between two
states ρ1,2. To proceed, we utilize an information-
theoretic expression for the nonequilibrium free energy
F̃ (t ) = −Tr (t ) ln Zr (t ) + Tr (t )D(̃ρs(t )||ρr (t )) [89,90] to
rewrite βr (t )Ẽ (t ) = Tr{̃ρs(t ) ln[ρs(t )/ρr (t )]} − ln Zr (t ) −
βr (t )ε0 − ln p0. Finally, we arrive at the following expression
for the cumulant generating function G(χ, t ):

G(χ, t ) = χ ln Zr (t ) + ln〈exp[χ B̃(t )]〉. (6)

Here, we have denoted B̃(t ) ≡ −Tr{̃ρs(t ) ln[ρs(t )/ρr (t )]} +
βr (t )ε0 + ln p0, which determines higher-order fluctuations
of the excess energy, as will be seen. The nth order cu-
mulant 〈〈[βr (t )Ẽ (t )]n〉〉 of βr (t )Ẽ (t ) reads 〈〈[βr (t )Ẽ (t )]n〉〉 ≡
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(−1)n∂n
χG(χ, t )|χ=0. In the following, we will resort to the cu-

mulant generating function G(χ, t ) to establish links between
energetic and information-theoretical quantities.

III. UNIVERSAL LINKS BETWEEN ENERGETICS
AND INFORMATION

In this section, by using the cumulant generating function
of the excess energy given in Eq. (6), we show that the fluctu-
ation behaviors of the excess energy encode universal links
between energetics and information in forms of intriguing
thermodynamic inequalities. We also highlight the distinct
aspects of these links as compared with existing ones.

A. Integrated thermodynamic upper bound on heat dissipation
and extracted work

We first focus on the first-order cumulant, or, equivalently,
the mean of the excess energy 〈βr (t )Ẽ (t )〉. Using the cumulant
generating function in Eq. (6), we find −〈βr (t )Ẽ (t )〉 =
ln Zr (t ) + 〈B̃(t )〉. Since 〈Tr{̃ρs(t ) ln[ρs(t )/ρr (t )]}〉 =
D[ρs(t )||ρr (t )] and 〈ln p0〉 = −β0〈ε0〉 − ln Z0 in 〈B̃(t )〉,
we arrive at the following universal inequality as a result of
the non-negative nature of the quantum relative entropy:

β0〈�Ẽs(t )〉 − 〈�S̃(t )〉 + ln
Zr (t )

Z0
+ �βr (t )〈Ẽs(t )〉 � 0.

(7)
Here, we have denoted �βr (t ) ≡ βr (t ) − β0. Noting this in-
equality only demands that an initial Gibbsian state with
β0 be defined, and no restrictions on the actual full state
ρs(t ) at later times are needed. ρs(t ) can deviate from a
Gibbsian form during the evolution. Indeed, for any mean-
ingful information processing, the system must undergo a
nonequilibrium process [11,15]. We also stress that the above
inequality holds regardless of the dynamical details of the
system and, particularly, remains form invariant for the two
inference schemes which start to take effect when evaluating
the last two terms on the left-hand side of Eq. (7) for detailed
processes. Remarkably, when determining the parameter βr (t )
using the equal-information-content inference scheme, Eq. (7)
subsumes a previous result in Ref. [89]. However, we point out
that Eq. (7) rests its origin in the first-order fluctuation of the
excess energy whereas such a microscopic picture is missed in
Ref. [89]. In the following, we provide a thorough assessment
of Eq. (7) to release its full potential.

Intriguingly, we will show that Eq. (7) integrates uni-
versal upper bounds on averaged heat dissipation 〈Q(t )〉
and extracted work 〈W (t )〉 from the system, which are
often addressed separately in the existing literature. With
just the knowledge of the system, we adopt defini-
tions 〈Q(t )〉 ≡ − ∫ t

0 Tr[Hs(τ )ρ̇s(τ )]dτ [35] and 〈W (t )〉 ≡
− ∫ t

0 Tr[ρs(τ )Ḣs(τ )]dτ [91], with Ȯ ≡ dO/dt . We then re-
ceive a decomposition 〈�Ẽs(t )〉 = −〈Q(t )〉 − 〈W (t )〉 which,
together with Eq. (7), yield the following upper bounds appli-
cable for both isothermal and nonisothermal processes:

〈Q(t )〉 � LQ(t ),

〈W (t )〉 � LW (t ), (8)

where

LQ(t ) ≡ T0

[
−〈�S̃(t )〉+ln

Zr (t )

Z0
+�βr (t )〈Ẽs(t )〉

]
−〈W (t )〉,

(9)

and LW (t ) is obtained by switching W and Q in the above
equation. The bounds are agnostic with respect to the knowl-
edge of environment and can be sufficiently evaluated using
just the system state and Hamiltonian. We infer from the simi-
lar forms between LQ,W (t ) that upper bounds on averaged heat
dissipation and extracted work from the system are intrinsi-
cally connected with a common contribution shown in the first
line of Eq. (9). As for the quantity in the second line of Eq. (9),
we notice that it requires the same information as the bounded
quantity to evaluate. This redundancy, originating from the en-
ergy decomposition, in fact, reflects a key feature of statistical
inference using a limited set of observed data: the same data
that supplies an estimate (averaged value of a quantity) can
also access its accuracy (bound). Therefore, our bounds align
with the inference consideration and reveal intriguing links
between energy and information that are impossible with the
second law of thermodynamics. Notably, 〈Q(t )〉 and 〈W (t )〉
can take negative values, which simply means that one should
instead inject heat and work into the system so as to com-
plete the process. Nevertheless, the upper bounds in Eq. (8)
remain valid regardless of the sign of 〈Q(t )〉 and 〈W (t )〉. In
Sec. IV, we will use superscripts I and II to discriminate
upper bounds with βr (t ) evaluated using the equal-energy and
equal-information-content inference scheme, respectively.

To evaluate the thermodynamic significance and applica-
tion range of the bounds in Eq. (8), it is desirable to elaborate
the adopted definitions on heat and work in relation to the
conventional ones which involve information of environments
and system-environment couplings [26,27,91]. We note that
for scenarios where only the system is being driven, the work
definition adopted here is just the conventional one [27,91].
Hence, the work bound LW (t ) can be applied to arbitrary
thermodynamic conditions. In contrast, we stress that the
definition 〈Q(t )〉 equals the conventional one, which defines
heat as the energy change of a thermal bath [26,27,91] only
in a single bath scenario with weak system-bath couplings.
Strictly speaking, 〈Q(t )〉 may no longer adopt a thermo-
dynamic interpretation of heat beyond the weak coupling
limit [92]. Therefore, when interpreting 〈Q(t )〉 as a thermo-
dynamic heat, the upper bound LQ(t ) can only be applied
to the weak coupling regime. Nevertheless, 〈Q(t )〉, being the
complement of −〈�Ẽs(t )〉 − 〈W (t )〉 according to the first law
of thermodynamics, is still a valid thermodynamic quantity at
arbitrary coupling strength and with arbitrary number of baths.
With this in mind, one can study its behaviors including the
associated upper bound also under arbitrary thermodynamic
conditions. More crucially, when one just has access to system
degrees of freedom as we emphasize here, the current defini-
tion 〈Q(t )〉 is the only option to study the heatlike contribution
to energetics.

It is worth contrasting bounds in Eq. (8) with existing
results which are exclusively based on the second law of
thermodynamics, thereby highlighting the distinct nature of
our framework. We first focus on the isothermal process in
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which the system couples to a single thermal bath of temper-
ature TE since a great number of existing results focused on
this special scenario. Before proceeding, it is worth stressing
that T0 appearing in the bounds LQ,W (t ) just determines the
initial system Gibbsian state and can be independent of the
bath temperature TE since T0 can remain nonzero even when
TE → 0 (see Ref. [39] for an example). For the moment, we
consider finite TE and set T0 = TE in LQ,W (t ) to facilitate com-
parisons, which amounts to preparing the initial Gibbsian state
by directly attaching the system to the thermal bath instead of
using bath-independent state-preparation algorithms [60,81].
We will discuss the nonisothermal scenario and the zero tem-
perature limit of TE → 0 at the end of this subsection in which
we treat T0 and TE independently, emphasizing the distinction
between T0 and TE there.

For the heat dissipation, when limiting ourselves to weak
system-bath couplings and a single thermal bath scenario,
we can compare the bound LQ(t ) with the well-adopted
Landauer’s principle, 〈Q(t )〉 � −TE 〈�S̃(t )〉, which is di-
rectly related to the second law of thermodynamics [26].
We clearly observe that LQ(t ) contains the same contribu-
tion −TE 〈�S̃(t )〉. However, besides this common contribution
from the state function change, LQ(t ) also includes extra
contributions from state-dependent and process-dependent
quantities as manifested by the last three terms on the right-
hand side of Eq. (9). With these extra contributions, LQ(t )
is capable of capturing the dynamical information over the
course of the process (such as whether the system is being
driven and out of equilibrium) that is, however, missed in Lan-
dauer’s principle. We thus expect a tight performance of LQ(t )
at finite times as compared with Landauer’s principle. In this
regard, we note that improving the finite-time performance of
Landauer’s principle also relies on process-dependent correc-
tion terms [34,35,93].

As for the extracted work, we particularly contrast the
bound LW (t ) with an existing upper one −�F (t ) − TE�Sm

obtained from a generalized second law of thermodynam-
ics [94,95]. For later convenience, we dub −�F (t ) − TE�Sm

the second-law work bound by noting that the upper bound
LW (t ) is derived without resorting to the second law of
thermodynamics. In the expression of the second-law work
bound, �F (t ) = −TE ln[Z0(t )/Z0] denotes the change in the
Helmholtz free energy of the system between the final and ini-
tial thermal equilibrium states with Z0(t ) = Tr[e−Hs (t )/TE ] and
Z0 ≡ Z0(0), and �Sm is the system’s von Neumann entropy
change induced by quantum measurements [95]. The second-
law work bound subsumes several well-known scenarios: For
a cyclic isothermal feedback control process implemented in a
two-state system, the second-law work bound approaches the
Szilard limit TE ln 2 as �F (t ) = 0 and �SM = − ln 2 [28,96].
For isothermal processes without measurements, the second-
law work bound reduces to the classical free-energy bound
−�F (t ).

We observe that our upper bound LW (t ) contains contri-
butions TE ln[Zr (t )/Z0] − TE 〈�S̃(t )〉 that resemble those in
the second-law work bound (recall that we set T0 = TE to
facilitate comparisons). Particularly, 〈�S̃(t )〉 can equal �Sm

if one considers a measurement process. Still, the two work
bounds are distinct. Not to mention additional contributions
TE�βr (t )〈Ẽs(t )〉 − 〈Q(t )〉 to LW (t ) that are absent in the

second-law work bound, we would also like to point out
that Zr (t ) in LW (t ) that is determined using thermodynamic
inference schemes does not necessarily equal Z0(t ) appearing
in the second-law work bound at finite times, noting that
the dynamical evolution of the system can deviate from the
instantaneous thermal equilibrium path of the isothermal pro-
cess which renders Tr (t ) �= TE . We then expect that the bound
LW (t ) can capture emergent nonequilibrium features during
a finite-time isothermal evolution as Zr (t ) is inferred using
the actual nonequilibrium state ρs(t ). In the quasistatic limit
where Zr (t ) and Z0(t ) equal and �βr (t ) = 0, the bound LW (t )
is still distinct from the second-law work bound as the former
involves a contribution from the averaged heat dissipation
which compensates the contribution −TE 〈�S̃(t )〉 according to
Landauer’s principle.

Going beyond the isothermal process, the Landauer bound
and the second-law work bound mentioned above become
immediately inapplicable as a single bath temperature TE

becomes ill-defined, whereas the bounds LQ,W (t ) obtained
herein remain valid as they are based solely on knowledge
of the system. In this scenario, we remark that the param-
eter βr (t ) (including β0) in LQ,W (t ) is no longer associated
with a thermodynamic interpretation even in the quasistatic
limit and, particularly, T0 in Eq. (9) cannot be identified as
a bath temperature anymore. To evaluate the upper bounds
for nonisothermal processes, we first infer the parameter βr (t )
using either the averaged internal energy or the averaged in-
formation content of the system and then utilize the inferred
parameter together with the system’s dynamical information
to calculate the involved terms in Eq. (9).

Lastly, we address a special scenario of undriven quantum
systems undergoing an arbitrary evolution where the extracted
work due to external driving fields vanishes. We emphasize
that the upper bound LQ(t ) in Eq. (9) obtained from using
a time-dependent Gibbsian reference state remains applica-
ble in this scenario. Nevertheless, we remark that undriven
systems also allow for a time-independent Gibbsian reference
state ρr = e−βr Hs/Zr due to a time-independent Hamiltonian
Hs. The corresponding time-independent parameter βr can be
sufficiently inferred using either the initial internal energy
〈Ẽs(0)〉 or the initial information content S(0) of undriven
systems, all yielding βr = β0. In doing so, we arrive at a
simplified upper bound on averaged heat dissipation valid for
undriven systems:

Lun
Q (t ) = −T0〈�S̃(t )〉. (10)

It is evident that the two thermodynamic inference schemes
could yield the same prediction for Lun

Q (t ). We stress that
using initial conditions which are known a priori by the one-
time measurement scheme to fix ρr is just a straightforward
and simple option. It does not mean that the time-independent
reference state can only be applied at the initial time. In fact,
one can certainly use dynamical information at a finite time
point to infer βr at the cost of a more complex bound com-
pared with Eq. (10). Here we just limit ourselves to Eq. (10)
for simplicity. The simple form of Lun

Q (t ) resembles that of the
Landauer bound −TE 〈�S̃(t )〉. However, being a valid upper
bound for undriven systems, we should point out that Lun

Q (t )
is distinct from the Landauer lower bound even in the validity
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regime of the latter, where a single bath temperature TE can be
defined. Particularly, Lun

Q (t ) can remain nonzero in the zero-
temperature limit of TE → 0, unlike the Landauer bound [39].

To clarify the above statement, remember that the parame-
ter T0 in Eq. (10) that determines the initial system Gibbsian
state is independent of the bath temperature TE . Considering
heat dissipation in a two-level system due to spontaneous
emission [39], T0 is in one-to-one correspondence with an
initial excitation probability of the two-level system. To have
nonzero heat dissipation even in the limit of TE → 0 for a
two-level system [97], one requires a nonzero initial excitation
probability regardless of bath temperature TE [39]. Hence, we
deduce that the parameter T0 and, consequently, the bound
Lun

Q (t ) can remain nonzero as we take the limit of TE → 0.
In contrast, the Landauer bound tends to zero in this limit,
highlighting the distinction between Lun

Q (t ) and the Landauer
bound. Following this argument, we know that the full upper
bound LQ(t ) should also remain nontrivial in the limit of
TE → 0. We note that Ref. [39] obtained a lower bound on
heat dissipation with a nontrivial zero temperature limit for
undriven systems by assigning a Gibbsian reference state to
the environment, thereby requiring the dynamical knowledge
of the evolved bath state to evaluate the bound. In comparison,
we obtain the bound Lun

Q (t ) by assigning a Gibbsian refer-
ence state to the system. Thus, we just need the dynamical
knowledge of the system to evaluate Lun

Q (t ), which is compu-
tationally and experimentally easier to obtain than that of the
environment.

B. Thermodynamic lower bound on precision

We now turn to second-order fluctuation of the excess
energy in light of recent interest in the thermodynamic
uncertainty relation [98–100]. We first note the following
Cauchy-Schwarz inequality (time dependence is suppressed
in this subsection for simplicity):

〈(�Ẽs − 〈�Ẽs〉)(βr Ẽ − 〈βr Ẽ〉)〉2 � Var(�Ẽs)Var(βr Ẽ ).
(11)

Here, Var(O) ≡ 〈O2〉 − 〈O〉2 denotes the variance (second-
order cumulant) of O. The equality is taken only when
there exists a nonzero constant λ such that �Ẽs − 〈�Ẽs〉 =
λ(βr Ẽ − 〈βr Ẽ〉). However, this condition can hardly be met
in the present study due to a nonzero contribution from
�S̃ − 〈�S̃〉 to the first-order fluctuation of the excess energy
βr Ẽ − 〈βr Ẽ〉. That being said, the inequality Eq. (11) can
become rather tight when the contribution βr (�Ẽs − 〈�Ẽs〉)
prevails in the first-order fluctuation βr Ẽ − 〈βr Ẽ〉.

Using the definition in Eq. (5), we find 〈(�Ẽs −
〈�Ẽs〉)(βr Ẽ − 〈βr Ẽ〉)〉 = βrVar(�Ẽs) − Cor(�Ẽs,�S̃), with
Cor(O1,O2) ≡ 〈O1O2〉 − 〈O1〉〈O2〉 denoting a correlation
function between two quantities O1,2. From the cumu-
lant generating function in Eq. (6), we obtain the variance
Var(βr Ẽ ) = Var(B̃). We can interpret Var(B̃) as an indica-
tor for characterizing the energetic stability, or constancy,
for completing an information processing process. Then we
can transform Eq. (11) into a universal lower bound on the
precision Var(�Ẽs)/〈�Ẽs〉2 [98] in terms of the Fano factor
Var(�Ẽs)/〈�Ẽs〉 and the correlation function between fluctu-

ating quantities �Ẽs and �S̃:

Var(�Ẽs)

〈�Ẽs〉2
� 1

Var(B̃)

[
βr

Var(�Ẽs)

〈�Ẽs〉
− Cor(�Ẽs,�S̃)

〈�Ẽs〉

]2

.

(12)
Equation (12) states that a smaller Var(�Ẽs)/〈�Ẽs〉2 requires
a smaller difference in the bracket on the right-hand side of
Eq. (12) or a larger Var(B̃). We note that a higher precision
directly implies a smaller Fano factor, therefore a small dif-
ference could occur when the correlation function between
energy and information content changes also becomes small,
implying a disentanglement between energy and information.
Meanwhile, a larger Var(B̃) reflects a worse energetic stability
to complete an information processing process. Hence, the
above inequality reveals a trade-off relation between precision
and the degree of energy-information connection: A more
precise energy change inference requires a looser energy-
information link.

Compared with the form of thermodynamic uncertainty
relation [98–100] which lower bounds the precision using the
averaged total entropy production, the lower bound on preci-
sion obtained herein depends on the fluctuating system’s von
Neumann entropy production. Without referring to the total
entropy production, which can become ill-defined in scenarios
involving nonthermal and unknown environments [89], we
expect Eq. (12) to hold in generic quantum setups, in direct
contrast to the thermodynamic uncertainty relation which can
be violated in certain quantum systems [101,102]. The in-
volved correlation function Cor(�Ẽs,�S̃) in Eq. (12) further
reveals how the energetics and information interact at the level
of higher-order fluctuations.

We highlight that Eq. (12) is obtained by explicitly treating
the fluctuating energetic and information-theoretic quantities
on equal footing. Supposing one just considers the mean of
the fluctuating system’s information content change by ne-
glecting its fluctuations, one readily finds that Ẽ − 〈Ẽ〉 →
�Ẽs − 〈�Ẽs〉 and the correlation function Cor(�Ẽs,�S̃) van-
ishes. Under this special circumstance, Eq. (12) reduces to a
trivial equality which relates the precision to the Fano fac-
tor, Var(�Ẽs)/〈�Ẽs〉2 = [Var(�Ẽs)/〈�Ẽs〉]2/Var(�Ẽs). By
including the fluctuations of system’s information content
change, Eq. (12) immediately becomes a nontrivial inequality
between the precision and the Fano factor due to the presence
of a nonzero correlation function.

By replacing �Ẽs with �S̃ in Eq. (11), we can establish a
universal lower bound on the precision Var(�S̃)/〈�S̃〉2 of the
fluctuating system’s information content change �S̃ as well:

Var(�S̃)

〈�S̃〉2
� 1

Var(B̃)

[
Var(�S̃)

〈�S̃〉 − βr
Cor(�Ẽs,�S̃)

〈�S̃〉

]2

.

(13)
The form of Eq. (13) bears a close resemblance to that of
Eq. (12) with a common contribution from the correlation
function Cor(�Ẽs,�S̃). Similarly, Eq. (13) implies that a
more precise inference of information content change re-
quires a looser energy-information link. Our results Eqs. (12)
and (13) together thus indicate that higher-order fluctua-
tions of the system’s energy and information content changes
should also be linked, highlighting the necessity of under-
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standing the connection between energetics and information
from the trajectory level.

Before proceeding, we summarize that the general bounds
on averaged thermodynamic quantities [cf. Eq. (8)] and pre-
cision [cf. Eqs. (12) and (13)] are obtained as direct results
of the non-negativity of the quantum relative entropy and
the Cauchy-Schwarz inequality, respectively. These are rather
general mathematical properties holding regardless of the de-
tails of the system and the environment. Hence, the general
links obtained in this section should inherit such a generality
as well as mathematical soundness.

IV. NUMERICAL DEMONSTRATIONS

In this section, we present a set of numerical demonstra-
tions to illustrate the performance of the obtained general
links in detailed systems. We select models that first en-
able us to obtain numerical results for the involved energetic
and information-theoretical quantities such that we can have
benchmarks to evaluate the performance of the thermody-
namic bounds and, second, cover a diversity of environments
such that we can also demonstrate the generality of the ther-
modynamic framework. We remark that detailed models may
invoke certain assumptions about their system Hamiltonian,
environments, and dissipative evolution to define their con-
texts, but our general links hold irrespective of such details
and are applicable far more broadly.

A. Single thermal environment: Quantum information erasure

We first investigate the isothermal scenario with a single
thermal bath of temperature TE where the majority of stud-
ies on thermodynamics of information were conducted. For
concreteness, we consider a driven qubit immersed in a single
thermal bath which was used to realize an information erasure
process [35,36], as Fig. 2(a) sketches. The driven qubit is
described by a time-dependent Hamiltonian:

Hs(t ) = ε(t )

2
(cos[θ (t )]σz + sin[θ (t )]σx ). (14)

Here, σx,z denote the Pauli matrices, and we have two driving
fields ε(t ) and θ (t ). We adopt the driving protocols ε(t ) =
ε0 + (ετ − ε0) sin(πt/2τ )2 and θ (t ) = π (t/τ − 1) [36], with
τ being the time duration of the information erasure process.
Setting ετ � ε0 and ετ /TE � 1, one can reset the qubit to a
final state that is very close to its ground state, thus realizing
an information erasure process.

The evolution of the actual system state ρs(t ) is governed
by a quantum Lindblad master equation [35]:

d

dt
ρs(t ) = −i[Hs(t ), ρs(t )] +

2∑
μ=1

γμD[Lμ(t )]ρs(t ). (15)

Here, γμ � 0 is the damping coefficient of decaying channel
μ, D[Lμ]ρ = LμρL†

μ − 1
2 {L†

μLμ, ρ} denotes a Lindblad super-
operator with {O1,O2} = O1O2 + O2O1. We have two time-
dependent jump operators L1(t ) = √

ε(t )[NE (t ) + 1]|0t 〉〈1t |,
L2(t ) = √

ε(t )NE (t )|1t 〉〈0t | describing de-excitation and exci-
tation process induced by the thermal bath, respectively. Here
|0t 〉 (|1t 〉) is the instantaneous ground (excited) state of Hs(t ),
NE (t ) = 1/[eε(t )/TE − 1] is the Bose-Einstein distribution.

FIG. 2. (a) Sketch of a driven qubit coupled to a single thermal
bath with temperature TE . (b) We present the averaged heat dissi-
pation 〈Q(t )〉 (blue line) and contrast upper bounds LI,II

Q (t ) (green
and orange lines, respectively) from the two thermodynamic infer-
ence schemes against the Landauer bound (LB) ‘−TE 〈�S̃(t )〉’ (red
line). (c) We depict the deviations LI,II

Q (t ) − 〈Q(t )〉 (left axis) and
quantum coherence generation TE�Coh(t ) (right axis, see definition
in the main text) as a function of time. Parameters are γ1,2 = 0.2,
T0 = TE = 1/8, ε0 = 0.4, ετ = 4, and τ = 10.

Together with Eqs. (14) and (15), one can then obtain numer-
ical results for 〈Q(t )〉 and 〈W (t )〉 based on their definitions
given above Eq. (8). To numerically evaluate the upper bounds
LI,II

Q (t ) in Eq. (9), one just takes the simulated ρs(t ) from
Eq. (15) and Hs(t ) as the inputs for the two thermodynamic
inference schemes and Eq. (9). Even though Eq. (15) depends
on TE explicitly, which is one of defining features of the
current model, it is worth clarifying that the upper bounds
LI,II

Q (t ) remain agnostic about the environment, as one cannot
tell whether the environment is of a thermal nature based
solely on numerical results for ρs(t ) and Hs(t ). Particularly,
it is often the case that ρs(t ) is a nonequilibrium state due to
finite-time driving.

Without loss of generality, we consider a driven qubit
initially at the thermal equilibrium with the bath and set the
parameter T0 = TE . We point out that such a choice does not
compromise the generality of the upper bounds in Eq. (9).
We first focus on the behavior of the actual heat dissipation
〈Q(t )〉 and contrast upper bounds LI,II

Q (t ) obtained herein
against the Landauer bound −TE 〈�S̃(t )〉 since we work in
the weak coupling limit as indicated by the quantum Lindblad
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equation Eq. (15). We depict a typical set of numerical results
in Fig. 2(b). From Fig. 2(b), we clearly observe that the actual
heat dissipation 〈Q(t )〉 is well above the Landauer bound at
finite times as expected. In comparison, the upper bounds
LI,II

Q (t ) provide much tighter descriptions due to the inclusion
of extra state-dependent and process-dependent contributions,
as pointed out in the previous section. Moreover, we see that
the upper bounds LI,II

Q (t ) are capable of capturing the fine os-
cillating behavior of the actual heat dissipation 〈Q(t )〉, unlike
the Landauer bound.

Contrasting the performance of the two upper bounds
LI,II

Q (t ), we depict the deviations LI,II
Q (t ) − 〈Q(t )〉 (left axis)

in Fig. 2(c). We find that the upper bound LI
Q(t ) outperforms

its counterpart LII
Q(t ), especially at short times. Recalling

that LI
Q(t ) is evaluated using ρI

r (t ) that is obtained from the
equal-energy inference scheme, we attribute its relative better
performance to the fact that the internal energy of the system
represents a better estimator than the information content of
the system for inferring the parameter βr (t ), after all Hs(t )
and βr (t ) represent a conjugate pair in a Gibbsian state.

To pinpoint the origin of oscillating behaviors of the
deviations LI,II

Q (t ) − 〈Q(t )〉 as a function of time, we turn
to the quantum coherence generated during the process
which is preserved in our framework. We adopt the quan-
tum coherence measure proposed by Ref. [103], Coh(t ) ≡
S′(t ) − S(t ), with S′(t ) = −Tr(�[ρs(t )] ln �[ρs(t )]) denoting
the von Neumann entropy of a diagonal state �[ρs(t )] =∑

n |En(t )〉〈En(t )|ρs(t )|En(t )〉〈En(t )| in the instantaneous en-
ergy basis {|En(t )〉} of Hs(t ). Recent studies [104,105] have
highlighted the vital role of quantum coherence in shaping
the energetics of the system by adopting this measure. In
Fig. 2(c), we also depict the result of quantum coherence
generation �Coh(t ) ≡ Coh(t ) − Coh(0) during the process
(right axis). We clearly observe that the deviations follow
perfectly with the oscillating quantum coherence generation,
providing strong evidence that quantum coherence is respon-
sible for the variations of the deviations LI,II

Q (t ) − 〈Q(t )〉. The
matched local minima of the deviations and the quantum
coherence generation suggest that one can obtain tighter upper
bounds by suppressing the quantum coherence. We verify this
strategy numerically in Appendix B. Given the nontrivial role
of the quantum coherence in energetics, it is thus essential
for a thermodynamic framework concerning relations between
energetics and information to preserve quantum coherence
generated during the process.

Interestingly, we find that the driven qubit can perform
work with 〈W (t )〉 > 0, providing a test bed for contrasting
upper bounds on the extracted work 〈W (t )〉. In this model, we
have checked that the work extraction process accompanies
a continuous reduction in the system’s information content
〈�S̃(t )〉. Thus, the driven qubit functions in a way similar to
a noncyclic information engine which, by definition, operates
with a single thermal bath and utilizes system’s information as
a resource [96]. We stress that there is no contradiction with
the second law of thermodynamics as we have checked that
the total entropy production 〈�S̃(t )〉 + 〈Q(t )〉/TE remains
non-negative during the information erasure process. As the
quantum Lindblad master equation can be recast as the re-
sult of continuous measurements by the environment [106],

FIG. 3. Averaged extracted work 〈W (t )〉 (blue line) from a driven
qubit. We contrast upper bounds LI,II

W (t ) (green and orange lines,
respectively) from the two thermodynamic inference schemes against
a form of the second-law work bound (SLWB) −�F (t ) − TE 〈�S̃(t )〉
(red line, see elaboration in the main text) and the free energy
bound −�F (t ) (purple line). In the inset, we depict the deviations
LI,II

W − 〈W (t )〉. Parameters are the same as Fig. 2.

we adopt a form of the second-law work bound −�F (t ) −
TE 〈�S̃(t )〉 generalized to account for continuous measure-
ments [95] for comparison.

In Fig. 3, we depict numerical results for the extracted
work 〈W (t )〉 and contrast our upper bounds LI,II

W (t ) against
the second-law work bound −�F (t ) − TE 〈�S̃(t )〉 and the
free energy bound −�F (t ). The predictions of the latter two
are almost indistinguishable in this scenario. From Fig. 3, it
is evident that the two upper bounds LI,II

W (t ) obtained herein
outperform the second-law work bound and the free energy
bound not only by their tightness, as highlighted by the magni-
tudes of deviations LI,II

W − 〈W (t )〉 shown in the inset of Fig. 3,
but also with an ability to capture the fine oscillating behavior
of 〈W (t )〉 at finite times induced by quantum coherence (see
results in Fig. 2). We attribute the latter capability to the fact
that LI,II

W (t ) include contributions which are process depen-
dent, unlike the second-law work bound and the free-energy
bound which only take into account state function changes.
We thus envision that the two upper bounds LI,II

W (t ) can
provide tighter finite-time constraints than their counterparts
derived from the second law of thermodynamics. In the limit
of quasistatic driving, we note that the two bounds LI,II

W (t )
reduce to the free-energy bound −�F (t ) as a result of Lan-
dauer’s principle 〈Q(t )〉 = −TE 〈�S̃(t )〉 achieved in that limit
and the fact that the system always stays in an instantaneous
thermal equilibrium state.

B. Multiple thermal environments: Inelastic heat transfer

We next turn to a scenario involving multiple thermal baths
where the existing bounds relying on a single bath temper-
ature such as the Landauer bound become inapplicable. In
the presence of multiple thermal baths, we remark that the
averaged heat dissipation 〈Q(t )〉 considered here corresponds
to the net sum of heat components flowing into each bath,
according to the first law of thermodynamics. One is unable
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FIG. 4. (a) Sketch of a three-terminal double quantum dot setup
in which a driven double quantum dot system tunnel-couples to
two electronic baths whose internal hopping is further affected by
a phononic bath. (b) The averaged heat dissipation 〈Q(t )〉 (blue
line) and upper bounds LI,II

Q (t ) (green solid and orange dashed lines,
respectively) from the two thermodynamic inference schemes. In-
set: The deviation LI

Q(t ) − 〈Q(t )〉. (c) The averaged extracted work
〈W (t )〉 (blue line) and upper bounds LI,II

W (t ) (green solid and orange
dashed lines, respectively) from the two thermodynamic inference
schemes. Inset: The deviation LI

W (t ) − 〈W (t )〉. Parameters are μL =
μR = 0, � = 1, εL0 = 2, εR0 = 2, εLτ = 1.5, εRτ = 1.5, φ = π/4,
�L = �R = �ph = 0.1, δ = 0.2, TL = 0.2, TR = 0.3, Tph = 0.4 and
the initial system Gibbsian state is fixed by setting T0 = 0.25.

to decompose 〈Q(t )〉 to get an individual heat component for
each bath given the knowledge of the system only. In contrast,
the work definition adopted here still quantifies the amount of
extractable work from the total setup, regardless of the number
of baths, provided that only the system is being driven.

To examine the performance of both upper bounds
LQ,W (t ), we specifically consider a driven three-terminal
system [107,108] that is within the current experimental ca-
pabilities. The total setup consists of a double quantum dot
system (specified as the L and R dots) coupled to a phononic
thermal bath, while each dot further individually exchanges
electrons with an electronic thermal reservoir, as Fig. 4(a)
depicts. The total Hamiltonian for the setup contains three
different parts. The first part of the total Hamiltonian describes
the “bare” system–two coupled quantum dots whose site en-

ergies can be tuned:

HDQD(t ) =
∑

i=L,R

εi(t )d†
i di + δ(d†

LdR + H.c.). (16)

Here, H.c. denotes the Hermitian conjugate of the term in
the bracket, di and εi(t ) denote an electronic annihilation
operator and a time-dependent site energy of the ith quan-
tum dot, respectively. We adopt the driving protocols εL(t ) =
εL0 + εLτ sin(�t ), εR(t ) = εR0 + εRτ sin(�t + φ), with � and
φ being the frequency and the nonzero modulation phase,
respectively [109,110]. This simple set of driving protocols
is sufficient for demonstration purposes. δ measures the tun-
neling strength between the two dots.

The second part of the total Hamiltonian accounts for
a phononic thermal bath containing an ensemble of har-
monic oscillators and their inelastic coupling to the two
dots. The qth harmonic oscillator has frequency ωq with
annihilation operator aq and q-dependent electron-phonon
coupling strength λq, resulting in a Hamiltonian denoting
the second part Hep = ∑

q[ωqa†
qaq/2 + λqd†

LdR(aq + a†
q) +

H.c.] [111,112]. The third part of the total Hamiltonian de-
scribes two electronic reservoirs with electronic annihilation
operators {dvk} and energies {εvk} as well as their coupling to
the individual dot measured by a mode-dependent coupling
strength {γvk}, leading to a Hamiltonian describing the third
part, He−lead = ∑

v=L,R

∑
k (εvkd†

vkdvk/2 + γvkd†
v dvk + H.c.).

The influence of phononic and electronic baths is captured
by the spectral functions (or hybridization energies) �ph =
2π

∑
q λ2

qδ(ω − ωq) and �v = 2π
∑

k |γvk|2δ(ε − εvk ) (v =
L, R), respectively. For simplicity, they are chosen to be flat
(wide-band limit).

We consider the weak coupling limit in which both the
electron-phonon and dot-reservoir couplings can be treated in
a perturbative manner. Denoting V = ∑

q λqd†
LdR(aq + a†

q) +∑
v=L,R

∑
k γvkd†

v dvk + H.c. as the overall coupling Hamilto-
nian, the evolution dynamics of the reduced system state ρs is
then governed by the following Redfield master equation [16]:

∂

∂t
ρs(t ) = i[ρs(t ), HDQD(t )]

−
∫ ∞

0
dτTrE {[V, [V (−τ ), ρs(t )ρE ]]}. (17)

Here, ρs(t )ρE is short for ρs(t ) ⊗ ρE , ρE =
ρL⊗ρR⊗ρph denotes an initial product thermal state
for the phononic and electronic baths where ρph =
exp[−βphHph]/Tr{exp[−βphHph]} and ρv = exp[−βv (Hv −
μvNv )]/Tr{exp[−βv (Hv − μvNv )]} (v = L, R), with
Hph = ∑

q ωqa†
qaq, Hv = ∑

k εvkd†
vkdvk , and Nv = ∑

k d†
vkdvk .

βph = T −1
ph and βv = T −1

v denote inverse bath temperatures.
μv are chemical potentials of the electronic reservoirs.
Numerical values for 〈Q(t )〉 and 〈W (t )〉 can be obtained by
evolving Eq. (17) after specifying parameter values.

The setup can function as an inelastic heat engine by setting
the electronic bath temperatures to be equal, TL = TR [110].
Here we are interested in demonstrating the utility of Eq. (8)
in a scenario with multiple thermal baths of different tem-
peratures, so we just take an arbitrary set of parameters with
TL �= TR �= Tph, in particular. To avoid misinterpretations on
our framework, we should clarify the role of bath temperatures
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in the simulation: To get numerical results for 〈Q(t )〉 and
〈W (t )〉, we need values for bath temperatures as the initial
condition to evolve Eq. (17), similar in spirit to the first model
simulated in Sec. IV A. However, the evaluations of the upper
bounds in Eq. (8) just require ρs(t ) and Hs(t ) as inputs, and
the former can be even extracted using techniques such as
the quantum state tomography without actually knowing the
underlying equation of motion. Hence, our statement that our
framework requires just the knowledge of the system remains
valid even though we select a specific model which requires
bath temperatures to define the context. To highlight that up-
per bounds stay regardless of bath temperatures, we further
set T0 �= Ti (i = L, R, ph) in Eq. (9).

We depict a set of numerical results in Fig. 4 by numer-
ically solving Eq. (17) in the nonlocal energy basis. From
Figs. 4(b) and 4(c) and insets therein, we clearly observe
the expected features of LI,II

Q (t ) and LI,II
W (t ) as being upper

bounds on 〈Q(t )〉 and 〈W (t )〉, respectively. Particularly, both
upper bounds LI,II

Q (t ) capture well the oscillating behavior
and magnitude of 〈Q(t )〉 regardless of its sign changes during
the process, and similar performance holds for upper bounds
LI,II

W (t ) on 〈W (t )〉. We have checked that the two upper bounds
LI,II

Q (t ) are almost identical with a difference of the order of

10−5 under the chose parameter set, the same for LI,II
W (t ).

From the figure, we also notice that the setup depicts rich
functional behaviors over the course of the evolution. Notably,
during the time interval 3 � t � 4.9, the setup can function as
a heat engine performing work while absorbing a net amount
of heat from baths (〈Q(t )〉 < 0 and 〈W (t )〉 > 0). The setup
can also function as a heat dissipator consuming external work
(〈Q(t )〉 > 0 and 〈W (t )〉 < 0) or an energy sink absorbing both
heat and work (〈Q(t )〉 < 0 and 〈W (t )〉 < 0). However, iden-
tifying their individual operational regimes in the parameter
space is beyond the scope of this paper.

C. Dissipation-engineered environment: Dissipative quantum
state preparation

To further highlight the generality of our framework, we
now consider an extreme scenario in which introducing the
notion of temperature becomes completely in vain. A notable
example of this scenario concerns dissipation-engineered
quantum processes where one can harness environmental dis-
sipation, which is usually thought to be detrimental as a
useful resource for quantum tasks through dissipation en-
gineering. Dissipation-engineered quantum processes have
already found a wide range of applications in quantum infor-
mation processing (see a recent review [66] and references
therein). For dissipation-engineered quantum processes, one
has no knowledge about the environment associated with the
engineered dissipation and thus cannot make a priori assump-
tions about the nature of the environment, rendering existing
thermodynamic bounds which require environmental infor-
mation (for instance, temperature) to hold inapplicable. In
comparison, the details of the engineered dynamical evolution
of the system could be available [66]. Hence the dissipation-
engineered quantum process provides an intriguing platform
for illustrating the generality of our framework.

To provide a concrete demonstration, we investigate the so-
called dissipative quantum state preparation process in which

FIG. 5. (a) Sketch of a double Rydberg atom system, each con-
sisting of two ground states |0, 1〉 and one Rydberg state |r〉, used
to prepare an entangled Bell state through engineered dissipation
whose associated environment remains unknown. (b) Heat dissi-
pation 〈Q(t )〉 (blue line) during a dissipative quantum Bell state
preparation process. We contrast the obtained upper bounds LI,II

Q (t )
(green and orange lines, respectively) from the two thermodynamic
inference schemes and a simplified one Lun

Q (t ) (red line) valid
for undriven systems. Inset: Fidelity Tr[ρs(t )ρ f ] as a function of
time. We adopt the experimental parameters (ω1, ω2, γμ) = 2π ×
(0.02, 0.01, 0.015) MHz [113], choose β0 = 30 to fix the initial
Gibbsian state of the system, and set � = 2π MHz as the unit.

one prepares desired pure quantum states at steady states of
engineered dissipative evolution processes [114–117]. This
quantum state preparation process has been realized experi-
mentally [61,62,67,118–121]. We choose a double Rydberg
atom system designed to prepare the Bell state [122] in a
dissipative manner, as Fig. 5(a) shows. The model consists
of two �-type three-level Rydberg atoms—each one contains
two ground states |0〉 and |1〉, and one Rydberg state |r〉.
Under an unconventional Rydberg pumping mechanism, the
effective Hamiltonian of the coupled Rydberg atom system
reads [122]

Hs = ω1(|10〉〈r0| + |01〉〈0r|)
+ω2[(|11〉 + |00〉) ⊗ (〈01| + 〈10|)] + H.c. (18)

Here, a two-atom state |ab〉 is understood as |a〉 ⊗ |b〉 with
a, b = 0, 1, r. The engineered evolution of the system is gov-
erned by a quantum master equation of the Lindblad form as
Eq. (15) shows, with the Hamiltonian given by Eq. (18) and
four Lindblad jump operators describing engineered spon-
taneous emission in the two-atom state basis [122]: L1 =
|01〉〈0r|, L2 = |00〉〈0r|, L3 = |10〉〈r0| and L4 = |00〉〈r0|.
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Given the Hamiltonian and Lindblad jump operators, one
can check that the Bell state |�〉 = (|00〉 − |11〉)/

√
2 turns

out to be the fixed point of the evolution, d
dt ρ f = 0 with ρ f =

|�〉〈�| due to the properties that HS|�〉 = 0 and Lμ|�〉 =
0, ∀μ. These two properties are, in fact, the prerequisite for
getting an entangled pure state using dissipative Markovian
evolution [115]. As the system stays in a pure state in the
long time limit, the total entropy production becomes ill-
defined [123], hence one cannot resort to the second law of
thermodynamics to connect energetics and information for
this process.

As the model is time independent, we only need to focus on
the averaged heat dissipation 〈Q(t )〉 whose numerical values
can be obtained by evolving the corresponding quantum Lind-
blad master equation subject to an initial Gibbsian state. We
depict numerical results for 〈Q(t )〉 as well as predictions from
the obtained upper bounds LI,II

Q (t ) [cf. Eq. (9)] and Lun
Q (t ) [cf.

Eq. (10)] in Fig. 5. From Fig. 5(b), we observe that all derived
upper bounds herein are valid, constraining the heat dissipa-
tion from the above. Among them, we find that the bound
LI

Q(t ) with βr (t ) evaluated using the equal-energy inference
scheme stands out as the tightest, whereas the bound LII

Q(t )
with βr (t ) evaluated using the equal-information-content in-
ference scheme defines the worst scenario, with a prediction
significantly deviating from the actual heat dissipation. We at-
tribute this large deviation to the fact that the inferred value of
βr (t ) tends to be large when applying the equal-information-
content inference scheme to a system in a pure state.

From Fig. 5(b), we also note that the simplified bound
Lun

Q (t ) works well with a prediction slightly larger than that
of the best LI

Q(t ). Hence, to implement the equal-information-
content inference scheme for this undriven system, one could
instead consider a time-independent reference state, since im-
plementing the equal-information-content inference scheme
at the initial time can yield a finite βr , which just equals β0. We
further find that the bounds LI

Q(t ) and Lun
Q (t ) can capture the

saturation behavior of the actual heat dissipation at large times
as the system approaches the desired Bell state (see results for
the fidelity F (t ) = Tr[ρs(t )ρ f ] shown in the inset), in direct
contrast to the worst bound LII

Q(t ), which keeps increasing.

D. Verifying lower bound on precision

At last, we illustrate the performance of lower bounds on
precision in Eqs. (12) and (13). Given a detailed model, the
mean and variance involved in Eqs. (12) and (13) can be
evaluated as follows: First, one obtains the full state ρs(t ) and
single trajectories by evolving the initial Gibbsian state ρs(0)
and energy eigenstates of the initial system Hamiltonian using
the specified quantum channel (i.e., a complete positive and
trace-preserving dynamical map), respectively. The parameter
βr (t ) in the Gibbsian reference state can then be inferred
using the two thermodynamic inference schemes with inputs
ρs(t ) and Hs(t ). Second, one computes the changes �Ẽs(t ),
�S̃(t ) as well as the excess energy E (t ) for each trajectory
using the numerical outcomes of the first step. At last, one
calculates the ensemble averages according to the definition
〈O〉 = ∑

p0
p0O over the complete set of initial measurement

probabilities {p0} whose number of elements depends on the
dimension of the system Hamiltonian.

FIG. 6. Inverse of the precision (blue line) of the fluctuating
quantities �Ẽs(t ) (upper panel) and �S̃(t ) (lower panel) for the
model studied in Sec. IV A. We also depict results for the Fano-
correlation bounds (FCB) I (green dashed line) and II (orange dashed
line) evaluated using the equal-energy and equal-information-content
thermodynamic inference scheme, respectively. Upper inset: Cor-
relation function Cor(�Ẽs, �S̃) (blue line), variance Var[�Ẽs(t )]
(green line), and variance Var[�S̃(t )] (orange line). Lower inset: Ra-
tio [�Ẽs(t ) − 〈�Ẽs(t )〉]/[βr (t )Ẽ (t ) − 〈βr (t )Ẽ (t )〉]. Parameters are
the same with Fig. 2.

We adopt the model in Sec. IV A for a detailed illustration.
We depict a set of results for t > 0 in Fig. 6. To enable a better
illustration, we plot the inverse of the precision 〈O〉2/Var(O)
with O = �Ẽs,�S̃ and turn the right-hand side of Eqs. (12)
and (13) into upper bounds on the inverse of the precision,
which we dub Fano-correlation bounds for later convenience.
From Fig. 6, we observe that the values of the precision of
�Ẽs and �S̃ are rather distinct, with the latter experiencing a
relatively larger fluctuation as also manifested by the variance
result shown in the inset of Fig. 6(a). This contrast implies that
higher-order fluctuation of the system’s information content
change cannot be neglected in small systems, thereby de-
serving a faithful treatment. Meanwhile, we notice a nonzero
correlation between �Ẽs and �S̃ at finite times as can be seen
from the inset of Fig. 6(a). This confirms our expectation that
Eqs. (12) and (13) are nontrivial relations linking higher-order
fluctuations of energetic and information-theoretic quantities.

We have checked that the Fano-correlation bounds eval-
uated using the two thermodynamic inference schemes are
rather tight in the adopted model with deviations of the
order of 10−5. To understand such a tightness, we numer-
ically calculate the ratio [�Ẽs(t ) − 〈�Ẽs(t )〉]/[βr (t )Ẽ (t ) −
〈βr (t )Ẽ (t )〉], with results shown in the inset of Fig. 6(b). From
the inset, we find that this ratio remains almost a constant
for t � 3. Therefore, the equality condition of the Cauchy-
Schwarz inequality Eq. (11), which requires a strictly constant
ratio, is approximately satisfied in the current scenario at large
times, explaining the tightness of the two Fano-correlation
bounds in the current model. Nevertheless, we remark that
one should not expect such a tightness depicted in Fig. 6 to
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exist in other models before running numerical simulations,
even though the Fano correlation applies a wide range of
applications not limited to the current model.

V. DISCUSSION AND CONCLUSION

We developed a systematic framework to infer links be-
tween energetics and information at finite times for a generic
open quantum system at the trajectory level, given just the
knowledge of the system. Underpinning this framework, we
introduced the notion of excess energy to link energetics and
information with a meaningful physical interpretation that it
quantifies the net energy gain of the system after completing
a finite-time trajectory with a change in the system’s infor-
mation content. By analyzing the fluctuation behaviors of
the excess energy, we uncovered general relations between
changes in energy and information content of the system
that apply to a wide range of contexts. Most remarkably, we
obtained a single inequality which integrates upper bounds on
averaged heat dissipation and extracted work from the system
in terms of the change in the averaged system’s informa-
tion content. We contrasted those bounds with existing ones
based on the second law of thermodynamics, highlighting
their distinct nature and complementary roles. Concerning
higher-order fluctuations, we also revealed the intriguing role
of the correlation function between the fluctuating system’s
energy and information content changes in lower bounding
their respective precision. We illustrated the utility of derived
general relations at finite times through a number of numerical
demonstrations.

We envision that our paper propels us closer to an
all-encompassing comprehension of the interplay between en-
ergetics and information in dynamical open quantum systems
interfacing with an expansive array of environment types—
extending beyond the realm of solely thermal baths. More
crucially, our results clearly demonstrate that it is possible to
understand the intricate interplay between the nonequilibrium
thermodynamics and information processing in open quantum
systems with just the knowledge of the system, in contrast
to previous treatments which require both knowledge of the
system and environments.

As a final remark, we note that knowing the dynamical
information of the system state and Hamiltonian is usually the
prerequisite for conducting quantum controls for information
tasks [124]. The recent advance in machine learning even
enables one to reconstruct the dynamical information from
unknown quantum processes [125] and measurements [126]
with high precision. From an experimental point of view, the
system’s dynamical information can be extracted using mature
tools such as quantum state and process tomography [127]
as well as time-dependent Hamiltonian reconstruction tech-
nique [128] to name just a few, without the need to measure
complex environments. Therefore, our results, which perform
well at finite times, can be readily evaluated experimentally.

Looking forward to future applications, we believe that our
framework will strengthen the synergy between quantum ther-
modynamics and quantum information processing in complex
composite systems where only the knowledge of the dynam-
ical system would be accessible. An interesting application
that fits in our framework would be quantum annealing, where

one just knows a time-dependent system Hamiltonian [129].
Despite the nontrivial role of quantum annealing in solving
optimization problems, its energetic aspect remains largely
elusive [130]. In the ideal form of quantum annealing, we
can apply the current framework to evaluate the work needed
to implement the driven unitary process. For quantum an-
nealing experiencing unknown environmental influences, we
can further investigate behaviors of heat dissipation due to
system-environment coupling to seek control strategies over
unwanted environmental effects. Moreover, the finite-time up-
per bound on heat dissipation represents a tighter estimation
for the actual heat dissipation than the Landauer lower bound,
thereby providing a suitable reference for optimizing the en-
ergetic cost of finite-time quantum processes. We also expect
that the finite-time upper bound on extracted work can find
a wide range of applications in quantum thermal and infor-
mation machines and, particularly, enable a tight estimation
on their optimal performance when operating with finite-time
cycles and/or nonthermal environments.
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APPENDIX A: GIBBSIAN REFERENCE STATES FROM
INFERENCE SCHEMES

In this Appendix, we show that a Gibbsian state has
minimal energy (information content) among states having
the same information content (energy). We first consider the
equal-energy inference scheme set by Eq. (3) in the main
text. We compare a Gibbsian state ρg(t ) = e−βr (t )Hs (t )/Zr (t )
with Zr (t ) = Tr[e−βr (t )Hs (t )] with an arbitrary non-Gibbsian
state ρ(t ) that has the same energy with ρg(t ), namely,
Tr[Hs(t )ρg(t )] = Tr[Hs(t )ρ(t )]. Their information content
contrast reads (time dependence is suppressed for simplicity)

S(ρg) − S(ρ) = Tr[ρ ln ρ] − Tr[ρg ln ρg]

= Tr[ρ ln ρ] + βrTr[ρgHs] + ln Zr

= Tr[ρ ln ρ] + βrTr[ρHs] + ln Zr

= Tr[ρ(ln ρ − ln ρg)] � 0. (A1)

In arriving at the third line, we have utilized the equal-energy
condition. The above inequality, being a result of the non-
negativity of quantum relative entropy, tells us that a Gibbsian
state ρg has minimum information content (maximum von
Neumann entropy) among all states having the same energy.

033202-14



INFERRING GENERAL LINKS BETWEEN ENERGETICS … PHYSICAL REVIEW RESEARCH 6, 033202 (2024)

FIG. 7. Upper panel: The deviation LI
Q(t ) − 〈Q(t )〉 with varying

τ . Inset: The quantum coherence generation TE�Coh(t ) with vary-
ing τ . Lower panel: The deviation LI

W (t ) − 〈W (t )〉 with varying τ .
Parameters are γ1,2 = 0.2, T0 = TE = 1/8, ε0 = 0.4, ετ = 4.

Hence, we can set

ρI
r (t ) = e−βr (t )Hs (t )/Zr (t ), (A2)

with βr (t ) determined by Tr[Hs(t )ρI
r (t )] = Es(t ) in Eq. (3).

We then turn to the equal-information-content inference
scheme governed by Eq. (4). In this case, we compare the
Gibbs state ρg(t ) = e−βr (t )Hs (t )/Zr (t ) with an arbitrary non-
Gibbsian state ρ(t ) that has the same information content,
namely, S(ρg) = S(ρ). Their energy contrast reads (time-
dependence is suppressed for simplicity)

E (ρg) − E (ρ) = Tr[Hsρg] − Tr[Hsρ]

= −β−1
r Tr[ρg ln ρg] + β−1

r Tr[ρ ln ρg]

= −β−1
r (Tr[ρ(ln ρ − ln ρg)]) � 0. (A3)

In arriving at the third line, we have utilized the equal-
information-content condition. To get the inequality, we
have noted that βr is generally positive under the equal-
information-content condition [88]. Hence, we can infer from
the above inequality that a Gibbs state ρg(t ) has minimum
energy among all states having the same information content.
We then set

ρII
r (t ) = e−βr (t )Hs (t )/Zr (t ), (A4)

with βr (t ) fixed by S(ρII
r (t )) = S(t ) in Eq. (4).

APPENDIX B: TUNING THE PERFORMANCE OF UPPER
BOUNDS IN AN INFORMATION ERASURE PROCESS

In this Appendix, we explore the strategy of suppressing
the quantum coherence to improve the tightness of upper
bounds on averaged heat dissipation and extracted work for
a quantum information erasure model studied in Sec. IV A. In
this model, we note that finite time driving fields will drive the
system away from its instantaneous thermal state which is the
fixed point of the quantum Lindblad master equation Eq. (15),
generating nonzero quantum coherence in the instantaneous
energy basis.

As slower driving fields would allow the system state to
be closer to the instantaneous thermal state, we hence focus
on increasing the time duration τ of the information erasure
process to suppress the quantum coherence. In Fig. 7, we
depict a set of results for LI

Q(t ) − 〈Q(t )〉 and LI
W (t ) − 〈W (t )〉

with varying τ as well as the dynamics of the quantum co-
herence generation shown in the inset. From the figure, it is
evident that suppressing the quantum coherence indeed leads
to an improvement in the tightness of upper bounds LI

Q,W (t ).
More generally, we can understand this improvement from
the derivation of Eq. (7) in the main text. To get Eq. (7), we
have utilized the relation D[ρs(t )||ρr (t )] � 0 with the equal-
ity taken only when ρs(t ) = ρr (t ). Hence, as ρs(t ) gradually
approaches a Gibbsian state ρr (t ) with zero quantum coher-
ence, Eq. (7) tends to become an equality, yielding tighter
and tighter upper bounds. Nevertheless, we point out that one
cannot completely destroy quantum coherence in such finite
time processes. Especially, maintaining a nonzero quantum
coherence during the process is essential for a dynamical
energetic behavior [105].
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Spectral signatures of non-thermal baths in quantum thermal-
ization, Quantum Sci. Technol. 5, 015003 (2019).

[60] W. Ji, Z. Chai, M. Wang, Y. Guo, X. Rong, F. Shi, C. Ren,
Y. Wang, and J. Du, Spin quantum heat engine quantified by
quantum steering, Phys. Rev. Lett. 128, 090602 (2022).

[61] Y. Lin, J. P. Gaebler, F. Reiter, T. R. Tan, R. Bowler, A. S.
Sørensen, D. Leibfried, and D. J. Wineland, Dissipative pro-
duction of a maximally entangled steady state of two quantum
bits, Nature (London) 504, 415 (2013).

[62] S. Shankar, M. Hatridge, Z. Leghtas, K. M. Sliwa, A. Narla,
U. Vool, S. M. Girvin, L. Frunzio, M. Mirrahimi, and M. H.
Devoret, Autonomously stabilized entanglement between two
superconducting quantum bits, Nature (London) 504, 419
(2013).

[63] N. Roy, N. Leroux, A. K. Sood, and R. Ganapathy, Tuning
the performance of a micrometer-sized Stirling engine through
reservoir engineering, Nat. Commun. 12, 4927 (2021).

[64] M. Joos, D. Bluvstein, Y. Lyu, D. Weld, and A. Bleszynski
Jayich, Protecting qubit coherence by spectrally engineered
driving of the spin environment, npj Quantum Inf. 8, 47
(2022).

[65] J. M. Kitzman, J. R. Lane, C. Undershute, P. M. Harrington,
N. R. Beysengulov, C. A. Mikolas, K. W. Murch, and J.
Pollanen, Phononic bath engineering of a superconducting
qubit, Nat. Commun. 14, 3910 (2023).

[66] P. Harrington, E. Mueller, and K. W. Murch, Engineered dis-
sipation for quantum information science, Nat. Rev. Phys. 4,
660 (2022).

[67] X. Mi, A. A. Michailidis, S. Shabani, K. C. Miao, P. V. Klimov,
J. Lloyd, E. Rosenberg, R. Acharya, I. Aleiner, T. I. Andersen
et al., Stable quantum-correlated many body states through
engineered dissipation, Science 383, 1332 (2024).
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