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Learning energy-based representations of quantum many-body states
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Efficient representation of quantum many-body states on classical computers is a problem of practical
importance. An ideal representation of a quantum state combines a succinct characterization informed by the
structure and symmetries of the system along with the ability to predict the physical observables of interest.
Several machine-learning approaches have been recently used to construct such classical representations, which
enable predictions of observables and account for physical symmetries. However, the structure of a quantum state
typically gets lost unless a specialized Ansatz is employed based on prior knowledge of the system. Moreover,
most such approaches give no information about what states are easier to learn in comparison with others.
Here, we propose a generative energy-based representation of quantum many-body states derived from Gibbs
distributions used for modeling the thermal states of classical spin systems. Based on the prior information on
a family of quantum states, the energy function can be specified by a small number of parameters using an
explicit low-degree polynomial or a generic parametric family such as neural nets and can naturally include the
known symmetries of the system. Our results show that such a representation can be efficiently learned from
data using exact algorithms in a form that enables the prediction of expectation values of physical observables.
Importantly, the structure of the learned energy function provides a natural explanation for the difficulty of
learning an energy-based representation of a given class of quantum states when measured in a certain basis.
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I. INTRODUCTION

Learning a generative model from several copies of a quan-
tum state is quickly becoming an important task due to the
ever-increasing size of quantum systems that can be prepared
using various quantum information processing devices [1,2].
The quantum state with n qubits is fully characterized by the
density matrix ρ ∈ C2n×2n

with 22n − 1 parameters. Due to the
exponentially increasing number of parameters with the sys-
tem size, directly learning a quantum density matrix becomes
rapidly impractical [3,4] except in special cases, such as ma-
trix product states (MPS) [5,6], where hand-tailored quantum
tomography techniques exploiting the known structure of the
state can improve the representation efficiency [5,7–9]. Alter-
natively, some compact representations for states can be hard
to learn or can be inefficient for the purposes of estimating
observables. For example, the thermal state of a local quan-
tum Hamiltonian can be specified using polynomially few
parameters that encode the structure of the state. However,
this representation is not very useful in practice because,
currently, no computationally efficient algorithms to learn the
quantum Hamiltonian parameters are known, except in special
cases [10–13]. Moreover, even if the quantum Hamiltonian is
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known, estimating the observables is, in general, difficult due
to issues like the sign problem [14]. It is worth mentioning
that, if the aim of the tomographic technique is not to learn a
generative model but to estimate a fixed subset of observables,
then recent advances in shadow tomography can be used in
many practically interesting settings [15,16].

In many cases, rather than trying to represent the quantum
state directly, a more fruitful approach would be to learn
a classical generative model for the measurement statistics
generated by a quantum state. Since a state can be completely
specified by the distribution of its measurement outcomes in
an appropriately chosen basis, such a classical model can
be used as an equivalent model for the quantum state. Most
commonly, the mapping of a quantum state to a classical
distribution is performed using multiqubit positive operator
valued measures (POVMs) in the form of a tensor product of
informationally complete single-qubit POVMs [17,18]. These
POVMs are specified using operators Mσi for each qubit i,
where σi ∈ {1, . . . q} is a classical variable that takes one of
the q states. For a quantum state on n qubits, such a mapping
generates a classical n-body distribution on classical variable
configurations σ = (σ1, . . . , σn):

μ(σ ) = Tr
[
ρM(1)

σ1
⊗ M(2)

σ2
⊗ . . . ⊗ M(n)

σn

]
, (1)

which acts as an unambiguous representation of the quan-
tum state ρ. Noninformationally complete POVMs can also
be used to produce a reduced set of measurements, in which
case μ(σ ) models only partial information on the quantum
state. Given μ(σ ), the expectation value of any observable
with respect to ρ (or a reduced representation of ρ) can be
computed if it is possible to sample from μ(σ ). These ideas
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FIG. 1. Summary of our approach to learning of energy-based representations for quantum states. Our framework contains three modules
in which different choices are possible. First, the choice of positive operator valued measure (POVM) defines a mapping from the quantum state
to the corresponding classical representation. Second, the choice of the parametric family is related to the complexity of the energy function as
well as to the choice of the respective learning algorithm from the family of interaction screening estimators. Finally, once the energy function
is learned, a suitable sampling algorithm can be used to generate samples and estimate observation values using the conditional probabilities
obtained during the learning process. As mentioned in the introduction, neural nets are advantageous to use when no prior information is
available about the quantum state. Polynomials are advantageous to use if the quantum state exhibits a low-degree structure, as seen for the
transverse Ising model. If we know a priori that the state is fully symmetric, then the symmetric function Ansatz is advantageous to use.

have been exploited in recent works, where machine-learning
techniques originally developed to represent classical distri-
butions have been used to learn representations for quantum
many-body systems.

A popular approach in generative modeling of quantum
states, introduced by Carleo and Troyer [19], is to model the
amplitude and phases of a pure state using separate models.
In an attempt to extend this representation to model prac-
tically abundant mixed states, recent works used different
approaches such as introducing new degrees of freedom to
purify the state [20], exploiting low-rank properties [21], or
using matrix factorization [22]. These methods often lead to
black-box models for quantum states which makes it difficult
to impose prior information about the state, such as locality
properties or symmetries. A natural approach to modeling
mixed states was used by Carrasquilla et al. [17], who directly
used measurement statistics from a quantum state to construct
the respective probabilistic representation using POVMs. This
approach allows for the direct use of generative modeling
techniques for learning quantum states.

The major open question regarding learning of a classical
distribution describing measurement data remains the lack of
characterization of which states are hard or easy to model with
standard generative modeling techniques. This makes choos-
ing the right method for a given class of states an exercise
in trial and error. Moreover, whereas many modern machine-
learning approaches rely on the generalization properties of
neural networks to find the sparsity structure in the probability
density, such a structure may only be apparent at the level
of the energy function, as it is, for instance, the case for the
thermal states of local Hamiltonians. In this paper, we aim to
rectify some of the common shortcomings encountered in a

direct application of machine-learning techniques to genera-
tive modeling of quantum states. We achieve this by modeling
a distribution on statistics of measurement outcomes as an
energy-based model (EBM):

μ(σ ) = 1

Z
eE (σ ), (2)

and by focusing on learning the general real-valued energy
function E (σ ) instead of the density itself. This approach is
inspired by the power of Gibbs distributions used in model-
ing thermal states of classical many-body systems, where a
simple quadratic energy function in the microscopic degrees
of freedom induces distributions with highly nontrivial spin-
glass structure [23]. In applications beyond modeling classical
thermal systems, EBMs have seen a recent resurgence in
the generative modeling literature due to their simplicity and
state-of-the-art generalization abilities on real-world datasets
[24–27]. In what follows, we leverage recent progress in rigor-
ous learning of Gibbs distributions [28] to identify the energy
function for various families of pure and mixed quantum
states and to get insights into the complexity of representation,
both from the perspective of learning and generating predic-
tions, from the structure of the learned energy function and its
effective temperature.

Our approach is schematically summarized in Fig. 1. Our
aim is to learn an EBM for the distribution μ(σ ), given m
measurement outcomes (i.e., samples from μ) obtained by
measuring independent copies of an n-qubit quantum state
ρ using a particular POVM. The particular choice of the
POVM determines the nature of the classical representation
μ(σ ). In this paper, we use computational, tetrahedral, and
rotated tetrahedral POVMs, which are defined in the Methods
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section. By studying the properties of μ(σ ), we can make an
appropriate choice for the parametric family to represent the
energy function E (σ ). In the absence of any prior information,
we use a generic neural net parametric family to discover a
sparse nonpolynomial representation for the energy function
[29]. When the structure is given by a low-order polynomial
or some prior information on the symmetries of the state
is available, we use more specialized representations such
as polynomial or symmetric function families, respectively.
Given a specific parametric family, we use a state-of-the-art
computationally and sample-efficient method known as in-
teraction screening (IS) [28–31] to learn the parameters of
the energy function. This learning procedure bypasses the
intractability of the maximum likelihood and provides access
to the conditional probabilities μ(σi|σ \i ) for each variable
i in the EBM. These conditionals can then be used by a
Markov chain Monte Carlo (MCMC) method to effectively
generate samples from the learned EBM and to estimate any
expectation value the POVM gives us access to [29,32]. In this
paper, we use Gibbs sampling for estimating observables from
the learned model, although other methods can be utilized
depending on the application focus [33–35]. Our methodology
naturally satisfies the two main desirable conditions for the
generative modeling of quantum states: effective and prac-
tical algorithms for learning a classical representation and
the ability to infer quantities of interest from that learned
representation. Finally, the structural information from the
inferred effective energy function, such as the intensity of
parameters and sparsity of interactions, can be directly con-
nected to the information-theoretic complexity of the resulting
representation [36].

The main contributions of this paper are as follows. We
find that, for many classes of quantum states, including ther-
mal and ground states of local Hamiltonians, the choice of
the correct function family to use to learn the EBM can be
effectively made by studying systems on a small number of
qubits. We can tractably learn these smaller systems in the
infinite sample limit (m → ∞), as explained in the Methods
section. This helps us to understand the nature of the exact
EBM representation for the state and use this knowledge to in-
form our choices for larger systems. For a given choice of the
parametric function family modeling the energy function, we
show how the effective temperature emerging from the learn-
ing procedure serves as a metric that quantifies the hardness of
learning of different classes of quantum states. This is natural
because the inverse temperature is the leading parameter that
enters the information-theoretic bounds for learning of EBMs.
Finally, we showcase the advantages of Ansätze that use a low
number of parameters for representing quantum states. In all
cases, we find that the EBM approach is well suited to learning
classical generative models for quantum states and can be
used to accurately estimate relevant observables. Our scaling
experiments show that these energy-based methods are suit-
able for learning representations for large quantum systems,
see Appendix E. As a particular example, we find that a low-
parameter symmetric function Ansatz for learning the energy
function helps us perform better in fidelity estimation tasks
when compared with other neural-net-based methods [15].

Like any method that learns classical representation of
quantum states, the methods outlined in this paper also

have limitations. While the aim of this paper is to give a
comprehensive method for EBM representations of quantum
states, note that such a representation might not be suit-
able for all states. For example, states which are sharply
peaked in the measurement basis can produce EBMs with
very low-temperature which are inherently hard to learn from
information theoretic arguments [37]. In such a case, other
methods for modeling the observed distribution might be ad-
vantageous. However, in this paper, we observe that many
interesting classes of states do not possess such adversarial
properties.

II. METHODS

In this section, we give a brief overview of the methods
used in this paper.

A. POVMs and the probabilistic representation
of quantum states

For constructing classical representations of quantum
states, we use a probability distribution that is generated by the
quantum state when we perform a certain set of measurements
on it. We use a POVM to represent such a set of measure-
ments [17,18,38]. POVMs are a set of positive operators such
that they sum to the identity. A POVM with q elements is
defined as

Mσ � 0 ∀ σ ∈ [q],
∑

σ

Mσ = I. (3)

The POVM maps a quantum state ρ to a probability vector
according to the Born rule:

μ(σ ) = Tr(Mσ ρ). (4)

Here, μ(σ ) represents the probability of observing σ after
measuring the state ρ in this POVM.

For many-body states whose Hilbert spaces have a tensor
product structure, POVMs can be constructed by taking tensor
products of single-body POVMs. For an n qubit system with
a POVM of size q for each qubit, the POVM elements for the
full system will have the form:

Mσ = M(1)
σ1

⊗ M(2)
σ2

⊗ . . . ⊗ M(n)
σn

. (5)

Here, σ is now a multi-index that runs over all the qn possibili-
ties. This POVM naturally maps a quantum state over n qubits
to a high-dimensional probability distribution:

μ(σ ) = Tr(Mσ ρ). (6)

Measuring the quantum state using the above POVM gives
us samples drawn from this distribution. We can then use these
samples to learn an EBM for the quantum state in question.

A POVM is known as informationally complete if the rela-
tion in Eq. (1) can be inverted to unambiguously reconstruct
the quantum state ρ. This inversion can be performed using a
set of dual operators defined by

Dσ =
∑
σ ′

[C−1]σ,σ ′Mσ ′ , Cσ,σ ′ = Tr(Mσ Mσ ′ ). (7)

If POVM operators are linearly independent, then the matrix
C is always invertible. On top of linear independence, if the
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FIG. 2. Learning classical energy-based representations for permutation invariant systems. (a) We use the tetrahedral positive operator
valued measure (POVM) rotated by a fixed 1 qubit Haar random unitary for learning Greenberger-Horne-Zeilinger state. (b) Given prior
information about the symmetry of the state, we can use a fully permutation-invariant function in the interaction screening (IS) method.
(c) The total variation distance (TVD) of the learned distribution from the true distribution obtained by measuring a 7 qubit GHZ state in
the tetrahedral POVM. The x axis here is the number of samples drawn from a learned model to estimate the TVD. The dotted line is the
sampling error, which is TVD estimated from the exact classical representation of the state given by the POVM. We see that the symmetric
function Ansatz performs much better than the neural net Ansatz learned with NeurISE [29] without any symmetry assumptions. Both models
are learned using 106 state measurements. The neural net has 1043 trainable parameters, while the symmetric function has 840 parameters.
(d) Comparison of the fidelity between ρn,p for p ∈ [0, 1] with |GHZn

+〉 estimated from a symmetric energy-based model (EBM) for ρn,p. The
symmetric EBM can produce the correct fidelity behavior here even when p → 1. It has been reported that, for this benchmark, neural net
quantum states (NNQS) methods which compute a classical upper bound for quantum fidelity cannot reproduce the correct behavior when p
gets close to 1 [15,17]. All the models here are learned using 6 × 104 samples.

POVM operators can span the entire operator space, then the
POVM is informationally complete. In this case, the density
matrix can be reconstructed from the distribution of measure-
ment outcomes using the dual operators:

ρ =
∑

σ

μ(σ )Dσ . (8)

If the POVM operators for an n-qubit system are formed
by the tensor product of single-qubit POVMs, then both the C
matrix and the dual operators will inherit this tensor product
structure. This property allows for the estimation of local ob-
servables and other quantities of interest from a model that can
generate samples from μ. If τ (1), . . . τ (N ) are such samples,
then an unbiased estimate for Tr(ρO) can be constructed for
any O:

Tr(ρO) = E
τ∼μ

Tr(Dτ O)

≈ 1

N

N∑
k=1

Tr[Dτ (k) O]

= 1

N

N∑
k=1

Tr
[
O D(1)

τ
(k)
1

⊗ D(2)

τ
(k)
2

⊗ . . . ⊗ D(n)

τ
(k)
n

]
. (9)

If the operator O has an efficient representation as an ma-
trix product operator (MPO) or as a sum of a few Pauli strings,
then this estimate can be computed efficiently [17].

Most of the currently available qubit devices natively
support measurements in the computational basis. This is a
noninformationally complete POVM that corresponds to an
EBM where each variable in the model can take two possible
values (the number of possible outcomes of a measurement
q gives the alphabet size of the EBM. In this case, the al-
phabet size is q = 2). The POVM operators corresponding to

computational basis measurements are given below:

M1 =
(

1 0
0 0

)
, M2 =

(
0 0
0 1

)
. (10)

We also use the tetraheral POVM, which is one of the
simplest informationally complete POVMs with q = 4. The
single-qubit POVM operators for the tetrahedral POVM are

M1 =
(

1
2 0

0 0

)
,

M2 = 1

2

(
1
3

√
2

3√
2

3
2
3

)

M3 = 1

2

[
1
3

√
2

3 exp
(− i2π

3

)
√

2
3 exp

(
i2π
3

)
2
3

]
,

M4 = 1

2

[
1
3

√
2

3 exp
(− i4π

3

)
√

2
3 exp

(
i4π
3

)
2
3

]
. (11)

We also use a rotated version of this POVM, where we
rotate each of the POVM operators with a single Haar-random
unitary, in the experiments with the Greenberger-Horne-
Zeilinger state in Figs. 2(a) and 2(b) . In our experiments with
the GHZ state, we find that the rotated version of the tetra-
hedral POVM performs better than the unrotated version (see
Appendix E). This points to the fact that difficulty of learning
an EBM representation is also dependent on the choice of
POVM.

In practice, such general POVMs are not usually natively
supported in current quantum devices. For instance, IBM
quantum computers only allow measurements in the compu-
tational basis, but measurement outcomes from other POVMs
can be easily generated by using ancilla qubits and classical
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postprocessing from such computational basis measurements
[39,40].

B. Learning EBMs by IS

Like in any machine-learning problem, learning the energy
function becomes prohibitively hard if we do not restrict the
hypothesis space of possible energy functions. Hence, it is
necessary to choose a parametric family of functions such
that the learned model can be expressed as a member of
this family, ideally using a small number of free parameters.
In the case of representing quantum states, this parametric
family can be chosen based on the prior information available
about the state. In this paper, we will work with polynomials
with a fixed degree, feed-forward neural nets, and symmetric
functions as parametric families for representing the energy
functions.

Learning an EBM then refers to the task of finding a
function in this parametric family that accurately models the
energy function in Eq. (2), given samples from the distribution
μ. Standard parametric estimation techniques like maximum
likelihood are inefficient for learning the energy function,
except within a very restricted function class [41,42]. Instead,
we use a computationally efficient and sample optimal ap-
proach known as IS [28–31] for learning the energy function.
For each variable in the model, this method finds a repre-
sentation of the part of the energy function connected to that
variable. For example, for the EBM with an energy function
E (σ ) = ∑

i, j Ji jσiσ j , the IS method using a polynomial repre-
sentation would learn the function

∑
j �=i Ji jσiσ j for each i. We

call this part of the energy function the local energy associated
with variable σi.

For any EBM, given the local energy for any σi, the con-
ditional of this variable given every other variable μ(σi|σ \i )
can be easily expressed (see Appendix B for more details).
These conditionals can then be used by a MCMC method
to effectively generate samples from the learned EBM and
to estimate any expectation value the POVM gives us access
to [29,32].

The IS method works by minimizing a simple objective
for each variable in the model. The optimal point of this min-
imization procedure then represents the learned conditional
of that variable [μ(σi|σ \i )]. Given m independent and identi-
cally distributed samples (i.i.d.) {σ (1), . . . , σ (m)} drawn from
a EBM μ(σ ), these representations are learned by minimizing
the following loss function for each variable in the model:

Su(θ ) = 1

m

m∑
t=1

exp
{−〈

φ
[
σ (t )

u

]
, f

[
σ

(t )
\u ; θ

]〉}

= 1

m

m∑
t=1

exp

{
−

q∑
a=1

φa
[
σ (t )

u

]
fa

[
σ

(t )
\u ; θ

]}
. (12)

Here, φa : [q] → R is a shifted delta function defined as
φa(x) = δa,x − 1

q . Also, f (; θ ) : [q]n−1 → Rq is a vector val-
ued function parameterized by θ . For example, f (; θ ) can be a
polynomial function from Rn−1 to Rq. In this case, θ would
be the set of coefficients that define that polynomial. Another
example of f (; θ ) that we use is a neural network. In that case,
θ is the set of all trainable parameters (weights and biases)

in the network. The neural network variant of this method is
known as NeuRISE [29].

The optimum of this loss function is connected to the true
model μ(σ ) in the following sense: let θ∗ ≡ argmin Su(θ ).
Then we can show that

μ(σu|σ \u) ≈ exp[〈φ(σu), f (σ \u; θ∗)〉]∑q
a=1 exp[〈φ(a), f (σ \u; θ∗)〉] . (13)

If the parametric function family is expressive enough, then in
the m → ∞ limit, this becomes an exact equality [29].

The value of m required in Eq. (12) to learn a polyno-
mial energy function, up to a certain error, can be bounded
using techniques from stochastic convex optimization. The
complete analysis can be found in Ref. [28], and the sample
complexity of this method is found to asymptotically match
known lower bounds [36].

1. Effective temperature and sample complexity

No generative model can learn every quantum state effi-
ciently. For many neural-net-based approaches, there is no
theoretical understanding of which states can be hard for a
given method. The method we present here is different, as
from extensive work on the IS method [28,30,31] and from
information-theoretic lower bounds [36], there is an exact
characterization of which distributions are hard to learn. These
results are best explained by considering the EBM defined in
Eq. (2) as a Gibbs distribution of a classical Hamiltonian on
n classical spins with O(1) couplings and at an inverse tem-
perature of β. It is known that the number of samples required
to learn the energy function in the monomial basis scales as
eO(βd ) ln n, where d is the maximum number of interaction
terms (monomials) that are connected to any one variable.
This expression tells us that learning is easy for models at a
fixed inverse temperature β = O(1) defined locally on some
lattice of fixed dimension d = O(1).

Physically, the relationship between the sample complex-
ity and inverse temperature can be understood as follows.
Suppose we are observing samples being produced from a
classical system in thermal equilibrium. At low temperatures,
the samples we observe will predominantly be the ground
states of this classical system. The amount of samples one
needs to draw to observe some excited states above the ground
states scales as exp[O(βd )]. Since the ground states are them-
selves not sufficient to uniquely fix the energy function, it
is necessary for the user to observe exp[O(βd )] independent
samples to see some nontrivial configurations that can be
exploited for learning.

As a consequence of the information theoretic lower
bounds, we can also deduce which quantum states/POVM
combinations are easy or hard to learn from the value of the
effective inverse temperature of their EBM representations.
The measurement data from a state that correspond to lower
absolute value of the coefficients in the energy function (when
represented as a polynomial) will be easier to learn than a
state that has a higher absolute value of the coefficients in
the energy function. This is because the EBM representation
of the former quantum state corresponds to a classical Gibbs
distribution of lower β. From the theory outlined in Ref. [28],
the precise definition of effective inverse temperature of an
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EBM that controls the sample complexity can be derived
from the L1 norm of the true parameters of the EBM. How-
ever, for the purposes of this paper, we will take the absolute
values of the largest coefficients in the model as a measure
of inverse temperature. For energy functions that are local, as
we expect from physical systems, the notion of temperature
used here is essentially the same as the definition used in the
rigorous machine-learning literature [28,30,31,43].

2. Function families and neural network architecture

We use three different parametric function families in the
IS loss function in this paper. The first is a polynomial Ansatz.
In this case, the coefficients of the polynomial act as the
trainable parameters in the model. This leads to a convex
objective function in Eq. (12).

We also use neural nets as a parametric function family
in Eq. (12). Any neural network architecture that allows for
fast computation of its gradients can be used here. We use a
simple feed-forward architecture with fully connected layers
for its universal approximating properties and simplicity in
implementation. We use Swish as the nonlinear activation in
these models [44]. Swish is a continuous variant of the more
popular ReLU activation.

For learning permutation invariant states, we use a general
symmetric function as a parametric Ansatz. For an n-qubit
system, this leads to an optimization problem of size
O(qnq−1). Moreover, we can choose a parameterization of
these functions such that the objective in Eq. (12) is a con-
vex function. For more technical details pertaining to these
three function families, see Appendix C. The exact sizes and
training parameters used for each experiment in this paper are
reported in Appendix D.

3. Selection of the parametric family

The EBM learning procedure outlined in the previous
sections requires us to choose a parametric function family
that can effectively capture the distribution generated by a
quantum state/POVM combination. We find that this choice
can be effectively made for a family of states by learning a
polynomial representation for the energy function for a small
state. The polynomial family can be chosen to include higher-
order terms which would be computationally infeasible to
consider for larger states, as including all terms up to order k
would imply a computational cost of O(nk ). Also, for smaller
states, it is possible to do learning in the limit of an infinite
number of samples drawn from the state (m → ∞ limit) as the
classical distribution generated by a POVM can be computed
exactly for smaller states. Learning the energy function in
the polynomial basis for smaller states can give us valuable
information about the types of terms present in the energy
function. This information can then be used to choose the
appropriate function family to use for larger states. If there are
no obvious symmetries or if there are terms of higher order
present, then a neural net family can be chosen to represent
the energy function. If energy functions learned from smaller
states only show the presence of terms of quadratic or lower
order, then a polynomial Ansatz would be suitable. If we have
prior information about the symmetries of the quantum states,

then these symmetries can be incorporated to reduce the size
of the parameter space we must optimize over.

4. Error metrics

The IS method is nearly sample optimal for learning the
parameter values in the energy function [31], but for data
generated from quantum states, the true parameter values of
the energy function are not known. Extracting the parameters
in the energy function can be done by brute force for smaller
systems but becomes prohibitively expensive even for systems
of moderate size. Thus, to compare the error in our learned
representations, we compute the error in one- and two-body
observables in the L1 norm, averaged over the entire lattice.
For models learned in the computational basis, this reduces to
average errors in absolute value in observables of the form 〈Z〉
and 〈ZZ〉. For models learned using samples generated by the
tetrahedral POVM, we use the trace distance between one-
and two-body reduced density matrices as our error metric.
This quantity then upper bounds the average error in any one-
and two-body observable, up to a constant factor [38].

For experiments involving GHZ states and other
permutation-invariant states, we also use estimated fidelity
and total variation distance (TVD) as error metrics.

Given a pure state |ψ〉 and a mixed state ρ, we define the
quantum fidelity between these states as the following overlap
[45]:

F Q(|ψ〉, ρ) ≡ 〈ψ |ρ|ψ〉 . (14)

Expanding ρ in the dual POVM elements as in Eq. (8),
we get

F Q(|ψ〉, ρ) =
∑

σ

μ(σ ) 〈ψ |Dσ |ψ〉 . (15)

This quantity can be easily estimated from samples drawn
from μ, if the state |ψ〉 has an efficient classical representa-
tion, like for the GHZ state.

We also use the classical measure, TVD to compare two
probability distributions. The TVD between two distributions
ν and μ is simply defined as

TVD(ν, μ) = 1

2

∑
σ

|ν(σ ) − μ(σ )|. (16)

In our experiments, the distribution μ will be the exact dis-
tribution representing a quantum state, as defined in Eq. (1). In
case ν represents the learned EBM, the TVD can be estimated
by replacing ν with the empirical probabilities obtained from
the samples drawn from the EBM.

III. RESULTS

A. Learning mixed states

We start by exploring learning of energy-based represen-
tations for the mixed states. Specifically, we focus on the
thermal states of the form:

ρ = exp(−βH )

Tr[exp(−βH )]
, (17)

where H is a local Hamiltonian. For the illustrations in
this section, we use the transverse field Ising model (TIM)
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ρ ∝ exp

(
β

∑
i(ZiZi+1 + gXi)

)

M =

E(σ) =

(a)

(c)

(b) (d) (e)

ρ ∝ exp

(
β

∑
i(ZiZi+1 + gXi)

)

M =

E(σ) =

(f)

(h)

(g) (i) Neural Net (j) Polynomial

FIG. 3. Learning classical energy-based representations for quantum thermal states. (a) Energy-based model (EBM) learned from the
transverse field Ising model (TIM) thermal state measured using the tetrahedral positive operator valued measures (POVM). (b) The strength
of interactions at each order for a third-order polynomial energy function exactly representing the thermal state of a 5 qubit TIM on a line
measured using the tetrahedral POVM. Here, the absolute value of the largest coefficient in the polynomial representation at each order
is plotted against the inverse temperature. For these experiments, we fix g = 1. We see that terms at all orders in the energy function are
not negligible. (c) A neural net representation is most appropriate, given the presence of higher-order terms in the polynomial representation.
(d) One-body and (e) two-body expectation values inferred from the neural net representation for the ferromagnetic one-dimensional (1D) TIM
at β = 1, g = 1, with open boundary conditions. The EBM representation is learned using m = 105 samples, and observables are computed by
drawing 4 × 105 samples from the learned model. (f) TIM thermal state measured in the computational basis only. (g) Strength of interactions
at each order for an EBM exactly representing the thermal state of a 5 qubit ferromagnetic TIM using measurements in the computational
basis. We see that the second-order terms dominate over other terms. (h) This means that the energy function can be well approximated using a
second-order polynomial. ZZ expectations estimated from EBMs represented using (i) neural nets and (j) quadratic polynomials, respectively.
Both representations are learned for a 30 spin thermal TIM at β = 2, g = 1, with m = 106 samples, with periodic boundary conditions. The
neural net model has 28 380 trainable parameters, while the polynomial model has only 900. Further details about the numerical experiments
are given in Appendix D.

family of Hamiltonians with a uniform transverse field,
HTIM = ∑

i< j Ji jZiZ j + g
∑

i Xi. These models are particu-
larly useful for studying properties of the learning algorithms,
as they allow for easy generation of samples, either using MPS
in one dimension (1D) [6,46] or using quantum Monte Carlo
(QMC) methods in higher dimensions owing to the absence
of the sign problem in these models [14].

First, we consider the TIM Hamiltonian on a 1D lat-
tice with Ji,i+1 = −1 ∀i and zero otherwise, measured in the
tetrahedral POVM, see Fig. 3(a). We can obtain insight into
whether a more specific polynomial function family (rather
than the generic neural net one) can effectively capture the
distribution generated by a quantum state and POVM combi-
nation using the following approach: for a small state, exact
learning of the energy function in the polynomial basis would
give us valuable information about the types of terms present
in the energy function and their symmetry properties, as ex-
plained in the Methods section. In Fig. 3(b), we generate the
exact distribution defined by (1) for a 5 qubit thermal state
using matrix exponentiation and learn an EBM for it using
the polynomial family with up to third-order terms. We see

that the polynomial representation learned here has significant
terms at all orders including order three, which is in contrast
with the respective quantum Hamiltonian which only had
second-order interactions. This experiment suggests that using
the polynomial representation is not very efficient for this
state/POVM combination, as the computational complexity
of the learning procedure will scale as �(nL ) for a n-qubit
state and for higher-order terms of order L. This motivates the
use of a fully connected neural net as the parametric function
family for the energy function representation.

The specific algorithm in the IS suite of methods adapted
to the neural net parametric family is known as NeuRISE (see
Appendix B for more details), which has been shown to be
able to learn energy functions with higher-order terms in an
implicit sense with fewer parameters when the complexity
of learning using polynomials scales unfavorably due to the
presence of higher-order terms [29]. In Figs. 3(c) and 3(d), we
study the ferromagnetic 1D TIM with 50 qubits in the quan-
tum critical phase [47]. We compare the one- and two-body
correlations inferred from the learned classical representation
to the ones generated from a MPO representation of the state
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found by imaginary time evolution using the ITensor library
[46], in Figs. 3(c) and 3(d), respectively. We see that the
EBM representation can reproduce expectation values of both
diagonal and off-diagonal observables.

The nature of the EBM representation can change con-
siderably depending on the POVM used. We demonstrate
this using the same thermal ferromagnetic TIM state, now
measured in the computational basis rather than using the
tetrahedral POVM, see Fig. 3(e). Note that, for the gen-
eral states, measurements in the computational basis do not
provide an informationally complete set sufficient for unam-
biguously specifying the entire state. Figure 3(f) shows results
for the exact learning on a thermal state of a thermal ferro-
magnetic TIM state from measurements in the computational
basis. The results are markedly different from Fig. 3(b): We
see that the second-order interactions dominate the energy
representation, and hence, the energy function can be well
approximated by a quadratic polynomial. In Figs. 3(g) and
3(h), we show that, like the case of the tetrahedral POVM, the
correlation functions are well predicted by both general neural
net and specialized polynomial parametric representations of
the energy function in the computational basis. However, the
polynomial representation uses significantly fewer parameters
and is ideal for use in a resource-limited setting.

Results showing scaling of error with the size of the system
and number of samples for the TIM are given in Fig. 4 and
Appendix E. Specifically, Figs. 4(c) and 4(d) show the average
error in ZZ expectation values for the two different values of
g, with β = 1 for a two-dimensional (2D) TIM. Here, it is
observed that the learning algorithm performs better at higher
values of g. This behavior is expected, as for g → ∞, the
learned distribution gets closer to a high-temperature Gibbs
distribution in the computational basis, and it is known from
prior works that learning high-temperature EBMs is easy
[28,30,31]. On the other hand, for g → 0, we are close to
the β = 1 thermal state of a classical Ising model. Learning
lower-temperature classical Gibbs distributions is known to
be difficult in general from sample-complexity lower bounds
[36]. The results for a fixed β suggest that the value of g plays
an important role in determining the final effective temper-
ature of the distribution we are learning, with larger values
of g producing classical distributions with a higher effective
temperature. In Appendix E, we also observe that the error
does not increase considerably with the number of qubits in
the system. This is consistent with the logarithmic scaling of
sample complexity with the number of variables observed for
learning EBMs [28,30,31].

B. Learning ground states

Learning a distribution of classical ground states is hard
due to the high sample complexity of methods at lower tem-
peratures. However, the classical distribution of ground states
of quantum systems modeled as an EBM has an effective tem-
perature depending on the strength of off-diagonal terms in
the Hamiltonian. Our results below show that EBMs learned
from the zero-temperature states of quantum Hamiltonians
exhibit a certain effective temperature property that can aid
the learning process. As an illustration, we consider the prob-
lem of learning an informationally complete representation of

(a) 1D TIM, β = 1.0, g = 1.0 (b) 1D TIM, β = 1.0, g = 1.0

(c) 2D TIM, β = 1.0, g = 1.0 (d) 2D TIM, β = 1.0, g = 3.5

FIG. 4. Scaling results for the classical representations of ther-
mal states of the transverse field Ising model (TIM). Error in ZZ
expectation of the polynomial representation for the one-dimensional
(1D) TIM at β = 1: (a) number of qubits (b) number of measure-
ments (i.e., training samples). We see that increasing the number
of measurements has decreased the error significantly. On the other
hand, the error does not increase appreciably if the number of qubits
in the system is increased. (c) Error in ZZ expectation of the poly-
nomial representation for the two-dimensional (2D) TIM at β = 1,
with g = 1. (d) The same but for g = 3.5. The chosen g values are on
either side of the zero-temperature critical point (gc = 3.044) [47].
We see that the model is easier to learn for the larger value of g.

the ground state of an antiferromagnetic TIM from samples
obtained from measurements in the tetrahedral POVM, see
Fig. 5(a).

As the TIM Hamiltonian is stoquastic, the ground state
can be fully specified by computational basis measurements
[48,49]. Figure 3(f) shows that, in the regime β → ∞, a
polynomial representation for the ground state of the TIM
learned from measurements in the Z direction alone will have
predominantly second-order terms. However, in general, with-
out prior information about the Hamiltonian, it is hard to de-
termine whether a ground state can be fully specified by only
computational basis measurements. Thus, in these experi-
ments, we deliberately do not use the fact that the TIM Hamil-
tonian is stoquastic and attempt to learn a more general repre-
sentation of the ground state using the tetrahedral POVM.

In Fig. 5(b), we use our strategy of learning an exact
distribution for a small system of size n = 6 to get insight
into the structure of the energy function. Figure 5(b) shows
the strength of terms present in an energy function learned
using a third-order polynomial Ansatz. Notice that the effec-
tive temperature of the EBM is inversely proportional to the
strength of interactions shown in Fig. 5(b). We see that, in
the small g regime, the strength of interactions blows up as
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ρ = Ground State of
∑

i(ZiZi+1 + gXi)

M =

E(σ) =

(a)

(c)

(b) (d)

FIG. 5. Learning classical energy-based representations for ground states of quantum systems. (a) Here, we study energy-based model
(EBM) representation of a ground state of the antiferromagnetic transverse field Ising model (TIM) measured in the tetrahedral basis.
(b) Strength of interactions at each order for an EBM exactly learned from the ground state of a 6 qubit antiferromagnetic TIM on a line. The
figure shows that a second-order representation cannot capture all the features of this model. The relative importance of all orders is especially
pronounced when the Ising term dominates the transverse field. (c) Because of these higher-order terms, we find that a neural net Ansatz is
necessary to capture all the features of the model. (d) Two-body expectation values for a 50 spin model at g = 1. The EBM learned from
this state can accurately learn the long-range behavior of the ground state at the critical point. All results from a neural net Ansatz are trained
from samples drawn from a matrix product states (MPS) representation of the ground state, found using the density matrix renormalization
group (DMRG) [6,46]. The EBM was learned using m = 105 training samples. Further details about the numerical experiments are given in
Appendix D.

g → 0, thus providing evidence for the low effective tem-
perature of μ(σ ) at low values of g. In the large g regime,
on the contrary, the first-order terms are dominant, and the
effective temperature is not very large. This means that a
polynomial model will be able to give a satisfactory approx-
imation in the high g regime. We see that, below the critical
point (g = 1), terms at all orders are equally important. This
means that we will have to resort to a universal neural net
Ansatz due to the presence of higher-order terms in the energy
function.

The effect of g on learning a 60 qubit state from the same
family is given in Fig. 6(b) and Appendix E. In line with the
results for thermal states in Fig. 4, we see that an EBM can
easily be learned for states that possess paramagnetic order.
However, as expected, the sample complexity of the learning
procedure increases when the states come close to the ground
state of the classical model. Therefore, the observed effect of g
on learning is much more pronounced for ground states when
compared with thermal states.

The results of using NeurISE for an antiferromagnetic TIM
on a 50 qubit 1D lattice with open boundaries at the critical
point are given in Fig. 5(c). We see that this method has
no problems learning states that possess long-range order.
This observation is in line with what has been established in
classical models as well [31].

Like learning representations of thermal states, our ex-
periments with ground states also show that the error in the
learning procedure scales favorably with the system size. In
Appendix E, we give scaling results for learning ground states
and discuss learning EBM representations of ground states for
the Heisenberg model in 2D.

C. Learning states with symmetries

Another important aspect of quantum states that can
greatly aid the learning process is the presence of symmetries.

Symmetries can significantly reduce the size of the hypothesis
space that a machine-learning method must optimize over.
However, it is not always easy to build an Ansatz that respects
the known symmetries of a model [50–52]. The most common
symmetry encountered in physical systems is translational
invariance, which can be incorporated into both the energy
function representation and the IS learning method rather
easily. Once the state is represented by a classical distribution

(a) (b)

FIG. 6. Scaling results for the classical representations of ground
states of the transverse field Ising model (TIM). (a) Error in one- and
two-body reduced states as a function of the number of qubits for
the ground state of one-dimensional (1D) TIM. The average error
goes down in this case, as most errors occur when the spins are
close together in the lattice. These energy-based models (EBMs) are
learned using m = 105 samples. (b) For a 60 qubit 1D TIM model,
we see the effect of g on learning. The low-g state here is hard to
learn, as it is close to the ground state of a classical model. This
implies that the effective temperature of the EBM is low, and the
sample complexity of learning is high [36]. On the other hand, higher
g states are easier to learn, as evidenced by the decreasing error as
the number of training samples is increased. Presented is the error
(average trace distance between 1 and 2 qubit reduced states) as a
function of the number of training samples m.
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μ(σ ) using the relation in Eq. (1), this distribution inherits the
translational symmetry of the state. This in turn implies that
the conditional distribution μ(σi|σ\i) of every variable i in the
EBM is the same. Since the EBM is learned via these condi-
tionals, the learning step needs only be done for one variable.
This leads to a factor n reduction in the computational cost
of learning, and nothing extra has to be built into the energy
function Ansatz that we use. For other types of symmetries,
the parametric function family we use must be appropriately
chosen to respect the symmetries of the model incorporated
into the EBM. This makes learning the representation signifi-
cantly more efficient due to a reduced number of parameters.

As an example of this approach, we will demonstrate learn-
ing states that are invariant under any permutation of qubits.
The simplest way to use this prior information is to use a fully
symmetric parametric function family to represent the energy
function. Any such function acting on n discrete variables
where each variable takes q different values can be specified
using only O(nq−1) parameters. This is because the value of
a fully symmetric function can only depend on the number of
occurrences of each of the q possible values. For an n-qubit
state with the tetrahedral POVM, this implies a representation
of size O(n3), for the most general fully symmetric energy
function. We can also use a neural net that respects this per-
mutation symmetry here. However, with a neural net, there is
no guarantee that every symmetric function can be represented
using a comparable number of parameters. By specifying the
most general symmetric function, we can guarantee that the
exact EBM that represents the state in question is always con-
sidered by the algorithm. Moreover, the optimization problem
here is convex in the model parameters compared with the
nonconvex optimization required to learn a neural net [29].

To illustrate learning of permutation-symmetric quantum
states, we consider learning a classical EBM representation
for the GHZ states:

|GHZn
±〉 = |0〉⊗n ± |1〉⊗n

√
2

. (18)

Using the exact learning procedure, we find that the EBM
representation of these states in the tetrahedral basis has terms
of all orders. This explains the results in Ref. [17], where a
restricted Boltzmann machine with a few hidden units was
found incapable of representing this state when n became
large. To learn an energy-based representation, we either must
resort to a generic neural net parameterization or incorporate
knowledge about the state symmetries. The comparison of
these two approaches is given in Fig. 2(a), where we estimate
the TVD between the distribution representing |GHZ7

+〉 and
learned models by drawing new samples from these models.
We see that the symmetric Ansatz outperforms a neural net
Ansatz of comparable size. After drawing 4 × 106 samples
from these models learned from m = 106 measurements, we
find that the estimated TVD between the symmetric function
Ansatz and the true state is only 4% more than the inherent
finite-sampling error in the estimation procedure, while the
TVD estimated for the neural net is 77% more than the sam-
pling error.

In an experiment involving symmetric states, studied
in Ref. [15], the fidelity of |GHZn

+〉 is estimated with
respect to another mixed state of the form ρn,p = (1 −

p) |GHZn
+〉 〈GHZn

+| + p |GHZn
−〉 〈GHZn

−| for p ∈ [0, 1]. It
was been reported that, for this mixed state example, gen-
erative models learned using the neural net quantum states
(NNQS) Ansatz [15,17] struggled to find the correct fidelity
as p got closer to 1. The results of applying our method
on this problem with a symmetric function Ansatz are given
in Fig. 2(b). Compared with the NNQS results reported in
Ref. [15], we see that the IS method with the symmetric
function Ansatz can better predict the overlap of the above
state with |GHZn

+〉.
IV. DISCUSSION

We have presented an approach for learning generative
models for quantum states. The classical energy-based rep-
resentation used here is flexible enough to incorporate prior
information about the state including its symmetries. Us-
ing a few representative cases of pure or mixed quantum
states, we have illustrated the respective advantages of using
different parametric families for modeling energy functions
of the emerging classical representations. We have also ob-
served that the classical energy function inherits a certain
effective temperature from the quantum states. This effective
temperature acts as an information-theoretic metric for the
hardness of learning of a classical representation for a given
class of quantum states. In this paper, we also demonstrate
interesting connections between classical thermal states and
quantum states which might be of independent interest to
physicists.

There are many interesting directions to explore using the
classical energy-based representations of quantum states. An
interesting theoretical question is whether the classical energy
function inherits locality or low-degree structure from the
quantum Hamiltonian. This possibility cannot be ruled out
completely from the exact learning experiments presented in
this paper. If such a connection can be shown for the EBM
for some class of quantum states, then that implies an effi-
ciently learnable representation for those states. Polynomial
representations of energy functions are well suited for such
a theoretical analysis when compared with black-box tech-
niques that use neural nets. Another important direction is
learning from noise-corrupted data, as most real-world to-
mographic data are corrupted by errors in the measurement
process [53,54]. One of the advantages of the IS-based learn-
ing methods is that they can be made robust to many types
of noisy channels [55]. We leave the development of energy-
based learning methods with robustness to measurement noise
as future work.

Data used for the plots in this work are available from
the corresponding author upon reasonable request. Code to
reproduce the experiments described in this paper can be
found online [56].
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APPENDIX A: NOTATIONS

Vector-valued functions are denoted by boldface (e.g.,
f , �). Boldface is removed while referring to their individual
outputs (e.g., fa, a). Vector variables are denoted by an
underline (σ ). The underline is not used while referring to
their individual outputs (σu). The subset of variables from this
vector given by an index set K is denoted by σ K . The short-
hand σ \u is used to denote all the elements of σ excluding σu.
Here, {X,Y, Z} are reserved for single-qubit Pauli operators.

APPENDIX B: LOCAL ENERGY
AND CONDITIONALS OF EBMs

Given a set of n random variables σ = {σ1, σ2, . . . , σn},
an EBM is a positive joint probability distribution over these
variables given by

μ(σ ) = exp[E (σ )]

Z
. (B1)

Here, E is a real-valued function known as the energy func-
tion, and Z is the partition function that ensures normalization.
The random variables can be continuous or discrete. In this
paper, we focus on the discrete EMBs. Moreover, we assume
that each random variable in the model takes values from the
set [q]. We refer to q as the alphabet size of the model. For
each variable σu in the model, it is possible to split the energy
function into two parts such that one of the parts completely
capture the dependence of the energy function on the values
taken by that variable alone:

E (σ ) = 〈φ(σu), Eu(σ \u)〉 + E \u(σ \u)

=
q∑

a=1

φa(σu)
[
Eu

a (σ \u; θ )
] + E \u(σ \u). (B2)

Here, φa(x) = δa,x − 1/q are centered delta functions, and
Eu : [q]n−1 → Rq is a vector-valued function. Together,
〈φ(σu), Eu(σ \u)〉 includes in it all the terms of E that are
dependent on u. We call this term the local energy function
of u. The second term E \u(σ \u) includes the rest of the terms
that do not depend on the value taken by σu. Notice that this
decomposition does not put any restriction on our EBM, as
any multivariate function with discrete inputs can be decom-
posed in this way.

The local energy of a variable σu is related to its conditional
distribution, given all the other variables:

μ[σu|σ \u] = exp[〈φ(σu), Eu(σ \u)〉]∑q
s=1 exp[〈φ(s), Eu(σ \u)〉] . (B3)

This makes it possible to sample from the EBM using Gibbs
sampling once local energies of every variable are known.

APPENDIX C: PARAMETRIC FUNCTION FAMILIES

Here, we discuss the parametric function families that we
use for modeling the EBM energy functions in this paper.

1. Polynomials

Polynomials are the most widely used function family for
representing EBMs. For discrete random variables, any energy
function can be expressed as a linear combination of a finite
number of monomial terms. For the monomial family, the
minimization of the IS objective is a convex optimization
problem [28,30,31]. The IS method is also known to be sam-
ple optimal in this case. We train the polynomial models using
the entropic descent algorithm [28,57].

If the true energy function is a polynomial function of
degree L, then the complexity of learning a polynomial
representation scales as O(nL ). Thus, learning polynomial
representations is tractable only if the true energy is given by a
low-degree polynomial. Many models used in classical statis-
tical physics have a low degree and can be efficiently learned
using polynomials. However, this low-degree condition is not
satisfied in general for quantum tomography data.

2. Neural nets

The use of neural nets in the IS method was introduced
in Ref. [29]. The neural network Ansatz is useful if the EBM
being learned has higher-order terms and if there are no obvi-
ous symmetries in the problem that can reduce the size of the
polynomial Ansatz. The IS loss function for this case simply
reads

Su(θ ) = 1

m

N∑
t=1

exp
{−〈

φ
[
σ (t )

u

]
, NN

[
σ

(t )
\u ; θ

]〉}
. (C1)

Here, we have used a vector-valued neural net for the general
function in Eq. (12). The θ parameters are now the weights
and biases of the neural net. Since neural nets can approxi-
mate any arbitrary function, one can show that this Ansatz is
powerful enough to learn any energy function.

The minimization of this loss function can be done using a
variant of the stochastic gradient descent algorithm. The gra-
dients can be computed using backpropagation. This enables
the training of the neural network Ansatz on a GPU.

We use feed-forward neural nets as our neural net Ansatz.
In general, such a net is a function f : Rn−1 → Rq, defined as

f (x) = Ad+1 · α(. . . {A2 · [α(A1x + b1)] + b2} . . .) + bd+1.

(C2)

Here, A · x + b is an affine transformation, and α : R → R,
known as the activation function, acts on a vector com-
ponent wise, i.e., α(x) ≡ [α(x1), α(x2), . . .]. The matrices
A1, . . . , Ad+1 and the vectors b1, . . . , bd+1 are the trainable
parameters of this model.

We call the number d that fixes the number of layers of
the net the depth of the network. To simplify the architecture
of the nets, we force the intermediate layers to all have the
same size, i.e., A1 ∈ Rn−1×w, A2 . . . Ad ∈ Rw×w, and Ad+1 ∈
Rw×d . We call w the width of the net. In general, we can use
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a different activation function at each layer, but in this paper,
we use this simpler model of a neural net described above.

Through out this paper, we use the Swish function as our
activation function [44], α(x) = x

1+exp(−x) . This is a differen-
tiable variant of the popular ReLU activation function used
extensively in deep learning. We train our model using a
popular variant of the stochastic gradient descent algorithm
known as ADAM [58].

3. Symmetric functions

Symmetric functions can be used as Ansätze for the local
energies to learn a fully symmetric EBM. If we have prior
information that the data we use for learning come from a fully
symmetric distribution, then using such an Ansatz can reduce
the size of the model being learned from O(qn) to O(qnq−1).
This reduction in size makes the learning problem tractable.

A fully symmetric graphical model will be invariant under
any permutation of its variables:

μ(σ1, σ2, . . . , σn) = μ[σπ (1), σπ (2), . . . , σπ (p)],

∀ π ∈ Sn. (C3)

Here, Sn is the symmetric group on n elements.
It is straightforward to see that all the single variable

conditionals of this distribution will inherit this permutation
symmetry:

μ(σu|σ \u) = μ(σu|σπ (\u) ), ∀ π ∈ Sn−1. (C4)

This implies that the true local energies of the model can be
represented by symmetric functions on n − 1 variables, and
we can use this function family in the IS loss function. The
outputs of such functions are agnostic to the order of their in-
puts, i.e., they depend only the number of occurrences of each
alphabet. This property can be used to find compact represen-
tations for such functions. Let us define a function that counts
the occurrence of each alphabet in an input � : [q]n−1 →
Rq, such that �(σ \u)a gives the number of occurrences of
a in σ \u. Using this, we can define the following IS loss
function:

S (�) = 1

N

N∑
t=1

exp
(−〈

φ
[
σ

(t )
1

]
,�

{
�
[
σ

(t )
\1

]}〉)
, (C5)

Here, � is a vector-valued function that acts as our local
energy Ansatz. The possible inputs to � are integer strings
of length q that sum to n − 1. There are only O(nq−1) such
inputs, and we can use the outputs of � at each possible input
as the optimization variables in our loss function. Also, using
these optimization variables leads to a convex loss function
and hence fast optimization in practice. The optimization need
only be done for the first variable, as all the local energies will
be the same due to the symmetry of the model. We perform

this optimization using interior-point methods provided in the
IPOPT package [59]. This is guaranteed to find the global
optimum of the IS loss function.

Other symmetries can also be incorporated in a similar way
by using a variational Ansatz for the energy function that is
invariant under the symmetry transformations in question. For
the any parametric function family, if the symmetry group
is small enough, this can be achieved by simple averaging.
For instance, a new function f̃ , defined as f̃ (σ, θ ) ≡ f (σ, θ ) +
f (−σ , θ ), is by construction symmetric under spin flip and is
useful for learning models with a global Z2 symmetry.

It is also worth noting that the IS objective can naturally
impose translation invariance with any function family. This is
because optimizing the objective in Eq. (12) for any function
family reconstructs the local piece of the energy function
at each site. If the model is transitionally invariant, every
local piece of the energy function will be the same (i.e.,
Eu = Ev ∀ u, v ∈ [n]), and we only need to optimize for a
single site.

APPENDIX D: ADDITIONAL DETAILS ABOUT
METHODOLOGY

1. Additional details for numerical experiments

In this section, we provide details on the experiments
involving learning of EBM representations of quantum sys-
tems:

(1) Figure 3(b): Exact distribution μ was obtained by
exactly exponentiating the quantum Hamiltonian. This dis-
tribution was used to take the m → ∞ limit in the IS loss
function. In the learning process, a third-order polynomial
Ansatz was optimized using an interior point method from
IPOPT.

(2) Figure 3(g): This experiment uses a neural net with
depth d = 3 and width w = 15. The model was trained with a
mini-batch size of 500, with an early stopping criteria with a
delta of 10−4 for a maximum of 1500 epochs. Training was
done using ADAM with initial learning rate of 10−2 and an
inverse time decay schedule.

(3) Figures 5(c) and 6: The experiments in these fig-
ures use neural nets with depth d = 3 and width w = 25. The
model was trained with a mini-batch size of 5000, with an
early stopping criteria with a delta of 10−8 for a maximum
of 500 epochs. Training was done using ADAM with initial
learning rate of 8 × 10−3 and an inverse time decay schedule.

(4) Figure 3(f): Exact distribution μ was obtained by ex-
actly exponentiating the quantum Hamiltonian. In the learning
process, a polynomial Ansatz with terms at all orders was
optimized using entropic gradient descent.

(5) Figure 2(a): This experiment uses a neural net with
depth d = 2 and width w = 8. The model was trained with
a mini-batch size of 3000, for 200 epochs. Training was done
using ADAM with initial learning rate of 10−2 and an inverse
time decay schedule.

(6) Figure 5(b): Exact distribution μ was computed from
an MPS representation of the ground state obtained by the
density matrix renormalization group (DMRG). In the learn-
ing process, a third-order polynomial Ansatz was optimized
using an interior point method from IPOPT.
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(a) (b)

FIG. 7. Learning classical energy-based model (EBM) represen-
tation for the ground state of a two-dimensional (2D) Heisenberg
model. (a) Comparison of ZZ and XX expectation values learned
by the NeuRISE algorithm with values obtained from the density
matrix renormalization group (DMRG), m = 4 × 106. The Hamil-
tonian here is the antiferromagnetic Heisenberg model on a 5 × 5
lattice. (b) Error between expectation values learned by NeuRISE
and DMRG. We see good agreement in local observables for learn-
ing this 2D model. Just like for the one-dimensional (1D) models
discussed in the main text, we also see improved predictions while
increasing the training values of m. The neural net used here has only
23 250 free parameters compared with the Hilbert space dimension
of ≈3 × 107.

(7) Figure 7: The experiments in these figures use neural
nets with depth d = 3 and width w = 15. The model was
trained with a mini-batch size of 10 000, with early stopping
criteria with a delta of 10−8 for a maximum of 500 epochs.
Training was done using ADAM with initial learning rate of
8 × 10−3 and an inverse time decay schedule.

APPENDIX E: ADDITIONAL NUMERICAL RESULTS

1. Scaling experiments for thermal states

Scaling results for learning thermal states using the poly-
nomial Ansatz are given in Fig. 4. Figures 4(a) and 4(b) show
results for a 1D TIM. We can see that error in the expectation
values is most significantly affected by the number of samples
used for learning. On the other hand, increasing the number
of qubits in the system does not increase the average error in
the expectation values by much. Figures 4(c) and 4(d) show
similar scaling experiments for a 2D TIM. Here, we see that
error has only a weak dependence on the size of the system.
The error is seen to decrease consistently with the number of

training samples, but the model with a higher value of g is seen
to be easier to learn. This points to an effective temperature in
the EBM induced by the transverse field.

2. Additional experiments with ground states

Scaling experiments for learning ground states are given in
Fig. 6. Interestingly, in Fig. 6(a), we see that the average error
in reduced states decreases with increasing system size. This
is due to fact that most errors for 2 qubit reduced states occur
when the qubits are closer together on a lattice. For qubits
that are farther apart, the EBM reconstructs the reduced states
well.

In Fig. 6(b), we study the effect of the phase of the ground
state on the learning algorithm for a 1D TIM. Below the
critical point of g = 1, the ground state is close to the ground
state of the classical Ising model. As explained in the Appen-
dices, these states are known to be hard to learn. We see that
reflected in these experiments, as the errors in the reduced
states do not decrease when we increase the training samples.
For higher values of g, the ground state moves away from the
classical ground state and this allows for easier learning. This
is evidenced by a consistent decrease in error with increasing
training samples in these models.

We test the quality of the EBM representation for the
ground state of a model other than TIM in Fig. 7, where we
study the Heisenberg model in 2D:

H =
∑
〈i, j〉

XiXj + YiYj + ZiZ j . (E1)

Here, we use a neural net representation for the energy func-
tion. The correlation functions obtained from the learned
EBM representation show excellent agreement with the
ground-truth correlation expectation values.

3. Effect of POVM on learning GHZ state

For learning the GHZ state, we have observed that mea-
surement outcomes from a rotated version of the tetrahedral
POVM produce better results than the unrotated version. Ta-
ble I shows numerical results to this effect. In the experiments
involving permutation invariant states, we have chosen one
such rotated POVM. The results in Table I suggest that the
performance of the algorithm can be improved by choosing
an optimal rotation. We leave the exploration of this for future
work.

TABLE I. Estimated fidelity of the learned EBM representation with the GHZ state when learned from m measurement shots. Mean and
standard errors (in parentheses) are reported from the results of 20 experiments. The rotated tetrahedral POVM is rotated using a different 1
qubit Haar random rotation for every experiment. Reported fidelity values are estimated after drawing 106 samples from the learned EBM. We
see that the rotated tetrahedral POVM gives a similar error and a much lower variance than the unrotated POVM.

m = 5 × 104 m = 105 m = 5 × 105

Tetrahedral 0.9985 (σ = 0.0385) 1.0007 (σ = 0.0328) 0.9988 (σ = 0.0155)
Rotated tetrahedral 1.0005 (σ = 0.0274) 1.0040 (σ = 0.0183) 1.0015 (σ = 0.0081)
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