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Two atoms in a harmonic trap with spin-orbital-angular-momentum coupling
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We study the problem of two harmonically trapped atoms in the presence of spin-orbital-angular-momentum
(SOAM) coupling. The two-body energy spectrum is numerically calculated by utilizing the exact diagonal-
ization method. We analyze how the degeneracy of energy levels is lifted under the interplay between the
interatomic interaction and SOAM coupling. The exact numerical results show excellent agreement with that of
perturbation theory in the weak-interaction limit as well as that in the absence of SOAM coupling. The properties
of correlations between the two atoms are also discussed with respect to the interaction strength. The findings in
this paper may provide valuable insights into few-body physics subjected to SOAM coupling and the possible
experimental detection of spectrum functions in many-body systems, such as radiofrequency spectroscopy.
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I. INTRODUCTION

The coupling between the orbital angular momentum
(OAM) L of a charged particle and its spin S, known as the
LS coupling, plays a fundamental role in few-body problems
across diverse fields of physics. In atomic physics, LS cou-
pling contributes to the fine structure of atomic spectra and
explains the splitting of spectra lines into multiple compo-
nents in the presence of an external magnetic field [1]. In
nuclear physics, LS coupling provides a dominant interac-
tion mechanism in understanding the nuclear structure in the
framework of the shell model [2]. Taking a broader perspec-
tive, the spin-orbit (SO) coupling or interaction lies at the
heart of several many-body phenomena in condensed mat-
ter physics, by influencing the band structure and electronic
transport properties and giving rise to fascinating emergent
phenomena such as the spin Hall effect and topological insula-
tors [3,4]. Hence, understanding and controlling SO coupling
in materials are essential for advancing technologies such as
spintronics, topological materials, and quantum computation.

In recent decades, the successful realization of SO coupling
in cold bosonic and fermionic atoms has provided a remark-
ably flexible playground to study these fascinating phenomena
closely associated with SO coupling in a highly controllable
way [5–7]. Though the SO coupling has been intensively
studied both experimentally and theoretically in cold atoms
during past years [5–37], it was not until very recently that the
type of LS coupling, or spin-OAM (SOAM) coupling [38–45],
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was achieved in experiments with cold atoms [46–48] and has
stimulated fruitful studies of such an intriguing quantum sys-
tem [49–57]. Unlike the situation in condensed matter physics
that the SOAM coupling of electrons is a relativistic effect
and much weaker than the Coulomb interaction, the energy
scale of SOAM coupling realized in cold atomic experiments
could be comparable with that of interatomic interactions and
even to the many-body characteristic energy scale. This chal-
lenges the conventional perturbation theory for calculating the
few-body energy spectrum in dealing with SOAM coupling.
As a consequence, the difficulty may lie, for example, in the
two-body problem that the separation between the center of
mass (c.m.) and relative motions is not straightforward even in
the Hamiltonian, posing significant challenges for theoretical
treatment.

In this paper, we theoretically study the problem of two
harmonically trapped atoms in the presence of the type of
SOAM coupling achieved in recent experiments with 87Rb
atomic gases [46–48]. An unperturbed theoretical framework
is developed for solving the two-body Schrödinger equa-
tion. By considering a tunable interaction potential and the
SOAM coupling, the energy spectra and eigenfunctions of
two atoms in a harmonic trap are numerically calculated by
solving the derived secular equation via the approach of ex-
act diagonalization. We demonstrate the intrinsic mechanism
underlying the elimination of degeneracy in two-body energy
levels due to the interplay between the interatomic interaction
and SOAM coupling. Our numerical results show excellent
consistency with that in the limit without SOAM coupling
as well as that of perturbation theory in the weak-interaction
limit. We further introduce a correlation function and find
that the correlations between the two atoms are significantly
modified by SOAM coupling.

The rest of this paper is organized as follows. The model
single- and two-body Hamiltonians are introduced in Sec. II.
In Sec. III, we introduce the single-body problem and show

2643-1564/2024/6(3)/033200(12) 033200-1 Published by the American Physical Society

https://orcid.org/0000-0002-1734-1704
https://ror.org/03893we55
https://ror.org/03893we55
https://ror.org/034t30j35
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.6.033200&domain=pdf&date_stamp=2024-08-21
https://doi.org/10.1103/PhysRevResearch.6.033200
https://creativecommons.org/licenses/by/4.0/


CHEN, CHEN, AND PENG PHYSICAL REVIEW RESEARCH 6, 033200 (2024)

FIG. 1. Illustration of the experimental scheme of spin-orbital-
angular-momentum (SOAM) coupling using cold atoms. (a) Two
Laguerre-Gaussian laser beams with orbital angular momentum
(OAM) n1,2 h̄ couple the cold atomic cloud with a biased magnetic
field B to induce the hyperfine structure. The induced OAM trans-
ferred to the cloud is nh̄ = (n1 − n2)h̄/2. (b) Two hyperfine states
of 87Rb are involved by Raman beams, which play the roles of
pseudospins |↑〉 ≡ |F = 1, mF = 0〉 and |↓〉 ≡ |F = 1, mF = −1〉,
equivalent to an effective spin-half system.

the expressions of the single-body wave functions as well as
the eigenenergies. In Sec. IV, we further discuss the two-body
problem and develop a secular equation for the eigenenergy
and eigenfunction in the presence of SOAM coupling. Finally,
in Sec. V, our numerical results and findings are presented.
We first justify the numerically calculated energy spectrum
without SOAM coupling by comparing it with the analytic
result. We then illustrate the energy spectrum as well as an
introduced correlation function in the presence of SOAM cou-
pling and discuss the role of interaction potential and SOAM
coupling. A summary is given in Sec. VI.

II. HAMILTONIAN

The SOAM-coupling effect has been achieved in bosonic
87Rb atoms by using a pair of copropagating Raman beams
operated in Laguerre-Gaussian (LG) modes with opposite an-
gular momenta [46–48]. Explicitly, as illustrated in Fig. 1, two
LG laser beams carrying OAM n1,2 h̄ couple the internal spin
states of cold rubidium atoms split by a biased magnetic field
B, and the system can then be described by an effective two-
level scheme with the third spin state far away from other two.
The external OAM of atoms changes by nh̄ = (n1 − n2)h̄/2
when transitioning between two internal ground hyperfine
states. It leads to a so-called Raman-induced SOAM coupling,
which is effectively described by the Hamiltonian [48]:

Ĥ = Ĥho + �(r)σ̂x − nh̄

mr2
l̂zσ̂z + (nh̄)2

2mr2
, (1)

at resonance with a vanishing two-photon detuning. Here,
Ĥho = −h̄2∇2/2m + mω2r2/2 is the Hamiltonian of a
harmonic oscillator with trapping frequency ω, �(r) =
�R(r/w)2|n| exp(−2r2/w2) is the effective transverse Zeeman
field with the coupling strength �R and the waist w of LG
beams, and n is the angular momentum transferred from LG
beams to atoms during the Raman process. We have adopted
the polar coordinate r = (r, ϕ), l̂z = −ih̄∂ϕ is the angular
momentum operator, and σ̂x,z are Pauli matrices. Apparently,

the key feature of SOAM coupling is characterized by the
term l̂zσ̂z that is of a two-dimensional (2D) nature. Thus, we
will adopt a 2D geometry that can sufficiently capture the
crucial physics of SOAM coupling in such systems as in our
previous works [48,50]. In the experiment [48], the waist of
LG beams is ∼63 µm, much larger than the size of condensate,
i.e., r � w. Thus, the effective transverse Zeeman field �(r)
experienced by atoms is considerably weak and negligible
within the length scale of the atomic cloud. As a result, the
single-body Hamiltonian in the presence of SOAM coupling
can be further simplified to [50]

Ĥ = − h̄2

2mr

∂

∂r
r

∂

∂r
+ 1

2
mω2r2 + (l̂z − nh̄σ̂z )2

2mr2
, (2)

which captures the key feature of SOAM coupling.
The two-body Hamiltonian takes the form of

Ĥ =
2∑

i=1

Ĥi + Û (r1, r2), (3)

where Ĥi is the single-body Hamiltonian of the ith atom,
and Û (r1, r2) is the two-body interaction potential. Here, we
consider an interaction existing in the spin-singlet channel as
conventionally considered in a spin-half system without loss
of generality, i.e.,

Û (r1, r2) = V (r12)|0, 0〉〈0, 0|, (4)

where we have introduced

|0, 0〉 ≡ |S = 0, Sz = 0〉 = 1√
2

(|↑↓〉 − |↓↑〉), (5)

with the total spin S = 0 and the corresponding magnetic
quantum number Sz = 0 along the z axis. Here, V (r12) de-
pends only on the distance r12 = |r12| ≡ |r1 − r2| between
atoms. Note that our approach can be straightforwardly gen-
eralized to other forms of interactions, such as spin-triplet or
spin-independent interactions, which depend on the specific
atomic species.

III. SINGLE-BODY PROBLEM

For a single atom, it is easily found that the angular mo-
mentum l̂z is conserved as well as the spin σ̂z along the z axis.
Thus, the single-body problem can be solved for given an-
gular momentum and spin. The associated single-body wave
function is then written as

|ψlσ 〉 = ulσ |l, σ 〉, (6)

with

〈ϕ|l, σ 〉 = eilϕ

√
2π

|σ 〉, (σ = ↑,↓). (7)

In the spatial representation, we have

ψlσ (r) = 〈r|ψlσ 〉 = ulσ (r)
eilϕ

√
2π

|σ 〉. (8)

After inserting Eq. (8) into the single-body Schrödinger
equation Ĥψlσ (r) = εψlσ (r), we obtain the radial equation
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satisfied by ulσ (r), i.e.,[
d2

dξ 2
+ 1

ξ

d

dξ
− (l ∓ n)2

ξ 2
+

(
2ε

h̄ω
− ξ 2

)]
ulσ = 0, (9)

with ξ = r/aho and aho = √
h̄/mω, which is the standard ra-

dial equation of a 2D harmonic oscillator, but with the angular
momentum number l ∓ n corresponding to the spin σ = ↑,↓,
respectively. The explicit form of the radial wave function
uk

lσ (r) is

uk
lσ (r) = Nklσ

(
r

aho

)|l∓n|

× exp

(
− r2

2a2
ho

)
L|l∓n|

k

(
r2

a2
ho

)
, (10)

and

N k
lσ = 1

aho

√
2 · k!

(k + |l ∓ n|)! (11)

is the normalization coefficient. Here, Ll
k (·) is the associated

Laguerre polynomials. Finally, the eigenstates of the single-
body problem are characterized by three quantum numbers,
i.e., the principle quantum number k, the angular quantum
number l , and the spin σ , i.e.,

ψklσ (r) = uk
lσ (r)

eilϕ

√
2π

|σ 〉. (12)

The corresponding eigenenergy is

εklσ = (2k + |l ∓ n| + 1)h̄ω. (13)

Here, we recall that −,+ corresponds to the results of spin
σ = ↑,↓, respectively.

IV. TWO-BODY PROBLEM

Unlike the situation in the absence of SOAM coupling, the
c.m. and relative motions of two atoms are coupled by SOAM
coupling, even in the Hamiltonian. The angular part of a
two-body state is characterized by four quantum numbers, i.e.,
{l1z, l2z; s1z, s2z}, where liz and siz are, respectively, the OAM
and the z-axis spin projection for the ith atom. However, they
are not good quantum numbers in the presence of interaction.
Obviously, Û does not commute with l̂iz, and it flips the spin
as well, for example,

Û |↑↓〉 = V (r12)

2
(|↑↓〉 − |↓↑〉). (14)

Fortunately, the projection of the total spin S on the z axis,
i.e., Sz, is conserved by the interaction. This is easily seen
by expanding the two-body Hamiltonian in the spin basis
{|↑↓〉, |↓↑〉, |↑↑〉, |↓↓〉}. We find that the two-body Hamil-
tonian is diagonalized in three blocks corresponding to Sz =
0,±1, respectively, i.e.,

Ĥ =

⎡
⎢⎢⎢⎢⎢⎣

Ĥ (0)
↑↓ + V/2 −V/2 0 0

−V/2 Ĥ (0)
↓↑ + V/2 0 0

0 0 Ĥ (0)
↑↑ 0

0 0 0 Ĥ (0)
↓↓

⎤
⎥⎥⎥⎥⎥⎦, (15)

where we have

Ĥ (0)
↑↓ =

∑
i

Ĥi,r + (l̂1z − nh̄)2

2mr2
1

+ (l̂2z + nh̄)2

2mr2
2

, (16a)

Ĥ (0)
↓↑ =

∑
i

Ĥi,r + (l̂1z + nh̄)2

2mr2
1

+ (l̂2z − nh̄)2

2mr2
2

, (16b)

Ĥ (0)
↑↑ =

∑
i

Ĥi,r + (l̂1z − nh̄)2

2mr2
1

+ (l̂2z − nh̄)2

2mr2
2

, (16c)

Ĥ (0)
↓↓ =

∑
i

Ĥi,r + (l̂1z + nh̄)2

2mr2
1

+ (l̂2z + nh̄)2

2mr2
2

, (16d)

with

Ĥi,r = − h̄2

2mri

∂

∂ri
ri

∂

∂ri
+ 1

2
mω2r2

i . (17)

The interaction is involved in the subspace of Sz = 0, as an-
ticipated. Therefore, it is reasonable to consider the two-body
solution in the subspace of Sz = 0, i.e., {|↑↓〉, |↓↑〉}, while the
solutions in the subspaces of Sz = ±1 are simply ones of free
atoms. In the subspace of Sz = 0, the Hamiltonian takes the
explicit form of

Ĥ =
[

Ĥ (0)
↑↓ + V (r12)/2 −V (r12)/2

−V (r12)/2 Ĥ (0)
↓↑ + V (r12)/2

]
. (18)

In addition, the total OAM L̂z = l̂1z + l̂2z is also conserved.
This can be seen as follows. The two-body potential V (r12)
can be decomposed as

V (r12) =
∞∑

l=−∞
Vl (r1, r2) exp[−il (ϕ1 − ϕ2)], (19)

with

Vl (r1, r2) =
∫

rdrV (r)
∫

kdkJ0(kr)Jl (kr1)Jl (kr2), (20)

in terms of the Bessel functions of the first kind Jn(x) (see
the details in Appendix A). Then we have the commutation
relation between l̂iz and V (r12) as

[l̂iz,V (r12)] = −ih̄
∂V

∂r12

∂r12

∂ϕi
, (21)

which leads to

[L̂z,V (r12)] = 0. (22)

As a consequence, the angular part of the two-body wave
function is alternatively described by another four quantum
numbers {lz ≡ (l1z − l2z )/2, S; Lz, Sz}, in which Lz and Sz are
conserved. In the following, we are going to solve the two-
body problem in the subspace of Lz = 0 and Sz = 0, and it
gives l1z = −l2z ≡ l . The two-body wave function may be
written as

�(r1, r2) = ψ↑↓(r1, r2)|↑↓〉 + ψ↓↑(r1, r2)|↓↑〉. (23)

By inserting the two-body wave function Eq. (23) into the
Schrödinger equation, we obtain[

Ĥ (0)
↑↓ + V/2 −V/2

−V/2 Ĥ (0)
↓↑ + V/2

][
ψ↑↓
ψ↓↑

]
= E

[
ψ↑↓
ψ↓↑

]
. (24)
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Regarding the spatial wave functions, we may expand them in the noninteracting basis as

ψ↑↓(r1, r2) =
∑
k1k2l

Ak1k2
l uk1

l,↑(r1)uk2
−l,↓(r2)

eilφ

√
2π

, (25)

and

ψ↓↑(r1, r2) =
∑
k1k2l

Bk1k2
l uk1

l,↓(r1)uk2
−l,↑(r2)

eilφ

√
2π

. (26)

Recall that l1z = −l2z ≡ l at the given total angular momentum Lz = 0. Here, we have defined φ ≡ ϕ1 − ϕ2. After substituting
these wave functions back into Eq. (24), we obtain the following secular equation:{

2h̄ω

[
(k1 + k2 + |l − n| + 1) ⊗ I 0

0 (k1 + k2 + |l + n| + 1) ⊗ I

]
+

[
V (↑↓)(↑↓) −V (↑↓)(↓↑)

−V (↓↑)(↑↓) V (↓↑)(↓↑)

]}[
A
B

]
= E

[
A
B

]
, (27)

with the identity matrix I and the matrix V (see the ex-
plicit form in Appendix B). It is easy to verify the relation
[V (↑↓)(↓↑)]† = V (↓↑)(↑↓). The concerned two-body spectrum
E as well as the wave functions are then obtained by numeri-
cally solving Eq. (27).

V. NUMERICAL RESULTS

For the convenience of numerical calculations, we choose
a spherical-square-well (SSW) potential as the interaction po-
tential, i.e.,

V (r12) =
{

−V0, 0 � r12 � ε,

0, r12 > ε,
(28)

with the depth V0 > 0 and an interaction range ε. The advan-
tage of this choice lies in avoiding the complex regularization
of the zero-range model and capturing the low-energy behav-
ior of two-body states outside the interaction range, which
should be universal for cold atoms.

A. Without SOAM coupling

As a self-examination, let us first consider the trivial sys-
tem in the absence of SOAM coupling. It recovers exactly
the case of two harmonically trapped atoms as described in
Refs. [58–61]. Here, we consider the spin degrees of freedom.
This leads to additional degeneracy of energy levels in the
two-body spectrum, which may be partially lifted when the
SOAM coupling is present later. The c.m. motion is decou-
pled from the relative motion for two interacting atoms in a
harmonic trap, and the combination of the c.m. energy Ecm and
the relative-motion energy Erel contributes to the total energy
E = Ecm + Erel. Explicitly, the c.m. motion energy takes the
simple form of a harmonic oscillator as Ecm = (2nc + |lc| +
1)h̄ω, while the relative-motion energy is governed by the
interaction in the spin-singlet channel via Eq. (4) and is de-
termined by the Schrödinger equation:[

− h̄2

2μ
∇2

r + 1

2
μω2r2 + V (r)

]
ψ (r) = Erelψ (r). (29)

Note that the two-body interaction works only in the spin-
singlet channel and does not affect the states in the spin-triplet
channel. Here, μ = m/2 is the reduced mass, and r ≡ r12

is the relative coordinate of two atoms. Since the OAM lr
of the relative motion is a good quantum number, different
angular partial waves are decoupled. Thus, the wave function
of the relative motion for the lr th partial wave may be written
as ψlr (r) = ulr

(r) exp(ilrϕ)/
√

2π . After substituting back the
wave function, the radial equation becomes[

Ĥ (lr )
r + V (r)

]
ulr

(r) = Erelulr
(r), (30)

where Ĥ (lr )
r is the radial Hamiltonian of a 2D harmonic oscil-

lator, i.e.,

Ĥ (lr )
r = − h̄2

2μr

d

dr
r

d

dr
+ h̄2l2

r

2μr2
+ 1

2
μω2r2. (31)

For self-consistency, we focus on the solution in the subspace
of zero total OAM, i.e., lc = −lr . In the noninteracting limit,
the energy of two atoms takes the simple form of

E = 2(nc + nr + |lr | + 1)h̄ω ≡ 2(N + 1)h̄ω, (32)

the degeneracy of which is DN = 2(N + 1)2. Taking the
N = 1 level with E = 4h̄ω as an example, there are eight
degenerate states in total, four each in the spin-singlet
and spin-triplet channels. Explicitly, these states, respec-
tively, correspond to the quantum numbers (nc, nr, lr ) =
(1, 0, 0), (0, 1, 0), (0, 0,±1). As the interaction is turned on,
only the degeneracies for different energy levels in the spin-
singlet channel are partially lifted, leaving the degeneracy of
lr (for example, the degeneracy corresponding to lr = ±1 for
the N = 1 energy level remains, as shown in Fig. 2).

The radial equation of the relative motion in Eq. (30) can be
solved analytically for an SSW potential. Let us consider the
s-wave solution (lr = 0) as an example. The solution outside
the range of the interaction, i.e., r > ε, takes the form of
(unnormalized)

u>
0 (r) = exp

(
− r2

2d2

)
U

(
−ν, 1,

r2

d2

)
, (33)

where d = √
h̄/μω = √

2aho is the harmonic length for the
relative motion, and ν constructs the s-wave relative-motion
energy as

E (s)
rel = (2ν + 1)h̄ω. (34)

Here, U (a, b, z) is the Kummer function of the second kind,
which satisfies the boundary condition at a large distance, i.e.,
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FIG. 2. The energy spectrum of two atoms Ek in the absence
of spin-orbital-angular-momentum (SOAM) coupling as a function
of the interaction strength denoted by the depth V0 of a spherical-
square-well potential, calculated by numerically solving Eq. (27)
with n = 0. The blue crosses denote the s-wave energy spectrum
E = E (s)

rel + h̄ω consisting of the ground center-of-mass (c.m.) energy
with nc = 0 and the relative energy E (s)

rel obtained by solving Eq. (36).
The inset zooms in the tiny region near V0 = 8h̄ω and Ek = 4h̄ω to
emphasize four spin-triplet and two spin-singlet states. Here, we have
set a relatively small interaction range ε = 0.3aho.

u>
0 (r → ∞) ∼ 0. Inside the interaction range, the radial wave

function has the form of

u<
0 (r) = c exp

(
− r2

2d2

)
M

(
−κ, 1,

r2

d2

)
, (35)

with κ = ν + V0/2h̄ω. Here, M(a, b, z) is the Kummer func-
tion of the first kind, which guarantees the wave function
being finite at r = 0, i.e., u<

0 (r → 0) ∼ const. �= 0. By using
the continuity condition of the radial wave function and its
first-order derivative at r = ε, we obtain the equation satisfied
by the energy E (s)

rel :

ν
U

(
1 − ν, 2, ε2/2a2

ho

)
U

( − ν, 1, ε2/2a2
ho

) + κ
M

(
1 − κ, 2, ε2/2a2

ho

)
M

( − κ, 1, ε2/2a2
ho

) = 0.

(36)
After solving Eq. (36), we could depict the total energy spec-
trum via E = Ecm + E (s)

rel for the s-partial wave in the absence
of SOAM coupling.

In Fig. 2, we present the typical two-body energy spectrum
as a function of the SSW depth V0 in a harmonic trap. The
gray curves indicate the two-body spectrum obtained by nu-
merically solving Eq. (27) in the absence of SOAM coupling,
i.e., setting n = 0. The blue crosses denote the s-wave energy
spectrum E = E (s)

rel + h̄ω consisting of the ground c.m. energy
with nc = 0 and the relative energy E (s)

rel obtained by solving
Eq. (36). As we anticipate, the degeneracies of energy levels
in the spin-singlet channel are partially lifted by interaction
while the spin-triplet states remain still. Taking the energy
levels near E = 4h̄ω for example, there are four degenerate
states in the spin-triplet channel, which are not affected by

interaction. Instead, four previously degenerate states in the
spin-singlet channel split into three as the SSW depth V0

increases, two of which, corresponding to lr = ±1, are still
degenerate, see the inset. In the figure, one can see that these
analytical energies denoted by the blue crosses are in excel-
lent agreement with the corresponding numerical results via
Eq. (27) (i.e., lines counting for the s-wave case).

For ultracold atoms, the s-wave interaction is usually pa-
rameterized by the universal scattering length. Following
Ref. [58], we introduce a 2D scattering length for the SSW
interaction by

ln
a2d

aho
= J0(

√
mε2V0/h̄2)√

mε2V0/h̄2J1(
√

mε2V0/h̄2)
− ln

2aho

εeγE
, (37)

where γE is the Euler gamma constant, and Jν (·) is the
Bessel function of the first kind, see the detailed derivation
in Appendix C. In Fig. 3, we present the two-body energy
spectrum Ek as a function of this introduced scattering length
ln(a2d/aho). Similarly, the solid curves indicate the total en-
ergy including different partial waves obtained by numerically
solving Eq. (27), while the blue crosses denote the analyt-
ically derived s-wave energy spectrum E (s)

rel + h̄ω counting
the ground c.m. energy. Furthermore, the asymptotic behavior
of the s-wave energy spectrum E (asy)

k in noninteracting limit
around Ek = 2(k + 1)h̄ω (k = 0, 1, 2, · · · ) takes an explicit
form of [58]

E (asy)
k

∼= 2(k + 1) − 2

ln 2 + 2 ln (a2d/aho)
, (38)

as denoted by red circles near the energy level Ek = 2h̄ω in
the figure. Here, the ground-state energy of the c.m. motion is
also included. In general, both the analytic results E (s)

rel and
E (asy)

k show an excellent agreement with the corresponding
ones in our numerical calculations. Unlike the situation in
three dimensions, the two-body bound state appears even for
an extremely shallow depth V0 in 2D. This implies a positive
2D scattering length for an arbitrary SSW depth. The scatter-
ing resonance occurs, corresponding to ln(a2d/aho) → +∞
or V0 → 0 as shown in the right plot of Fig. 3, in the nonin-
teracting limit, once the bound state appears. Thus, the energy
spectrum tends to the noninteracting result of Eq. (32). The
binding energy of the two-body bound state increases (but
negative) as the SSW depth increases. During this process,
the 2D scattering length decreases to zero, i.e., ln(a2d/aho) →
−∞, before the next two-body bound state appears. The en-
ergy spectrum then tends to approach the noninteracting result
again.

B. With SOAM coupling

We now turn to discuss the role of SOAM coupling by
considering a nonzero n (the OAM transferred to atoms in the
Raman process) and solving Eq. (27) numerically.

1. Energy spectrum

After considering the SOAM coupling by setting n = 2,
the calculated two-body energy spectrum is presented as a
function of the SSW depth V0 in Fig. 4. Under the interplay
between the SOAM coupling and interaction, the degeneracy
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FIG. 3. (Left) The energy spectrum of two atoms Ek in the absence of spin-orbital-angular-momentum (SOAM) coupling as a function of
the introduced two-dimensional (2D) scattering length ln (a2d/aho) via Eq. (37) for a spherical-square-well (SSW) potential. The solid lines
are obtained by numerically solving Eq. (27) with n = 0; the blue crosses denote the specific total energy E (s)

rel + h̄ω, with the s-wave relative
energy E (s)

rel calculated by solving the analytic expression Eq. (36), while the red circles indicate the asymptotic behavior of the total energy
E (asy)

k , i.e., Eq. (38), in the noninteracting limit. (Right) The s-wave scattering length in 2D as a function of the SSW depth. The insets illustrate
the position of resonance when a bound state appears near the threshold.

of each energy level is further lifted. This can be understood as
follows. The interaction lifts the degeneracy of the energy lev-
els in the spin-singlet channel, while the energy spectrum in
the spin-triplet channel is unchanged, as we have found in the
absence of SOAM coupling. However, the SOAM coupling
will mix the spin-singlet and spin-triplet states since the total
spin is no longer conserved as expected. As a consequence, it
gives rise to the additional splitting of energy levels and the
elimination of energy degeneracies.

To further understand the underlying physics of the two-
body spectrum in the presence of SOAM coupling, let us
adopt a perturbation analysis of Eq. (18) in the weakly in-
teracting limit, i.e., V0/h̄ω � 1. In the absence of interaction,
i.e., V0 = 0, the Hamiltonian Ĥ is readily diagonalized in the
noninteracting basis, i.e., {|ψ↑↓〉|↑↓〉, |ψ↑↓〉|↑↓〉}, where the
spatial part takes the form of

ψ↑↓(r1, r2) = uk1
l,↑(r1)uk2

−l,↓(r2)
eilφ

2π
, (39a)

ψ↓↑(r1, r2) = uk1
l,↓(r1)uk2

−l,↑(r2)
eilφ

2π
, (39b)

which can be denoted as |ψ↑↓(↓↑)〉 ≡ |k1, k2; l〉. Here, we note
that l1 = −l2 ≡ l is required by the zero total OAM and φ =
φ1 − φ2. Specifically, we have

[〈ψ↑↓| 〈ψ↓↑|]
[

Ĥ (0)
↑↓ 0

0 Ĥ (0)
↓↑

][
|ψ↑↓〉
|ψ↑↓〉

]
=

[
E (0)

↑↓ 0

0 E (0)
↓↑

]

(40)

in the spin basis {|↑↓〉, |↑↓〉}, with

E (0)
↑↓ = 2(k1 + k2 + |l − n| + 1)h̄ω, (41)

E (0)
↓↑ = 2(k1 + k2 + |l + n| + 1)h̄ω. (42)

It is straightforward to see that the energy spectrum be-
comes even times of the harmonic trapping energy as E (0) =
2h̄ω, 4h̄ω, . . . . Let us focus the discussion on the lowest
two energy levels as an example, i.e., degenerate E (0)

↑↓ =

E (0)
↓↑ = 2h̄ω, corresponding to the states |ψ↑↓〉 = |0, 0; n〉 and

|ψ↓↑〉 = |0, 0; −n〉. Therefore, we have the lowest energy
E (0)

0 = 2h̄ω with a twofold degeneracy, manifested as

Ĥ (0)
∣∣� (0)

1

〉 = E (0)
0

∣∣� (0)
1

〉
, (43a)

Ĥ (0)
∣∣� (0)

2

〉 = E (0)
0

∣∣� (0)
2

〉
, (43b)

with

�
(0)
1 (r1, r2) = exp

[−(
r2

1 + r2
2

)
/2a2

ho

]
πa2

ho

e+inϕ |↑↓〉, (44a)

�
(0)
2 (r1, r2) = exp

[−(
r2

1 + r2
2

)
/2a2

ho

]
πa2

ho

e−inϕ |↑↓〉. (44b)

When the interaction V is turned on but small, we may
utilize the degenerate perturbation theory to see how this
twofold degeneracy of the lowest energy is lifted. The un-
perturbed wave function |� (0)〉 could be expanded as a linear
combination of {|� (0)

1 〉, |� (0)
2 〉} in the degenerate sub-Hilbert

space, i.e.,

|� (0)〉 = α1

∣∣� (0)
1

〉 + α2

∣∣� (0)
2

〉
. (45)

The perturbed Hamiltonian takes the form of

Ĥ = Ĥ (0) + Ĥ (1), (46)

with the perturbation

Ĥ (1) =
[
+V/2 −V/2

−V/2 +V/2

]
. (47)

Up to the first-order approximation, the perturbed wave func-
tion and the corresponding energy can be written as

|�〉 ≈ |� (0)〉 + |� (1)〉, (48a)

E0 ≈ E (0)
0 + E (1)

0 , (48b)

where |� (1)〉 and E (1)
0 are the first-order corrections to the

wave function and energy, respectively. After substituting the

033200-6



TWO ATOMS IN A HARMONIC TRAP WITH … PHYSICAL REVIEW RESEARCH 6, 033200 (2024)

FIG. 4. The energy spectrum of two atoms Ek in the presence of
spin-orbital-angular-momentum (SOAM) coupling as a function of
the spherical-square-well depth V0, calculated by numerically solving
Eq. (27) with n = 2. The blue dots indicate the lowest two energy
levels at small V0, calculated from the perturbation approach. The
inset zooms in the tiny region near Ek = 2h̄ω with V0/h̄ω varying
from 0 to 4.

perturbed wave function and the corresponding energy back
into the Schrödinger equation Ĥ |�〉 = E0|�〉, we get

Ĥ (0)|� (1)〉 + Ĥ (1)|� (0)〉 ≈ E (0)
0 |� (1)〉 + E (1)

0 |� (0)〉, (49)

up to the first-order approximation. After taking the inner
product respectively with 〈� (0)

1 | and 〈� (0)
2 |, we obtain even-

tually the secular equation:[
W11 W12

W21 W22

][
α1

α2

]
= E (1)

0

[
α1

α2

]
, (50)

with the matrix element being

Wmn ≡ 〈
� (0)

m

∣∣H (1)
∣∣� (0)

n

〉
, (51)

which is straightforwardly constructed by using Eq. (44).
Then we find that the matrix W takes the form of

W =
[
F G
G F

]
V0, (52)

with the dimensionless constants:

F = −2ε

a4
ho

∫
dkJ1(kε)

[∫
r exp

(
− r2

2a2
ho

)
J0(kr)

]2

, (53a)

G = +2ε

a4
ho

∫
dkJ1(kε)

[∫
r exp

(
− r2

2a2
ho

)
J2n(kr)

]2

, (53b)

where ε is the interaction range. The straightforward diago-
nalization of W yields the first-order correction of the energy:

E (1)
± = (F ± G)V0, (54)

and the corresponding eigenvectors:[
α

(±)
1

α
(±)
2

]
=

[
1/

√
2

±1/
√

2

]
. (55)

FIG. 5. Lowest two energy levels Ek of two atoms in a harmonic
trap with the spin-orbital-angular-momentum (SOAM) coupling as
a function of the transferred orbital angular momentum n at a small
spherical-square-well depth V0 = 2h̄ω. The numerical results in blue
dots are compared with the one calculated from the perturbation
approach denoted by red circles.

Therefore, the zero-order wave function in Eq. (45) has the
form of ∣∣� (0)

±
〉 = 1√

2

(∣∣� (0)
1

〉 ± ∣∣� (0)
2

〉)
. (56)

In Fig. 4 and the inset, the corrected energy E0 ≈ E (0)
0 +

E (1)
0 of the E (0)

0 = 2h̄ω level is denoted by blue dots in the
weakly interacting limit. We can find that the lowest two
energy levels split as interaction strengthens and coincides
with the exact numerical results shown in gray lines at small
values of V0. In the absence of SOAM coupling, i.e., n = 0,
we have

G = −F = 1 − exp
(−ε2/2a2

ho

)
2

, (57)

and

ψ↑↓(r1, r2) = ψ↓↑(r1, r2) = exp
[−(

r2
1 + r2

2

)
/2a2

ho

]
πa2

ho

. (58)

In this case, the first-order correction of energy becomes

E+ = 0, E− = −2GV0 = [
exp

(−ε2/2a2
ho

) − 1
]
V0, (59)

and the corresponding zero-order wave function � (0)(r1, r2)
has the form of

�
(0)
± (r1, r2) = exp

[−(
r2

1 + r2
2

)
/2a2

ho

]
πa2

ho

1√
2

(|↑↓〉 ± |↓↑〉),

(60)

which is simply the wave function in the spin-singlet and
spin-triplet channels. We can see that the energy in the
spin-triplet channel is not affected by the interaction as we
anticipated since the interaction only exists in the spin-singlet
channel. However, when the SOAM coupling is present, the
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spin-singlet and spin-triplet states become mixed. Both ener-
gies E± are shifted by the interaction, as shown in Fig. 4.

By taking a relatively small interaction strength V0 = 2h̄ω,
we further illustrate these two lowest energy levels as func-
tions of the transferred OAM n in Fig. 5. The numerically
calculated energies in blue dots show a great agreement with
the one from the perturbation approach denoted by red cir-
cles. Surprisingly, we find that the separate energy levels
due to interactions tend to approach each other and restore
approximately the degeneracy as n increases. This can be
explained by the perturbation theory as follows. To the first-
order approximation, we find that the off-diagonal elements
W12 = W21 of the matrix W in Eq. (50) decrease toward zero as
n increases, while the diagonal elements W11 = W22 are irrel-
evant to n. Therefore, the off-diagonal elements are becoming
negligible compared with the diagonal elements at large n,
leading to no level repulsion and a tendency of degeneracy.
The weak interaction introduces only a uniform shift to previ-
ously splitting energy levels.

2. Correlations

We turn to discuss the correlations of two atoms by intro-
ducing a correlation function or an integrated density function.
If we fix the position of atom 1, for example, at r1, the
probability of finding atom 2 at position r2 is |�(r1, r2)|2.
Therefore, the total probability of atom 2 appearing at position
r2 is simply obtained by integrating over all r1, and that is

g(r2) =
∫

dr1|�(r1, r2)|2. (61)

The function g(r2) characterizes the intrinsic correlation be-
tween the two atoms and has the dimension of length−2. In
Fig. 6, the correlation function g(r2) is plotted as a function
of r2 = |r2| and the SSW depth V0 for the two lowest-energy
states around E = 2h̄ω. A rising correlation function value
from 0 is represented by the color gradient varying from blue
to red. Here, we have also integrated out the angular part with
respect to ϕ2.

In the absence of SOAM coupling, i.e., n = 0 shown by the
upper panel in Fig. 6, the system in the noninteracting limit is
nothing but two free atoms. Previously, we have obtained the
zero-order approximation of the wave function in Eq. (58).
Then the correlation function in the noninteracting limit sim-
ply takes the form of

g(0)(r2) =
∫

dr1

∣∣� (0)
± (r1, r2)

∣∣2 = exp
(−r2

2/a2
ho

)
πa2

ho

, (62)

and g(0)(r2) = 2 exp(−r2
2/a2

ho)/a2
ho by further integrating over

ϕ2, which yields g(r2 = 0) = 2 in both spin-singlet and spin-
triplet channels. The correlation in the spin-singlet channel
increases as the interaction strength increases, while it remains
unchanged in the spin-triplet channel as anticipated since
the interaction appears only in the spin-singlet channel, i.e.,
Eq. (4), which are clearly shown in the insets of Figs. 6(a)
and 6(b).

In sharp contrast, when the SOAM-coupling effect is in-
cluded, e.g., n = 2 shown by the lower panel in Fig. 6, the
states in the spin-singlet and spin-triplet channels are closely
coupled. This can be seen from the zero-order perturbed wave

FIG. 6. Contour plots of correlation functions g(r2) of two lowest
states for energy level Ek = 2h̄ω, i.e., second-lowest and lowest en-
ergy levels, respectively, in Figs. 2 and 4 as functions of radius r2 and
the spherical-square-well depth V0. The color gradient varying from
blue to red indicates the corresponding correlation function value
increasing from 0. In the insets, the specific values of correlation
functions at r2 = 0 are depicted as a function of V0.

function, i.e.,

∣∣� (0)
±

〉 = exp
[ − (

r2
1 + r2

2

)
/2a2

ho

]
√

2πa2
ho

×(e+i2ϕ |↑↓〉 ± e−i2ϕ |↓↑〉), (63)

which is a mixture of those in the spin-singlet and spin-triplet
channels, while the correlation function is again g(0)(r2) =
2 exp(−r2

2/a2
ho)/a2

ho in the noninteracting limit. In the insets
of Figs. 6(c) and 6(d), we find that the SOAM coupling plays
a crucial role, and both correlation functions at r2 = 0 of these
two lowest-energy states exhibit a strong dependence on the
interaction strength.

VI. CONCLUSIONS

We have studied the roles of SOAM coupling and a two-
body interaction potential in the underlying physics of two
harmonically trapped atoms by addressing the associated two-
body energy spectrum and correlations. Starting from the
two-body Hamiltonian counting a tunable interaction poten-
tial and the SOAM coupling, we have derived an explicit
secular equation for numerically calculating the associated
eigenenergy and eigenfunction. In the absence of SOAM cou-
pling, the calculated energy spectrum can reproduce well the
analytic result in previous works, i.e., only the spin-singlet
states are significantly affected by the two-body interaction,
and the degeneracies in the energy spectrum disappear gradu-
ally as the interaction strength rises.
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In the presence of SOAM coupling, we have made a care-
ful analysis of the two-body spectrum and the correlation as
functions of the interaction strength as well as the transferred
OAM. We first develop a perturbation approach to justify the
numerical result in the weak-interaction limit, which demon-
strates the crucial role of the interplay between the interaction
and SOAM coupling in the elimination of energy-level de-
generacy as the interaction enhances. In addition, we have
introduced a correlation function, i.e., an integrated one-body
density function, to characterize the behavior of two-body
wave functions with respect to the interaction strength as well
as the radius with and without SOAM coupling. The corre-
lations show direct evidence of the mixing of the spin-triplet
and spin-singlet wave functions due to SOAM coupling. At
large transferred angular momentum, we find that the devi-
ated energy levels of the lowest two states due to a definite
weak interaction tend to approach each other and restore the
degeneracy as the strength of SOAM coupling increases. This
intriguing behavior is further explained by employing the
perturbation approach.

We have focused our study in the subspace of two defi-
nite conserved quantum numbers, corresponding to vanishing
total OAM Lz and total spin Sz along the z axis. This could
be conveniently generalized to nonzero values of Lz and Sz.
In addition, the transverse effective Zeeman field has been
neglected here due to the weak light-atom coupling in space
in the present experimental setup, which may also be further
considered according to the exact diagonalization method.
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APPENDIX A: DECOMPOSING OF V (r12 )
IN THE ANGULAR BASIS

Let us expand the interaction potential V (r12) in the basis
of the angular eigenstates of l̂1z and l̂2z. To this end, thetwo-

body potential can be written as

V (r12) =
∫

drV (r)δ(r1 − r2 − r). (A1)

Since we have

δ(r) = 1

(2π )2

∫
dkeik·r, (A2)

it yields

V (r12) =
∫

dr
V (r)

(2π )2

∫
dk exp[ik · (r1 − r2 − r)]. (A3)

By using the 2D plane-wave expansion,

eik·r =
∞∑

l=−∞
il Jl (kr) exp[il (ϕk − ϕr )], (A4)

we find

V (r12) =
∫

dr
V (r)

(2π )2

∫
dk exp[ik · (r1 − r2)] · e−ik·r

= 1

2π

∫ ∞

0
V (r)rdr

×
∫

exp[ik · (r1 − r2)]J0(kr)kdkdϕk

=
∞∑

l=−∞
Vl (r1, r2) exp[−il (ϕ1 − ϕ2)], (A5)

with

Vl (r1, r2) =
∫ ∞

0
rdrV (r)

∫ ∞

0
kdkJ0(kr)Jl (kr1)Jl (kr2). (A6)

APPENDIX B: THE EXPLICIT FORM OF V MATRIX

The explicit forms of four matrix elements V in Eq. (27)
are given by

V (↑↓)(↑↓)
(k1k2l )(k′

1k′
2l ′ ) ≡

∫∫ [
uk1

l,↑(r1)uk2
−l,↓(r2)

Vl ′−l (r1, r2)

2
u

k′
1

l ′,↑(r1)uk′
2

−l ′,↓(r2)

]
r1r2dr1dr2, (B1a)

V (↑↓)(↓↑)
(k1k2l )(k′

1k′
2l ′ ) ≡

∫∫ [
uk1

l,↑(r1)uk2
−l,↓(r2)

Vl ′−l (r1, r2)

2
u

k′
1

l ′,↓(r1)uk′
2

−l ′,↑(r2)

]
r1r2dr1dr2, (B1b)

V (↓↑)(↓↑)
(k1k2l )(k′

1k′
2l ′ ) ≡

∫∫ [
uk1

l,↓(r1)uk2
−l,↑(r2)

Vl ′−l (r1, r2)

2
u

k′
1

l ′,↓(r1)uk′
2

−l ′,↑(r2)

]
r1r2dr1dr2, (B1c)

V (↓↑)(↑↓)
(k1k2l )(k′

1k′
2l ′ ) ≡

∫∫ [
uk1

l,↓(r1)uk2
−l,↑(r2)

Vl ′−l (r1, r2)

2
u

k′
1

l ′,↑(r1)uk′
2

−l ′,↓(r2)

]
r1r2dr1dr2. (B1d)
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APPENDIX C: SCATTERING PARAMETERS
FOR A SSW POTENTIAL

Let us consider the scattering problem of two atoms inter-
acting with a SSW potential in 2D. The relative motion of two
atoms is described by the following equation:[

− h̄2

m
∇2 + V (r)

]
ψ (r) = Eψ (r), (C1)

with

V (r) =
{

−V0, 0 � r � ε,

0, r > ε,
(C2)

and E > 0 for a scattering problem. The angular momentum
is a good quantum number: thus, the wave function is written
as ψ (r) = ul (r)eilϕ/

√
2π , which yields the radial equation:[

1

r

∂

∂r
r

∂

∂r
− l2

r2
+ k2 − mV (r)

h̄2

]
ul (r) = 0, (C3)

with k2 = mE/h̄2. For the s-wave scattering, i.e., l = 0, the
solution takes the form of

u0(r) =
{

cJ0(Gr), 0 � r � ε,

cot δ0 · J0(kr) − N0(kr), r > ε,
(C4)

where δ0 is the s-wave scattering phase shift, c is a normaliza-
tion parameter, and G2 = k2 + mV0/h̄2. Here, Jν (·) and Nν (·)
are Bessel functions of the first and second kinds. By using the
continuity condition of the wave function and its first-order
derivative at r = ε, we easily obtain the scattering phase shift:

cot δ0 = (kε)J0(Gε)N1(kε) − (Gε)J1(Gε)N0(kε)

(kε)J0(Gε)J1(kε) − (Gε)J1(Gε)J0(kε)
. (C5)

Expanding cot δ0 at small k, we obtain the effective-range
expansion of the scattering phase shift in 2D, i.e.,

cot δ0 = 2

π
ln(ka2D) + O(k2), (C6)

with the 2D s-wave scattering length:

ln
a2D

ε
= J0(

√
Ṽ0)√

Ṽ0J1(
√

Ṽ0)
+ γE − ln 2, (C7)

with Euler gamma constant γE ≈ 0.577216 and Ṽ0 ≡
V0/(h̄2/mε2), or in a form of

ln
a2d

aho
= J0(

√
mε2V0/h̄2)√

mε2V0/h̄2J1(
√

mε2V0/h̄2)
− ln

2aho

εeγE
. (C8)

Explicitly, the relationship between this introduced scatter
length ln (a2d/aho) and the two-body interaction strength V0

can be seen in the right plot of Fig. 3.
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