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Time-reversal in a dipolar quantum many-body spin system
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Time reversal in a macroscopic system contradicts daily experience. It is practically impossible to restore a
shattered cup to its original state by just time reversing the microscopic dynamics that led to its breakage. Yet,
with the precise control capabilities provided by modern quantum technology, the unitary evolution of a quantum
system can be reversed in time. Here, we implement a time-reversal protocol in a dipolar interacting, isolated
many-body spin system represented by Rydberg states in an atomic gas. By changing the states encoding the
spin, we flip the sign of the interaction Hamiltonian, and demonstrate the reversal of the relaxation dynamics
of the magnetization by letting a demagnetized many-body state evolve back in time into a magnetized state.
We elucidate the role of atomic motion using the concept of a Loschmidt echo. Finally, by combining the
approach with Floquet engineering, we demonstrate time reversal for a large family of spin models with different
symmetries. Our method of state transfer is applicable across a wide range of quantum simulation platforms and
has applications far beyond quantum many-body physics, reaching from quantum-enhanced sensing to quantum
information scrambling.

DOI: 10.1103/PhysRevResearch.6.033197

I. INTRODUCTION

The concept of time reversal has been a subject of fun-
damental debate with roots tracing back to the late 19th
century. Loschmidt argued that the microscopic laws govern-
ing particle interactions were inherently time symmetric and,
therefore, the second law of thermodynamics is violated by
time reversing entropy-increasing collisions [1]. In contrast,
Boltzmann remarked on the notion of statistical irreversibility,
suggesting that while individual particle interactions might be
reversible, the macroscopic behavior of systems exhibited an
arrow of time. From the era of Boltzmann and Loschmidt,
the concept of time reversal has transitioned from theoreti-
cal consideration to practical experiments in the laboratory.
Utilizing the precise control capabilities over microscopic de-
grees of freedom provided by modern quantum technologies,
it becomes possible to effectively reverse the arrow of time
in the unitary evolution of a quantum system by changing the
sign of the Hamiltonian. An early example of this technique
is spin echo experiments, where the Hamiltonian and thus the
dynamics are reversed by effectively flipping the direction of
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random magnetic fields that individual spins experience [2,3].
This reversal causes an apparent demagnetized spin state to
evolve back in time into a magnetized state. While spin echo
experiments are based on reversing single-particle dynamics,
it is also possible to invert the sign of an interacting many-
body Hamiltonian, reversing the buildup of correlations and
entanglement in complex states. This type of many-body time
reversal has been demonstrated in a few scenarios, including
in collective systems [4–8], in systems with mixed quantum
states [9,10], and through a digital approach [11,12]. In partic-
ular, an approach based on changing the spin encoding states
has been applied to perform time reversal in a collective spin
model realized with rotational states in polar molecules [13].

Here, we demonstrate the reversal of quantum dynamics,
governed by a general many-body spin Hamiltonian which
can be tuned by Floquet engineering [14,15]. We employ
an ultracold atomic Rydberg gas, which has been widely
recognized as a highly effective platform for simulating
isolated quantum systems owing to the well-decoupled en-
vironment [16]. The versatility of the platform enables the
exploration of pure quantum states in random [17,18] and con-
trollable spatial geometries [19–21]. The unitary dynamics in
this system are described by spin models with long-range in-
teractions, acting as paradigmatic models to describe quantum
magnetism [16–18,22]. Our approach is based on reversing
the sign of a many-body spin Hamiltonian by applying a state
transfer during the evolution, effectively changing the spin
encoding in the Hilbert space. We demonstrate the time rever-
sal by reviving the magnetization of an initially magnetized
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state after having fully relaxed. Experimental contributions
to which the time reversal is sensitive are identified by em-
ploying a Loschmidt echo [23], becoming sensitive to minute
modifications of the many-body wave function, e.g., induced
by atomic motion. Finally, by combining the time-reversal
protocol with Floquet engineering [14,15], we extend the re-
versal of dynamics to general classes of spin Hamiltonians.

The reversal protocol is illustrated in Fig. 1(a). We en-
code the (pseudo) spin in two Rydberg states |↓〉1 = |nS〉 and
|↑〉1 = |nP〉 [red state combination in Fig. 1(a)]. The direct
dipolar exchange interactions between S and P states realize a
Heisenberg XX Hamiltonian

HXX =
∑
i< j

Ji j
(
Si

xS j
x + Si

yS j
y

)
, (1)

where Si
α (α ∈ x, y, z) are spin-1/2 operators and Ji j =

C3(1 − 3 cos2 θi j )/r3
i j . C3 is the dipolar coupling parameter,

θi j the angle between atom i and j and the quantization
axis, and ri j their spatial separation. Applying two con-
secutive π pulses, we coherently transfer the spin state to
another pair of Rydberg states |↓〉1 → |↓〉2 = |n′P′〉 and
|↑〉1 → |↑〉2 = |n′S′〉 [blue state combination in Fig. 1(a)].
This new encoding realizes the same XX Hamiltonian as
in Eq. (1). However, by properly choosing the state com-
binations, the coupling parameter changes its sign C3 →
−kC3 with k = |C1

3/C2
3 | being the ratio between the cou-

pling parameters for the two spin encoding subspaces. The
specific choice of the states is determined by �mj = m|↓〉

j −
m|↑〉

j . While state combinations with �mj = 0 result in a
positive C3, combinations with �mj = ±1 result in a neg-
ative C3 (see Appendix C). Therefore, transferring the spin
state between the two sets of encoding Rydberg states
effectively realizes a time-reversal operation for the XX
Hamiltonian.

II. EXPERIMENTAL DEMONSTRATION

In our implementation, we employ an ultracold gas of
87Rb atoms. Notably, this system is spatially disordered
due to the random positions of the Rydberg atoms in the
cloud [17,24]. The Rydberg density sets a typical length
scale which leads to a typical energy scale quantified by
the median of the nearest neighbor interaction energy Jm =
median j maxi |Ji j |. The experimental sequence demonstrating
the reversal of many-body quantum dynamics is shown in
Fig. 1(b) and starts with the excitation of Rydberg atoms to
|↓〉1 = |61S1/2, mj = 1/2〉. After the excitation, a microwave
π/2 pulse coupling to |↑〉1 = |61P1/2, mj = 1/2〉 is used to
magnetize the spins along one direction in the equatorial
plane of the Bloch sphere. The system then interacts under
the XX Hamiltonian with positive C1

3/2π = 3.2 GHz µm3 and
evolves into a complex many-body state for a time t1. After
the evolution, we coherently transfer the population to the
second set of states |↓〉1 → |↓〉2 = |61P1/2, mj = −1/2〉 and
|↑〉1 → |↑〉2 = |62S1/2, mj = 1/2〉, by applying two consec-
utive π pulses with Rabi frequency �/2π = 9 and 11 MHz,
respectively. For these states, the XX Hamiltonian has a
negative interaction coefficient C2

3 /2π = −2.8 GHz µm3 and,
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FIG. 1. Time reversal on a Rydberg quantum many-body sys-
tem. (a) Sketch of the time-reversal protocol. The time reversal
is based on transferring the state between two spin-1/2 encod-
ings in the Rydberg manifold: |↓〉1 = |nS〉 , |↑〉1 = |nP〉 and |↓〉2 =
|n′P′〉 , |↑〉2 = |n′S′〉. The unitary evolution in the first spin sys-
tem is given by Hint and illustrated by the red lines between the
spins. Coherently transferring the state into the second spin sys-
tem will lead to unitary evolution under −kHint, with k being
a dimensionless parameter (illustrated by the blue lines between
the spins). (b) Experimental protocol to measure time reversal of
the magnetization dynamics. The two spin systems are represented
by |↓〉1 = |61S1/2, mj = 1/2〉, |↑〉1 = |61P1/2, mj = 1/2〉, |↓〉2 =
|61P1/2, mj = −1/2〉, |↑〉2 = |62S1/2, mj = 1/2〉 and the state trans-
fer is performed by two consecutive π pulses. (c) Upper: Dynamics
of the x (diamond), y (triangle), and z (hexagon) magnetization
components in the first spin encoding without state transfer (red)
and with state transfer after evolving for t1 = 0.4 µs in the first spin
system (blue). (c) Lower: Dynamics of the magnetization in the

equatorial plane Mφ =
√

M2
x + M2

y . The first blue data point displays

the state transfer efficiency: the magnetization after transferring the
state for t1 = t2 = 0. The dashed line is a guide to the eye, displaying
the transfer efficiency over the whole evolution time. The median
interaction strength is Jm/2π = 0.86 MHz.

therefore, the ratio between the coupling parameters is
k = 1.1. We let the spins evolve for a time t2. After the
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second evolution period, the spins are transferred back to the
original pseudospin states for the readout [25]. We measure
the magnetization using a tomographic readout of the phase
contrast [17].

The red diamonds in Fig. 1(c) upper panel show the evo-
lution of the x magnetization without state transfer. Starting
fully x magnetized, the system relaxes towards a demagne-
tized state within ≈0.7 µs, as expected for the underlying
XX Hamiltonian [24]. In contrast, as shown by the blue di-
amonds, applying the state transfer after a time t1 = 0.4 µs,
where the magnetization has relaxed to Mx ≈ 0.15, changes
the dynamics drastically. Instead of relaxing further into a
fully demagnetized state, the system evolves back into a
x magnetized state after a time t2 = 0.41 µs (or total time
t = 0.81 µs). This revival of magnetization is expected for
a system that evolves back in time or—as done here—for
which the sign of the Hamiltonian is reversed as apparent from
the unitary evolution of the magnetization 〈Mx(t1 + t2)〉 =
〈ψ0|eiHXX(t1−kt2 )Mxe−iHXX(t1−kt2 )|ψ0〉 which revives to M0 =
〈ψ0|Mx|ψ0〉 at t1 = kt2. We observe that the obtained value of
the coupling ratios k = 1.03 is slightly lower than the theoreti-
cally expected value of k = 1.1. We attribute this difference to
interactions being present during the finite-width microwave
pulses which are not included in the theoretical value. The z
magnetization at the beginning of the sequence (red hexagon)
and after the transfer (blue hexagon) is close to zero and
conserved by the U (1) symmetry of the XX Hamiltonian. The
y magnetization components in both spin encoding states (red
and blue triangles) show slow dynamics which are attributed
to small drifts of the magnetic field, resulting in a rotation
around the z axis (see Appendix A). For an XX Hamiltonian,
due to the U (1) symmetry, such a rotation does commute with
the Hamiltonian and thus does not affect the reversal of the
dynamics. Therefore, the lower panel in Fig. 1(c) shows the

full magnetization in the equatorial plane Mφ =
√

M2
x + M2

y .

The light blue dashed line in Fig. 1(c) shows the transfer
efficiency, defined as the magnetization obtained after the
state transfers with no evolution time, i.e., t1 = t2 = 0, and
provides the maximally possible achievable magnetization af-
ter the evolution with the reversed Hamiltonian, accounting
for infidelities during the transfer. For longer evolution times,
the magnetization starts to relax again and ends up in a demag-
netized state after ≈1.6 µs as expected for a XX Hamiltonian.

III. REVERSAL EFFICIENCY

Time-reversal protocols are generally extremely sensitive
to perturbations or decoherence, owing to the complexity of
quantum states resulting from many-body interactions. To
assess the influence of perturbations such as, e.g., atomic
motion or admixture of other atomic states, we character-
ize the long-time behavior (Jm/2π × t > 1) of our protocol
by measuring the amount of reversed magnetization at
the reversal time trev = t1 + kt1 [as illustrated in Fig. 1(c)]
with respect to different evolution times t1 ranging from
0.1 to 3 µs. Additionally, we increase the initial Rydberg
excitation time, resulting in denser samples with closer atom-
to-atom separations, consequently leading to stronger median
interactions Jm.

The median interaction strength Jm is estimated by sim-
ulating the spin distribution from a hard-sphere excitation
model where each Rydberg excitation is described by a su-
peratom with a given blockade radius and effective Rabi
frequency [17]. We note that the excitation model is less
accurate for high densities, where the distance between Ry-
dberg atoms is on the order of the blockade radius and the
hard-sphere approximation breaks down. However, in order
to efficiently perform time-reversal experiments, we prepared
rather dense samples with strong interactions, such that the in-
teraction timescales are short compared to decoherence times.
The obtained spin distribution serves as an estimate of the
typical interaction strengths.

For all interactions, the experimental data show a de-
crease in the reversed magnetization with time [see circles
in Fig. 2(a)], similar to Loschmidt echoes with imperfec-
tions [23]. For the weakest interactions Jm/2π = 0.86 MHz,
shown as blue circles, the magnetization still returns to a value
of M ≈ 0.2 even after trev = 6 µs. To put that into perspective,
the magnetization relaxes to zero after only t1 ≈ 0.7 µs for this
setup. We observe similar behavior for stronger interactions
Jm/2π = 1.58 MHz (yellow circles) and Jm/2π = 1.89 MHz
(green circles) despite the enhanced decrease of the overall
reversed magnetization as a function of reversal time.

In an ideal reversal scenario, one would anticipate a com-
plete return to the initial magnetization at all times. To
understand which perturbations influence our time-reversal
process, we employ simulations of a simplified model, which
only considers two internal states |↓〉 and |↑〉 per spin. The
state transfer pulses are mimicked by a simple 2π rotation
about the y axis at the end of the first evolution time [26].
The system of hundreds of spins is far too large to solve
it exactly, so we perform moving-average cluster-expansion
(MACE) simulations [27], approximating the dynamics of the
full system by simulating small clusters of the n spins and
averaging all clusters.

As experimental timescales are more than an order of
magnitude shorter than the lifetimes of the included Ryd-
berg states, we neglect these perturbations in our simulations.
Instead, we account for two experimental perturbations that
might significantly change the system: First, the state transfer
Rabi frequencies of �/2π ≈ 10 MHz are only one magnitude
stronger than the median interaction strength in the sample,
which will not dominate all interactions considering the max-
imal interaction strength for particles at the blockade radius
can be much larger than Jm. Therefore interactions lead to a
modification of the state during the transfer pulses. Second,
we include the thermal motion of the atoms during the two
evolution periods, which slightly changes the Hamiltonian
over time such that a simple sign flip does not reverse the dy-
namics perfectly. This is done by assigning each atom a fixed
velocity v drawn from a Boltzmann distribution at the cloud’s
temperature T = 11 µK and recomputing the couplings every
200 ns according to the changing positions over the course
of the simulation. Simulations of this simplified model are
shown as dashed lines in Fig. 2(a) and the decrease in reversed
magnetization is captured well on a qualitative level. We note
that the cluster sizes of n = 16 atoms are still not providing
fully converged simulations (see Appendix B) and therefore
our simulation results overestimate the magnetization of the
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(a)

(b)

FIG. 2. Reversal efficiency. (a) The reversed magnetization mea-
sured at the time of the reversal trev = t1 + kt1 for various evolution
times t1 (circles). The different colors correspond to increasing me-
dian interaction strength Jm/2π (increasing from blue to yellow to
green). Dashed lines correspond to MACE simulation with a cluster
size of 16 atoms. (b) MACE simulations of the reversed magneti-
zation for Jm(0)/2π = 0.86 MHz including different experimental
imperfections: no atom motion but finite state transfer pulse width
(dotted blue line); atom motion but infinitely fast state transfer
(dashed orange line); and atom motion and finite transfer pulse width
(solid orange line). The blue solid line shows the situation for perfect
reversal with infinitely fast transfer and no atom motion. The upper
panel displays the change of the median interaction strength Jm

(dotted orange line) and the matrix norm of ||δJ|| (solid orange line)
(see main text for details).

model systematically. This slow convergence in cluster size is
a sign of the high sensitivity of Loschmidt echoes.

Our simulation allows us to isolate the influence of atomic
motion and finite transfer efficiency so we can qualify
the effects individually. Focusing on temperature, we study
the change in couplings Ji j induced by thermal motion.
On the one hand, we find the median interaction strength
between nearest neighbors Jm to not vary significantly over
the duration of the simulation [dotted line in the upper panel
of Fig. 2(b)]. This means that the overall distribution of
couplings does remain largely the same. On the other hand,
directly computing the distance of the full interaction matrix
J as ‖δJ‖ = ‖J(t)−J(0)‖F

‖J(t)‖F
(where ‖ · ‖F denotes the Frobenius

norm) shows a growing deviation very clearly with about
20% difference at 12 interaction cycles [solid line in the

upper panel of Fig. 2(b)]. We denote the change in couplings
over one interaction cycle as δJm = ‖δJ(t = 2π/Jm)‖. So
while the global properties of the coupling distribution do
not change, the microscopic configuration does indeed change
significantly. The impact on the magnetization can be directly
observed by the dashed orange line in the lower panel of
Fig. 2(b), displaying the scenario with perfect transfer effi-
ciency �/Jm = ∞ and our finite cloud temperature (δJm =
0.02). The reversed magnetization starts at 0.5 and continu-
ously decreases over time after a few interaction cycles, due to
the sensitivity of the Loschmidt echo to different microscopic
configurations. The atomic motion clearly affects the long-
term behavior of our time-reversal protocol but cannot explain
the drop in reversed magnetization at short times.

The exclusive impact of finite state transfer efficiency
is investigated in a sample at absolute zero temperature
(δJm = 0), so couplings are constant in time but interac-
tions are active during the transfer process [dotted blue line
in Fig. 2(b) lower]. As expected this reduces the trans-
fer efficiency even at t = 0 where no dynamics take place
except during the transfer pulse. Afterward, the reversed mag-
netization decreases further. A possible explanation is the
buildup of correlations, causing the state to become more
sensitive to perturbations over time. Interestingly, after a
fast initial decrease [until Jm(0)/2π × t ≈ 1] the relaxation
slows down drastically. Whether this effect has a physical
origin or is a numerical artifact requires further in-depth
investigations.

Considering both imperfections allows us to qualitatively
reproduce our results observed in the experiment (orange solid
line). We conclude that for short times (Jm/2π × trev < 1), the
finite transfer efficiency is the dominating perturbation, while
the longer-term behavior (Jm/2π × trev > 1) is dominated by
the sensitivity to slight changes in the microscopic configura-
tion, due to atomic motion.

IV. TIME REVERSAL OF TUNABLE XXZ MODELS

For quantum engineering applications, it is important to
be able to tune the specific type of Hamiltonian one is in-
terested in studying. Quantum metrology applications profit
from a power-law XXZ Hamiltonian [28] which can directly
be combined with time-reversal protocols to enhance phase
sensitivity [4]. On the other hand, investigating quantum
information scrambling, e.g., through out-of-time-order cor-
relators, might show distinct behavior for different types of
spin models.

In order to achieve the reversal of a wide range of many-
body Hamiltonians, we combine our protocol with Floquet
engineering, a technique used in various quantum simulators
to engineer tunable spin Hamiltonians [14,15,29,30]. It uses
a periodically applied drive to transform a naturally given
Hamiltonian into a desired target form. In our implementation,
the specific pulse sequence illustrated in Fig. 3(a) transforms
the natural XX Hamiltonian into an XXZ Hamiltonian

HXXZ =
∑
i< j

J⊥
i j

(
Si

xS j
x + Si

yS j
y

) + J‖
i jS

i
zS

j
z , (2)

and can be applied to both spin encoding subspaces. Here,
J⊥

i j = Ji j
2(τ1+τ )

tc
and J‖

i j = Ji j
2τ
tc

, with tc = 2(τ1 + 2τ ) being
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FIG. 3. Time reversal of XXZ models with tunable anisotropy.
(a) Protocol: The periodic driving sequence consisting of π/2 pulses
with tunable delay times is applied to the two systems and transforms
the natural XX Hamiltonian into an XXZ Hamiltonian with the
respective sign. (b) Red circles in the left panel: Magnetization at
t1 = 0.5 µs as a function of the anisotropy J‖

i j/J⊥
i j in the XXZ Hamil-

tonian without state transfer (for the first spin encoding). (b) Blue
points in the right panel: Magnetization at the reversal time trev

(for t1 = 0.5 µs) after evolving with the same pulse sequence and
therefore target Hamiltonian in both spin encoding subspaces, except
for the opposite sign.

the total sequence time and τ2 = τ3 = τ (see [15] for the
derivation). The anisotropy J‖

i j/J⊥
i j is tunable with the delay

time between the pulses.
To demonstrate the reversal, we apply a protocol similar

to the one introduced in [14]. We initialize the system in
a state with M ≈ 0.4 magnetization by evolving for tprep =
100 ns in the equatorial plane of the spin system with the first
spin encoding. We introduce this step to allow the strongest
interacting spins in the disordered sample to demagnetize
since their interaction cannot be efficiently engineered. Then,
we apply the pulse sequence to engineer XXZ Hamiltonians
with anisotropies J‖

i j/J⊥
i j between 0.14 and 1 and measure

the magnetization at late times t1 = 0.5 µs. For J‖
i j/J⊥

i j = 1
the system possesses a SU(2) symmetry and the magneti-
zation constitutes a conserved quantity while for J‖

i j/J⊥
i j < 1

we expect a decreasing magnetization due to the breaking of
this symmetry. The red circles in the first panel of Fig. 3(b)
show the magnetization at t1 = 0.5 µs as a function of the
anisotropy. As observed in previous experiments [14], the
magnetization increases for increasing J‖

i j/J⊥
i j and we almost

conserve the full initial magnetization (M ≈ 0.4) for a value
of J‖

i j/J⊥
i j = 1.

After evolution in the first spin state encoding, we
transfer the state to the second set of encoding states
to flip the sign of the natural Hamiltonian. Applying the
very same engineering sequence as in the first half then

realizes −HXXZ without any other operations necessary. We
measure the final magnetization at trev, where we expect
the revival. The result is shown by the blue points in the
second panel of Fig. 3(b). For all probed anisotropies, the
reversed magnetization reaches the magnetization expected
from the state transfer efficiency, demonstrating the ability
to reverse the magnetization dynamics for arbitrary XXZ
Hamiltonians.

V. CONCLUSION

In this paper, we demonstrated the time reversal of dy-
namics, governed by a general tunable Hamiltonians with
power-law interactions, in an isolated quantum many-body
system. Our findings lay the foundation for several direc-
tions of applications in quantum science. Combined with
optical tweezer arrays, the method allows the study of infor-
mation scrambling dynamics by measuring out-of-time-order
correlators [7,9,12,31] for a more general setting of tun-
able long-range-interacting spin models. Furthermore, our
approach can readily be combined with recent observations
of scalable spin squeezing in dipolar systems [32], poten-
tially enabling phase sensitivity close to the Heisenberg
limit [4,5,8,33]. By time reversing the evolution of quan-
tum many-body systems, the effect of decoherence can be
characterized, constituting an important tool to validate the
quality of general platforms exploiting quantum effects, such
as entanglement, as a resource [10,11]. The time-reversal pro-
tocol essentially consists of changing the representation of the
pseudospin in order to realize a flip of the sign of the inter-
action Hamiltonian and is thus not limited to Rydberg atoms.
It can readily be applied to other isolated quantum systems
where a plethora of internal states are available. It appears
feasible to extend its use to other scenarios, like the Hubbard
or the t-J model, where in the latter a state transfer could
reverse the sign of the interaction term and the sign of the
tunneling term [34].
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APPENDIX A: EXPERIMENTAL SYSTEM
AND PARAMETER

1. Experimental system and microwave control

Our experiments start with a cloud of ultracold rubidium
87 atoms in an optical dipole trap at T = 11 µK. We opti-
cally pump the atoms into the |g〉 = |5S1/2, F = 2, mF = 2〉
ground state. After turning off the optical dipole trap we excite
the |61S1/2, mj = 1/2〉 Rydberg state via a two-photon laser
excitation at wavelengths of 780 and 480 nm with a single
photon detuning of �/2π = 97 MHz from the intermediate
state |e〉 = |5P3/2, F = 3, mF = 3〉. During the excitation and
the experiment, a B = 78 G magnetic field is applied in order
to lift the Zeeman degeneracy in the Rydberg manifold, ensur-
ing a two-level description. The Rydberg excitation time can
be varied and changes the Rydberg density (see at the end
of this paragraph). To ensure unitary dynamics, we restrict
the experimental time to a maximum of 6 µs, which is short
compared to the spontaneous lifetime of the involved Rydberg
state (527 µs for |61P〉 and 243 µs for |61S〉) as well as small
compared to the combined lifetime, including blackbody de-
cay (143 µs for |61P〉 and 105 µs for |61S〉).

The microwave manipulation is realized with an arbitrary
waveform generator (Keysight M8195A), directly generating
arbitrary waveforms with 16-GHz microwave photons needed
to couple, e.g., |61S1/2, mj = 1/2〉 to |61P1/2, mj = 1/2〉. Af-
ter microwave generations, the radiation is focused into our
science chamber and drives the spin system.

2. Readout of the magnetization

Our experimental scheme for time reversal consists of
transferring a spin state between four atomic states (|↓〉1,
|↑〉1, |↓〉2, |↑〉2). The evolution under the HXX Hamilto-
nian, exemplified by the blue data points in Fig. 1(c), takes
place within the encoding of |↓〉1 = |61S1/2, mj = 1/2〉 to
|↑〉1 = |61P1/2, mj = 1/2〉, with a transition frequency of
ν1 ≈ 15.9 GHz. The magnetization components for the HXX

evolution are measured on the same encoding states (without
the transfers) at the end of an experimental sequence using a
tomographic readout of the phase contrast, as detailed in [17].

To detect the evolution under the −kHXX Hamilto-
nian, the spin state is transferred to the encoding states
|↓〉2 = |61P1/2, mj = −1/2〉 and |↑〉2 = |62S1/2, mj = 1/2〉.
The atomic transition frequencies for the state transfers
|↓〉1 → |↓〉2 and |↑〉1 → |↑〉2 are ν2 ≈ 15.8 GHz and ν3 ≈
17.2 GHz, respectively. Here, the system evolves under
−kHXX before the transfer is applied again, and the mag-
netization is read out on the |↓〉1-|↑〉1 transition. During the
transfers at atomic frequencies ν2 and ν3, the |↓〉1-|↑〉1 transi-
tion at ν1 accumulates a global phase, which can be corrected
directly at the readout or afterwards.

3. Uncertainties in the atomic transition frequency

Figure 1(c) displays the x, y, and z magnetization com-
ponents. For the evolution in both spin encoding states, we
observe small dynamics in the y magnetization that are not
expected from a pure XX Hamiltonian. We attribute this to
uncertainties in the magnetic field on the order of δB ≈ 50 mG
on the offset field of B = 78 G, resulting in a detuning of the

TABLE I. Parameters obtained from the excitation model.

Jm/2π (MHz) rmed (µm) rb (µm) texc (µs) N

0.86 14.3 8.1 0.8 332
1.58 11.7 9 1.55 917
1.89 11.1 9.6 2.55 1333

atomic transition on the order of 100 kHz. These observations
are consistent with a state detuning and with an external field
�Si

z term in the spin Hamiltonian. We note that due to the
U (1) symmetry of the HXX Hamiltonian, the measurement
of the global magnetization in the equatorial plane Mφ is not
affected by such an external field term.

4. Model parameter

Parameters obtained from the excitation model [17] for
median nearest-neighbor distances rmed, blockade radius rb,
median interaction strengths Jm, spin excitation time texc, and
number of spins N are displayed in Table I.

APPENDIX B: MACE SIMULATIONS

The MACE simulation of the reversed magnetization per-
formed in Fig. 2 of the main text included the finite transfer
efficiency and atomic motion. We purely assumed classical
thermal motion and neglected motion due to forces between
the atoms. This is justified by estimating both effects: The
distance an atom travels due to the finite cloud temperature

is given by �x = vt with v =
√

2kBT
m . Therefore, over 1 µs the

atom moved by roughly ≈50 nm. Motion due to atomic forces
can be estimated by x = at2 with a = F/m = 1

4πε0

3d2

r4 /m.
Here, d is the dipole matrix element. Over 1 µs, the atom
moved roughly ≈0.5 nm.

We note that the MACE simulation of the reversed mag-
netization performed in Fig. 2 of the main text is not fully
converged. However, going to cluster sizes beyond 16 atoms is
computationally challenging. Figure 4 shows the dependence
of the reversed magnetization as a function of the cluster
size. The slow convergence highlights again the sensitivity of
time-reversal protocol with respect to small perturbations.

FIG. 4. Reversed magnetization as a function of the reversal time
for different cluster sizes in the MACE simulations.
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APPENDIX C: REVERSING DIPOLAR INTERACTIONS

We motivate our choice of states |↓〉 and |↑〉 for the
time-reversal protocol by considering the explicit form of
the interactions. For simplicity, we discuss the case of two
atoms whose interactions are described by the dipole-dipole
Hamiltonian:

ĤDDI = 1

4πε0

d̂1 · d̂2 − 3(d̂1 · er )(d̂2 · er )

r3
, (C1)

where d̂i = (d̂x
i , d̂y

i , d̂ z
i ) is the dipole operator of atom i, er is

the unit vector connecting two atoms, and r is their distance.
For convenience, we change to spherical coordinates such that
the dipole operators read

d̂0
i = d̂ z

i , (C2)

d̂+
i = −1/

√
2
(
d̂x

i + id̂y
i

)
, (C3)

d̂−
i = 1/

√
2
(
d̂x

i − id̂y
i

)
. (C4)

Here, we chose z as the quantization axis (magnetic field
direction). Furthermore, denote θ as the angle between the
atoms and the quantization axis in the following. With this,
the dipole-dipole interactions can be expressed as

ĤDDI = 1

4πε0

[
1 − 3 cos2 θ

2r3

(
2d̂ 0

1 d̂ 0
2 + d̂+

1 d̂−
2 + d̂−

1 d̂+
2

)

+ 3 sin θ cos θ√
2r3

[(
d̂+

1 d̂ 0
2 + d̂ 0

1 d̂+
2

)
e−iφ

− (
d̂ 0

1 d̂−
2 + d̂−

1 d̂ 0
2

)
eiφ

]

− 3 sin2 θ

2r3
(d̂+

1 d̂+
2 e−2iφ + d̂−

1 d̂−
2 e2iφ )

]
. (C5)

In the main text, we only consider interactions that con-
serve the total angular momentum (this is justified by the
application of a magnetic field B = 78 G, shifting unwanted
pair states out of resonance) and therefore we are left with the
first three terms in Eq. (C5) providing resonant dipole-dipole
interactions:

ĤDDI = 1

4πε0

1 − 3 cos2 θ

2r3

(
2d̂0

1 d̂0
2 + d̂+

1 d̂−
2 + d̂−

1 d̂+
2

)
(C6)

= 1 − 3 cos2 θ

2r3

(
0 C3

C3 0

)
. (C7)

The second line expresses the Hamiltonian in the basis
{|↓↑〉 , |↑↓〉}. The interaction coefficient reads

C3 = 1

4πε0
〈↑↓| 2d̂0

1 d̂0
2 + d̂+

1 d̂−
2 + d̂−

1 d̂+
2 |↓↑〉 . (C8)

We note that due to selection rules of the magnetic quantum
number, only one of the three terms is relevant depending on
the choice of states. For states with �mj = 0, such as |↓〉1 =
|61S1/2, mj = 1/2〉 and |↑〉1 = |61P1/2, mj = 1/2〉, we obtain
C3 = 1

2πε0
| 〈↓| d̂0

1 |↑〉 |2. For states with �mj = ±1, such as
|↓〉2 = |61P1/2, mj = −1/2〉 and |↑〉2 = |62S1/2, mj = 1/2〉,
we obtain C3 = − 1

4πε0
| 〈↓| d̂+

1 |↑〉 |2.
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