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Exact solution for the collective non-Markovian decay of two fully excited quantum emitters
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Waveguide quantum electrodynamics constitutes a modern paradigm for the interaction of light and matter, in
which strong coupling, bath structure, and propagation delays can break the radiative conditions that quantum
emitters typically encounter in free space. These characteristics intertwine the excitations of quantum emitters
and guided radiation modes to form complex multiphoton dynamics. So far, combining the collective decay of
the emitters with the non-Markovian effects induced by the modes has escaped a full solution and the detailed
physics behind these systems remains unknown. Here we analyze such a collective non-Markovian decay in
a minimal system of two excited emitters coupled to a one-dimensional single-band waveguide. We develop
an exact solution for this system in terms of elementary functions that unveils hidden symmetries and predicts
new forms of spontaneous decay. The collective non-Markovian dynamics, which are strongly dependent on the
vacuum coupling and the detuning from the center of the band, show exotic features that can be characterized
with a simple and readily available criterion. Our analytic methods shed light on the complexity of collective
light-matter interactions and open up a pathway for understanding multiparticle open quantum systems.
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I. INTRODUCTION

In a pioneering paper [1], Dicke departed from the classi-
cal idea of emitters decaying independently. He showed that,
despite the lack of photon-to-photon interactions, quantum
emitters might be mutually influenced by sharing the same
electromagnetic modes, thus decaying collectively. From the
Markovian point of view, the field modes establish decay
channels that might be super- or subradiant, but this picture
is also incomplete. Given that there is only a semantic dif-
ference between a quantum emitter reabsorbing a photon in a
certain mode and the mode emitting the excitation back into
the quantum emitter, the reabsorption of photons can only
be accounted for by placing modes and emitters at the same
level [2]. Collective non-Markovian decay is the natural next
step in the study of superradiance, where the “collective” not
only refers to the quantum emitters but the emitters and field
modes altogether.

Several factors can cause and modify non-Markovian de-
cay, such as a strong coupling between the emitters and the
bath of electromagnetic modes [3,4], a structured bath [5–7]
with one [8] or multiple energy bands [9], the topology [10]
and dimensionality [11] of the bath, the size [12–14] and
the arrangement [9,15,16] of the emitters, and the delay
of radiation traveling between them [17–22]. Such effects
could become prominent in large quantum networks [20,23],
but despite rapid experimental advancements on multiex-
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citation super- and subradiance [24], their interplay with
non-Markovian dynamics is an incipient area of experimen-
tation [25].

Theoretical studies of collective non-Markovian effects in
quantum optics rely on effective Hamiltonians [26–28], nu-
merical methods [8,22,29,30], Feynman diagrams [31–33], or
analytic approximations [20]. While these approximate meth-
ods tend to be simpler and more versatile, an exact solution
would benefit the field in many ways: providing checkpoints
for the approximated methods, inspiring new ansätze for
related problems, unveiling hidden symmetries and new phe-
nomena, and developing mathematical tools to approach the
problem. But the solvability of non-Markovian systems be-
yond the single-excitation sector is unclear [8,27,34], as an
infinite number of modes makes the dimension of the Hilbert
space diverge and the collective nature of the decay couples
the dynamics of the individual excitations through effective
interactions caused by photon blockade.

In this paper, we present an exact solution of collective
non-Markovian decay for a minimal system featuring two
adjacent quantum emitters spontaneously radiating two exci-
tations into a one-dimensional (1D) single-band waveguide.
We develop techniques to analyze and solve this problem
and emphasize the connection between the sectors with one
and two excitations. The solution has a plethora of features:
multiple super- and subradiant states, algebraic decay, mixed
algebraic and exponential decay, fractional decay with bound
states in and out of multiple continua, as well as logarith-
mic corrections to the algebraic decay. We also establish a
simple criterion to ascertain the presence of collective non-
Markovian decay.

The paper is structured as follows. In Sec. II, we introduce
the system and propose a way to visualize the two-excitation
sector. In Sec. III, we review the solution to the single-
excitation sector. In Sec. IV, we find a convenient form to
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FIG. 1. The system. (a) Two quantum emitters coupled to a waveguide. The strong periodic modulation of the index of refraction in the
waveguide induces a single-band dispersion relation for the photons inside. (b) Adjacency graph of the matrix representation of the system
Hamiltonian restricted to a single excitation (in blue) and two excitations (in red). The connection between the two is given by strings with two
blue nodes at the sides and a red node at the center. For clarity, some of the strings are omitted. (c) Three asymptotic regions of the red graph
that can be decoupled as products between the blue graph of either the system and the waveguide (yellow and magenta regions) or twice the
waveguide (cyan region).

write down the equations describing the dynamical evolution
of the two excitations. In Sec. V, we look at the symmetries
of the system, with emphasis on an abstract symmetry that
is crucial to our analysis, despite deviating from the common
notion of physical symmetry. In Sec. VI, we present the full
solution together with a description of its analytic structure.
In Sec. VII, we study the resulting spectrum of the two-
excitation sector and its physical implications for collective
non-Markovian decay. In Sec. VIII we explain how the solu-
tion also captures the spatial distribution of the bound states
before concluding in Sec. IX.

II. THE SYSTEM

We consider the problem of two identical quantum emit-
ters (QEs) coupled by g to a 1D structured waveguide (or
coupled-cavity array [35]) with period d and hopping rate
J . The dispersion relation of the waveguide features a single
band [ωq = −2J cos(qd ), for q ∈ (−π/d, π/d] the quasimo-
mentum of a photon in the waveguide]. The excitation energy
h̄� of the QEs is best interpreted as the detuning � from
the middle of this band, as it can also have a negative value.
The QEs are fixed to adjacent lattice sites of the waveguide
[represented in Fig. 1(a)].

Such a system is described by a Weisskopf-Wigner Hamil-
tonian, which in the Wannier basis reads as

Ĥ/h̄ = �

2∑
j=1

â†
j â j − J

∞∑
j=−∞

(b̂†
j b̂ j+1 + b̂ j b̂

†
j+1)

+ g
2∑

j=1

(â j b̂
†
j + â†

j b̂ j ), (1)

where â†
j = |1a

j〉〈0| is a fermionic creation operator and b̂†
j =

|1b
j〉〈0| + √

2|2b
j〉〈1b

j | + . . . is a bosonic one.
We will study the dynamic evolution when the two emitters

start off excited. Since the Hamiltonian conserves the number
of excitations, we could expand it in the sub-basis of two-
excitation states

|ψ (t )〉 = A(t )â†
1â†

2|0〉 +
∑
j< j′

Bj, j′ (t )b̂†
j b̂

†
j′ |0〉

+
∞∑

j=−∞
Bj, j (t )

(
1√
2

b̂†
j b̂

†
j

)
|0〉 +

∑
j, j′

Cj, j′ (t )â†
j b̂

†
j′ |0〉,

(2)

where A(0) = 1 and Bj, j′ (0) = Cj, j′ (0) = 0. The factor of
1/

√
2 is necessary to make the basis orthonormal.

Following the above approach results in a large, sparse ma-
trix representation of the Hamiltonian. To gain insight into the
underlying geometry, without necessarily computing this ma-
trix, we introduce a graphical representation of the problem,
illustrated in Fig. 1. We start with the adjacency graph of the
Hamiltonian for a single excitation [Fig. 1(b), in blue], which
resembles the actual system [Fig. 1(a)]. Then we denote two-
excitation states by drawing strings between any two points
of this graph. Because of fermionic exclusion, no such string
can be drawn with both ends at the same QE single-excitation
basis state (represented as a blue ball with a �). To produce
the nodes of a new graph representing two-excitation states,
we mark the centers of these strings (in red) with the total
energy of the state, which is given by the sum of energies at
the two ends of the string due to the absence of interactions
between excitations (other than fermionic exclusion in the
emitters).
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Edges in the blue graph induce corresponding edges in the
red graph. More specifically, every excitation experiencing
coupling or hopping is represented by not only a blue edge
but also several red ones, one for every two-excitation state
containing the excitation. The induced transition rates are
identical to the original rates, except for an additional factor
of

√
2 when either the initial or final configuration contains

two excitations in the same site (bosonic enhancement).
The resulting red graph is the adjacency graph of the

Hamiltonian restricted to the subspace of two excitations; de-
spite the 1D nature of the waveguide, the graph resembles that
of a coupled 2D system. There are asymptotic regions that fac-
tor into products of simpler graphs. Those simpler graphs are
(1, in yellow and magenta) the original blue graph, and the one
corresponding to an emitterless waveguide containing a single
excitation, or (2, in cyan) two such emitterless waveguide
graphs. Physically, this decomposition implies that the two
excitations are independent and distinguishable when they are
infinitely apart. These decompositions will be instrumental in
finding and interpreting the general solution, which justifies
treating the single-excitation case first (see Sec. III).

We emphasize that the bosonic and fermionic properties of
the particles are engraved in the geometry of this diagram. As
a result, even a classical (nonplanar) circuit board [36] follow-
ing this graph could serve to test and simulate the dynamics
of this quantum system.

III. SINGLE EXCITATION CASE

A system of quantum emitters containing a single exci-
tation and coupled to a band structure has previously been
analyzed in Ref. [9]. Here we apply the formalism developed
in that paper to the present configuration.

For the rest of the paper and appendices let us take
half of the bandwidth, 2J , as the natural frequency scale
(2J = 1) and denote by f̃ (ω ∈ C) the Wick-rotated Laplace
transform of a function, f̃ (ω) = −iL{ f }(−iω). This choice,
motivated by Ref. [9], differs from the usual Laplace trans-
form L{ f }(s)=∫∞

0 f (t )e−st dt in the replacement ω = is that
brings this complex variable closer to its physical meaning of
a frequency. In particular, ω can be mapped to the frequency
of the system’s bound states in Sec. VIII simplifying their
analysis. Indeed, with this choice the inverse transformation

f (t ) = − 1

2π i

∫ +∞+i0+

−∞+i0+
f̃ (ω)e−iωt dω, (3)

resembles a Fourier transform, but it has a displaced integra-
tion contour that avoids all the complex singularities of f̃ (ω)
on the real line.

We note that, together with the number of excitations,
the system also conserves the parity σ of an excitation that
is distributed symmetrically (σ = +1) or antisymmetrically
(σ = −1) over the two emitters. Thus, one can take decoupled
bases for both cases,

|ψσ (t )〉 = aσ (t )√
2

(â†
1+ σ â†

2)|0〉+
∞∑
j=2

bσ, j (t )√
2

(b̂†
3− j + σ b̂†

j )|0〉.

(4)
For an emission process (aσ (0) = 1 and bσ, j (0) = 0), the
resulting transformed excitation amplitude of the emitter

pair

ãσ (ω) =
(

ω − � − σg2 + σg2

√
ω − σ√
ω + σ

)−1

(5)

features decay to an “even edge” at frequency −σ , where the
parity of the emitter state matches that of the emitted waves,
and to an “odd edge” at σ , where the parity of the emitter state
is incompatible with that of the emitted waves.

The singularities of Eq. (5) encode the following single-
excitation decay behaviors (cf. Fig. 2):

(i) There is always a bound state in the gap beyond the even
edge and no bound state in the continuum. Another bound
state can be found in the gap beyond the odd edge if the
detuning lies within this gap or the coupling is large enough
(g2 > 1 − σ�).

(ii) The band edges are a source of algebraic decay of order
3/2. More specifically, the even edge contributes asymptoti-
cally to aσ (t ) with

(σ + i)eiσ t

4
√

πg2t3/2
(6)

while the odd edge contributes with

g2(σ − i)e−iσ t

4
√

π (g2 − 1 + σ�)2t3/2
. (7)

An exception to this is the incidental case that g2 − 1 +
σ� = 0, where the algebraic order of the odd edge changes
to 1/2. Its influence becomes longer lived as the result of the
spectral overlap between this edge and one of the bound states.

(iii) The Markovian approximation is applicable for in-
band detunings, |�| < 1, with weak edge effects, g2 � 1 −
|�|. In this limit the unemitted population |aσ (t )|2 decays
through a single channel with an exponential rate (1 −
σ�)�, where � = 2g2/

√
1 − �2 is the decay rate of an

isolated QE. The prefactor (1 − σ�) indicates that there
is single-particle superradiance when σ� < 0 and subradi-
ance if σ� > 0. No collective decay exists at � = 0: in
the band center, the symmetry between two parity sectors
leads to a suppression of collective decay, in opposition to
the naive idea that every system symmetry favors collective
decay. These characteristics also hold for two excitations, see
Appendix A.

IV. SECULAR EQUATIONS

The Schrödinger equation for (2) simplifies when written
in terms of the transformed field |ψ̃ (ω)〉 and then brought
to a form that accommodates the asymptotic solutions of the
system (see Sec. II). For this purpose, we introduce the Bloch
modes of the waveguide via b̂q =∑ j e−iqd ( j−3/2)b̂ j , where
q ∈ (−π/d,+π/d] is the quasimomentum (restricted to the
first Brillouin zone because we only consider one band). The
transformed wave function in this picture is described by a set
of amplitudes

|ψ̃ (ω)〉 = Ã(ω)â†
1â†

2|0〉 +
∑
p<q

B̃p,q(ω)b̂†
pb̂†

q|0〉

+
∑

q

B̃q,q(ω)

(
1√
2

b̂†
qb̂†

q

)
|0〉 +

∑
j,q

C̃j,q(ω)â†
j b̂

†
q|0〉

(8)
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that are connected by (see Appendix B)

Ã = 1

ω − 2�
+ gd

ω − 2�

∫ π/d

−π/d

(
e− iqd

2 C̃2,q + e
iqd
2 C̃1,q

) dq

2π

B̃p<q = g

ω − ωp − ωq

2∑
j=1

(
eipd ( 3

2 − j)C̃j,q + eiqd ( 3
2 − j)C̃j,p

)

B̃q,q =
√

2g

ω − 2ωq

2∑
j=1

eiqd ( 3
2 − j)C̃j,q, (9)

and in which C̃2,q(ω) = C̃∗
1,q(ω) for ω ∈ R; while determining

C̃1,q(ω) interweaves positions and momenta, evading a simple
treatment. However, it is possible to proceed by introducing
the analytic function

C(ω, z) :=
∞∑

j=−∞
C̃1, j (ω)z1− j (with z ∈ C), (10)

which simultaneously captures the position distribution of
the amplitude C̃1, j (ω) in its Laurent coefficients around
z = 0, and the momentum distribution on the unit circle
z = eiqd ∈ S1,

C(ω, eiqd ) = e− iqd
2 C̃1,q(ω). (11)

After (anti-)symmetrizing this function,

Cσ (ω, z) := 1

2

(
C(ω, z) + σ

z
C(ω, z−1)

)
, (12)

the secular equation becomes

Cσ (ω, z) = g

(
1

z
+ σ

)
ãσ (δω)

(
1/2 + gC̃1,2(ω)

ω − 2�

+g
∮

z′ + σ

1 + 2δω z′ + z′2
Cσ (ω, z′)dz′

2π i

)
, (13)

where the contour integral is positively oriented around S1

and δω := ω + (z + z−1)/2 is the dimensionless counterpart
of the energy left in the state after losing one of the excita-
tions to the waveguide, h̄(ω − ωq). The reappearance of (5)
establishes the connection between one and two excitations
analytically. We clarify that C̃1,2 refers to the transformed field
amplitude of having one excitation in emitter 1 and another
in the waveguide at the position of emitter 2; this term can
be treated as a constant from the perspective of solving the
integral equation, although it couples the symmetry sectors
σ = ±1.

To the best of our knowledge, this complex integral equa-
tion has not been studied in the literature. In the next two
sections, we develop the analytical tools to solve it based
on two intertwined concepts: symmetries and the analytic
structure of the solution.

V. SYMMETRIES

In this section, we discuss symmetries of the system. These
symmetries generate a group of transformations of the double
complex plane (ω, z) ∈ C × C. We highlight the following
three generators:

(a)

(c)

(b)

FIG. 2. Domain coloring plots of functions Cσ (z) (a) and 	(z)
(b) and ζ (z) (c). The functions Cσ and 	 are extended analytically
to an ∞ number of Riemann sheets (only four shown), connected
through the branch cuts ζ±1(S1) that are represented vertically. These
are also branch cuts of ζ (z), which are represented in (c) together
with S1 as thick black lines. The plots have a complex frequency
of ω = (1 − i)(

√
5 − 2)/2, parameters � = 0 and g = σ = 1, and a

plot range of | Re z| � (1 + √
5)2/4 and | Im z| � (1 + √

5)/2.

(i) The inversion (ω, z) → (ω, z−1) physically represents
left-right parity in the system.

(ii) The reciprocation (ω, z) → (−ω,−z) finds its physical
origin in the symmetry of the band structure ωq = −ωq+π/d .
This symmetry becomes explicit in parameter space under
the change � → −� (see Fig. 4) and is broken when mul-
tiple bands are considered [9]. It is the one responsible for
the suppression of collective effects at � = 0 [see (iii) in
Sec. III or Appendix A]. Signatures of this symmetry in
single-excitation, single-QE bound states coupled to a single
band were observed in Ref. [37].

(iii) The substitution (ω, z) → (ω, ζ (ω, z)) is motivated by
the exchange of function variable z with the contributing pole
of the two canceling the denominator in (13)’s integrand,

ζ±1(ω, z) := −δω ± √
δω + 1

√
δω − 1, (14)

where by “contributing” we mean that it lies within the in-
tegration contour, |ζ (ω, z)| � 1. This inequality is generally
strict except for z ∈ ζ±1(ω,S1), at which the integration con-
tour crosses a pole and the integral is not well defined. In
this way, ζ±1(ω,S1) defines two mutually inverse branch cuts
in the shape of curve segments connecting the branch points
ζ±1(ω, 1) and ζ±1(ω,−1). These cuts are present not only in
Cσ (ω, z) but also in ãσ (δω).

The function ζ has many other mathematical proper-
ties, such as ζ (ω, z) = ζ (ω, z−1), ζ (ω, z) = −ζ (−ω,−z), or
ζ (ω, ζ (ω, z)) = z±1 (for |z|±1 < 1), that ensure the closure
of the symmetry group. From the point of view of physics,
however, the substitution is a rather abstract symmetry: it
leaves certain properties of Cσ (z) invariant but not Cσ (z) itself
(see Appendix F).
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TABLE I. Set of formulas for the evaluation of Cσ (z) through (16).

Increments of Cσ

δCσ (z) = (2gC̃1,1σ−1) z+σ
z

√
δω−σ√
δω+σ

g3
(
[g−2 (δω−�)−σ]2− δω−σ

δω+σ

)(
g−2( z+1/z

2 +�)+ 2σ z
z−σ

) δ2Cσ (z) = −2σ (2gC̃1,1σ−1)
√

δω−σ√
δω+σ

(z+σ )2
z(z−σ )

g3
(
[g−2 (δω−�)−σ]2− δω−σ

δω+σ

)([
g−2( z+1/z

2 +�)+σ
]2− (z+σ )2

(z−σ )2

)

The 	 function

	(z) = −K(k−1 ) sgnRe ω

2π
√

k

(
z−1−z
1−ζ (z) + z+1

z−1 (1 + ω) + 2 z−1
z+1 ζ−1(−1) − z2−6z+1

z2−1
ζ−1(z)

)
− 2 sgnRe ω

π ik

(
K
(
k−1
)
E (x; k) − k2E

(
k−1
)
F (x; k) − (1 − k2

)
K
(
k−1
)
F (x; k)

)
Elliptic integrals

Incomplete Complete
First kind Second kind First kind Second kind

F (x; k) := ∫ x
0

dt√
1−t2

√
1−k2t2

E (x; k) := ∫ x
0

√
1−k2t2√
1−t2

dt K (k) := F (1; k) E (k) := E (1; k)

Eccentricity Amplitude

k = ω2−2+ω
√

ω−2
√

ω+2
2 x = k−1/2 sgnIm ω√

−k−ζ−1(−1)

z+1
z−1

√
ζ−1(z)−ζ (1)

ζ−1(z)−ζ (−1)

√
ζ−1(−1)−ζ (−1)
ζ−1(z)−ζ (−1)

ζ−1(z)−ζ−1(1)
ζ−1(−1)−ζ−1(1)

sgnIm ω =
{+1 if Imω > 0 ∨ (Im ω = 0 ∧ Re ω < 2)
−1 otherwise

sgnRe ω =
{+1 if Re ω � 0
−1 otherwise

The rational function rσ

rσ (z) = σ

4

(
δCσ (z) + σ

z δCσ

(
1
z

))√
δω+σ√
δω−σ

[
g−2(δω − �) − σ

]
+(2gC̃1,1σ − 1

)∑3
i=1 ασ (zσ i )

(
σ + z−1

)
zσ i

(
1

1+2δω zσ i+z2
σ i

− 1
(1−zσ i z)(1−zσ i z−1 )

)
(
z2
σ i + 2�zσ i + 1

)
(zσ i − σ ) = 4g2zσ i ασ (z) :=

(
2σ (2	(z)+1)

√
δω−σ√
δω+σ

−[g−2 (δω−�)−σ]
)
(1−z−2 )

2g3
(
[g−2 (δω−�)−σ]2− δω−σ

δω+σ

)(
g−2(1−z−2 )+ 4

(σ−z)2

)

Special field amplitudes

2gC̃1,1 =
∑

σ,i σασ (zσ i )∑
σ,i ασ (zσ i ) 2gC̃1,2 = ω−2�

2g
(
∑

σ,i σασ (zσ i ))2−(
∑

σ,i ασ (zσ i ))2∑
σ,i ασ (zσ i ) − 1

VI. ANALYTIC STRUCTURE

In this section, we investigate the analytic properties of Cσ

as a function of z, while omitting ω as a variable to avoid con-
fusion. The analytic continuation of Cσ (z) can be investigated
by modifying the integration contour of (13) as z is displaced
across the branch cuts (see Appendix C for details). Crossing
ζ (S1) results in an increment δCσ (z) in the function, which
is again lost if the same branch cut is subsequently crossed
in the same direction. By inversion symmetry, the situation
is analogous when crossing ζ−1(S1), while the increment
becomes σ z−1δCσ (z−1).

The analytically continued function is strikingly similar to
the original: whereas the simple poles of Cσ inherited by ãσ

in (13) relocate, the branch cuts [which are independent of
g, � and σ , see (14)] reappear over and over in the same
locations as illustrated in Fig. 2. Crossing one branch cut after
the other leads to an increment of ±δ2Cσ , where

δ2Cσ (z) := δCσ (z) − σ z−1δCσ (z−1). (15)

This behavior can be written succinctly as

Cσ (z) = 1
2δ2Cσ (z)

(
	(z) + 1

2

)− 1
2δCσ (z) + 1

2 rσ (z), (16)

where we interpret this as a deconstruction of the analytic
structure of Cσ (z): 	(z) contains the monodromy group of the
function [it has the same branch cuts, see Fig. 2(b)] but unlike
Cσ it is independent of g, �, σ , C̃1,1, or C̃1,2; then δ2Cσ (z)
and δCσ (z) are algebraic functions that fix double and single

leaps (respectively) in the Riemann sheets of the function; and
rσ (z) is a rational function that fixes the form of Cσ within one
Riemann sheet. Closed formulas for these functions are given
in Table I and proof of these can be found in Appendixes C, D,
and E.

VII. SPECTRUM AND DECAY

Combining the expression for Ã in Eq. (9) with expressions
for C̃1,2 (and nested definitions of zσ i and ασ ) in Table I yields

Ã(ω) =
(∑

σ,i σασ (ω, zσ i)
)2 − (∑σ,i ασ (ω, zσ i)

)2
2g
∑

σ,i ασ (ω, zσ i )
(17)

for the amplitude of both emitters being simultaneously
excited, which we use to study the spectrum and decay prop-
erties of the system. While the spectrum is determined by the
complex singularities of Ã(ω) (all located on the real line),
the decay properties are given by the analytic continuation in
the complex ω plane [9]. More specifically, the branch cuts of
Ã(ω) are segments along the real line representing different
continua in the spectrum; redrawing them vertically reveals
other singularities [as in Fig. 3(a)] that characterize the decay
dynamics.

The spectrum of the system is easily understood physi-
cally. There are simple real poles that represent bound states
with both excitations located around the emitters. These poles
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FIG. 3. Spectrum and decay properties of the system for
� = g = 1. (a) Simple poles (open circles) εσ i of the transformed
symmetric (σ = +1) and antisymmetric (σ = −1) emitter ampli-
tudes ãσ (ω) split into branch points (solid circles) εσ i ± 1 of the
doubly excited amplitude Ã(ω). Black open circles correspond to
collective exponential decay sources. (b) Corresponding bound-state
amplitudes in Wannier space for a single excitation (ε+1, ε+2, and
ε−1) and two excitations (BS1 and BS2). Hue encodes the phase (red
for positive, cyan for negative) and saturation encodes the absolute
value.

satisfy the equation ∑
σ,i

ασ (ω, zσ i ) = 0, (18)

and they can be located away from or on the branch cuts (in
which case they represent bound states in the continuum and,
consequently, they are hard to distinguish with simple numer-
ical approaches, such as a brute-force diagonalization of the
truncated Hamiltonian). The largest of these cuts is [−2, 2]
and it represents two excitations emitted into the waveguide.
Additionally, a cut is formed at [εσ i − 1, εσ i + 1] (for some
i ∈ {1, 2, 3}) when one excitation forms a bound state of
parity σ and dimensionless energy εσ i = −(zσ i + z−1

σ i )/2 (see
Sec. III) and another excitation is delocalized over the waveg-
uide. We note that Eq. (18) is exact, in contrast to previous
approaches used to compute multiexcitation bound state ener-
gies, such as variational [8] or perturbative [27] methods.

To access the decay properties, one needs to analytically
continue Ã(ω) beyond these branch cuts. For most of the cal-
culations, this can be done by reverting the signs of the square
roots appropriately. The situation is complicated by 	(ω, z)
when ω crosses [−2, 2] (see Fig. 7): The two branch cuts
in z space, ζ±1(ω,S1), come into contact when ω ∈ [−2, 2]
and, as they separate beyond this continuum, a new branch
cut crosses from one to the other. This topological change in
analytic structure is important for understanding the collective
decay of our system.

The analysis reveals several sources of decay:
(i) Solutions to the analytic continuation of (18) that do

not describe bound states, contain the collective exponential
decay rates. Mathematically, they are simple poles p in the
continuation of Ã(ω) and, while their frequency is Re p, the
amplitude decay rates are given by − Im p. In some cases,
this decay rate might exceed the Markovian super-radiant

prediction 2�/2 [for instance, for � = −0.8 and g = � =
0.3 the dominant pole is −1.5077(1) − 0.31956(1)i]. How-
ever, even in such cases and in contrast to Refs. [18,21], the
total decay is generally slower than the Markovian prediction
(Appendix A) due to other non-Markovian effects such as the
bound population at late times, or the dynamics starting out as
Rabi oscillations between the QEs and the sites below them at
early times [37].

(ii) When εσ i ∈ C is a pole that contributes to the decay
dynamics of a single excitation (Sec. III), then εσ i ± 1 is a
branch point of the two-excitation problem, with frequency
Re{εσ i ± 1} and a mixture of exponential decay with rate
− Im εσ i (which can be 0) and an algebraic decay with an
order inherited from the corresponding single-excitation band
edge (generally 3/2).

(iii) In between branch points ω = ±2 at the borders of
[−2, 2], there is an additional branch point at the center (ω =
0). All three points are a source of algebraic decay, generally
of order 3 (such as the expected for quantum emitters in
2D [38]). From a mathematical perspective, these singularities
originate from 	(ω, z) and are thus the hardest to analyze (see
the last part of Appendix D).

Indeed, (ii) and (iii) are what one would expect for two
independently emitted excitations. However, the algebraic de-
cay orders themselves can also present signs of collective
decay. For instance, for � = 0 and g = 1 (a critical coupling
between Markovian decay and bound-state induced oscilla-
tions), one might expect ω = ±(1 + √

2) to be the dominant
decay sources at very late times (2Jt  10) with an algebraic
order of 1/2. However, these sources actually have an order
of 3/2, making the branch points ω = ±2 the slowest decay
sources instead. Additionally, assuming independently emit-
ted excitations would imply those sources produce algebraic
decay of order 1, but there is a log2(t ) correction to the
asymptotic decay that they induce,

∼ e∓2it

t log2(t )
. (19)

We note that such a logarithmic correction will be diffi-
cult to access in measurements and simulations because the
bound state contributions overshadow the algebraic decay at
exponentially late times. For any parameter values (other than
� = 0 and g = 1) the logarithmic corrections are also present
at ω = ±2 and ω = 0, although not generally at leading or-
der. As such, we expect logarithmic modifications to higher
algebraic decay orders to be a very subtle yet robust indicator
of collective non-Markovian decay. The development of a
scheme capable of making this effect predominant and readily
measurable will be left for future work.

For our system, the predominant contributions to the decay
are generally exponential, algebraic decay, or bound states
depending on the interplay between g and �. Qualitatively, for
weak couplings g (see Fig. 4), the decay is mostly Markovian
for deep in-band detunings �, mostly algebraic when � is
resonant with the band edges and suppressed for detunings far
outside the band, when none of the two excitations may signif-
icantly leave its emitter (this means they form a two-excitation
bound state of frequency � 2�). As one increases the cou-
pling, the Markovian decay for in-band detunings becomes
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FIG. 4. Dynamical evolution of the probability |A(t )|2 of having both emitters simultaneously excited and the probability∑∞
j=−∞ |C1, j (t )|2 + |C2, j (t )|2 of having only one excited for a coupling strength g = 1/3. Three white lines in each plot delineate examples of

dynamics dominated by Markovian decay (at � = 0), algebraic decay (� = −3J), and a bound state (� = 6J). The dashed lines on the right
plot are level lines of probability 0.5, the theoretical maximum if the excitations were independent.

algebraic with pronounced oscillations that eventually become
bound-state oscillations [37] for couplings that surpass the
band width. The dynamics is not sensitive to detuning changes
smaller than the coupling.

A clear signature of non-Markovian collective behavior
can be found in the probability of having one excitation in
the emitters and the other in the waveguide (the right plot
of Fig. 4). If we use p to denote the probability for the first
excitation to be held by one of the emitters, then assuming
independence between the two excitations would result in
a probability 2p(1 − p) of having just one emitter excited.
Since 2p(1 − p) � 1/2 regardless of the value of p, 0.5 is a
fundamental limitation for this probability, were the excita-
tions independent. The collective nature of the decay allows
it to break this limitation, as seen in the plot. As shown in
Appendix A, the violation is also a sign of non-Markovianity,
because the Markovian prediction for this probability peaks at
0.5 for � = 0 when the decay channels are not collectively
enhanced or suppressed.

VIII. BOUND STATES

The shape of two-excitation bound states can most eas-
ily be computed by reusing the equations that describe the
transformed field amplitudes in Secs. IV and VI. These equa-
tions (except those for C̃1,1 and C̃1,2 in Table I) are affine, with
a homogeneous part proportional to the field amplitudes and
an inhomogeneous part. Removing the tildes and the inho-
mogeneous parts (e.g., through the substitutions (2gC̃1,1σ −
1) → 2gC1,1σ in Table I) yields equations that describe the
field amplitudes of the bound states instead.

There are two ways to justify dropping the tildes and the
inhomogeneous part to compute the bound states. First, the
eigenstate equation is formally identical to the transformed
Schrödinger equation (B1), except for the tildes and a “−1”
that represents the initial conditions and breaks the linearity

of the equations. Second, the transformed field amplitudes are
divergent at the bound state energies, so the inhomogeneous
terms are negligible in comparison. Scaling the amplitudes A
[from Eq. (17)], C1,1 and C1,2 (from Table I) with the vanish-
ing factor

∑
σ,i ασ (zσ i) fixes the divergent terms and yields

the correct (not yet normalized) multiexcitation bound-state
amplitudes. This argument can be made more rigorous by
using the residue theorem in the inverse transform (3) and
separating the bound states using a harmonic decomposition
of the solution. Examples of bound states are presented in
Fig. 3(b).

IX. CONCLUSION

In this work, we have made an original use of symmetries
and analytic methods to solve the problem of two excited
QEs coupled to a single-band waveguide. This is a minimal
scenario for the study of collective non-Markovian decay,
and the solution could be generalized to many other cases
whose exact single-excitation dynamics are known [3,4,7–
11,14–16,35,39,40]. The most immediate generalizations are
to revisit the multiphoton scattering problem [26,31,33,41]
by means of a different initial state; to change the distance
between the emitters and investigate delay-induced entangled
dark states [20]; to replace the two QEs by one giant atom with
two connection points [42] for the study of atom-multiphoton
bound states [43]; or to consider multiband waveguides, which
can also be done analytically and efficiently by using infinite
products à la Euler [9].

Non-Markovian collective decay is commonly related to
either strong coupling or retardation delays between emitters.
This characterization oversimplifies the full complexity of the
problem, which has infinitely many degrees of freedom. We
instead treat the quantum emitters and the radiation modes as
a collective in which every constituent partakes in the decay
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process since the spectral decay components of the solution
cannot be traced back to individual origins.

The closed expression for the transformed field amplitudes
in terms of elementary functions exposes a spectrum with a
wide variety of decay types. Whereas the amount, frequencies,
or decay rates of bound and exponentially decaying states
are independent of the single excitation spectrum, this is not
the case for the algebraic decay components. The algebraic
decay is generally caused by edges of continua involving free
states, where the two excitations can be considered to be
independent. A peculiar case of algebraic decay occurs at the
center of the band, which is not singular for one excitation
and does not lead to collective decay in the Markovian limit,
and yet it is a source of collective non-Markovian decay with
logarithmic modifications. These modifications might be the
result of interference between superposed algebraic decays, as
they also affect the edges of the continuum representing two
free particles.

Despite their stark difference in functional dependence,
logarithmic modifications to the decay would be extremely
hard to measure, as they would require interrogating the
emitters for exponentially long times with exponentially high
precision. In contrast, finding more than a 50% chance of
having exactly one emitter excited should be feasible in
state-of-the-art experiments while also being a conceptually
clearer indicator of collective non-Markovian decay. Our re-
sults could be tested in a variety of platforms, including atoms
near photonic crystals [44] or optical fibers [45], semiconduc-
tor quantum dots [46], matter-wave emitters [47], quantum
acoustic systems [48], or superconducting circuits [49].

We expect that the connections we established between
the one- and two-excitation sectors can be extrapolated to
arbitrary excitation numbers and that the solution presented
here can also be used for studies of the fundamental con-
nection between superradiance, synchronization [50,51], and
entanglement [29,52,53].
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APPENDIX A: TWO EXCITATIONS
IN THE MARKOVIAN LIMIT

In this section, we present the Markovian approach [54]
to this system for completeness. This section is somewhat
independent of the rest of the paper because it will not be used
to find the general solution.

When each of the QEs is holding an excitation there is no
phase relation between the two excitations, despite the initial
state seeming symmetric. This allows for the system to decay
into either the symmetric or antisymmetric decay channels
presented in Sec. III(ii) (see Fig. 5).

The density matrix ρ = TrB |ψ〉〈ψ | resulting from partial-
tracing over the waveguide (subsystem B) follows a dynamics
that in the Markovian limit is described by the master equa-

1√
2

(
â†
1 − â†

2

)
|0〉 1√

2

(
â†
1 + â†

2

)
|0〉

â†
1â

†
2 |0〉

|0〉

(1 + Δ) Γ (1 − Δ) Γ

(1 − Δ) Γ(1 + Δ) Γ

FIG. 5. Decay channels and rates for the super-radiant cascade
of two excitations leaving two emitters through the coupling with a
single sinusoidal band [55].

tion [54]

ρ̇ = −i

⎡
⎣ 2∑

j=1

�â†
j â j, ρ

⎤
⎦+

4∑
ν=1

�ν

2
(2ÔνρÔ†

ν − ρÔ†
νÔν

− Ô†
νÔνρ), (A1)

where ν runs over the decay channels of Fig. 5, e.g., �1 =
(1 + �)� and Ô1 = √

1/2(â†
1 − â†

2)|0〉〈0|â1â2. This results in
a 4 × 4 density matrix that is diagonal in the implied parity-
explicit basis and describes exponential decay of the total
population of the emitters,

Tr(â†
1â1 + â†

2â2)ρ = 1 − �

1 + �
e−(1−�)�t + 1 + �

1 − �
e−(1+�)�t

− 4�2

1 − �2
e−2�t . (A2)

We note that this decreases monotonically, so although they
cooperate, two distant quantum emitters are not enough to
produce a superradiant burst [56].

The decay channels illustrated in Fig. 5 become identical
at � = 0, and (A2) reduces to the decay of two independent
emitters. This signals a suppression of the collective effects,
similar to the single-excitation case discussed in Sec. III.

Another relevant observable (see Sec. VII) is the probabil-
ity of finding exactly one excitation in the emitters,

Tr(â†
1â1 + â†

2â2 − 2â†
1â†

2â1â2)ρ

= 1 − �

1 + �
e−(1−�)�t + 1 + �

1 − �
e−(1+�)�t − 2

1 + �2

1 − �2
e−2�t .

(A3)

The global maximum of this function is 0.5 at � = 0 and
�t = log 2, so any evidence of a higher value would signal
physics beyond the Markovian approximation.
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APPENDIX B: DYNAMICS OF THE TRANSFORMED FIELD AMPLITUDES

For the exact non-Markovian solution we make use of the Schrödinger equation, which in terms of the transformed Bloch
basis (8) and the initial conditions A(0) = 1 and Bp,q(0) = Cj,q(0) = 0 becomes

ωÃ − 1 = 2�Ã + g
∑

q

(eiqx1C̃2,q + eiqx2C̃1,q)

ωB̃p,q = (ωp + ωq)B̃p,q + g
2∑

j=1

(e−ipx jC̃ j,q + e−iqx jC̃ j,p) if p < q

ωB̃q,q = 2ωqB̃q,q +
√

2g
2∑

j=1

e−iqx jC̃ j,q

ωC̃ j,q = (� + ωq)C̃ j,q + geiqx j Ã + g

⎛
⎝∑

p<q

eipx j B̃p,q +
∑
q<p

eipx j B̃q,p +
√

2eiqx j B̃q,q

⎞
⎠, (B1)

where x1 = −d/2 and x2 = +d/2 are the positions of the quantum emitters on the waveguide. Solving for the C̃ j,q, we get
Eqs. (9) and the additional equation

(ω − � − ωq)C̃ j,q = geiqx j

ω − 2�
+ g2

∑
p

ei(px1+qx j )C̃2,p + ei(px2+qx j )C̃1,p

ω − 2�
+ g2

∑
p

2∑
j′=1

eip(x j−x j′ )C̃j′,q + ei(px j−qx j′ )C̃j′,p

ω − ωp − ωq
. (B2)

We can use this equation to prove that C̃1,q(ω) = C̃∗
2,q(ω) for all ω ∈ R. Beyond informing us about the form of the bound states

[see Fig. 3(b)], this allows us to obtain C̃2,q from C̃1,q through analytic continuation. For the proof, notice that conjugating this
equation while rewriting j → ¬ j and j′ → ¬ j′, the equation becomes

(ω − � − ωq)C̃∗
¬ j,q = geiqx j

ω − 2�
+ g2

∑
p

ei(px1+qx j )C̃∗
1,p + ei(px2+qx j )C̃∗

2,p

ω − 2�
+ g2

∑
p

2∑
j′=1

eip(x j−x j′ )C̃∗
¬ j′,q + ei(px j−qx j′ )C̃∗

¬ j′,p

ω − ωp − ωq
, (B3)

which is identical to the original writing (B2) after exchanging C̃1,q ↔ C̃∗
2,q. Since the dynamics are unequivocally determined

by the Schrödinger equation and initial conditions, (B2) has a unique solution and therefore C̃1,q = C̃∗
2,q. We note that this also

implies through (9) that Ã, B̃p,q ∈ R for ω ∈ R.
Using this result, Eq. (B2) with j = 1 and arbitrary ω ∈ C can also be written as

(δω − �)C(ω, z) = g/z

ω − 2�
+ g2/z

2π i

∮ {
2C(ω, z′)
ω − 2�

+ 2
zC(ω, z) + C(ω, 1/z)/z′ + (z + z′)C(ω, z′)

1 + 2δω z′ + z′2

}
dz′ (B4)

in terms of the function C(ω, z) defined in (10). After splitting C into symmetric and antisymmetric parts as in (12), this
equation simplifies into (13).

APPENDIX C: INCREMENTS OF Cσ

As mentioned in Sec. VI, Eq. (13) imposes a very particular
analytic structure on the function Cσ (z). For starters, knowing
the value of the function for values of z ∈ S1 (correspond-
ing to real quasimomenta) allows to determine the analytic
continuation C 0©

σ (z) of the function to all z ∈ C \ (ζ (S1) ∪
ζ−1(S1)), through direct integration of the right-hand side
in (13).

Continuing the function to C 1©
σ (z) beyond the ζ (S1) branch

cut [in Fig. 2(a), this corresponds to crossing from the second
lowest to the lowest sheet] is possible by deforming the inte-
gration contour, as shown in Fig. 6. Subsequently applying the
residue theorem results in

C
1©

σ (z) = ν−,σ (z)

ν+,σ (z)
C

0©
σ (z) − 2ν−,σ (z)

ζ (z) + σ

ζ (z) − ζ−1(z)

×
{

C 0©
σ (ζ (z)) if |z| < 1

C 1©
σ (ζ (z)) if |z| > 1,

(C1)

where for briefness we introduced

ν±,σ (z) :=
1
z + σ

g−2(δω − �) ± σ
√

δω−σ√
δω+σ

− σ
. (C2)

We note that crossing the same branch cut again in either
direction brings you back to C 0©

σ (z), as the modification to
the integration contour is reverted around the poles. This is
no longer the case [i.e., C 2©

σ (z) �= C 0©
σ (z)] if one subsequently

crosses the other branch cut instead, but unexpectedly both
increments

δCσ (z) = C
1©

σ (z) − C
0©

σ (z) (C3)

and

δ2Cσ (z) = C
0©

σ (z) − C
2©

σ (z) (C4)

become meromorphic functions when multiplied by√
δω + σ/

√
δω − σ .
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FIG. 6. (a) Domain coloring plot of C 0©
σ (z) for the same param-

eters as in Fig. 3. In white, a path for z that crosses the branch cuts
ζ±1(S1) (in black) is suggested. The circled numbers enumerate the
analytic continuations C -1©

σ (z), C 0©
σ (z), C 1©

σ (z), and C 2©
σ (z) that the

path traverses. (b) Corresponding domain coloring plot of Eq. (13)’s
integrand at z = 0.5 − 0.4i. The integration contour (originally S1,
in black) has been adapted to avoid the mobile poles ζ±1(z), whose
trajectory as z follows the white path in (a) is marked with white lines
and black circles.

The proof for δCσ is elaborated [for δ2Cσ it then follows
from (15)]. We start by noticing that, by construction, the only
possible branch cuts of δCσ are ζ (S1) and ζ−1(S1). This is

how the function extends when we cross them:

δCσ = C
1©

σ − C
0©

σ

ζ (S1 )−−−→ C
0©

σ − C
1©

σ = −δCσ

δCσ = C
1©

σ − C
0©

σ

ζ−1(S1 )−−−−→ C
2©

σ − C
-1©

σ .

The last function can also be equated to −δCσ . To do so,
one should write C 2©

σ (z) and C -1©
σ (z) in terms of C 0©

σ (z) and
C 0©

σ (ζ (z)), which is a tedious calculation but shows that in-
deed the equality holds iff

4
ζ (z) + σ

ζ (z) − ζ−1(z)

z + σ

z − z−1

+ (ν−1
+,σ (ζ (z)) − ν−1

−,σ (ζ (z))
)(

ν−1
+,σ (z) − ν−1

−,σ (z)
) = 0,

(C5)

which, in turn, holds because

ν−1
+,σ (z) − ν−1

−,σ (z) = 2σ

σ + z−1

√
δω − σ√
δω + σ

. (C6)

This concludes that δCσ (z)
√

δω + σ/
√

δω − σ is
meromorphic.

In fact, using these formulas and briefly denoting sl(z) :=
sgn log |z| for all z /∈ S1 ∪ {0}, one can rewrite the function as

δCσ (z)
ν+,σ (ζ (z))

ν−,σ (z)ν− sl(z),σ (ζ (z))

= 2σ

σ + z−1

√
δω − σ√
δω + σ

Cσ (z) − 2
ζ (z) + σ

ζ (z) − ζ−1(z)
Cσ (ζ (z))

(C7)

which can be regarded as the way in which Cσ (z) transforms
under the z ↔ ζ (z) symmetry (in the sense specified in Ap-
pendix F). We use this formula to extract the symmetries
of δCσ ,

δCσ

(
1

z

)
= σ z

ν+ sl(z),σ (ζ (z))

ν− sl(z),σ (ζ (z))
δCσ (z)

δCσ (ζ (z)) = sl(z)

√
δω + σ√
δω − σ

ν+ sl(z),σ (ζ (z))

ν−,σ (z)

z + σ

z − σ
δCσ (z).

(C8)

With these symmetries, we build up the projectors

Pinv{ fσ }(z) = 1

2

(
fσ (z) + σ

z

ν− sl(z),σ (ζ (z))

ν+ sl(z),σ (ζ (z))
fσ
(
z−1
))

Pζ { fσ }(z) = 1

2

(
fσ (z) + sl(z)

√
δω − σ√
δω + σ

ν−,σ (z)

ν+ sl(z),σ (ζ (z))

z − σ

z + σ
fσ (ζ (z))

)
(C9)

that take functions of the form meromorphic × √
δω − σ/

√
δω + σ and imbues in them the corresponding symmetry. Pζ ◦ Pinv

spans a linear subspace of functions so limited that only one has the correct asymptotic dependence for δCσ (z → ∞), which can
be found by using (13) to extract

Cσ (z) = σ z−1 g(1 + 2gC̃1,2)

ω − 2�
+ g

1 − 2σ (ω − �) + 2gC̃1,1(ω − 2�) + 2gC̃1,2(1 − σω)

z2(ω − 2�)
+ O(z−3) (C10)
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and combine it with (C7) to obtain

δCσ (z) = 8g3z−3(2gC̃1,1σ − 1) + O(z−4) = 8g3σ z2(2gC̃1,1σ − 1) + O(z3). (C11)

The only function matching the symmetries and asymptotic dependence is listed as δCσ (z) in Table I.

APPENDIX D: THE FUNCTION �

The core idea behind our solution is that since the overall
form of the analytic structure of Cσ (z) (see Fig. 2) is inde-
pendent of the system parameters, we can define a simpler
parameter-free version 	(z) of the function hosting the same
overall structure.

As a starting point, one can tweak Eq. (13) to simplify it
while keeping the essential analytic structure of the solution
unaltered. There are many choices for this; we propose

	(z) = z + 1

z − 1

(
1

4
+
∮

z′ − 1/z′

1 + 2δωz′ + z′2

√
δω′ + 1√
δω′ − 1

	(z′)dz′

2π i

)
,

(D1)

where δω′ := ω + (z′ + z′−1)/2 and the integration takes
place around a positively oriented circle of radius 1− and
center in 0.

Some properties that follow from the equation are the fol-
lowing. (i) Symmetries:

	(z) = −	(1/z)

	(z) = sl(z)(	(ζ (z)) + 1/2) (D2)

(ii) Asymptotic expansion:

	(z) = 1

4

z + 1

z − 1
+ O(|z|−1) (D3)

(iii) 	(−1) = 0 and (z − 1)	(z) ∈ H(C \ (ζ (S1) ∪
ζ−1(S1))). This can be used to regularize the integral
equation of (z − 1)	(z) in the unit circumference. This
allows for a Picard iteration scheme to both prove existence
and uniqueness and to compute the numerical solution of the
equation, albeit not efficiently.

(iv) Analytic extension [see Fig. 2(b)]. It can be achieved
by carefully changing the shape of the integration contour,
completely analogous to the study of the analytic extensions
of Cσ (z) presented in Appendix C.

(v) An algorithm to compute 	 is the following. Due to the
analytic structure of this function, it can be written as

	(z) = −1

2
+ 1 +∑∞

n=1 anzn

4(1 − z)

√
δω − 1

δω + 1
∀|z| <

1

|ζ (±1)| .

(D4)

Applying (D2), this has to be equal to

	ζ (z) = 1 +∑∞
n=1 anζ (z)n

4(1 − ζ (z))

z + 1

z − 1
∀z ∈ C, (D5)

where the convergence is improved to the whole complex
plane thanks to the fact that always |ζ (z)| � 1. Now, one can
show that any function with the generic analytic shape of (D4)
that also has property (D2) satisfies equation (D1). In other
words, enforcing

	(z) = 	ζ (z) ∀|z| < min{|ζ (1)|−1, |ζ (−1)|−1} (D6)

can be used to fit the real coefficients {an}∞n=1 unequivocally,
and subsequently evaluate 	 in any point of the complex plane
through the expression for 	ζ (z) in (D6). Since it is essen-
tially solving a least-square problem, this method is efficient
in practice if one chooses to enforce this along equispaced
points on the circumference S1 excluding the singular z = 1
(this choice makes the branch cut of the an(ω) to be at ω ∈
[−2, 2]). And the accuracy of the algorithm gets compromised
the closer one gets to this branch cut.

(vi) The analytic structure displayed in Fig. 2(b) simplifies
greatly by taking the derivative with respect to z, to the point
that it can be expressed algebraically as

	′(z)

∝ (z − z0)(z − z−1
0 )(z − ζ (z0))(z − ζ−1(z0))

(δω2 − 1)z2(z − 1)2

√
δω − 1√
δω + 1

,

(D7)

where z0 is one of the four symmetric points where
	′(z0) = 0.

−2 0 +2

ΦΦ+

Φ

ΦΦΦΦ−
−1 0 +1

−Φ+++11

Φ

−−ΦΦ−−1

−ΦΦΦΦ++ΦΦ ++111

−ΦΦ++ΦΦ ++++11

Φ+

ΦΦ+ΦΦ ++++2222

FIG. 7. Analytic continuations of 	(ω, z). The central image
is a domain coloring plot of Res{	(ω, z), z = 1} in the complex
ω plane. Around it, we show domain coloring plots (this time in
the complex z plane) of 	(i, z) and 	(±2 + eiπn/3/2, z) for n ∈
{0, 1, 2, 3}, together with the analytic continuations 	±(−i ± 1/4, z)
and 	±(±2 + eiπn/3/2, z) for n ∈ {4, 5}. At values ω = 2 ± eiπ/3/2,
we also indicate how the function analytically continues in z ∈ C.
For simplicity, instead of complex axes we use the ω values 0 and
±2 and the z values of −1 (black dots), 0 (small crosses), and +1
(white dots) as a reference system for the complex coordinates.
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(vii) Reintegrating the expression above means that 	(z)
can be expressed in terms of elliptic integrals [57]. In the Leg-
endre normal form, the incomplete elliptic integral of the first
and second kind we use are presented in Table I together with
the integrated expression for 	(z). Our choice of branch cuts
for these functions matches the branch cuts of their respective
integrands (where we also choose arg

√
z ∈ (−π/2, π/2]).

While integrating, it is useful to notice that z0 ≡ z0(ω) can
be extracted from

ω + z0 + z−1
0

2

= ω

2
− ω + 2

2

√√√√1 − 2ω

ω + 1 + k ·
(

1 − E (k−1 )
K (k−1 )

) , (D8)

whereas taking the opposite sign in the large square root
yields ω + (ζ (z0) + ζ−1(z0))/2 instead. Also one can express
the residue

Res{	(z), z = 1} =
√

ω(2 + ω)k−1

π
K (k−1). (D9)

The second line in the closed formula of 	(z) at Table I is
very particular and, although there is no value of ω or z such
that x(z) = 1, if we enforce this, then the second line becomes
±1 due to Legendre’s relation. In other words, excluding
algebraic functions (see Appendix F), 	(z) is a modification
of Legendre’s relation for incomplete elliptic integrals.

(viii) If we include the dependencies in ω explicitly, then
we have the additional symmetry

	(ω, z) = 	(−ω,−z)

+ sgnRe ω 2ω(z2 + ωz + 1)K (k−1(ω))

π (z2 − 1)
√

k(ω)
√

δω + 1
√

δω − 1
. (D10)

(ix) There is a two-particle continuum at ω ∈ [−2, 2],
which represents a branch cut in the ω plane. We can use the
closed form of 	(ω, z) to analytically continue it beyond the
branch cut, which will be needed to compute the super- and
subradiant states of the system. For that purpose, we introduce
ξ ≡ ξ (ω, z) as

ξ = ζ (z) − ζ (−1)

1 − ζ (−1)ζ (z)

√
x(0+)2 ζ (z) − ζ−1(−1)

ζ (−1) − ζ (z)

×
√

x(0+)−2 ζ−1(z) − ζ (−1)

ζ−1(−1) − ζ−1(z)
, (D11)

where x(0+) denotes the limit of the amplitude x (see Table I)
when z → 0. It can be shown that ξ ∈ {−1, 1} is a sign de-
pendent on ω and z. Consequently, the extension 	+(ω, z) of
	(ω, z) when ω crosses the positive part of the continuum
(0,2) can then be written as

	+(z) = −K (k)
√

k sgnRe ω

2π

(
z−1 − z

1 − ζ (z)
+ z + 1

z − 1
(1 + ω) + 2

z − 1

z + 1
ζ (−1) − z2 − 6z + 1

z2 − 1
ζ−1(z)

)

+ ξ
2k sgnRe ω

π i

(
K (k)E (x−1; k−1) − k−2E (k)F (x−1; k−1) − (1 − k−2)K (k)F (x−1; k−1)

)
. (D12)

It should be pointed out that 	+(ω, z) is a continuation in
the space of functions that still have a z dependence to be
evaluated. To know the analytic extension of the function
evaluated at a particular z0 ∈ C, one additionally has to take
into account all the instances in which a branch cut of 	(z) or
	+(z) crosses the point z0 and correct for them accordingly.
This is needed, e.g., to plot Ã(ω) in Fig. 3(a).

We caution that expression (D12) is only valid for
Re ω > 0 and Im ω < 0 if (0,2) is crossed from above to
below (as illustrated in Fig. 7), or for Re ω > 0 and Im ω > 0
if it is crossed from below. The corresponding continuation
	− for ω crossing (−2, 0) ⊂ C can be computed as

	−(ω, z) = 	+(−ω,−z)

+ sgnRe ω 2ω
√

k(ω)(z2 + ωz + 1)K (k(ω))

π (z2 − 1)
√

δω + 1
√

δω − 1
(D13)

using the symmetry (D10). Interestingly, 	+ and 	− have the
same z ↔ z−1 and z ↔ ζ (z) symmetries as 	 [see (i)], but
they cannot be obtained through the algorithm described in
(v) because their analytic structure is fundamentally different.
They have an additional branch cut joining the previous two
cuts [ζ±1(S1), see Fig. 7]. The appearance of this branch cut
is topological and is the essence underlying the difficulty in
computing superradiant decays in the system at hand.

(x) An additional surprise is the center of the continuum
ω = 0, which is a branch point in the middle of the branch
cut. This again can be appreciated in Fig. 7, where two paths
with different winding around this center lead to very differ-
ent functions, although the paths end at similar frequencies.
Obtaining an asymptotic expansion around ω = 0 is very
difficult, even with computer assistance and despite having a
closed formula for the 	 function and its analytic extensions.
The reason is the intricate ω dependence of the function,
which makes the problem intractable by ordinary methods.
However, we can prove that

sl(z)	(ω, z) = 1

4
+ i

π
log

(
sl(z)

z − 1

z + 1

)
+ i

π

z(z2 + 1)

(z2 − 1)2
ω log ω + 4i + (π − 6i log 2)(z + z−1)

2π (z − z−1)2
ω

+ 4 − (z + z−1) + (z + z−1)2 − 1
4 (z + z−1)3

π i(z − z−1)4
ω2 log ω + O(ω2) (D14)
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by comparison to the logarithmic derivative of (D7) with respect to z, which splits in simple summands. As we can see from the
log ω terms, 	 is responsible for the logarithmic corrections to the decay. Analogously one can find the behavior for ω � −2,

	(ω, z) = 2

π
arctan

(
(1 +

√
2)

√
3 − 2

√
2 − z√

3 + 2
√

2 − z

)
− 1

2
+ z(1 + z)√

3 − 2
√

2 − z
√

3 + 2
√

2 − z

(ω + 2)

2π

+ z(z + 1)
√

3 − 2
√

2 − z
√

3 + 2
√

2 − z

16π (z − 1)4

(
1

2
+ iπ + 4 log 2 − 8z(1 − 4z + z2)

(1 − 6z + z2)2
− log(ω + 2)

)
(ω + 2)2

+ O
(

log(ω + 2)(ω + 2)3
)
. (D15)

Using (D15) together with the symmetry (D10), we find as well the behavior for ω � +2

	(ω, z) = 2z log
(

ω−2
16

)
π (1 − z)

√
z + 2

√
2 + 3

√
z − 2

√
2 + 3

+ 2

π
arctan

(
(
√

2 + 1)

√
z − 2

√
2 + 3√

z + 2
√

2 + 3

)
− 1

2

−
(z+1)2 log ( ω−2

16 )
z2+6z+1 − 4z

(z+1)2√
z + 2

√
2 + 3

√
z − 2

√
2 + 3

z(ω − 2)

2π (z − 1)

+
(

(z4 + 28z3 + 38z2 + 28z + 1) log
(

ω−2
16

)
(z + 2

√
2 + 3)5/2(z − 2

√
2 + 3)5/2

+ 2(z4 + 4z3 − 18z2 + 4z + 1)

(z + 1)4
√

z + 2
√

2 + 3
√

z − 2
√

2 + 3

)
z(ω − 2)2

32π (z − 1)

+ O
(

log(ω + 2)(ω + 2)3). (D16)

APPENDIX E: CONSTRUCTIVE PROOF OF THE CONNECTION BETWEEN � AND Cσ

By design, Cσ (z) and 1
2δ2Cσ (z)	(z) have a similar analytic structure with the same increment every two Riemann sheets

(see Fig. 2). As a result, Cσ (z) − 1
2δ2Cσ (z)	(z) can be thought of as having only two Riemann sheets. The sum of these two

sheets gives rσ (z) := 2Cσ (z) − δ2Cσ (z)(	(z) + 1/2) + δCσ (z) [equivalent to Eq. (16)], which is a meromorphic function by
construction.

The functions generating rσ (z) all obey certain symmetry rules for the inversion z ↔ 1/z and for z ↔ ζ (z), which in terms
of rσ read as

rσ

(
1

z

)
= rσ (z)σ z (E1)

and

rσ (ζ (z)) = −1 + σ/ζ (z)

1 + σ/z
rσ (z) + γσ (z), (E2)

where

γσ (z) = δ2Cσ (z) − 2δCσ (z)

ζ (z) + σ

(
δω − σ

1 + σ/z
+ ζ (z) − ζ−1(z)

2ν−,σ (z)

)
. (E3)

These symmetries can be imposed in any ansatz fσ (z) for rσ (z) through the affine projectors (in the space of meromorphic
functions)

Pinv{ fσ }(z) :=
(

fσ (z) + σ

z
fσ

(
1

z

))
/2

Pζ { fσ }(z) := fσ (z)

2
− 1

2

1 + σ/z

1 + σ/ζ (z)

(
fσ (ζ (z)) − γσ (z)

)
. (E4)

Furthermore, joining the asymptotic expansions for the components of rσ (z), one obtains

rσ (z) = 2σg
1 + 2gC̃1,2

(ω − 2�)z
+ 2g

1 + 2gC̃1,1(ω − 2�) − 2σ (ω − �) + 2gC̃1,2(1 − σω)

(ω − 2�)z2
+ O

(
1

z3

)
. (E5)

This allows expressing rσ (z) as a rational function resulting
of the sum of all of its 12 poles, which are simple and
match those of δ2Cσ (z) (see Table I). However, thanks to

the multiple symmetries of rσ , not all of them need to be
computed. It is sufficient to compute the three roots {zσ i}3

i=1
of the polynomial (z2 + 2�z + 1)(z − σ ) − 4g2z, since the
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remaining ones are given by 1/zσ i, ζ (zσ i) and 1/ζ (zσ i).
Thus one can take fσ (z) to be a sum of three simple poles
located at zσ i and, when assigned with the appropriate
residues, rσ = Pζ {Pinv{ fσ }} (equivalent to the Eq. for rσ in
Table I), because the projectors force the correct asymptotic
behavior and the rest of the poles on the function. The partic-
ular choice of these zσ i is intentional, as they correspond with
poles of δ2Cσ (z) but not of Cσ (z), δCσ (z) or 	(z), which helps
to calculate their residues (leading to the expression for ασ (z)
in Table I).

Comparing the leading order of rσ (z → ∞) as given by
Table I and (E5) we get

gσ
1 + 2gC̃1,2

ω − 2�
= (2gC̃1,1 − σ )

3∑
i=1

ασ (zσ i ), (E6)

which can be interpreted as two linear equations (σ = ±1)
with two unknowns (C̃1,2 and C̃1,1). The solutions are the
expressions for 2gC̃1,1 and 2gC̃1,2 in Table I.

APPENDIX F: A SOFT FORM OF SYMMETRY

In this section, we specify the mathematical context in
which we think of transformation z → ζ (z) as a symmetry.
Along the section, we again treat ω as an implicit constant
and only consider z dependencies. For simplicity, we restrict
the z domain to C \ (S1 ∪ ζ (S1) ∪ ζ−1(S1)). Let us denote by

R =
{

P(z)

Q(z)

∣∣∣∣P, Q ∈ C[z]

}
(F1)

the set of rational complex functions and by

A = R〈1, ζ , sl, sl ζ 〉 (F2)

an algebra (under the usual operations) of functions of the
form

α(z) =
⎧⎨
⎩

r1(z) + r2(z)
√

δω−1√
δω+1

if |z| < 1

r3(z) + r4(z)
√

δω−1√
δω+1

if |z| > 1
, (F3)

where r1, r2, r3, r4 ∈ R. This algebra is closed under the sym-
metry group discussed in Sec. V. We note that the functions
in A need to be defined by parts to accommodate for the
symmetry z → ζ (ζ (z)) = z−1(1 + sl(z))/2 + z(1 − sl(z))/2.

Since functions in A have simple expressions that can
be found a posteriori, we can “set them aside” through an
equivalence relation

f1 ∼ f2 ⇔ ∃α, α−1 ∈ A | f1 − α f2 ∈ A. (F4)

This relation greatly simplifies the problem by, for instance,
equiparating the solution of the secular equation (13) to an
incomplete Legendre’s relation

Cσ (z) ∼ 	(z) ∼ K (k−1)E (x(z); k)

− k2E (k−1)F (x(z); k) − (1 − k2)K (k−1)F (x(z); k)

(F5)

[see Eq. (16) and Table I]. With this, we can use 	 as a
canonical representative for the solution, [	(z)] = [Cσ (z)],
and use symmetries (D2) to write

[Cσ (z)] = [Cσ (ζ (z))]. (F6)
This characterizes z → ζ (z) not as a symmetry of Cσ (z) in the
space of functions, but in the quotient space. Such a condition
is a lot less restrictive on the requirements of invariance that
symmetries should satisfy.
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