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Dynamics of spin-momentum entanglement from superradiant phase transitions
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Exploring operational regimes of many-body cavity QED with multilevel atoms remains an exciting research
frontier for their enhanced storage capabilities of intralevel quantum correlations. In this work, we consider
an experimentally feasible many-body cavity QED model describing a four-level system, where each of those
levels is formed from a combination of different spin and momentum states of ultracold atoms in a cavity.
The resulting model comprises a pair of Dicke Hamiltonians constructed from pseudospin operators, effectively
capturing two intertwined superradiant phase transitions. The phase diagram reveals regions featuring weak
and strong entangled states of spin and momentum atomic degrees of freedom. These states exhibit different
dynamical responses, ranging from slow to fast relaxation, with the added option of persistent entanglement
temporal oscillations. We discuss the role of cavity losses in steering the system’s dynamics into such entangled
states and propose a readout scheme that leverages different light polarizations within the cavity. Our work paves
the way to connect the rich variety of non-equilibrium phase transitions that occur in many-body cavity QED to
the buildup of quantum correlations in systems with multilevel atom descriptions.
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I. INTRODUCTION

The coupling between spin and motional degrees of free-
dom lies at the root of several rich phenomena in quantum
physics, including fine structure splitting of atoms [1] and
the spin Hall effect [2], which, in turn, allow the realization
of topological phases of matter [3,4] and open the possibil-
ity of topological quantum computing [5,6]. Spin-momentum
entanglement resulting from such coupling has increasingly
become relevant in a variety of research areas, ranging from
materials science to photonics and atomic systems [7–9]. In
this work, we propose a protocol for engineering entangle-
ment between the spin and momentum degrees of freedom
of ultracold atoms coupled to an optical cavity. Our approach
exploits a nonequilibrium superradiant phase transition in the
system realized by coupling four atomic modes, which com-
prise two internal (spin) and external (momentum) states of
the atom.

Many-body cavity QED experiments with ultracold atoms
are among the most versatile quantum simulators of driven-
dissipative phases of matter [10]. The combination of
tunable photon-mediated long-range interatomic interactions,
along with strong cooperative effects and control on cavity
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losses, offers a wide range of possibilities, encompassing
nonequilibrium transitions [11–20], dynamical control of cor-
relations [21–26], realization of dark states [27–29], and the
exploration of collective phenomena purely driven by engi-
neered dissipation [30–32]. Oftentimes, the effective atomic
degrees of freedom in state-of-art experiments are a pair of
momentum states or internal levels, optically addressed by
external laser drives inducing cavity-assisted two-photon tran-
sitions [12,33–35]. Recently, a few cavity QED experiments
and theory works have shown how to couple the momentum
and internal spin degrees of freedom of ultracold atoms using
intracavity light, demonstrating novel self-organized phases
[11,36–39].

FIG. 1. (a) Sketch of the cavity QED setup and (b) of the atomic
level scheme. (c) Cartoon of the dynamical phase diagram as a
function of the couplings between spin and momentum degrees of
freedom.
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FIG. 2. (a) Schematics of the experimental setup and (b) cor-
responding level scheme for the model (2). (c) Momentum space
cartoon for spin-flipping Raman process for a transition |0〉 → |3〉;
(d) Snapshots of the real-space BEC density in the |↑〉s manifold at
different times; (e) dynamics in the superradiant phase of the spin
components on even (e) and odd (o) lattice sites plotted on the Bloch
spheres.

In this paper, we generalize such protocols to show that
spin-momentum entanglement can be synthesized, controlled,
and steered in experiments by coupling motional and internal
degrees of freedom. We consider a cavity QED platform, cf.
Fig. 1(a), which is described by a minimal model with two dif-
ferent spin states and two different momentum states, meaning
that each atom can occupy one of these four hybrid spin-
momentum states shown in Fig. 1(b). We demonstrate that
this system exhibits superradiant phase transitions related to
the self-organization of the atoms in the cavity, concomitantly
with the dynamical buildup of spin-momentum entanglement.
By varying the spin-momentum coupling, one can robustly
tune the entanglement up to its maximum possible value.

The superradiant phase transitions within this model ex-
hibit notable distinctions from the conventional phenomenol-
ogy of self-organization in cavity QED [11,12,31–33,40–44].
While the hybrid spin-momentum order parameter in our sys-
tem and the photon number approach stationary values, the
spin and momentum separately can be nonstationary. This
results in a time-dependent profile of the condensate density
and the effective spin magnetization, which is unconventional
for state-of-art cavity QED experiments [36,37]. Such oscil-
lations persist beyond the operational time scales of these
platforms, resulting in long-lived nonstationary dynamical
responses. We show that such features can be continuously
probed using an auxiliary cavity field, which is coupled to the
momentum degree of freedom of atoms. The overall dynam-
ics in such a model are conditioned by the intertwining of
two cavity-mediated processes, controlled by two couplings
between momentum states or hybrid momentum-spin states.
The different dynamical responses of the system, summarized
in Fig. 1(c), are characterized by weak or strong entanglement.

In particular, despite the back-action and intrinsic deco-
herence of the read-out process, proxy of spin-momentum
entanglement dynamics can be noninvasively accessed in an
extended parameter regime [red region in Fig. 1(c)], mak-
ing the system a possible candidate for quantum information
applications [45].

Crucially, in our scheme, cavity losses have the beneficial
role of steering dynamics towards target entangled states,
thereby endowing robustness to the initial condition of the
system. This feature is absent in protocols engineering spin-
momentum entanglement in BECs using solely classical drive
fields [8]. In such proposals, the degree of achievable spin-
momentum entanglement is highly sensitive with respect to
technical fluctuations of different experimental parameters
(e.g., drive powers and frequencies). In contrast, protocols
relying on cavity losses induce contractive dynamics which
are insensitive to such issues and initial state preparation,
therefore offering a more robust and reliable route for spin-
momentum entanglement generation.

Outline

The paper is organized as follows. In Sec. II, we present
an experimentally motivated effective model that governs the
dynamics of the cavity QED setup in Fig. 1, where the spin
and momentum of atoms are coupled to the cavity field.
Section III is devoted to the superradiant phase transition and
subsequent generation of entanglement between spin and mo-
mentum degrees of freedom. In Sec. IV, we extend the model
by introducing an auxiliary cavity mode and show how it en-
ables continuous read-out of the system dynamics. In Sec. V,
we analyze the dynamical responses and read-out strategies.
In Sec. VI, we revisit entanglement generation in the presence
of the auxiliary cavity mode and discuss prospects for its non-
invasive read-out. In the concluding Sec. VII, we summarize
our findings and discuss follow-up directions.

II. MODEL

We consider a cavity QED configuration in which we
can address both the spin and momentum states of ultra-
cold atoms, enabling measurement and dynamic control (see
also Ref. [36] for a related setup). Specifically, we consider
Bose-Einstein condensate (BEC) of 87Rb atoms in the F = 1
hyperfine ground state manifold confined in a high-finesse
optical cavity. The atoms are coupled to a z-polarized cav-
ity mode az with resonance frequency ωc and decay rate κ ,
extending along x direction, as illustrated in Fig. 2(a). A bias
magnetic field �B along the z direction defines the quantiza-
tion axis and induces Zeeman splitting between the sublevels
of the F = 1 hyperfine manifold. We focus on two inter-
nal atomic sublevels |mF = 1〉 = |↓〉s and |mF = 0〉 = |↑〉s
and describe the condensate with the spinor wave function
� = (ψ↑, ψ↓)T .

The condensate is illuminated with transverse standing-
wave laser fields far-detuned from the electronic transitions
of the atoms. These detunings allow us to effectively elimi-
nate the contribution of excited electronic states and to focus
on the near-resonant cavity-assisted two-photon transitions
between an atomic momentum state |0〉m = |kx = 0, kz = 0〉

033193-2



DYNAMICS OF SPIN-MOMENTUM ENTANGLEMENT FROM … PHYSICAL REVIEW RESEARCH 6, 033193 (2024)

and an excited one, which reads as a coherent superposition
|1〉m = ∑

s,s′=± |kx = sk, kz = s′k〉/2. Here, h̄k = 2π h̄/λ in-
dicates the recoil momentum, with λ/2 = 784.7/2 nm repre-
senting the period of the standing-wave potential along the
drive direction.

We introduce the following definitions of relevant combi-
nations of momentum and spin states [cf. Fig. 2(b)]

|0〉 = |0〉m ⊗ |↓〉s,

|1〉 = |1〉m ⊗ |↓〉s,
(1)|2〉 = |0〉m ⊗ |↑〉s,

|3〉 = |1〉m ⊗ |↑〉s,

limiting our consideration to a four-level model of the sys-
tem, which will be further justified in the following. In this
notation, even states |0〉 and |2〉 are momentum ground states
that correspond to the homogeneous condensate density in
real space, while odd states |1〉 and |3〉 are excited momentum
states and correspond to a modulation of the atomic den-
sity in real space: |1〉m ∝ cos kx cos kz (see also Ref. [12]).
We also introduce boson annihilation and creation operators
c0,...,3, c†

0,...,3, [ci, c†
j ] = δi, j, which describe the annihilation

and creation of a particle in these four state manifold of
Eqs. (1).

We consider Raman processes that simultaneously couple
internal (spin) and external (momentum) atomic degrees of
freedom [36,37,46]. These processes are mediated by the in-
teraction of the cavity mode az and two classical driving fields
with coupling strength ηb = ηr = η and frequencies ωb, ωr,

with 2ω̄ = ωb + ωr , δ = ωb − ωr . In this context, the laser
at frequency ωb facilitates the transition between states |0〉
and |3〉, from the ground momentum state |0〉m to the excited
momentum state |1〉m, accompanied by a spin flip from |↓〉s

to |↑〉s and vise versa. Conversely, the laser at frequency
ωr induces a similar transition, |2〉 ↔ |1〉, accompanied by
a spin flip from |↑〉s to |↓〉s, cf. Figs. 2(b) and 2(c). These
two cavity-assisted Raman processes mediate an interaction of
the form η(az + a†

z ) cos kx cos kz(F+ + F−), where the spin
operators F± couple neighboring spin levels [cf. momentum
cartoon in Fig. 2(c) and Appendix A for the model details].
After integrating over the spatial extent of the condensate, the
Hamiltonian of the effective model reads

H = ωza
†
z az + (ω0 − ωs)Sz

12 + (ω0 + ωs)Sz
03

+ 2η(az + a†
z )
(
Sx

12 + Sx
03

)
, (2)

where ωz is the cavity detuning (cf. Appendix A), ω0 is the
double recoil energy ωrec = k2/(2M ), which atoms acquire
in the two-photon process, and ωs is the effective splitting
between the two spin manifolds. We set h̄ = 1 to keep the
notation compact.

The cavity boson field az satisfies the commutation re-
lations [az, az] = 0, [az, a†

z ] = 1. The collective pseudospin
operators S are built as projectors between the macroscop-
ically occupied spin-momentum levels S−

i j = |i〉〈 j| = c†
i c j ,

S+
i j = (S−

i j )†, Sz
i j = (c†

j c j − c†
i ci )/2, Sx

i j = (S−
i j + S+

i j )/2with
(i, j) ∈ {(0, 3), (1, 2)} for i = 0, . . . , 3 < j. Here, we al-
ready rescaled spin and photon operators via S → S/N,

az → az/
√

N (and also ci → ci/
√

N) as it is convenient for

collective spin models [44,47], where N is a number of
atoms in the condensate. Similarly, one can introduce other
pseudospin operators T , that are built from different spin
states of the same momentum: T −

i j = c†
i c j, . . ., where (i, j) ∈

{(0, 2), (1, 3)}, or when (i, j) ∈ {(0, 1), (2, 3)} pseudospin
operators J−

i j = c†
i c j correspond to transitions between differ-

ent momentum states of the same internal spin.
The dynamics of the system are described by the Lindblad

master equation for the density matrix ρ

d

dt
ρ = −i[H, ρ] + κD(ρ),

(3)
D(ρ) = 2azρa†

z − {a†
z az, ρ},

where cavity losses account for the finite lifetime ∝ 1/κ of
the cavity photon az.

Our proposal is inspired by the experiments reported in
Refs. [11,36] that typically involve a substantial number
of atoms, around N ≈ 104–105, and deviations from mean-
field behavior only become pronounced at extremely long
timescales. The coupling between photons and atoms is col-
lective [cf. Eq. (2)], and results in a suppression of light-matter
correlations by a factor of 1/N . The dynamics are thus well
captured by mean-field equations of motion, which we report
in Appendix B for completeness. However, correlations be-
tween the spin and momentum degrees of freedom within the
condensate play a significant role in entanglement dynamics,
as we show in detail in the following section.

The dynamics in Eq. (3) possess a Z2 symmetry char-
acteristic of Dicke models [33,36,37,48,49]: it is invariant
under the transformation (az, Sx ) ↔ (−az,−Sx ), where Sx =
Sx

03 + Sx
12 [cf. Eq. (2)]. When this symmetry is spontaneously

broken, the system undergoes a phase transition. In the ther-
modynamic limit, the transition can shift the system from the
trivial normal state with the empty cavity mode nz = 〈a†

z az〉 =
|〈az〉|2 = 0 and all spins polarized along the z direction to the
superradiant (SR) phase with the nonzero occupation of the
cavity mode and finite x component of the spin, namely nz �= 0
and 〈Sx〉 �= 0 (cf. Appendix D or Ref. [44] for more details).
Throughout this paper, we employ 〈·〉 to denote expectation
values of observables.

When ωs = 0, the critical coupling at which the tran-
sition to the SR phase takes place read ηc

ωs=0 = [ω0(ω2
z +

κ2)/(4ωz )]1/2 [48,50], while for ωs �= 0 case, the critical
coupling becomes sensitive to the initial conditions. This sen-
sitivity is rooted in the different effective level splitting for
pseudospins S03 and S12, ω0 ± ωs. The specific distribution
of particles between the two pseudospins, S03 and S12, gives
rise to distinct effective level splittings between excited and
ground momentum states and thus different critical couplings.
A similar dependence on the initial state also emerges when
there is disorder in the coupling constants, as discussed in
Refs. [51,52].

To illustrate this dependence, consider initialization of
the system in a mixture of the atoms in the ground mo-
mentum state, |kx, kz〉 = |0〉m, with two different magnetic
numbers; namely, we prepare N0 = N〈c†

0c0〉 = μN particles
in level |0〉 and N2 = N〈c†

2c2〉 = (1 − μ)N particles in level
|2〉, where μ ∈ [0, 1]. This results in the critical coupling (see
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Appendix D)

2ηc =

⎧⎪⎨
⎪⎩
√

(ω2
0−ω2

s )(ω2
z +κ2 )/ωz

(ωs+ω0 )−2μωs
, ωs < ω0,√

(ω2
s −ω2

0 )(ω2
z +κ2 )/ωz

(ωs+ω0 )−2μω0
, ωs > ω0.

(4)

If the system is prepared in the spin-polarized state, the ex-
pression for the critical coupling simplifies to 2ηc = [(ω0 ±
ωs)(ω2

z + κ2)/ωz]1/2 for μ = 0, 1, coinciding with the critical
coupling in Ref. [53].

In order to study, the onset of the SR phase on a micro-
scopic level, we evaluate the condensate |ψ↑,↓|2 and the spin
�†σ i�/2 densities. Here, we use spin-1/2 Pauli matrices
σ i instead of spin operators F of the original problem to
highlight the two-level internal spin structure of the effec-
tive model. The spinor � = (ψ↑, ψ↓)T has components ψ↓ =
〈c0〉 + 〈c1〉 cos kx cos kz, and ψ↑ = 〈c2〉 + 〈c3〉 cos kx cos kz,
cf. Appendix A.

When μ ∈ (0, 1), both spin and condensate density are
time dependent. We show a few snapshots of the condensate
density at different times in Fig. 2(d) along with the spin
for even and odd sites [Fig. 2(e); spin components are eval-
uated in the center of lattice cells of the size λ/2 × λ/2].
We explain such time-dependence from the fact that the
correct order parameter that captures transition to the super-
radiant phase is the spin density integrated over the space,∫

dr�†σ x� cos kx cos kz (see derivation of the Hamiltonian
in Appendix A). On the other hand, the x component of
spatial spin profile (spin density) contains a time-independent
contribution ∝ Re(〈c†

0c3〉 + 〈c†
2c1〉) cos kx cos kz ∝ (〈Sx

03〉 +
〈Sx

12〉) cos kx cos kz, which exactly reflects spontaneous break-
ing of the Z2 symmetry, and a time-dependent contribution
of the form ∝ Re(〈c†

2c0〉 + 〈c†
3c1〉 cos2 kx cos2 kz) ∝ (〈T x

02〉 +
〈T13〉x cos2 kx cos2 kz). Here, both 〈T x(t )〉 ∝ cos(�t ) [cf. ex-
pression for � in Appendix D] and are zero only if μ = 0 or
μ = 1 (this particular case has been studied in Refs. [36,37]).
Such precession of 〈T 〉 originates from the fact that pseu-
dospin species S, T and J are built as bilinears of the
same boson operators c0, . . . , c3. Similarly, the total den-
sity |ψ↓|2 + |ψ↑|2 contains time-dependent contribution of
the form (〈c†

0c1〉 + 〈c†
2c3〉 + 〈c†

1c0〉 + 〈c†
3c2〉) cos kx cos kz ∝

(〈Jx
01〉 + 〈Jx

23〉) cos kx cos kz which vanishes only if μ = 0, 1.

Otherwise, the spin and density distribution along the lattice
are time-dependent. In the following section, we show the
impact of such time dependence on the dynamics of entan-
glement between spin and momentum degrees of freedom.

Following experiments in Refs. [11,36], we maintain the
key parameters ω0/(2π ) ≈ 7.4 kHz and κ/(2π ) = 1.25 MHz
fixed for all simulations. The remaining detunings and cou-
pling strengths are tunable, allowing for the exploration of a
broad spectrum of dynamical regimes.

III. SPIN-MOMENTUM ENTANGLEMENT
AND SUPERRADIANT DYNAMICS

Although correlations among different atoms are neg-
ligible, our platform offers a route to engineer robust
entanglement between spin and momentum degrees of free-
dom within the bosonic condensate trapped in the cavity. For
instance, assume all atoms are initially prepared in the state

|0〉 = |0〉m ⊗ |↓〉s. Through the interaction with the cavity
mode az, the atoms are coupled to the state |3〉 = |1〉m ⊗ |↑〉s

as 2η(az + a†
z )Sx

03|0〉 = η(az + a†
z )|3〉. Thus, in the SR phase

with the nonzero cavity field (〈az〉 �= 0), the cavity-mediated
interaction gives rise to a nonseparable spin-momentum state.
The corresponding state of each atom reads

|ψ〉 = 〈c0〉|0〉m ⊗ |↓〉s + 〈c3〉|1〉m ⊗ |↑〉s, (5)

with 〈c0〉 �= 0 and 〈c3〉 �= 0, and |ψ〉 is a nonseparable entan-
gled state of spin and momentum. Our results will revolve
around the dynamical manipulation of this form of entangle-
ment.

In order to quantify spin-momentum entanglement, we use
the von Neumann entropy

SvN = −Tr(ρ̃ log2 ρ̃ ) (6)

with ρ̃ the reduced density matrix after tracing out spin or
momentum states, cf. Appendix E. When the system is in a
product state of spin and momentum, the entanglement van-
ishes and SvN = 0. With the definition in Eq. (6), a maximally
entangled state has SvN = 1. We also compute negativity [54]
and concurrence [55,56], which are more reliable witnesses of
entanglement in open systems [57]. However, they show the
same qualitative behavior as SvN (cf. Appendix E), and thus
we restrict our analysis to the von Neumann entropy for its
simplicity.

By adjusting coupling η and the initial state of atoms, we
compute a dynamical phase diagram, which captures maxi-
mal SvN reached during evolution, see Fig. 3. The system is
initially prepared in the normal state with N0 = μN atoms in
the state |0〉, after which we rapidly increase the coupling η

to a specified value. The equations of motion describing this
process can be found in Appendices B and C. Note that the
collective description of the model, adapted in this work, is
valid only when the system is prepared in the permutation in-
variant state; otherwise, dynamics become more complicated
as discussed in Refs. [58–61]. Below, we analyze the entan-
glement properties for both the degenerate case (ωs = 0) and
the nondegenerate case (ωs �= 0), showcasing the potential for
achieving either a stationary or a time oscillating amount of
entanglement, respectively.

1. Degenerate ωs = 0 case

The amount of SvN reached during dynamics in the de-
generate case is shown in Fig. 3(a). Depending on the initial
configuration, the maximum amount of entanglement in the
system can vary from max(SvN) = 0 to max(SvN) = 1. Specif-
ically, when μ = 0.5, the momentum configuration of each
spin component reads exactly the same, and the state becomes
separable. Conversely, when μ = 0 or 1, one can reach a max-
imally entangled state; the dependence of the entanglement in
the system as a function of μ is shown with blue lines
in Fig. 3(c). On the other hand, the amount of entanglement
in the SR phase depends on the coupling η, [cf. dependence
of the entanglement entropy as a function of coupling for
μ = 0 in panel (d), blue lines]. Here, entanglement increases
with the coupling which can be qualitatively understood as
follows. When η ≈ ηc, almost all atoms occupy the ground
momentum state and |ψ〉 ∝ |2〉, which is separable in terms

033193-4



DYNAMICS OF SPIN-MOMENTUM ENTANGLEMENT FROM … PHYSICAL REVIEW RESEARCH 6, 033193 (2024)

FIG. 3. [(a) and (b)] Maximum of spin-momentum entanglement SvN as a function of η/ηc
ωs=0 and μ. Entanglement is built up as we enter

the superradiant phase. Here (a) ωs = 0 and (b) ωs = ω0/4. (c) Maximal (solid lines) and time-averaged (dashed lines) entanglement entropy
as a function of μ for different values of ωs and η/ηc

ωs=0 = 1.5. (d) Maximal (solid lines) and time-averaged (dashed lines) entanglement
entropy as a function of photon-matter coupling η for μ = 0. Different colors indicate different ωs.

of spin and momentum. However, as we increase coupling,
the population of the excited momentum level |1〉 increases
and the spin-momentum state of the system becomes non-
separable, approaching a maximally entangled state deep in
the SR phase. Importantly, by solving the dynamics of the
system without cutting off the higher momentum state, we
check that for large couplings, most of the atoms occupy
momentum states |0〉m, |1〉m. The states |0, 2k〉 and |2k, 0〉
are significantly less populated during the dynamics, and we
can neglect them. The corresponding equations of motion are
given in Appendix B.

2. Nondegenerate ωs �= 0 case

When ωs �= 0, the dynamical behavior of the entanglement
entropy changes compared to the degenerate case [see
Fig. 3(b)]. First, the critical coupling depends on μ, cf.
Eq. (4). Second, when μ = 0.5, entanglement decreases
but does not disappear completely [red lines in panel
(c)]. Here, one can notice the difference between the
maximal value of the entanglement (dashed line) and the
period-averaged value (solid line), indicating an oscillatory
behavior in time. The exceptional case are μ = 0, 1 where
the system evolves towards a stationary SR state. From the
standpoint of spin-momentum correlations, these two states
has maximum (nonoscillatory) entanglement when compared
with occurrences at other values of μ.

Figure 4 depicts the dynamics of the entanglement entropy
in the nondegenerate case after the quench during the period
(a), along with the (b) occupation of the cavity field nz and
[(c) and (d)] spin (arrows) and density distributions of atoms.
In panels (c) and (d) with arrows, we plot the projection of
this spin density on the xz plane, evaluated in the center of
each lattice cell of size λ/2 × λ/2, which is formed by the
interference of the laser and cavity fields.

In Fig. 4, maximally entangled configurations correspond
to the case when the checkerboard lattice is formed by the spin
degree of freedom (arrows), while the condensate density is
periodically modulated with the period λ/2. On the contrary,
in the configuration with vanishing entanglement, the sign of
the spin projection �σ x� is fixed for all lattice cells, and the
condensate density modulation occurs with a period λ. Such
dynamics persist in time without any sign of relaxation (see
Appendices B and D for more details).

Such dynamical behavior emerges from the time-
dependent components of spin and condensate densities, if
the system is initialized in the mixed internal spin state.
While the total atom number

∫
dr|�|2 = N , and transverse

magnetization
∫

dr�†σ x�/N ∝ 〈Sx〉, are conserved quanti-
ties in the steady state, their local distributions can exhibit
complicated time dependence, driven by the precession of
pseudospins 〈J〉 and 〈T 〉: when 〈Jx〉 and 〈T x〉 reach zero, the
local distribution of spin and condensate densities are identi-
cal to the one obtained starting from the polarized spin state,
and the entanglement entropy becomes maximal. When 〈Jx〉
and 〈T x〉 deviate from zero, the distribution of atoms among
space and spin levels changes, decreasing the entanglement
entropy. Thus the time dependence of spin and momentum
states results in oscillations of the entanglement entropy.
This is one of the striking features of our quench protocol:
we can steer entanglement dynamics toward an oscillatory
regime that persists up to the operational timescales of the
experiment.

Notice that entanglement is generated during dynamics
starting from product spin-momentum states, and thus, the
cavity photon has an active role in building spin-momentum
correlations via light-induced interactions. The nonzero cavity
field 〈az〉 in the SR phase mediates an effective interaction
among atoms, which is responsible for entangling them in
a nonseparable spin-momentum state. At the same time, the
role of cavity losses is essential. They steer dynamics to-
wards the fixed point of the Lindbladian, with the remarkable
consequence that all entanglement properties derived in the
presence of photon losses are robust if compared with what
would be achieved with a coherent drive [8,62,63]. For in-
stance, by replacing the cavity field with a time-dependent
drive in H [Eq. (2)], one could also entangle spin and momen-
tum degrees of freedom of the condensate’s atoms. However,
the amount of final entanglement produced would depend on
details of the driving protocol, such as its duration, frequency
decomposition, and other specifics. More importantly, such
entanglement would be highly sensitive to noise and imper-
fections in the drive realization [64–66]. In contrast, cavity
losses induce relaxation of atomic entanglement towards a
steady state that remains resilient even for moderate imper-
fections in the initial state preparation or in the parameters set
to drive dynamics into superradiance. In other words, there
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FIG. 4. (a) Dynamics of entanglement, (b) occupation of the cavity mode az, nz = 〈a†
z az〉, density of the (c) upper |ψ↑|2 and (d) lower |ψ↓|2

spinor components. Black arrows in panels (c)-(d) indicate local spin texture �†σ i�/2, evaluated in the centers of each cell and projected
onto the xz plane. Dashed lines indicate time moments when the entropy takes extremum values and is added to guide the eye. Entropy is
maximized when the state |ψ〉 is a nonseparable combination of two spin-momentum states, and SR manifests as a spin checkerboard lattice,
i.e., projection of spin onto x axis takes opposite signs on even and odd lattice cells. When entanglement vanishes, both spinor components have
similar density profiles and the sign of projection of the spin magnetization onto the x axis. Dynamics are simulated for μ = 0.5, η = 1.6ηc,

ωs = ω0/4, ωz = κ.

exists a broad basin of attraction towards prescribed values of
entanglement given the system’s initial conditions parameters.

IV. TWO CAVITY FIELDS SETUP AND PROBES
OF MOMENTUM STATES

In the previous section, we have shown that cavity dissipa-
tion can be utilized to prepare the system in a steady state with
desired entanglement properties. In the following sections, we
show how, by using the auxiliary polarization mode ay of the
cavity field, one can get access to the collective momentum
state of the system in a nondestructive fashion.

Inspired by the experimental demonstrations in
Refs. [11,12], we consider a driving scheme that enables
effective coupling of ground and excited atomic momentum
states. We consider a cavity-assisted Bragg process involving
the transverse driving field with amplitude ηs and frequency
ω̄ and the cavity mode ay with detuning ωy, decay rate κ ,
and linear polarization along y [see Figs. 5(a) and 5(b)].
This process is reflected in the atom-cavity interaction
term, ∝ ηs(ay + a†

y ) cos kx cos kz (cf. Appendix A). In
this two-photon process, atoms initialized in the ground
momentum state |0〉m can be excited to the momentum state
|1〉m, while the internal spin state (|↓〉s or |↑〉s) remains
unchanged [cf. Fig. 5(c)]. The schematics of this process are
encoded in the Dicke Hamiltonian (see Appendix A)

Hs = ωya†
yay + ω0

(
Jz

01 + Jz
23

) + 2ηs(ay + a†
y )
(
Jx

01 + Jx
23

)
.

(7)

Depending on the coupling ηs, the system undergoes a
phase transition associated with the spontaneous breaking
of the Z2 symmetry of the Hamiltonian Hs, such that the

Hamiltonian is invariant under the transformation (ay, Jx ) ↔
(−ay,−Jx ). When the coupling is below the critical value
ηs < ηc

s = [(ω2
y + κ2)ω2

0/(4ωy)]1/2, the system is in the nor-
mal phase where only ground momentum states are occupied,
and, respectively, 〈Jz

01〉 + 〈Jz
23〉 = −1/2, 〈Jx

01〉 = 〈Jx
23〉 = 0,

and the cavity is empty, ny = 〈a†
yay〉 = |〈ay〉|2 = 0 (see Ap-

pendix D for more details). In this phase, the condensate
is homogeneously distributed within the trap without a
checkerboardlike density modulation. When ηs > ηc

s , the sys-
tem enters a Z2 symmetry-broken superradiant phase with
〈Jx〉 �= 0 and ny �= 0.

On a microscopic level, in the SR phase, the standing-
wave driving field and the cavity field form an interference
lattice potential V ∝ cos kx cos kz, and the condensate density
is modulated, forming the checkerboard lattice with the period
λ = 2π/k, see Fig. 5(d). The density modulation originates
from the condensate wave function in each spinor compo-
nent. At the same time, as it is shown in Fig. 5(e), the
internal spin �†σ i�/2 also precesses according to the model
(7) with the amplitude ∝ √

μ(1 − μ) and frequency ∝ 2ωs

(see Appendix D).
The interaction term in Eq. (7) couples different atomic

momentum states within the same spin manifold and does
not generate entanglement between spin and momentum. Pre-
cisely, in the SR phase, the momentum configuration reads
exactly the same for each spin manifold |↑〉s and |↓〉s, and the
state is separable. However, as we show below, competition
between H and Hs results in a rich manifold of dynamical
responses, which can be probed in a nondestructive way by
analyzing the light that leaks out of the cavity [67]. As we
report further in the text, by tuning η and ηs, it is possible
to monitor the spin-momentum entanglement generated by η
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FIG. 5. (a) Schematics of the experimental setup and (b) cor-
responding level scheme for the model (7). (c) Momentum space
cartoon for the spin-preserving Bragg process; (d) steady-state den-
sity of the condensate in the SR phase; and (e) internal spin
precession described by the Hamiltonian Hs. Here, spontaneous sym-
metry breaking in Hs results in a density checkerboard modulation.

in a noninvasive manner. This means that such monitoring
can be achieved without substantially altering the underlying
dynamics of entanglement entropy.

Intertwined spin and momentum dynamics

The Hamiltonian describing the interaction of the two
cavity modes with different polarizations and four spin-
momentum levels reads

Htot = H + Hs − ω0
(
Jz

01 + Jz
23

)
, (8)

where the term Hs [Eq. (7)] describes transitions in the mo-
mentum degrees of freedom, while H [Eq. (2)] describes
transitions simultaneously in momentum and spin degrees of
freedom. Here, we subtract the ω0Jz term since it is already
included in both H and Hs, see derivation in Appendix A.
The overall dynamics of this open system are governed by
the Lindblad master equation

d

dt
ρ = −i[Htot, ρ] + κD(ρ),

D(ρ) = 2ayρa†
y − {a†

yay, ρ} + 2azρa†
z − {a†

z az, ρ} (9)

where we have also included a finite lifetime ∝ 1/κ for the
cavity photons.

The key feature determining dynamics in this model is
that the pseudospins J and S are built as bilinears of bosonic
operators of the same Hilbert space and, therefore, in general,
do not commute with each other. One can define the matrix

i j = c+
i c j =

⎛
⎜⎜⎜⎝

00 J−
01 T −

02 S−
03

J+
01 11 S−

12 T −
13

T +
02 S+

12 22 J−
23

S+
03 T +

13 J+
23 33

⎞
⎟⎟⎟⎠ (10)

which contains all the possible spin raising and lowering
operators coupling the four levels of our scheme. In i j

the diagonal elements account for the occupation of the dif-
ferent atomic levels; the pseudospins J describe transitions
between different momentum states within the same spin
state; the pseudospins S describe transitions between different
momentum states within neighboring spin levels, and finally,
the pseudospins T describe transition between different spin
levels but with same momentum quantum number. These op-
erators obey a SU(4) algebra with the commutation relations

[nm, kl ] = nlδm,k − kmδn,l . (11)

The noncommutativity of different pseudospin species (and
thus also [Hs, H] �= 0) leads to rich dynamics [60,61]. In
particular, symmetry breaking in the subsystem governed by
H can induce explicit symmetry breaking in the Hamiltonian
Hs, and vice versa, see Appendix F. For instance, the super-
radiant phase of Hamiltonian H [Eq. (2)] corresponds to the
spontaneous breaking of the Z2 symmetry of the system, such
that two alternating nonzero solutions appear with (az, Sx ) ↔
(−az,−Sx ). In terms of the underlying bosonic operators, the
symmetry implies

cn → cne−iφn , az → aze
iπ . (12)

The requirement Sx → −Sx sets two constraints for four
phases of the atomic fields, namely (cf. also Appendix F)

φ0 − φ3 = π ± 2πn, φ2 − φ1 = π ± 2πm. (13)

As a result, if the coupling ηs is nonvanishing, the symme-
try of the interacting term in the Hamiltonian Hs will be
explicitly broken by the emergent phase ±(φ1 − φ3), 2Jx →
−(J−

01ei(φ3−φ1 ) + J−
23e−i(φ3−φ1 ) + H.c.), which can not be com-

pensated by the phase of ay. This explicit symmetry breaking
manifests in the onset of long-lived nonstationary dynamical
responses, even though the Hamiltonian possesses a Z2 sym-
metry, and thus, it would be in general expected to relax into
a time-independent steady state [68]. On the contrary, in the
normal state, the emergent phase φ1 − φ3 can be immediately
set to 2πn (both excited momentum states are unpopulated
and 〈c1〉 = 〈c3〉 = 0) and the spontaneous symmetry break-
ing does not bring any observable effect to the dynamics.
Finally, spontaneous symmetry breaking in Hs induces ex-
plicit symmetry breaking in H. For a detailed discussion, refer
to Appendix F.

We want to emphasize that considering a four-level model
is essential for obtaining the above-mentioned nonstationary
phases. For instance, omitting the atomic level |0〉 in Htot to
get an effective three-level description relaxes the constraints
of Eq. (13) and prevents dynamics arising from explicit
symmetry breaking (see Appendix H for a comprehensive
discussion).

V. PROBING DYNAMICS WITH THE TWO
CAVITY FIELDS

We now discuss the different dynamical regimes arising
from the interplay of Hs and H . We show how the auxiliary
cavity field dynamics are directly linked with spin precession
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FIG. 6. (a) Dynamical phase diagram with three possible self-organized phases in blue, yellow, and orange. Different phases are distin-
guished from the dynamics of the two cavity fields 〈ay〉 and 〈az〉. Gray line separates parameters for which the explicitly broken symmetry
restores during finite (above the line) or infinite (below the line) time. (b) Time evolution of the occupation number for the two cavity modes,
for parameters marked with a star in (a). (c) Zoom on the dynamics of the photon number and (d) phase at the beginning, middle, and end of
time evolution in panel (b). Time is given in seconds, see main text. Here we fix ωy = ωz = 5κ, ωs = ω0/4, μ = 0.75.

and entanglement entropy oscillations, facilitating continuous
monitoring of the system’s dynamics.

A. Dynamical phase diagram

By tuning the two couplings, η (spin-momentum) and
ηs (momentum) below and above criticality, we generate
the complete diagram of dynamical responses, reported in
Fig. 6(a). We initialize the system in the normal state [69]
and then fast ramp it at certain values of the couplings (cf.
Appendix C).

As order parameters, we consider the mean field expec-
tation values of two cavity fields, 〈ay〉 and 〈az〉. The choice
is convenient for two reasons. Firstly, typical experiments
operate in a regime where cavity detunings, ωy,z, and decay
rates, κ , are a few orders of magnitude larger than atomic
energy scales [10–12,36]. Consequently, one can adiabati-
cally eliminate the cavity modes since on timescales ∝ 1/κ

they approach the steady state values 〈ay〉 ≈ −2ηs(〈Jx
01〉 +

〈Jx
23〉)/(ωy − iκ ), 〈az〉 ≈ −2η(〈Sx

03〉 + 〈Sx
12〉)/(ωz − iκ ) [70].

Thus the cavity fields 〈ay〉 and 〈az〉 offer direct information
about momentum 〈Jx〉 and spin-momentum 〈Sx〉 coherences
in the system. Notice that the naïve elimination of the cavity
field at the level of the generator of dynamics would result in a
lack of relaxation, which is an artifact (in the Dicke model, the
decay appears at the higher order of perturbation theory; see
Refs. [36,71,72] for a comprehensive discussion). Indeed, in
order to extract the dynamical responses in Fig. 6, we adopt a
Redfield master equation approach [70,71]; the corresponding
equations of motion are reported in Appendices B and C.

The second reason to use cavity fields as order parameters
is their experimental accessibility. Using heterodyne detec-
tion [67], which gives access to the magnitude and phase of
the cavity fields, it is possible to conduct continuous nonde-
structive measurements of the system. In contrast, imaging
the condensate’s spin and density distribution constitutes a
destructive measurement, requiring numerous experiment rep-
etitions to reconstruct dynamics.

The system exhibits a variety of self-organization transi-
tions, distinguishable by the dynamics of the cavity fields 〈ay〉
and 〈az〉. Firstly, when both couplings are smaller than the
critical ones [white region in Fig. 6(a)], the system remains
in the normal state with zero occupation of the cavity fields.
In terms of atomic degrees of freedom, the internal atomic
pseudospin precesses with the frequency 2ωs and amplitude
given by

√
1/4 − 〈T z〉2 = √

μ(1 − μ).
By increasing η above the critical value and keeping

ηs < ηc
s , the system undergoes a phase transition to the SR

phase, associated with breaking of the Z2 symmetry of H [cf.
Eq. (2)]. The occupation of the cavity mode 〈az〉, together
with the pseudospin 〈Sx〉 become nonzero [see red region in
Fig. 6(a)]. On the other hand, according to the transforma-
tion (12), this spontaneous symmetry breaking also induces
explicit symmetry breaking in Hs [Eq. (7)], namely, the inter-
action term gains a phase ±(φ1 − φ3). As a consequence, the
pseudospin 〈Jx〉 starts precessing with a zero time average,
resulting in periodic development of 〈ay〉 ∝ 〈Jx〉. In this way,
subsystem (7) experiences superradiance from the interaction
with the subsystem (2); otherwise, since ηs < ηc

s , the pseu-
dospin 〈Jx〉 together with the cavity field 〈ay〉 remain in the
normal state.

In the experiment, this dynamical phase can be discerned
by measuring both the photon number and phase of the two
cavity fields, as illustrated in Figs. 6(b)–6(d). Following the
fast ramp at t = 0, the observable nz = 〈a†

z az〉 approaches
a nonzero value. Simultaneously, the photon number of the
second mode, denoted as ny = 〈a†

yay〉, undergoes oscillations,
transitioning from zero to a finite value. At each instance
when ny returns to zero, the phase φy = arg(〈ay〉) experiences
a discrete shift of π , signifying that 〈ay〉 undergoes a sign
reversal, as shown in Figs. 6(c) and 6(d). Note that depending
on parameters, such a regime with the zero-averaged 〈ay〉 and
periodic jumps of φy can take finite time, which we denote
T in Fig. 6(b). This time is linked to the propensity of the
system to restore explicitly broken symmetry and, as we show
in the following section, the finiteness of T can be related to
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FIG. 7. (a) Dynamics of the entanglement entropy, (b) occupation of the cavity modes, (c) phases of the cavity modes, and (d) real space
density in the red region in the phase diagram. The black line in panel (a) corresponds to the ηs = 0 case, while red and blue lines correspond to
the dynamics with nonzero ηs � ηc

s . From oscillations of the cavity field phase φy, one can recover the structure of the real-space checkerboard
lattice: when φy > 0 odd sites are occupied, and when φy < 0 even sited are more occupied. The ny = 0 case corresponds to the maximally
entangled state in which the checkerboard is formed by the projection of the spin on the x axis rather than the density lattice.

the possibility of noninvasive continuous monitoring of the
entanglement dynamics. In Fig. 6(a) for parameters below,
the gray line in panel (a) T → ∞, while for parameters above
the line, it takes a finite value.

In the regime where the field 〈ay〉 oscillates with zero
average, the precession frequency of the pseudospin 〈Jx〉 can
be calculated as the inverse of the time interval over which
the phase of 〈ay〉 changes by 2π . Simultaneously, the ampli-
tude of 〈Jx〉 oscillations can be deduced from the maximum
value of ny during one period, ampl(〈Jx〉) = [max(ny)(ω2

y +
κ2)]1/2/(2ηs).

The time evolution shown in Figs. 6(b)–6(d) is not unique
but depends on the phase that is initially imprinted in the bo-
son ci (pseudospins i j) operators. Different initial conditions
can lead to dephasing and variations in the amplitudes and fre-
quencies for different observables due to the nonlinear nature
of the problem. However, as we have checked numerically,
the oscillatory behavior in Figs. 6(c) and 6(d) is generic for
different realizations of the initial conditions, meaning one
can observe oscillations of the magnitude of the cavity fields
and also periodic jumps of the phase of the auxiliary cavity
field.

In the opposite limit, when ηs > ηc
s and η is below its

critical value [blue region in Fig. 6(a)], the transition to the
SR phase takes place in cavity field 〈ay〉 and pseudospin
〈Jx〉, while cavity mode 〈az〉 experiences oscillations with
zero time-average. These oscillations appear due to the ex-
plicit symmetry breaking in Hamiltonian H in Eq. (2) and

subsequent precession of the pseudospin 〈Sx〉. Similarly to
the previous case, the precession period is equal to the time
interval during which φz = arg(〈az〉) changes by 2π, and the
amplitude of 〈Sx〉 oscillations is ampl(〈Sx〉) = [max(nz )(ω2

z +
κ2)]1/2/(2η).

Finally, when both couplings are above the critical ones
[see the yellow region in Fig. 6(a)], both cavity modes, 〈ay〉
and 〈az〉, become nonzero, and the symmetry of both Hs

in Eq. (7) and H in Eq. (2) are spontaneously broken in a
self-consistent way. Here, both cavity fields have fixed phases,
while their magnitudes can oscillate while the system ap-
proaches a (stationary) steady state.

B. Slow relaxation in multilevel Dicke model

The oscillations shown in Fig. 6(b) persist far longer
than the operational timescales of the experiment. Below, we
discuss the mechanism that induces such prolonged relaxation
in the dissipative model (8).

The evolution of energy in the two-level Dicke model
during relaxation is given by d〈E〉/dt = κD(ωca†a + 2η(a +
a†)Jx ), which in terms of spin degrees of freedom is pro-
portional to d〈E〉/dt ∝ 〈Jx〉〈Jy〉. In the steady state 〈Jy〉 = 0
and the system’s energy is constant, indicating that all en-
ergy pumped from the external driving fields is completely
lost through the dissipation of the cavity mode. However,
on its way to stationarity, the spin component 〈Jy〉 oscillates
around zero value, which means that with period 2ω0 energy
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is pumped in (negative 〈Jy〉) and out (positive 〈Jy〉) of the sys-
tem, leading to the relaxation time τ = (ω2

y + κ2)/(ω2
0κ ) �

1/κ [68,72].
In contrast, in the four-level model (8), the superradiance

in one spin species acts as an “effective drive” for the other,
inducing an additional factor that slows down the relaxation.
Here, the explicit breaking of the Hamiltonian symmetry re-
sults in the generation of nonstationary phases. It happens due
to the competing conditions on the phases of the boson fields,
φ0, . . . , φ3, set by H [Eq. (2)] and Hs [Eq. (7)]. Relaxation
in the four-level model (8) is conditioned from the temporal
evolution of phases of the boson operators φ0,...,3, whose inter-
dependence slows down reaching a steady state, as it happens
in constrained models [73,74]. Such slow relaxation is crucial
for the continuous read-out of the system’s dynamics since
spin precession can be easily captured at extensive timescales.

C. Read-out

We now relate the dynamics of the auxiliary cavity field
〈ay〉 to the evolution of both the entanglement entropy SvN and
the condensate’s microscopic degrees of freedom. An instance
of such dynamics for parameters as in the red region in Fig. 6
(ηs = 0.3ηc

s , η = 1.6ηc) is shown in Fig. 7. Here, the blue line
in panel (a) shows the dynamics of the entanglement entropy,
panel (b) the dynamics of the populations of the two cavity
modes, panel (c) the dynamics of the phase of two cavity
fields, and finally panel (d) shows snapshots of the condensate
density at different times. Arrows in panel (d) indicate spin
magnetization in the centers of the checkerboard lattice sites.

The oscillations of the photon number ny = 〈a†
yay〉

[panel(b)] and the phase φy = arg(〈ay〉) [panel (c)] cap-
ture precession of the external pseudospin 〈Jx〉, as 〈ay〉 ≈
−2ηs(〈Jx

01〉 + 〈Jx
23〉)/(ωy − iκ ). When the phase of the cavity

field changes by ±π, the real space density checkerboard
lattice changes its parity [odd or even lattice sites are more oc-
cupied, see panel (d)]. Concomitantly, the system reaches the
maximum value of the entanglement entropy [panel (a)]. At
the same time, the checkerboard lattice with period λ = 2π/k
is formed not by modulation of the density but rather by the
different orientations of the spin in the centers of even and odd
sites.

When the phase of the field 〈ay〉 gains ±π jump, the spatial
density profile changes parity. At the same time, the increase
of the photon number ny indicates a decrease of entanglement
since the coupling ηs tends to disentangle spin and momen-
tum, while a decrease of ny, on the other hand, indicates the
developing of the spin-momentum correlations in the sys-
tem. In this way, one can capture real-time oscillations of
the entanglement entropy from the oscillations of the cavity
field 〈ay〉.

Finally, the fixed phase of the cavity field az, φz =
arg(〈az〉), indicates the spontaneous symmetry breaking in H
[cf. Eq. (2)]. In terms of the atomic degrees of freedom, the
fixed phase φz in panel (c) captures the absence of the mirror
symmetry between maximally entangled states, namely, for
two consecutive maximally entangled states, the spin lattices
are exactly the same, without the symmetry under swapping
even and odd sites, cf. even panels in Fig. 7(d).

The heterodyne detection of two cavity modes ay and az en-
ables distinguishing different dynamical phases in the system
in a nondestructive way. However, by itself, the coupling to the
auxiliary cavity mode can change the steady state properties
and, more importantly in the context of this paper, change
the entanglement of the system compared to the single-mode
model. In this regard, it is important to separate a range of
couplings for which utilizing additional polarization preserves
most of the entanglement and, at the same time, is sufficient
to perform measurements. We dedicate the next section to this
aim.

VI. ENTANGLEMENT IN THE TWO PHOTON
FIELDS MODEL

In this section, we revisit the system’s various dynamical
responses in terms of spin-momentum entanglement gener-
ation when both cavity modes contribute to the dynamics
and identify parameter ranges suitable for noninvasive mon-
itoring of the dynamics of collective observables. We show
criteria to determine the range of parameters for which the
auxiliary cavity mode creates a minimal backaction on the
system’s dynamics. For all extra details, we refer the reader to
Appendix G.

The entanglement properties of the system are condi-
tioned from the competition between η (which couples
spin-momentum pseudospins with cavity mode az and tries
to entangle spin and momentum) and ηs (which couples mo-
mentum pseudospins J with the cavity field ay and tends
to maintain spin and momentum separable). Figure 8 shows
numerical data on the maximal entanglement max(SvN) as a
function of these “spin-momentum” η and “momentum” ηs

couplings. Here, we maintain the same parameters as those in
the phase diagram of Fig. 6(a). The plot shows that increasing
η induces stronger correlations between spin and momentum,
while ηs acts as a disentangling agent.

The interplay between η and ηs can significantly alter not
only the max(SvN) but also the steady-state properties of the
system along with the evolution of the SvN compared to the
ηs = 0 case. Figure 7(a) shows the evolution of the SvN for
weak, strong, and zero coupling ηs to the auxiliary mode ay.
Compared to the unprobed model (ηs = 0, black line), for
weak values the photon-matter coupling slightly modifies the
steady state and entanglement dynamics (ηs = 0.3ηc

s � ηc
s ,

blue line), while for strong values, it can alter dynamics of
the SvN significantly (ηs = 0.8ηc

s , yellow line). These regimes
can be distinguished from the dynamics of the auxiliary field.
For weak couplings, the read-out is noninvasive, and the aux-
iliary field oscillates with the zero time average for timescales
that significantly exceed the operational timescale of the ex-
periment (top ∝ 0.01 s). In the experiment, these oscillations
correspond to periodic changes in the phase of the auxiliary
field. In the strong coupling regime, the read-out procedure is
invasive, and the phase of the auxiliary field becomes fixed
after some time, T, which is comparable with the operational
timescale of the experiment. At this time, the explicitly broken
symmetry of the Hamiltonian is restored, and the system starts
evolving toward the SR state for both cavity fields.

The restoration of the symmetry indicates the change
in the steady state and, thus also entanglement properties
of the system. Because of this, for nondestructive probing
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FIG. 8. Maximum value of the entanglement entropy at late
times as a function of the couplings η and ηs. Parameters are the
same as in Fig. 6. The cartoon in Fig. 1(c) is sketched from the data
of this figure. Blue, yellow, and orange lines are added to distinguish
different regimes in terms of the amount of spin-momentum entan-
glement and the invasiveness of the read-out procedure.

of the dynamics, it would be convenient to work in a param-
eter regime where T/top → ∞. Our numerics suggests that
T ∝ exp(ηs − ηc

s ), revealing that symmetry restoration occurs
more rapidly as the coupling to the auxiliary mode approaches
the critical threshold, cf. Appendix G. As such, for nonde-
structive monitoring dynamics, it is essential to maintain the
coupling to the auxiliary field significantly below the critical
value.

Combining the information on relaxation timescales with
the amount of entanglement generated in Fig. 8 (see
Appendix C for more details), it appears that in the limit of
η � ηc and ηs � ηc

s (parameters region, separated by the red
lines in Fig. 8) highly entangled states are prepared, while
the system keeps oscillating for long times, facilitating the
reconstruction of oscillations of the entanglement entropy by
measuring the auxiliary cavity field 〈ay〉 (cf. Fig. 7). On the
other hand, in the part of the phase diagram dominated by
the coupling ηs, there is no strong entanglement, albeit η can
still induce short-lived spin-momentum correlations (see pa-
rameters region, separated by the blue line in Fig. 8). Finally,
when both couplings are high enough (see parameters region
separated by yellow lines), probing the system’s dynamics
with the auxiliary cavity field alters dynamics significantly,
and T is finite.

By adjusting experimentally accessible parameters, such as
couplings η, ηs and detuning ωs, one can tune the amplitude,
time-average, and oscillation frequency of the entangle-
ment entropy, thereby dynamically controlling the correlation
between spin and momentum. In principle, the simplest ap-
proach is to set ωy/κ → 0, which ensures that pseudospins do
not receive any feedback from ay, and thus, all entanglement
properties are solely determined by light-matter interactions
contained in H . In this case, the dissipation induces a phase
shift of the auxiliary cavity field, φ

y
κ = tan−1(−κ/ωy) = π/2

[11], making it imaginary, 〈ay〉 + 〈a†
y〉 = 0, and reducing

backaction of the field ay on the H , see Appendix G. How-

ever, the effective model with Htot [Eq. (8)] breaks down for
these extreme conditions because the many-body description
of the model, in this case, requires taking into account higher
momentum modes.

A more practical scenario is when the frequency of the
auxiliary cavity photon ωy is much higher than κ. In this case,
it is easier to maintain ηs/η

c
s � 1, but have cavity occupa-

tions ny large enough to continuously measure the collective
momentum.

Furthermore, sizable stationary entanglement can be pre-
served when ωs = 0. Here, the Hamiltonian gains additional
symmetry under the exchange of ground and excited momen-
tum levels of two spin sublevels, (|0〉, |1〉) ↔ (|2〉, |3〉). In this
case, the induced as a result of the explicit symmetry breaking
phase ±(φ1 − φ3) does not evolve in time, and the explicitly
broken symmetry can not be restored, see Appendix G for
comprehensive discussion. For ωs = 0, the maximal and time-
averaged amount of entanglement remains similar to the one
generated with one main cavity mode [see Fig. 3(a)], besides
a small dressing induced by ηs.

VII. CONCLUSIONS AND OUTLOOK

In this work, we have presented an experimentally fea-
sible cavity QED platform featuring an effective four-level
atomic description and shown that it manifests two inter-
twined self-organization transitions. This system serves as
a minimal model wherein spontaneous symmetry breaking
occurs in an all-to-all interacting spin model, concomitant
with the formation of tunable spin-momentum entanglement.
The controlled leakage of intracavity photons plays an impor-
tant stabilization role, as the resulting dissipative dynamics
facilitate convergence towards the target entangled state in a
manner resilient to imperfections in the system’s couplings or
initial state preparation. Extending the coupling scheme with
an auxiliary cavity mode gives rise to persistent oscillations
(due to explicit symmetry breaking) and facilitates real-time
monitoring of the system dynamics, in particular, as a proxy
for entanglement.

The tunable parameters of our model facilitate a straight-
forward extension to spin-exchange interactions, akin to the
Tavis-Cummings model [30,36,50]. An interesting avenue for
exploration lies in understanding how quantum correlations
between spin and momentum can be continuously tuned as
one transitions between the Tavis-Cummings and Dicke limits
considered here.

We should note that a relation between multilevel atoms
and entanglement has been previously reported both in cavity
QED systems [29,75–77] and photonic waveguides [9,78–
81]. In these cases, entangled states can be hosted within
the subradiant subspaces of the multilevel atoms, with level
degeneracies being crucial for the build-up of quantum cor-
relations. The mechanism is markedly different from ours,
although considering a combination of the two setups could
naturally lead to further interesting developments.

Taking a broader perspective, one could investigate how
different dynamical phases of matter routinely engineered in
cavity QED would morph, when both spin and momentum
degrees of freedom are optically addressed. Our analysis has
focused on the superradiant phase transition as a paradigmatic
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case, but it would be intriguing to see whether entangle-
ment properties of spin-momentum hybridized states can
be manipulated as a response to periodic drives [16,17,82]
or in the context of dissipative-induced phase transitions
[11,15,18,30,83].
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APPENDIX A: DERIVATION OF THE HAMILTONIAN

In this Appendix, we present a derivation of Hamiltonian
Htot for a setup depicted in Figs. 2 and 5. The derivation of
the Hamiltonian H or Hs can be obtained by setting Es = 0 or
Eb = Er = 0 below respectively.

We start with the general Hamiltonian for the light-matter
interaction problems, which reads

Htot = Hc + Ha + Hint, (A1)

where Hc governs dynamics of the cavity mode, Ha is a
single-atom Hamiltonian, and Hint describes interaction be-
tween atom and the cavity. We specify the explicit form of
Hc, Ha, and Hint in the considered setup and show under
which assumptions the low-energy physics of the model can
be simulated by Eq. (8).

We immerse 87Rb atoms inside an optical cavity oriented
along the ex axis. The cavity has a single relevant frequency
ωc = 2π × 382.04685 THz with a decay rate of κ ∼ 2π ×
1.25 MHz, and two polarizations ey and ez in the transverse
plane. We represent two corresponding cavity polarization
modes by operators ay and az, respectively. The cavity Hamil-
tonian reads

Hc = h̄ωya†
yay + h̄ωza

†
z az. (A2)

We apply a classical pump field with the standing-wave
profile along ez (perpendicular to the cavity axis) and a Gaus-
sian profile in the transverse directions, along ex and ey. We
consider a dispersive regime, in which pumping frequency is
chosen out-of-resonance with the electron transition 52S1/2 →

52P1/2, 52P3/2. In this case, excited atomic states can be
eliminated, and the resulting atomic Hamiltonian within the
F = 1 hyperfine manifold of the 52S1/2 level reads

Ha = p2

2M
+ Vext +

∑
F,mF

h̄ωF,mF |F, mF 〉〈F, mF |, (A3)

where p is the momentum of the atom, M is the atomic mass,
Vext describes an external trapping potential, and the energy
of atomic level |F, mF 〉 is h̄ωF,mF . The sum in the last terms
runs over all atomic levels in F = 1 manifold. We apply a
strong magnetic field B = −Bez along z direction, which in-
duces first- and second-order Zeeman splitting between levels
with different magnetic numbers mF . Introducing internal spin
operator F = (F x, F y, F z ), the atomic part of the Hamiltonian
can be rewritten

Ha = p2

2M
+ Vext + h̄ω(1)

z F z + h̄ω(2)
z (F z )2, (A4)

where ω(1)
z < 0 and ω(2)

z > 0 are the first and the second-order
Zeeman splittings.

The atoms are neutral and are much smaller than the
wavelength of the optical light fields so that the light-matter
interaction can be described in the dipole approximation

Hint = −dlabElab, (A5)

where the atomic dipole operator can be expanded in terms of
the atom’s internal states

dlab =
∑
e,g

deg|e〉〈g| + H.c., deg = 〈e|d|g〉. (A6)

The total optical field Elab is the sum of the classical pump
field, Ep(r), and the cavity field, Ec(r). The classical pump
field with the polarization along ey, has a standing-wave pro-
file in the longitudinal direction (ez) and a Gaussian profile in
the transverse direction (along ex, ey):

Ep(r) = ey

∑
β=b,r,s

Eβ

2
fβ (r)e−iωβ t + H.c., (A7)

with the mode function for each sideband is fβ (r) ≡ f (r) =
exp(−2x2/w2

x − 2y2/w2
y ) cos(kβz). The widths of the trans-

verse Gaussian profile are approximately ωx, ωy ≈ 25 µm.
The wave-vectors are kβ = ωβ/c ≈ ωp/c with c denoting
speed of light. To induce the atomic transitions, discussed in
Secs. II and IV, we consider three laser drivers β = b, r, s,
with the sideband frequencies ωb(r) such that detunings δωβ =
ωβ − ωp are chosen to correspond to the differences in first-
order Zeeman shifts (in the F = 1 ground state manifold).
In contrast, the third detuning is set to be zero, ωs = (ωb +
ωr )/2 = ω̄. In this case, different driving schemes operate
with the same momentum states. We limit our consideration
to the case when Eb = Er �= Es.

The cavity field TEM00 mode of a Fabry-Perot cavity has
a standing-wave profile in the transverse direction (ex) and a
Gaussian profile in the other two directions along ey and ez:

Ec(r) = eyEcgy(r)ay + ezEcgz(r)az + H.c., (A8)

where the mode functions are gy,z(r) ≡ g(r) = exp(−2(y2 +
z2)/w2

c ) cos(kcx) with the Gaussian profile having a width of
approximately wc ≈ 25 µm. The wave-vectors are ky,z ≈ kc =
ωc/c.
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As we are working in the dispersive regime, the excited
atomic states can be eliminated using the Schrieffer-Wolff

[85] transformation H → eSHe−S , [S, H0] = −Hint, which re-
sults in the low-energy Hamiltonian

H0 = p2

2M
+ Vext + h̄ω(1)F z + h̄ω(2)(F z )2 + h̄ωy

ca†
yay + h̄ωz

ca†
z az

Hs
int =αs f 2(r)

∣∣∣∣∣∣
∑

β

Eβ

2
eiδωβ t

∣∣∣∣∣∣
2

+ αs|Ec|2g2(r)
(
a†

yay + a†
z az

)

+ αs

=1︷ ︸︸ ︷(
ey · ey

)
f (r)g(r)

∑
β

Eβ

2

(
eiωβ t ay + e−iωβ t a†

y

) + αs

=0︷ ︸︸ ︷(
ey · ez

)
f (r)g(r)

∑
β

Eβ

2

(
eiωβ t az + e−iωβ t a†

z

)

Hv
int = − i

αv

2F
g(r) f (r)

∑
β

EcEβ

2

⎡
⎢⎣(

ayeiωβ t − a†
ye−iωβ t

) =0︷ ︸︸ ︷(
ey × ey

) ·F + (
aze

iωβ t − a†
z e−iωβ t

) =ex︷ ︸︸ ︷(
ey × ez

) ·F

⎤
⎥⎦

− i
αv

2F
E2

c g2(r)
(
a†

yaz − a†
z ay

)(
ey × ez

) ·
∝e±iωt︷︸︸︷

F︸ ︷︷ ︸
=0, because of resonance conditions

(A9)

For the transitions in multilevel atoms, it is convenient
to account for selection rules using polarizabilities. In the
above equation, αs,v are scalar and vector polarizabilities
of the atoms, which are components of the rank-2 ten-
sor αi, j = ∑

g,g′
∑

e〈g|di|e〉〈e|d†
j |g′〉|g〉〈g′|/(h̄�e) = αsIδi j −

iαv/(2 F)εi jk + . . . Here, diagonal components, proportional
to αs, describe the process when the spin of the atom re-
mains unchanged, while vectorial nondiagonal components,
proportional to αv , describe the transition of the spin state of
the atom after the two-photon process. The sum runs over
all allowed transitions (see Ref. [86]), di = (dei ) is the ith
component of the atomic dipole moment, i = {x, y, z}, and the
detuning of the driving field from the resonance frequency is
�e ≈ ωp − ωe.

Finally, we move to a frame rotating with the classical
pump frequency: Hlab → H = U †

p HlabUp − Hp, where Up =
exp(−iHpt/h̄) and Hp = ∑

e h̄ωp|e〉〈e| + h̄ωp(a†
yay + a†

z az ).
The rotating-wave approximation brings us to the time-
independent single-body Hamiltonian

Htot = Ha + Hc + Hs + Hv, (A10)

Ha = p2

2M
+ Vext + h̄δ(1)F z + h̄ω(2)(F z )2, (A11)

Hc = −�ya†
yay − �za

†
z az, (A12)

Hs = αs

4
f 2(r)

(
E2

s + E2
b + E2

r

) + αsE
2
0 g2(r)

(
a†

yay + a†
z az

)
+ αs

2
f (r)g(r)E0Es

(
ay + a†

y

)
, (A13)

Hv = αv

4
E0Eb f (r)g(r)

(
az + a†

z

)
F x, (A14)

where δ(1) = ω(1)
z + (ωb − ωr )/2, �y,z = ω̄ − ωy,z < 0. We

have also applied a transformation az → iaz to get rid of the
minus sign in Hv. The first term in Hs describes the attractive
potential created by the transverse driving fields, the second
term describes the dispersive shift to the cavity detuning, and
the last term produces the Bragg transition within the same
atomic level. The vectorial interaction describes the Raman
process when the transition happens between nearing sub-
levels of the ground-state manifold.

Let us consider a case when the magnetic field is strong.
Specifically, let the second order Zeeman shift ω(2) ∝ 1 MHz,
and thus the resonant conditions for transition mF = 1 ↔
mF = 0 are out-of-resonance for transition mF = 0 ↔ mF =
−1. In this case, if we prepare the initial state as a mix-
ture of particles at levels with mF = 1, 0, the dynamics
will be restricted to these two atomic levels for the typ-
ical operational times of the experiment. Thus we can
limit our consideration to the dynamics between two neigh-
boring spin levels, defining the many-body spinor field
operator

�(r) = (0, ψ↑, ψ↓)T , (A15)

which satisfies standard bosonic commutation relations
[ψσ (r), ψ†

σ ′ (r′)] = δσ,σ ′δ(r − r′), [ψσ (r), ψσ ′ (r′)] = 0,

where σ, σ ′ = {↑,↓}. The N − body Hamiltonian
reads

Htot = Hc +
∫

dr�†(r)(Ha + Hs + Hv )�(r)

= Hc +
∫

dr
[αs

4

(
E2

s + E2
b + E2

r

)
f 2(r) + αsE

2
0

(
a†

yay + a†
z az

)
g2(r)

](
ψ

†
↑(r)ψ↑(r) + ψ

†
↓(r)ψ↓(r)

)
033193-13



OKSANA CHELPANOVA et al. PHYSICAL REVIEW RESEARCH 6, 033193 (2024)

+
∫

drψ†
↑(r)

(
− h̄2∇2

2M
+ Vext

)
ψ↑(r) +

∫
drψ†

↓(r)

(
− h̄2∇2

2M
+ Vext

)
ψ↓(r)

+ h̄δ(1)

2

∫
dr

(
ψ

†
↑(r)ψ↑(r) − ψ

†
↓(r)ψ↓(r)

) + h̄ω(2)

4

∫
dr

(
ψ

†
↑(r)ψ↑(r) + ψ

†
↓(r)ψ↓(r)

)
+ αs

2
E0Es

(
ay + a†

y

) ∫
dr f (r)g(r)

(
ψ

†
↑(r)ψ↑(r) + ψ

†
↓(r)ψ↓(r)

)
+ αv

8
E0Eb

(
az + a†

z

) ∫
dr f (r)g(r)

(
ψ

†
↑(r)ψ↓(r) + ψ

†
↓(r)ψ↑(r)

)
. (A16)

To derive an extended Dicke Hamiltonian, we should further restrict the Hilbert space of the model by considering only the two
lowest momentum states of the model for both spinor components. In this approximation, the many-body wave function reads
�(r) = (0, φ0(r)c0 + φ1(r)c1, φ0c2(r) + φ1(r)c3)T . Here, ci are the annihilation operators of the corresponding atomic modes,
[ci, c†

j ] = δi, j, [ci, c j] = 0, and φ1(r) = N cos kx cos kzφ0(r), where N accounts for the correct normalization. In this notation,
operators c0 and c2 correspond to the ground momentum states, while operators c1 and c2 correspond to the excited momentum
states. After integrating over all space, the many-body Hamiltonian reads

Htot = − h̄�̃ya†
yay + h̄ω0(c†

1c1 + c†
3c3) + h̄ηs(ay + a†

y )(c†
0c1 + c†

1c0 + c†
2c3 + c†

3c2)

− h̄�̃za
†
z az + h̄ωs(c

†
2c2 + c†

3c3) + h̄η(az + a†
z )(c†

1c2 + c†
0c3 + c†

2c1 + c†
3c0), (A17)

where the cavity detuning is dressed via the dynamic (dispersive) shift �̃y,z = �y,z − αsE2
0 NI/h̄, the level splitting between

ground and excited momentum states is equal ω0 = 2ωrec, ωs = δ(1), and coupling constants read as follows: h̄ηs = αsE0EsM/2,
h̄η = −αvE0EbM/4

√
2, where I = ∫

drg2(r)φ2
0 (r), M = ∫

dr f (r) f (r)φ1(r)φ0(r). We have omitted standing-wave potential
αs(E2

s + E2
b + E2

r )
∫

dr f 2(r)φ2
0 (r)/4 above as it only contributes to the higher momentum state and does not qualitatively

modify the appearance of the phase transition discussed in the main text in Fig. 6.
Finally, one can introduce pseudospin operators according to Eq. (10), which brings the Hamiltonian to the following form:

Htot = ωya†
yay + ω0

(
Jz

01 + Jz
23

) + ηs(ay + a†
y )(J+

01 + J+
23 + J−

01 + J−
23)

+ ωza
†
z az + ωs

(
Sz

12 + Sz
03

) + η(az + a†
z )(S+

12 + S+
03 + S−

12 + S−
03), (A18)

where we set ωy,z = −�̃y,z > 0 and have normalized the Hamiltonian by h̄ωrec so that ω0 = 2 above. One should take into
account that due to the particle conservation, one has Jz

01 + Jz
23 = Sz

03 − Sz
12. Additionally, when η = 0, the term ωs(Sz

12 + Sz
03)

can be omitted because the process ηs(ay + a†
y )(J+

01 + J+
23 + J−

01 + J−
23) preserves the number of particles in the upper and lower

spinor components, and thus the contribution to the energy of the system from the ωs(Sz
12 + Sz

03) remains constant during the
whole course of the dynamics.

APPENDIX B: EQUATIONS OF MOTION

In this Appendix, we derive mean-field equations of motion from the Hamiltonian in (A18). Note that for the remainder of
the Appendices, we omit 〈·〉 for expectation values of observables for simplicity.

The mean-field equations of motion can be easily derived from the Lindblad master equation (9) and read

ȧy = −i(ωy − iκ )ay − iηs(c
†
0c1 + c†

1c0 + c†
2c3 + c†

3c2),

ȧz = −i(ωz − iκ )az − iη(c†
1c2 + c†

0c3 + c†
2c1 + c†

3c0),

ċ0 = −iη(az + a†
z )c3 − iηs(ay + a†

y )c1,

ċ1 = −iω0c1 − iη(az + a†
z )c2 − iηs(ay + a†

y )c0,

ċ2 = −iωsc2 − iη(az + a†
z )c1 − iηs(ay + a†

y )c3,

ċ3 = −i(ωs + ω0)c3 − iη(az + a†
z )c0 − iηs(ay + a†

y )c2. (B1)

In terms of pseudospin degrees of freedom (10), the equations of motion take the following form:

dJ−
01

dt
= −2iω0J−

01 + 2iηs(ay + a†
y )Jz

01 + iη(az + a†
z )(T +

13 − T −
02 ),

dJ−
23

dt
= −2iω0J−

23 + 2iηs(ay + a†
y )Jz

23 + iη(az + a†
z )(T −

13 − T +
02 ),

dJz
01

dt
= iηs(ay + a†

y )(J−
01 − J+

01) + iη/2(az + a†
z )(S+

12 − S−
12 + S−

03 − S+
03),
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dJz
23

dt
= iηs(ay + a†

y )(J−
23 − J+

23) + iη/2(az + a†
z )(S+

12 − S−
12 + S−

03 − S+
03),

dS−
12

dt
= 2i(ω0 − ωs)S−

12 + 2iη(az + a†
z )Sz

12 + iηs(ay + a†
y )(T −

02 − T −
13 ),

dS−
03

dt
= −2i(ω0 + ωs)S−

03 + 2iη(az + a†
z )Sz

03 + iηs(ay + a†
y )
(
T −

13 − T −
02

)
,

dSz
12

dt
= iη(az + a†

z )(S−
12 − S+

12) + iηs/2(ay + a†
y )(−J−

01 + J+
01 − J−

23 + J+
23),

dSz
03

dt
= iη(az + a†

z )(S−
03 − S+

03) + iηs/2(ay + a†
y )(J−

01 − J+
01 + J−

23 − J+
23),

dT −
13

dt
= −2iωsT −

13 + iη(az + a†
z )(J−

23 − J+
01) + iηs(ay + a†

y )(S−
03 − S−

12),

dT −
02

dt
= −2iωsT −

02 + iη(az + a†
z )(J+

23 − J−
01) + iηs(ay + a†

y )(S−
12 − S−

03)

dT z
13

dt
= iη/2(az + a†

z )(S−
03 − S+

03 + S−
12 − S+

12) + iηs/2(ay + a†
y )(J−

23 − J+
23 − J−

01 + J+
01),

dT z
02

dt
= iη/2(az + a†

z )(S−
03 − S+

03 + S−
12 − S+

12) + iηs/2(ay + a†
y )(J+

23 − J−
23 + J−

01 − J+
01). (B2)

Note that on the mean-field level, both (B1) and (B2) govern identical dynamics when the system is initially prepared in the
coherent state. However, if the initial state contains higher-order correlations, one needs to consider higher-order corrections
(i.e., cumulants expansion or similar methods) to capture dynamics accurately [61].

Finally, the equations of motion on the mean-field level can be derived without truncation over momentum states, starting
from Hamiltonian (A16), ih̄∂t�(r, t ) = Htot (r)�(r, t ), which results into the following equations of motion:

ih̄
dψ↑(r)

dt
≈ h̄δ(1)

2
ψ↑(r) − h̄2∇2

2M
ψ↑(r) +

η̃s︷ ︸︸ ︷
αs

2
E0Es

(
ay + a†

y

)
f (r)g(r)ψ↑(r) +

η̃︷ ︸︸ ︷
αv

8
E0Eb

(
az + a†

z

)
f (r)g(r)ψ↓(r)

ih̄
dψ↓(r)

dt
≈ − h̄δ(1)

2
ψ↓(r) − h̄2∇2

2M
ψ↓(r) + αs

2
E0Es

(
ay + a†

y

)
f (r)g(r)ψ↓(r) + αv

8
E0Eb

(
az + a†

z

)
f (r)g(r)ψ↑(r)

ih̄
day

dt
≈ h̄(ωy − iκ )ay + αs

2
E0Es

∫
dr f (r)g(r)

(
ψ

†
↑(r)ψ↑(r) + ψ

†
↓(r)ψ↓(r)

)
ih̄

daz

dt
≈ h̄(ωz − iκ )az + αv

8
E0Eb

∫
dr f (r)g(r)

(
ψ

†
↑(r)ψ↓(r) + ψ

†
↓(r)ψ↑(r)

)
. (B3)

To retrieve dynamics at short times one can sufficiently
simplify equations by eliminating cavity fields, substituting
ay ≈ −αsE0Es

∫
dr f (r)g(r)(ψ†

↑(r)ψ↑(r) + ψ
†
↓(r)ψ↓(r))/

(2h̄(ωy− iκ )) and az ≈−αvE0Eb
∫

dr f (r)g(r)(ψ†
↑(r)ψ↓(r) +

ψ
†
↓(r)ψ↑(r))/(8h̄(ωz − iκ )). Choosing periodic boundary

conditions for field �(r), the resultant equations of motion
can be further efficiently evaluated with the split-step Fourier
transform method [87].

Both equations (B1) and (B3) describe the similar dynam-
ical behavior of the system and transition from the normal
to superradiant phase with the subsequent population of the
momentum states |1〉m [note that Eq. (B3) also captures pop-
ulation of the momentum states |±2k, 0, 0〉 and |0, 0,±2k〉,
however for the most of the parameters the fraction of atoms
there can be neglected]. However, to study long-time dynam-
ics, evaluation of (B1) can be done much more efficiently,

with much less computational cost. The further simplification
via proper elimination of the cavity fields is described in the
following Appendix.

APPENDIX C: REDFIELD EQUATIONS

To evaluate dynamics at late times, we also adiabatically
eliminate dissipative cavity modes ay and az and study the
atom-only model. This procedure is justified by the separation
of scales between cavity detunings/decay rates and atomic
frequencies, which differ by two to three orders of magnitude.
By applying the Schrieffer-Wolff transformation, the atom and
photon modes can be decoupled, resulting in the effective
atom-only description of the model. Following calculations
in Refs. [70,71], we derive the following expressions for the
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effective fields αy and αz:

αy = ηs(c
†
1c0 + c†

3c2)

−ωy − ω0 + iκ
+ ηs(c

†
0c1 + c†

2c3)

−ωy + ω0 + iκ
,

αz = ηc†
3c0

−ωz − (ωs + ω0) + iκ
+ ηc†

0c3

−ωz + (ωs + ω0) + iκ

+ ηc†
2c1

−ωz + (ω0 − ωs) + iκ
+ ηc†

1c2

−ωz − (ω0 − ωs) + iκ
.

(C1)

On the mean-field level, the effective equations of motion
can be derived by substituting into Eqs. (B1) (αy, αz ) instead
of boson fields (ay, az ). The atom-only model allows us to
investigate long-time dynamics and numerically explore re-
laxation processes. However, it is important to note that this
model operates correctly when both couplings are ramped up
gradually. Abrupt changes in coupling can excite high-energy
excitations in the model, which are not accounted for by the
Redfield equation.

To evaluate the long-time dynamical response in Fig. 6(a)
(and also in Fig. 8), we initialize the system in the normal
state and then ramp up both coupling during ≈0.002 s, which
is slow enough to make Redfield description of the dynamics
valid and, at the same time, fast enough to excite nonstationary
phases. We then compare dynamical properties of the system
(〈ay〉, 〈az〉) after the ramp at t ≈ 0.01 s and at late times t ≈
0.4 s to distinguish between phases with the explicitly broken
symmetry (which suit for noninvasive dynamics monitoring)
and phases with explicitly broken symmetry, which identify
strong coupling regime and invasive probing of the dynamics.

APPENDIX D: ANALYTICAL CALCULATION
OF THE STEADY STATE

Both models (7) and (2) take the form of the Dicke model
and thus undergo a phase transition associated with the spon-
taneous breaking of Z2 symmetry. The phases associated with
this symmetry breaking are the normal phase, in which all
spins are polarized long z direction and occupation of the
cavity photon is zero, and the superradiant phase, in which
spins develop a nonzero x component, with the cavity occupa-
tion taking a nonzero value. The solution for each case can
be derived as a stable stationary state of Eqs. (B2). As an
illustration, let us examine the case when one of the couplings
is equal to zero.

1. η = 0 case

In this case, the critical coupling is equal to
ηc

s =
√

ω0(ω2
y + κ2)/(4ωy) and the solution in the SR

phase read Jz
01 = −μηc2

s /(2η2
s ), Jz

23 = −(1 − μ)ηc2
s /(2η2

s ),
Jx = ±

√
1/4 − Jz2, ay = −ηs/(ωy − iκ )

√
1 − ηc4

s /η4
s .

Interestingly, in this case, the spins T , S are not stationary
but instead can precess according to the equations of motion

dS−
12

dt
= 2i(ω0 − ωs)S−

12 + iη5
(
ay + a†

y

)(
T −

02 − T −
13

)
dS−

03

dt
= −2i(ω0 + ωs)S−

03 + iη5
(
ay + a†

y

)(
T −

13 − T −
02

)

dT −
13

dt
= −2iωsT −

13 + iη5
(
ay + a†

y

)(
S−

03 − S−
12

)
dT −

02

dt
= −2iωsT −

02 + iη5
(
ay + a†

y

)(
S−

12 − S−
03

)
. (D1)

In the normal phase, the frequency of the precession is equal
to ±2ωs, while in the SR phase, additional dressing from the
interaction with the cavity mode ay takes place

� = −2ωs ±
4
√

ω2
0

(
ω2

y + κ2
)2

/4 − ω2
y

(
ηc4

s − η4
s

)
(
ω2

y + κ2
) . (D2)

These dynamics stem from the fact that three species of the
pseudospins in the model governed by Htot in Eq. (8) are
built from the same boson operators, and thus, they do not
commute. Consequently, spontaneous symmetry breaking in
one species of the pseudospins can induce explicit symmetry
breaking for the rest of the spin species, which results in the
oscillatory behavior unless the explicitly broken symmetry is
restored, see Appendix F for more details.

One can also restore the occupation of the four levels in the
steady-state superradiant phase

c†
0c0 = μ(1 − 2Jz )

2
,

c†
1c1 = μ(1 + 2Jz )

2
,

(D3)

c†
2c2 = (1 − μ)(1 − 2Jz )

2
,

c†
3c3 = (1 − μ)(1 + 2Jz )

2
,

where μ is the fraction of atoms, initialized in state |0〉, N0 =
Nc†

0c0 = μN.

It is worth mapping the solution in terms of spins (or
bosons) back to the microscopic observables in the model
(A16). In this way, one can unravel phase transition in the
model (8) in the form of the self-organization transition(s)
in terms of atomic degrees of freedom, such as condensate
density and magnetization.

The density of the upper spinor component is
ρ↑ = |ψ↑|2 = |〈c0〉φ0 + 〈c1〉φ1|2 = |〈c0〉|2φ2

0 + (〈c†
0〉〈c1〉 +

〈c†
1〉〈c0〉)φ0φ1 + |〈c1〉|2φ2

1 . The first term here is constant,
while the second one takes the form cos kx cos kz ∝ φ1 and
describes the creation of the checkerboard lattice with the
periodicity 2π/k when the system is in the SR phase, cf.
Figs. 5(d) and 5(e). Similarly, the density of the lower spinor
component reads ρ↓ = |ψ↓|2 = |〈c2〉φ0 + 〈c3〉φ1|2. At the
same time, one can calculate the spatial distribution of the
spin through the lattice. The three components of this spin
are given by σ z = (|ψ↑|2 − |ψ↓|2)/2, σ x = �(ψ∗

↑ψ↓), σ y =
�(ψ∗

↑ψ↓). Here, we denote spin-1/2 operators with σ i to
highlight the effective two internal spin levels nature of the
effective model (operator F above is defined on the spin-1
manifold). In the main text, we have plotted the values of
these spins, calculated at the center of lattice cells using
arrows on top of the distribution of the condensate density.
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FIG. 9. Dynamics of (a) entanglement entropy SvN, (b) negativity N , and (c) concurrence C for parameters as in Fig. 7 in the main text.
Different lines correspond to different values of coupling ηs. The vertical dashed lines added to guide the eye and show the time moments
when the entropy measures for ηs = 0.3ηc

s case take extremal values during dynamics.

2. ηs = 0 case

The model (2) is a two-spin Dicke model with disor-
der in the level splittings. By deriving stationary solutions
for this model, one can recover that the critical cou-
pling, at which transition to the SR phase occurs, depends
on the initial state. The resulting expression is given by
Eq. (4). The Sz spin components can be further found from
[(ωs + ω0) + 2ωzη

2/(ω2
z + κ2)S03

z ]S03
x = 0 and [(ωs − ω0) +

2ωzη
2/(ω2

z + κ2)S12
z ]S12

x = 0. Also, note that when one or
both of the level splittings ω0 ± ωs become negative, the
initial state with particles prepared in the ground momentum
state ψ = √

μ|0〉 + √
1 − μ|2〉 is effectively a population in-

verted state. Thus the transition to the SR phase appears on
longer timescales after the system relaxes to the ground state
(corresponding to an excited momentum state). In this case,
one can first observe decay with a “burst” of atoms to the
excited momentum states |1〉 and |3〉, and then approach the
correct SR state with a finite population of ground and excited
momentum states.

As it is illustrated in the main text, the SR transition
in the spin S, which is built simultaneously from different
momentum and spin atomic states [cf. Eq. (1)], can act as
driving for both spin and density (momentum) of the BEC.
Examples of such nonstationary behavior of internal/external
degrees of freedom are shown in Figs. 2(d), 2(e) and 4(b), 4(c).
This nonstationary behavior also can be seen by analyzing
equations of motion for pseudospins T and J :

dJ−
01

dt
= −2iω0J−

01 + 2iη�(az )(T +
13 − T −

02 ),

dJ−
23

dt
= −2iω0J−

23 + 2iη�(az )(T −
13 − T +

02 ),

dT −
13

dt
= −2iωsT −

13 + 2iη�(az )(J−
23 − J+

01),

dT −
02

dt
= −2iωsT −

02 + 2iη�(az )(J+
23 − J−

01). (D4)

These equations result in the following precession frequencies

� → −
√

2

√
−1

4

√(
16η2�(az )2 + 4ω2

0 + 4ω2
s

)2 − 64ω2
0ω

2
s − 4η2�(az )2 − ω2

0 − ω2
s ,

� → −
√

2

√
1

4

√(
16η2�(az )2 + 4ω2

0 + 4ω2
s

)2 − 64ω2
0ω

2
s − 4η2�(az )2 − ω2

0 − ω2
s . (D5)

APPENDIX E: SPIN-MOMENTUM ENTANGLEMENT

In this Appendix, we show how the von Neumann entropy
witnesses correlations between spin and momentum. Similar
calculations for the negativity [54] and concurrence [55,56]
have also been performed. In our simulations, both quantities
behaved similarly for all simulations, cf. Fig. 9.

We can write down the atomic state as a superposition

|ψ〉 = α|0〉 + β|1〉 + γ |2〉 + δ|3〉, (E1)

where α = 〈c0〉, β = 〈c1〉, γ = 〈c2〉, and δ = 〈c3〉, with
|α|2 + |β|2 + |γ |2 + |δ|2 = 1 as the total number of atoms
is conserved and normalized. Rewriting states |0〉, . . . , |3〉 in
terms of spin and momentum states, see Eq. (1), the state of
the system reads

|ψ〉 = α|0〉m ⊗ |↓〉s + β|1〉m ⊗ |↓〉s

+ γ |0〉m ⊗ |↑〉s + δ|1〉m ⊗ |↑〉s. (E2)
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We now can construct a reduced density matrix by summing
over the spin degree of freedom

ρ̃ = 〈spin|ψ〉〈ψ |spin〉 (E3)

or by summing over the momentum states

ρ̃ = 〈momentum|ψ〉〈ψ |momentum〉. (E4)

The reduced density matrix reads

ρ̃ =
[|α|2 + |β|2 αγ ∗ + βδ∗

α∗γ + β∗δ |γ |2 + |δ|2
]

(E5)

and can be easily diagonalized. The eigenvalues of this re-
duced density matrix are

λ = 1
2 ± 1

2

√
1 − 4(|α|2|δ|2 + |β|2|γ |2 − αβ∗γ ∗δ − α∗βγ δ∗)

or can alternatively be rewritten in terms of spins

λ = 1
2 ± 1

2

√
1 − 4(S−

03S+
03 + S−

12S+
12 − J+

01J−
23 − J−

01J+
23).

When η = 0, the system always remains in the pure state as
the momentum state is separable in this case; in the superra-
diant phase, the fraction of atoms in the excited momentum
state for mF = 0 is the same as the fraction of excited states
for mF = 1.

On the other hand, when ηs = 0, the interaction η in-
duces entanglement between spin and momentum. The easiest
way to see this is to consider the two-level case when all
atoms are initially prepared in state |0〉. Then, by increasing
the coupling η above its critical value, the wave func-
tion of the state becomes ψ = α|0〉 + δ|3〉 = α|0〉m ⊗ |↓〉s +
δ|1〉m ⊗ |↑〉s, which is not separable in spin and momentum
and, thus, is entangled. This state is maximally entangled
when α = δ = 1/

√
2, and in terms of spin and momentum

degrees of freedom, the state of the system is symmetric spin-
momentum configuration.

APPENDIX F: SPONTANEOUS AND EXPLICIT
SYMMETRY BREAKING

In this Appendix, we gather arguments to elucidate the
source of the nonequilibrium oscillatory phases that arise

when one coupling surpasses the critical threshold while the
other remains below it [cf. red and blue regions in the phase
diagram in Fig. 6(a)].

Let us consider the case when ηs > ηc
s , i.e., the cavity mode

ay is the important mode. The SR transition in Hs appears
when the corresponding Z2 symmetry of the model is broken.
For the subsystem built on the momentum states (via photon
mode ay, [12]), which is described by the Hamiltonian

Hs = ωya†
yay + ω0

(
c†

1c1 + c†
3c3

)
+ ηs

(
ay + a†

y

)(
c†

0c1 + c†
1c0 + c†

2c3 + c†
3c2

)
, (F1)

we have the condition

ay → −ay(
c†

0c1 + c†
2c3 + H.c.

) → −(
c†

0c1 + c†
2c3 + H.c.

)
. (F2)

The second line above corresponds to Jx → −Jx for the Dicke
model. Under the corresponding transformation in Eq. (12)
the bosonic part of the Hamiltonian transforms as

c†
0c1 + c†

2c3 + H.c. → c†
0c1ei(φ0−φ1 ) + c†

2c3ei(φ2−φ3 ) + H.c.

= −(
c†

0c1 + c†
2c3 + H.c.

)
, (F3)

thus seting the constrains e±i(φ1−φ0 ) = −1 and e±i(φ2−φ3 ) =
−1. These constraints bring us to the following condition on
the relative phases:

φ0 − φ1 = π ± 2πn, φ2 − φ3 = π ± 2πm. (F4)

As only the relative phase between two bosonic fields enters
the Hamiltonian, we get two conditions for four phases. If
we perform the same transformation on the second interacting
term in the total Hamiltonian in Eq. (8), which reads

η
(
az + a†

z

)(
c†

1c2 + c†
0c3 + c†

2c1 + c†
3c0

)
, (F5)

we find that it induces an additional phase for photon field az,

which provokes an explicit symmetry breaking

η
(
aze

−iφz + a†
z eiφz

)(
c†

1c2ei(φ1−φ2 ) + c†
0c3ei(φ0−φ3 ) + c†

2c1e−i(φ1−φ2 ) + c†
3c0e−i(φ0−φ3 ))

= η
(
aze

−iφz + a†
z eiφz

)(
c†

1c2ei(φ1−φ3−π ) + c†
0c3ei(φ1+π−φ3 ) + c†

2c1e−i(φ1−φ3−π ) + c†
3c0e−i(φ1+π−φ3 ))

= −η
(
aze

−iφz + a†
z eiφz

)(
c†

1c2ei(φ1−φ3 ) + c†
0c3ei(φ1−φ3 ) + c†

2c1e−i(φ1−φ3 ) + c†
3c0e−i(φ1−φ3 )). (F6)

One can recognize that the bosonic part gains a phase
±(φ1 − φ3) which, generally, can take an arbitrary value and
cannot be immediately compensated by the phase φz. So,
as soon as we turn on coupling η, we break the symmetry
of the Hamiltonian. In general, to restore the symmetry at
finite time T , the population of the two levels (one excited
and another ground momentum states) must reach zero value.
In practice, when ωs > 0, particles from levels |2〉 and |3〉
drift to states |0〉 and |1〉 (or in the opposite direction when
ωs < 0).

The breaking of the symmetry can be seen also in the
following calculation. Given the steady state for ηs > ηc

s and
η = 0 [cf. Eq. (D3)], after quenching η, the photon mode az

becomes

az = − 2η

(ωz + iκ )

√
(1 − μ)μ(1 + 2Jz )(1 − 2Jz ), (F7)

which is nonzero for μ �= 0, 1. Here, the typical time at
which the photon approaches the value above is ≈ 1/κ
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FIG. 10. Symmetry restoration time T (in seconds) as a function of (a) the initial population of the level |0〉, i.e., N0 = μN and (b) of the
photon-matter coupling to the auxiliary cavity field. Here we consider mode ay as the main and mode az as the auxiliary. Here, for simplicity,
we set ωy = ωz ≈ κ/3, ωs = 0.2. For these two simulations, we prepare the system in the superradiant phase for ηs = 1.2ηc

s , and then perform
a fast ramp of η < ηc.

negligibly small. The explicit breaking of the symmetry in the
term

η
(
az + a†

z

)(
c†

1c2 + c†
0c3 + c†

2c1 + c†
3c0

) →
− η

(
aze

−iφz + a†
z eiφz

)(
c†

1c2ei(φ1−φ3 ) + c†
0c3ei(φ1−φ3 )

+ c†
2c1e−i(φ1−φ3 ) + c†

3c0e−i(φ1−φ3 )
)

(F8)

takes the system out of equilibrium. To reach steady state,
the Hamiltonian must regain the symmetry via one of two
mechanisms.

(1) The decay of the photon number of the auxiliary mode
to zero, nz = 0.

(2) The phases of the bosons adjusting to satisfy the con-
dition φ1 − φ3 ≡ 0.

The oscillatory phase accompanies the system’s dynamics
until one of these two possibilities is realized. Below, we
discuss both scenarios in more detail.

APPENDIX G: RELAXATION DYNAMICS AT LATE TIMES

In this Appendix, we study the properties of the system at
late times and evaluate the time T at which the system restores
its symmetry.

To restore the explicitly broken symmetry, one needs to
tune the emergent phases in front of the auxiliary photons,
φc, and pseudospins, φi − φ j , to zero. This procedure can
be trivially done when the corresponding occupation of the
photon or atomic levels equals zero due to the ambiguity of
the phase of these complex numbers when their magnitude
is zero. In the former case, the symmetry restoration occurs
asymptotically at time T → ∞ through the slow decay of the
cavity photon magnitude induced by the dissipation κ . In line
with this scenario, the dynamics, when expressed in terms of
the two cavity fields, resemble the behavior depicted in the
middle panels of Figs. 6(c) and 6(d) during the course of the
experiment.

According to the second mechanism, which takes a finite
time T , during dynamics all particles slowly transfer to the
lowest energy pair of ground and excited momentum states.

For instance, if ωs > 0, all particles will redistribute to lev-
els |0〉 and |1〉 resulting into 〈c2(T )〉 = 0 and 〈c3(T )〉 = 0.
Then, when states with higher energy become empty, the
explicitly broken symmetry of the system can be restored.
Eventually, the phases of both cavity fields remain constant,
and both fields start approaching true superradiant states
with ny �= 0 and nz �= 0, cf. the right panels in Figs. 6(c)
and 6(d).

Figure 10 shows the scaling of the relaxation time with (a)
the fraction of particles at t = 0 in state |0〉, and (b) with the
strength of the smaller of the two couplings, i.e., auxiliary one.
Here, we prepare the system in the superradiant steady state
with ηs > ηc

s , and then rapidly ramp the second coupling η.
In these simulations we consider the mode az as the auxiliary
one for simplicity because its critical coupling depends on μ.
The finite time T corresponds to the scenario when symmetry
restoration takes place through the transferring of all particles
to the lower energy pair of ground and excited momentum
states. For instance, for ωs > 0, the more particles are initially
prepared in state |2〉, the longer is T [cf. Fig. 10(a)]. Assuming
that the speed of particles transferring from levels |2〉 and
|3〉 remains constant and depends solely on the couplings
and detunings, the relaxation time will be proportional to
the population of the zero momentum state with the higher
energy. One would estimate in this case T ∝ (1 − μ) as we
confirm numerically in panel (a). At the same time, when
ωs < 0, the pair of states that have smaller energy are |2〉
and |1〉, and the relaxation time scales like T ∝ μ. This can
also be seen from the Hamiltonian Htot which in the normal
state is invariant under the transformation μ ↔ 1 − μ when
ωs → −ωs.

On the other hand, the symmetry restoration time scales
with the coupling to the auxiliary mode [η in Fig. 10(b)] like
T ∝ exp(−η). It means that the closer this auxiliary coupling
is to its critical value, the faster the symmetry is restored.
Consequently, operating within a parameter regime where the
coupling to the auxiliary mode remains significantly below the
critical threshold, yet remains finite, gives us the opportunity
to probe the atomic dynamics within the system with minimal
disruption.
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Below we consider a few fine-tuned limits in which a
stationary state can not be reached within the operational
timescales of the experiment.

1. κ/ωc → ∞ limit

The relaxation time T depends on the strength of the
photon-matter coupling with the auxiliary mode; namely,
the stronger the interaction, the faster the relaxation [see
Fig. 10(b)]. On the other hand, the strength of this cou-
pling controls the population of the auxiliary cavity mode,
n ∝ η2/(ω2

c + κ2). As such, it is instructive to explore the
regime where η/

√
ω2

c + κ2 is large enough to produce suf-
ficiently large cavity field amplitude to enable detections of
oscillations in the auxiliary cavity field. We would also like
to simultaneously satisfy the condition η � ηc so that the
system’s restoration of its symmetry becomes protracted to
exponentially late times. These conditions can be satisfied
simultaneously when ωc � κ , a regime in which the criti-
cal coupling diverges like

√
ω0κ2/ωc. The extreme case of

ωc = 0 corresponds to the critical coupling tending to infinity.
Counter-intuitively, in this case, one enters a strong dissipa-
tion regime which prevents the relaxation.

The main idea of why the strong dissipation regime pre-
vents relaxation can be explained as follows: according to
the Hamiltonian Htot [Eq. (8)], pseudospins are coupled to
the real quadrature of the cavity fields, a + a†. If the cav-
ity fields are coupled to the x−components of pseudospins,
then the cavity field is imaginary, ay ∝ 2Jx/(−iκ ) (or az ∝
2Sx/(−iκ )). Here the cavity decay rate causes a phase shift
φ

y,z
κ = tan−1(−κ/ωy,z ) of the field scattered into the cavity by

the atomic system [11]. Thus, by setting the cavity detuning
ωy or ωz to be much smaller than κ , one can make the cor-
responding cavity field imaginary and eliminate its feedback
on the spin dynamics. For instance, when ηs > ηc

s , η < ηc

and ωy �= 0, ωz → 0 [blue region in Fig. 6(a)], ay approaches
its steady state value, while az ≈ −2η(Sx

03 + Sx
12)/(−iκ ) os-

cillates together with the precession of the pseudospin Sx.

However, as (az + a†
z ) → 0, the nonstationary behavior of the

cavity field does not impact the dynamics of pseudospin Sx. In
other words, subsystem Hs constantly induces precession for
pseudospin Sx (and thus oscillations to the cavity mode az)
due to the explicit symmetry breaking; it does not, however,
experience feedback from subsystem H. As a result, the lack
of reciprocal interaction between the two subsystems prevents
the system from reaching a steady state, and oscillations in the
auxiliary cavity mode az survive for an arbitrarily long time.

When ηs < ηc
s and η > ηc [red region in the phase diagram

in Fig. 6(a)], one should set ωy � κ to prevent the system
from reaching its steady state. In this case, the cavity mode
ay will exhibit oscillations around zero for an arbitrarily long
time, reflecting the precession of pseudospin Jx. The cavity
mode az, in turn, will approach its steady state value, de-
termined solely by the Hamiltonian H [Eq. (2)] and initial
conditions.

Interestingly, in the opposite limit where ωc � κ , the
system can also experience slow relaxation. The critical cou-
pling scales like ηc ∝ √

ω0ωc → ∞; it is easier to keep the
coupling strongly subcritical while still large enough to en-
able read-out. However, as the cavity occupation scales as

n ∝ 1/ω2
c , in order to keep n nonzero, it is essential to keep

the cavity detuning finite.

2. ωs → 0 limit

One can recognize from the level scheme in Fig. 2(b) that
when ωs = 0, the two ground states in the momentum vari-
ables, |0〉, |2〉, and the two excited ones |1〉, |3〉 are degenerate.
In this case, the Hamiltonian acquires an additional symmetry
under exchange between ground or excited states, namely
c1 ↔ c3, c0 ↔ c2 (see Hamiltonian in the bosonic representa-
tion in Appendix A). As a consequence, the dynamics for the
pair of fields c1, c3 (and likewise for c0, c2) occur at the same
frequencies c1, c3 ∝ exp(i�t ). Accordingly, the phase that ex-
plicitly breaks the symmetry of the Hamiltonian, ±(φ1 − φ3),
remains constant over time, determined solely by the initial
conditions (which can be arbitrary and are not restricted in
general). Thus, after the quench, both spins Jx and Sx gain
fixed time values, and one can observe superradiance in both
cavity modes simultaneously. Interestingly, in this case, ny

and nz do not oscillate over time, and nonstationary behavior
can only be observed at the level of the atomic observables.
In particular, particles redistribute between different excited
or ground momentum states so that the overall number of
particles in the upper and lower spinor components oscillates
over time around a common time-averaged value.

APPENDIX H: THREE-LEVEL MODEL

We now revisit the possibility of probing the system’s dy-
namics with the auxiliary cavity field in a three-level system.
As mentioned in the main text, such a model includes sin-
gle ground momentum state |2〉, and two excited momentum
states |1〉, |3〉, where we keep notation as in the Eq. (1).
Such Hamiltonian can be implemented when fixing ep = ex

in Eq. (A7) and considering resonant spin changing and spin-
dependent processes, cf. implementations in Refs. [11,36].
Here we omit the implementation of the three-level model,
concentrating mostly on the physical phenomena, compared
to the four-level model in Eq. (8). To do so, we study the
effect of spontaneous symmetry breaking in one sector of the
Hamiltonian on the dynamical properties in another sector.
As we demonstrate below, explicit symmetry breaking in the
self-ordered phase(s) is not pronounced in the three-level case,
thereby resulting in trivial system dynamics.

The Hamiltonian of our three-level model reads

H3 = ωya†
yay + ωza

†
z az + ω0(c†

1c1 + c†
3c3) + ωs(c

†
2c2 + c†

3c3)

+ η(az + a†
z )(c†

1c2 + c†
2c1) + ηs(ay + a†

y )(c†
2c3 + c†

3c2).
(H1)

Let us consider the effect of the spontaneous symmetry break-
ing in one subsystem on the dynamics of another, similarly
as it is done in Appendix F. Firstly, we consider a steady
state when ηs > ηc

s and η = 0. In this case, the symmetry of a
subsystem involving photon mode ay is broken, meaning there
exist two solutions, satisfying

ay → −ay, (c†
2c3 + c†

3c2) → −(c†
2c3 + c†

3c2). (H2)
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Applying transformation (12), we can see that such transfor-
mation

c†
2c3 + c†

3c2 → c†
2c3ei(φ2−φ3 ) + c†

3c2ei(φ3−φ2 )

= −(
c†

2c3 + c†
3c2

)
(H3)

sets the following constraints on relative phases:

φ2 − φ3 = π ± 2πm. (H4)

Note that there are no restrictions on the phase φ1 because
photon mode ay is not coupled to the level |1〉. As such, mak-
ing the second coupling, η, nonzero does not induce explicit
symmetry breaking. This fact can be seen by applying the
transformation (12) to this term:(

aze
−iφz + a†

z eiφz
)(

c†
1c2ei(φ1−φ2 ) + c†

2c1e−i(φ1−φ2 ))
∝ 〈c1〉 ≡ 0. (H5)

The phase of the boson field c1 can always compensate for
the restricted phase of c2. Note that we assume that level
|1〉 is unoccupied before increasing η, and thus the phase of
c1 can be changed arbitrarily. The system is therefore stable

against quenches η < ηc. This behavior arises from the fact
that each photon mode is not coupled to all atomic levels;
symmetry breaking in one interaction term does not imply
explicit symmetry breaking in another. More precisely, when
ηs > ηc

s and η = 0, one finds that

c†
1c1 = 0,

c†
2c2 = (1 − 2Jz )

2
, (H6)

c†
3c3 = (1 + 2Jz )

2
,

and after the quench of η, we get az ∝ (c†
1c2 + c†

2c1) = 0
and the subsystem remains in steady state as long as η/ηc <

ηs/η
c
s . The absence of restrictions on phase φ1 makes it impos-

sible to induce competing conditions and push the subsystem
out of equilibrium. Indeed, in the case of four levels, one
cannot manipulate the phase of a single boson separately,
thereby resulting in the existence of long-lived oscillations of
the auxiliary cavity field and the precession of corresponding
pseudospins.
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