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In this study, we discuss a type of bulk-boundary correspondence, which holds for topological insulators
and superconductors when the parity-time (PT ) and/or parity-particle-hole (PC) symmetry are present. In
these systems, even when the bulk topology is nontrivial, the edge spectrum is generally gapped, and thus
the conventional bulk-boundary correspondence does not hold. We find that, instead of the edge spectrum,
the single-particle entanglement spectrum becomes gapless when the bulk topology is nontrivial: i.e., the
bulk-entanglement spectrum correspondence holds in PT - and/or PC-symmetric topological insulators and
superconductors. After showing the correspondence using K-theoretic approach, we provide concrete models for
each symmetry class up to three dimensions where nontrivial topology because of PT and/or PC is expected.
An implication of our results is that, when the bulk topology under PT and/or PC symmetry is nontrivial, the
noninteracting many-body entanglement spectrum is multiply degenerate in one dimension and is gapless in two
or higher dimensions.
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I. INTRODUCTION

Recently emerging platforms of two-dimensional materials
such as twisted bilayer graphene and other van der Waals
layered materials [1–3] have led to interests in understanding
properties of materials involving spatial inversion, i.e., parity
symmetry. Indeed, new classes of two-dimensional topologi-
cal insulators such as the Euler insulators and Stiefel-Whitney
insulators are proposed [4–11], where the topology is pro-
tected by the PT symmetry and the topological invariants
are distinct from more conventional Chern numbers and Z2

topological invariants [12,13]. Here, P is the parity symme-
try and T is the time-reversal symmetry; the topology of
PT -symmetric insulators are protected as long as the prod-
uct of these two symmetries are kept. Further extension and
generalization of such topological insulators and supercon-
ductors have been found. For example, PC symmetry, where
C is the particle-hole symmetry, can also lead to new classes
of topological phases [14–16]. In the context of engineered
quantum materials, such PT - and PC-symmetric topological
insulators have also been studied experimentally, revealing
various unique topological features [8,11,17–19].

One distinct feature of PT - and PC-symmetric topological
insulators and superconductors is the lack of the ordinary
bulk-boundary correspondence: i.e., the absence of edge
physics reflecting the nontrivial bulk topology. Even when
the bulk topology is nontrivial, the edge spectrum is generally
gapped in such systems. This violation of the bulk-boundary
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correspondence is because the PT and PC symmetries are
generally broken at the edge of the system because of the
spatially nonlocal nature of the parity operation. The lack
of manifest edge physics in PT - or PC-symmetric topologi-
cal insulators and superconductors puts severe constraints on
experimental access to the topological physics of these ma-
terials. Indeed, so far the physical manifestation of such PT -
or PC-symmetric topological insulators and superconductors
are restricted to direct detection of the bulk properties of
the material [8,11,17,18]. Given the important role the edge
physics played in the case of ordinary topological insula-
tors and superconductors, it is desirable to find topological
features of PT - or PC-symmetric topological insulators and
superconductors related to edge properties.

In previous studies, parity-symmetric topological insula-
tors were found to have no direct bulk-edge correspondence
but instead show distinct features in the so-called entangle-
ment spectrum. entanglement spectrum is a property of the
reduced density matrix of the system when the system is cut in
two (or more) and integrating out a part of the system [20–22].
The full many-body entanglement spectrum of noninteracting
fermions can be computed from the so-called single-particle
entanglement spectrum, which is essentially the spectrum of
a correlation matrix [23–26]. It was found that when the
bulk topology is nontrivial in the presence of the parity sym-
metry, the single-particle entanglement spectrum is gapless
around zero energy, and the corresponding eigenvectors of
these gapless modes are localized around the cut of the system
introduced to define the entanglement [27–30].

We find that a similar correspondence between the bulk
topology and the single-particle entanglement spectrum holds
for a much more general setup of all symmetry classes of
PT - and PC-symmetric topological insulators and super-
conductors in all dimensions. The PT - and PC-symmetric
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topological insulators and superconductors are classified into
ten distinct classes called AZ + I classification [16] according
to the presence and absence of PT and PC symmetries. In
our previous paper, we have discussed the bulk-entanglement
spectrum correspondence in two dimensions when only PT
with the property (PT )2 = +1 is present, which is the class
AI′ in the AZ + I classification [31]. The goal of this paper is
to show that this correspondence can be extended to all classes
and dimensions.

Here is the outline of this paper. In Sec. II, we review and
summarize the classification of the bulk topology and gapless
modes of both AZ and AZ + I classification from the per-
spective of K theory. Using the results of the classification, in
Sec. III, we prove the bulk-entanglement spectrum correspon-
dence for all nontrivial classes of the AZ + I classification.
In Sec. IV, we construct models for all nontrivial Z2 classes
of the AZ + I classification up to three spatial dimensions,
and explicitly confirm the bulk-entanglement spectrum cor-
respondence. We note that for symmetry classes described
by Z or 2Z topological invariants, the bulk-entanglement
spectrum correspondence reduces to the ordinary bulk-edge
correspondence. In Sec. V, we also extend our analysis of
the bulk-entanglement spectrum correspondence for fragile
insulators, which are topological insulators not robust against
adding and mixing trivial bands below the Fermi level. In
Sec. VI, we relate the single-particle entanglement spectrum
to the many-body entanglement spectrum to find implica-
tions of the bulk-entanglement spectrum correspondence on
the multiplicity and the gapless nature of the many-body en-
tanglement spectrum. We finally give conclusion and future
prospects in Sec. VII. Details of some calculations are given
in the Appendices.

II. CLASSIFICATION OF TOPOLOGICAL PHASES
AND STABLE GAPLESS MODES

In this section, we briefly review and summarize the classi-
fication of topological phases and stable gapless modes under
the symmetry classes of the AZ and AZ + I classification.
Although our goal is to understand the entanglement spectrum
under the symmetry classes of AZ + I classification, here we
discuss both AZ and AZ + I classifications because many
of the arguments go in parallel; in this way, similarities and
differences between AZ and AZ + I become more evident.

The AZ classification is a symmetry classification based
on the presence or absence of three internal symmetries: time-
reversal (T ), particle-hole (C), and chiral (or sublattice) (�)
symmetry. Here, T and C are antiunitary symmetries, whereas
� is a unitary symmetry. Presence of each symmetry implies
the following conditions on the Bloch Hamiltonian H (k):

T H (k)T −1 = H (−k), CH (k)C−1 = −H (−k),

�H (k)�−1 = −H (k). (1)

Depending on the presence or absence of these three sym-
metries, there are ten different classes of Bloch Hamiltonians
as shown in Table I. Symmetry classes without T and C are
called complex classes, which are classes A and AIII in the
table. On the other hand, classes that possess at least one of T

TABLE I. Definition of (left) AZ and (right) AZ + I classes. In
columns under T , C, PT , and PC, + denotes that the square of the
corresponding symmetry is +1, whereas – means that the square is
−1, and 0 means the absence of the corresponding symmetry. In
columns under �, 1 denotes the existence and 0 denotes the absence
of the chiral symmetry �.

s AZ T C � s AZ + I PT PC �

0 A 0 0 0 0 A 0 0 0
1 AIII 0 0 1 1 AIII 0 0 1

0 AI + 0 0 0 AI′ + 0 0
1 BDI + + 1 1 BDI′ + + 1
2 D 0 + 0 2 D′ 0 + 0
3 DIII – + 1 3 DIII′ – + 1
4 AII – 0 0 4 AII′ – 0 0
5 CII – – 1 5 CII′ – – 1
6 C 0 – 0 6 C′ 0 – 0
7 CI + – 1 7 CI′ + – 1

or C are called real classes. There are eight real classes, and
we label them with an integer s (mod 8) as in the table.

The AZ + I classification is a symmetry classification in
which the antiunitary symmetries T and C of the AZ clas-
sification are replaced by PT and PC, which are composite
operations with the spatial inversion operation P. The defini-
tion of the chiral symmetry � remains the same. The presence
of each symmetry implies the following conditions on the
Bloch Hamiltonian H (k):

(PT )H (k)(PT )−1 = H (k), (PC)H (k)(PC)−1 = −H (k).

(2)

We note that, unlike T and C operators alone, the combina-
tions PT and PC do not change the sign of k. Also in the
AZ + I classification, depending on the presence or absence
of PT , PC, and �, Bloch Hamiltonians are classified into ten
classes as shown in Table I. We note that classes A and AIII
are the same between AZ and AZ + I classifications, because
the chiral symmetry � is common for both AZ and AZ + I
classifications. Classes with either PT or PC are called real
AZ + I classes. There are eight real AZ + I classes; we again
label them by an integer s (mod 8). It is in these real classes
where the difference between AZ and AZ + I classifications
appear. The goal of the paper is to clarify the bulk-boundary
correspondence of the real AZ + I classes through the entan-
glement spectrum.

A. Classification of gapped topological phases

Classification of stable gapped topological phases for free
fermions is known for both real AZ symmetry classes [32–34]
and real AZ + I symmetry classes [16,35]. In Table II, we pro-
vide the classification table up to three dimensions. Derivation
of the classification table for AZ classes goes back to Ref.
[33]. The classification table for real AZ + I classes can be
formally obtained as a special case of the classification table in
Ref. [35]. In the terminology of Ref. [35], the classification of
the dAZ+I -dimensional Hamiltonian of the real AZ + I class
is formally equivalent to the classification of the Hamilto-
nian of the real AZ class, which has 0 momentum variable
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TABLE II. Topological classification tables for gapped systems for real AZ and real AZ + I classes.

s real AZ d = 0 d = 1 d = 2 d = 3 s real AZ + I d = 0 d = 1 d = 2 d = 3

0 AI Z 0 0 0 0 AI′ Z Z2 Z2 0
1 BDI Z2 Z 0 0 1 BDI′ Z2 Z2 0 2Z
2 D Z2 Z2 Z 0 2 D′ Z2 0 2Z 0
3 DIII 0 Z2 Z2 Z 3 DIII′ 0 2Z 0 0
4 AII 2Z 0 Z2 Z2 4 AII′ 2Z 0 0 0
5 CII 0 2Z 0 Z2 5 CII′ 0 0 0 Z
6 C 0 0 2Z 0 6 C′ 0 0 Z Z2

7 CI 0 0 0 2Z 7 CI′ 0 Z Z2 Z2

(d = 0) and dAZ+I position variables (D = dAZ+I ) [36]. The
real AZ + I class can also be considered as a complex
AZ class with an additional order-two antiunitary symmetry,
which is a special case of Sec. III B of Ref. [37].

One can notice that there is a structure, or periodicity, in
the classification table; for AZ symmetry classes, same groups
align along diagonal direction, whereas for AZ + I symmetry
classes, antidiagonal alignment appears. Since we will make
use of this periodicity upon deriving the bulk-boundary corre-
spondence, we explain this periodicity in more detail below.

The periodicity of the classification table can be obtained
following the method presented in Ref. [35], which we now
briefly review, for both real AZ and real AZ + I classifica-
tions. The Bloch Hamiltonian of a d-dimensional periodic
lattice system is defined on a base space spanned by mo-
mentum k, which takes values in a d-dimensional Brillouin
zone T d . As in Refs. [33,35], we will simplify the topological
classification by treating the base space as a sphere Sd . This
simplification is equivalent to focusing on the strong topolog-
ical phases intrinsic to d-dimensional systems and ignoring
the so-called weak topological phases, which originate from
the lower-dimensional topology.

In this section, we also focus on stable equivalence, that
is, to study topological phases robust against adding trivial
energy bands. Focusing on stable equivalence corresponds
to ignoring topological phases called fragile [38] and deli-
cate [39] topological phases, which become trivial by adding
trivial bands. Later in Sec. V, we extend our analysis of the
bulk-edge correspondence to the cases of fragile topological
phases.

We denote the equivalence class of Hamiltonians that are
stably equivalent to H by [H]. In the following, without loss of
generality, we assume that the Hamiltonian has an energy gap
at the Fermi energy set at E = 0. The addition of two equiv-
alence classes is defined as [H1] + [H2] ≡ [H1 ⊕ H2], where
⊕ means the direct sum of the matrices. The additive inverse
for [H] is given by [−H], and [H ⊕ (−H )] is always the
identity element [0] representing a trivial Hamiltonian, which
follows from the observation that the sum of occupied and
unoccupied bands yields trivial bands. Subtraction is defined
as [H1] − [H2] ≡ [H1 ⊕ (−H2)]. Then, the stable equivalent
classes of the Hamiltonian form an Abelian group called the
K group [35,37]. The K group describes the classification of
stable topological phases. For a more detailed discussion of K
group, see Ref. [40].

We now show the periodicity in the classification ta-
ble, which connects K groups in higher dimensions to

those in lower dimensions. First, we introduce dimensional-
raising map that sends a d-dimensional Hamiltonian H (d )(k)
to a (d + 1)-dimensional Hamiltonian H (d+1)(k, θ ). This
new Hamiltonian depends on k ∈ Sd as well as an addi-
tional variable θ defined in 0 � θ � π . This is valid for
both AZ and AZ + I classifications. The definition of the
dimensional-raising map differs between Hamiltonians with
chiral symmetry (H (d )

c ) and Hamiltonians without chiral sym-
metry (H (d )

nc ). Letting � be the chiral symmetry operation of
H (d )

c , the dimensional-raising map for H (d )
c is defined as

H (d+1)
nc (k, θ ) = sin θH (d )

c (k) + cos θ�, (3)

and that for H (d )
nc is defined as

H (d+1)
c (k, θ ) = sin θH (d )

nc (k) ⊗ τz + cos θI ⊗ τa, (4)

where τi (i = x, y, z) are Pauli matrices. In Eq. (4), τa = τx

or τy is chosen to preserve the symmetry of H (d )
nc (k). At

θ = 0 and θ = π , the mapped Hamiltonians H (d+1)
nc (k, θ ) and

H (d+1)
c (k, θ ) are independent of k. This means that the base

space of the mapped Hamiltonian (k, θ ) ∈ Sd × [0, π ] can
be identified as the suspension SSd = Sd+1, by contracting
Sd × {0} to one point and similarly Sd × {π} to another point.
Thus the new Hamiltonian is naturally defined on a (d + 1)-
dimensional sphere Sd+1.

The dimensional-raising maps eliminate or add the chiral
symmetry, and shifts the AZ or AZ + I class by one. For the
complex AZ and AZ + I classes, if the original Hamiltonian
belongs to class AIII, i.e., has only a chiral symmetry, the
mapped Hamiltonian has no symmetry, i.e., belongs to class
A. On the other hand, if the original Hamiltonian has no
symmetry and belongs to class A, the mapped Hamiltonian
has chiral symmetry � = I ⊗ iτzτa and belongs to class AIII.
For the real AZ or AZ + I classes, carefully following the
change of symmetry classes as shown in Appendix A, one can
show that the real AZ class shifts from s to s + 1, and the real
AZ + I class shifts from s to s − 1 (mod 8).

In summary, Eqs. (3) and (4) define a map that sends a
d-dimensional Hamiltonian H (d )(k) with class s to a (d +
1)-dimensional Hamiltonian H (d+1)(k, θ ) with class (s +
1) or (s − 1). Since for any (k, θ ) ∈ Sd × [0, π ] the en-
ergy gaps of the mapped Hamiltonians H (d+1)

nc (k, θ ) and
H (d+1)

c (k, θ ) remain open, two Hamiltonians that are topo-
logically equivalent are mapped to topologically equivalent
Hamiltonians. In addition, the dimensional-raising map pre-
serves the direct sum structure of the Hamiltonian. Therefore,
the dimensional-raising map leads to a homomorphism from
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the lower-dimensional K group to the higher-dimensional K
group,

KAZ
TI (s, d ) −→ KAZ

TI (s + 1, d + 1), (5)

KAZ+I
TI (s, d ) −→ KAZ+I

TI (s − 1, d + 1). (6)

Here, KAZ(+I )
TI (s, d ) is a K group that classifies the class s

gapped Hamiltonian defined on the d-dimensional sphere Sd

under the AZ(+I) classification. Furthermore, the homomor-
phism in Eq. (5) for AZ classification has an inverse as shown
in Ref. [35], giving an isomorphism between the K groups,

KAZ
TI (s, d ) = KAZ

TI (s + 1, d + 1). (7)

Note that the dimensional-raising map itself generally does
not have an inverse map. However, any (d + 1)-dimensional
Hamiltonian can be continuously transformed into an image
of the dimensional-raising map using stable equivalence [35].

Similarly, the inverse can also be constructed for the homo-
morphism in Eq. (6) for AZ + I classification, by following
the formalism for the case of position variables presented
in Ref. [35]. This leads to the isomorphism between the K
groups,

KAZ+I
TI (s, d ) = KAZ+I

TI (s − 1, d + 1). (8)

The relations (7) and (8) are exactly the diagonal and
antidiagonal periodicities present in the classification table for
real AZ class and real AZ + I class, respectively.

B. Stable Fermi surfaces

In order to relate bulk topology with boundary physics,
we should also obtain classification of stable gapless modes,
or stable zero-energy states. Since Fermi surface is a subset
of k space consisting of zero-energy states, the classification
of stable zero-energy states is nothing but the classification of
stable Fermi surface. The stability of the Fermi surface can
also be understood as a consequence of topology [41–43].

For the AZ classification, it is known that the following
equality holds between the group that classifies stable gapped
topological phases and the group that classifies stable Fermi
surfaces [43]:

KAZ
TI (s, d ) = KAZ

FS (s + 1, d ). (9)

Here, KAZ
FS (s + 1, d ) is the group that classifies the class

(s + 1) Fermi surface with codimension d . Since the subset
with codimension d in d-dimensional space corresponds to
points, KAZ

FS (s + 1, d ) gives the classification of point nodes
in d-dimensional space with the symmetry class (s + 1).

For the AZ + I classification, since PT and PC do not
change k, the Hamiltonian restricted to Sd−1 surrounding
the band degeneracy belongs to the gapped Hamiltonian of
AZ + I classification in the same symmetry class. Therefore,
the following equation holds:

KAZ+I
TI (s, d − 1) = KAZ+I

FS (s, d ). (10)

By combining Eqs. (8) and (10), we obtain

KAZ+I
TI (s, d ) = KAZ+I

FS (s + 1, d ), (11)

which is exactly the same as the relation for the AZ classifica-
tion Eq. (9).

We have thus obtained K groups and relations between
them for bulk Hamiltonians and Fermi surfaces for both AZ
and AZ + I symmetry classes. We will now move on to dis-
cuss the bulk-boundary correspondence.

III. BULK-BOUNDARY CORRESPONDENCE

A. AZ classes

We start from giving a short proof of the bulk-boundary
correspondence in AZ symmetry classes from the K-group
perspective [43]. Let us consider a gapped d-dimensional
system in the symmetry class s in the real AZ classification.
The topology of such Hamiltonians are given by the K-group
KAZ

TI (s, d ). We then consider imposing an open-boundary con-
dition along one direction, but keep the d − 1 directions to be
periodic (or infinitely long). The system can then be described
by a Hamiltonian parametrized by a momentum k⊥, which
is a (d − 1)-dimensional momentum perpendicular to the di-
rection where the open-boundary condition is taken. (In other
words, the momentum k⊥ is parallel to the edge.) If the length
along the direction where the open-boundary condition is ap-
plied is sufficiently long, the eigenstates localized at both ends
will hardly hybridize with each other and can be described
by independent effective Hamiltonians. Let us call one such
effective Hamiltonian, consisting of states localized at one of
these edges and parametrized by k⊥, the edge Hamiltonian.
Since the symmetries T and C are local, the edge Hamiltonian
and the bulk Hamiltonian belong to the same symmetry class
s. Since the edge Hamiltonian is (d − 1) dimensional, the
gapless modes of the edge Hamiltonian is classified by the
K-group KAZ

FS (s, d − 1).
On the other hand, by combining Eqs. (7) and (9), the

following relation holds:

KAZ
TI (s, d ) = KAZ

FS (s, d − 1), (12)

which means that the bulk gapped topological phases and the
gapless edge states share the same topological classification.
This is nothing but the statement of the bulk-boundary corre-
spondence.

For practical purposes, it would also be useful to concretely
construct the topological invariant for the bulk Hamiltonian,
which corresponds to an element in KAZ

TI (s, d ), and similarly
the topological invariant of the edge Hamiltonian, which cor-
responds to an element in KAZ

FS (s, d − 1). (For example, in
class A, one wants to find that the Chern number is equal
to the number of chiral edge modes.) For this purpose, one
can first construct a representative Hamiltonian that is the
generator of KAZ

TI (s, d ), and show that the corresponding edge
Hamiltonian is a generator of KAZ

FS (s, d − 1). General cases
can be shown by considering the direct sum of the generator
Hamiltonians. Using Dirac matrices one can obtain such a
construction [34,43].

B. AZ + I classes

Unlike AZ classification, the symmetries of AZ + I classi-
fications such as PT symmetry and PC symmetry, are position
dependent. Therefore, the edge Hamiltonian does not have
these symmetries and, in fact, does not belong to any real
AZ + I class in general. As a consequence, the ordinary
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bulk-boundary correspondence does not hold, and the edge
spectrum is generally gapped in the AZ + I symmetry classes.

Although the ordinary bulk-boundary correspondence does
not hold, we can still obtain an analog of Eq. (12) for AZ + I
classification by combining Eqs. (8) and (11),

KAZ+I
TI (s, d ) = KAZ+I

FS (s + 2, d − 1). (13)

This is one of the key results of this paper. What we are
going to show below is that, for a gapped bulk Hamiltonian,
which belongs to class s in the real AZ + I classification at
d dimensions, the corresponding stable gapless entanglement
spectrum belongs to class s + 2 in the real AZ + I classifica-
tion at d − 1 dimensions, described by the right-hand side of
Eq. (13). Equation (13) thus describes a variant of the bulk-
boundary correspondence for the real AZ + I classification,
which we call bulk-entanglement spectrum correspondence .

C. Single-particle entanglement spectrum
for general finite systems

From here, we will discuss the single-particle entangle-
ment spectrum [23,26]. For the convenience of the reader, we
will start with the many-body entanglement spectrum for non-
interacting systems. The many-body entanglement spectrum
was originally proposed as a tool for identifying topological
order [20,21]. We consider partitioning the total Hilbert space
Htot into two parts: Htot = HL ⊗ HR. The ground-state |�GS〉
can then be expressed in terms of the Schmidt decomposition,

|�GS〉 =
∑

j

λ j

∣∣ψ ( j)
L

〉 ⊗ ∣∣ψ ( j)
R

〉
. (14)

The many-body entanglement spectrum is defined by the set
{|λ j |2}. This set is equivalent to the eigenvalues of the reduced
density matrix ρL, which is given by

ρL = TrR(|�GS〉〈�GS|) =
∑

j

|λ j |2
∣∣ψ ( j)

L

〉〈
ψ

( j)
L

∣∣. (15)

The above definition of the many-body entanglement
spectrum can be applied to any many-body state. For non-
interacting fermions, as we show, we can derive a simple
expression of the many-body entanglement spectrum in terms
of the correlation functions [23], known as the single-particle
entanglement spectrum [25,27–31]. In this subsection, fol-
lowing Ref. [31], we briefly introduce the single-particle
entanglement spectrum and an emergent antisymmetry.

First, we introduce the single-particle entanglement spec-
trum for general finite systems. We consider the following
Hamiltonian:

Ĥ =
∑
i, j∈D

hi, j ĉ
†
i ĉ j . (16)

Here, i, j ∈ D are some degrees of freedom of the finite sys-
tem, such as lattice sites, orbits, and spins, and ĉ†

i (ĉi) are the
creation (annihilation) operator of a particle in the ith degree
of freedom. The elements of the Hamiltonian hi, j should obey
the Hermiticity condition hi, j = h∗

j,i. We suppose that D is a
disjoint union of A and B, that is, any element of D can be
divided into either A or B. We want to construct a single-
particle correlation function from the Hamiltonian Ĥ . For this
purpose, let us denote by H the Hamiltonian matrix whose

(i, j) component is hi, j , and denote its nth eigenvalue and the
corresponding eigenvector by En and |
(n)〉. The eigenvector
|
(n)〉 is a multicomponent vector whose length corresponds
to the total degrees of freedom in the system; we denote ith
component of |
(n)〉 by 


(n)
i . The many-body ground state

of noninteracting fermions is a single Slater determinant of
all single-particle eigenstates of Ĥ below the Fermi energy
EF = 0, which can be written as

|GS〉 =
∏

En<0

∑
i

ĉ†
i 


(n)
i |0〉, (17)

where |0〉 is the vacuum state. The correlation function of
noninteracting system is then defined by

Ccor
i, j = 〈GS|ĉ†

j ĉi|GS〉 =
∑
En<0



(n)
i 


(n)∗
j , (18)

which can also be written as

Ccor =
∑
En<0

|
(n)〉〈
(n)|. (19)

Since D is the disjoint union of A and B, the correlation matrix
Ccor, whose (i, j) component is Ccor

i, j , can be written in the
following form:

Ccor =
(

CA CAB

CBA CB

)
, (20)

where CA is a matrix made of Ccor
i, j where i and j run only

within the region A, namely CA ≡ (Ccor
i, j )|i, j∈A. Similarly, CB ≡

(Ccor
i, j )|i, j∈B, CAB ≡ (Ccor

i, j )|i∈A, j∈B, and CBA ≡ (Ccor
i, j )|i∈B, j∈A. It

can be shown that the eigenvalues of Ccor are 0 and 1, and
the eigenvalues of CA and CB are in the range [0, 1] [44].
Furthermore, the eigenvalues of CA and (I − CB), excluding 0
and 1, match exactly, including their multiplicities [45]. Let us
denote the eigenvalues of CA (or equivalently I − CB) whose
values are not equal to 0 or 1 by ξl . Let us denote the number
of such eigenvalues different from 0 or 1 by N .

As we detail in the Appendix B, the ground state of the
original Hamiltonian Ĥ can be written in the following form
in the Schmidt decomposition:

|GS〉 =
∑
{nl }

(−1)S({nl })
∏

l

ξ
nl
2

l (1 − ξl )
1−nl

2
∣∣αA

{nl }
〉 ⊗ ∣∣αB

{nl }
〉
,

(21)∣∣αA
{nl }

〉 = ∏
nA

(∑
i∈A

(
gA

nA

)
ic

†
i

)∏
l

(∑
i∈A

(
f A
l

)
ic

†
i

)nl

|0A〉,

∣∣αB
{nl }

〉 = ∏
nB

(∑
i∈B

(
gB

nB

)
ic

†
i

)∏
l

⎛⎝∑
j∈B

(
f B
l

)
jc

†
j

⎞⎠1−nl

|0B〉,

(22)

where nl ∈ {0, 1}; the set {nl} takes its value in {0, 1}N and
the summation over {nl} is for all possible values of {nl} ∈
{0, 1}N . The factor S({nl}) is the sign factor that can arise from
the commutation of creation operators. The state |0A(B)〉 is the
vacuum state of the region A (B), (gA(B)

nA(B)
)i is the ith component

of the nA(B)th eigenvector of CA(B) with the eigenvalue 1, and
( f A(B)

l )i is the ith component of the eigenvector of CA(B) with
the eigenvalue ξl .
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Therefore, the many-body entanglement spectrum of
|GS〉 is

λ{nl } =
∏

l

ξ
nl
l (1 − ξl )

1−nl . (23)

The many-body entanglement spectrum {λ{nl }} is thus com-
pletely determined by {ξl}.

The correlation matrix Ccor and the flattened Hamiltonian
Hflat are also intimately related. The flattened Hamiltonian is
the Hamiltonian obtained by taking the original Hamiltonian
and deforming it so that the eigenvalues below 0 go to −1/2
and the eigenvalues above 0 go to +1/2. The flattened Hamil-
tonian is related to the correlation function via

Hflat = 1
2I − Ccor, (24)

where I is the identity matrix whose dimension equals to
Ccor. The eigenvalues of the flattened Hamiltonian are thus
±1/2, and its restriction to region A, Hflat,A = (Hflat)i, j |i, j∈A,
have eigenvalues in the range [−1/2,+1/2]. The eigenvalues
{εl} of Hflat,A are 1/2 − ξl or ±1/2. Using εl = 1/2 − ξl , the
many-body entanglement spectrum of |GS〉 can be written as

λ{nl } =
∏

l

(1/2 − εl )
nl (1/2 + εl )

1−nl . (25)

Thus, the eigenvalues {ξl} of CA and the eigenvalues {εl} of
Hflat,A contain the equivalent information when reconstruct-
ing the many-body entanglement spectrum. (We note that
we defined {ξl} not including 0 and 1, but we will include
±1/2 in {εl} for notational convenience.) In the subsequent
discussions, unless otherwise specified, we call the spectrum
{εl} of Hflat,A as the single-particle entanglement spectrum, or
simply the entanglement spectrum.

D. Single-particle entanglement spectrum for finite lattice
systems with open-boundary condition

We now explain how to calculate the entanglement spec-
trum for a finite lattice system. In our previous study Ref. [31],
to calculate the entanglement spectrum, we considered a finite
system with the periodic boundary condition imposed in all
directions, as shown in Fig. 1(a) [46]. In this paper, we choose
to apply the open-boundary condition in one direction, which
we take to be x1 direction, upon defining the entanglement
spectrum; the situation is schematically shown in Fig. 1(b)
[29]. Upon calculating the entanglement spectrum, we need
to “cut” the system in two. If we apply the periodic boundary
condition in x1 direction, we need to have two cuts, whereas
if we apply the open-boundary condition, we only need one
cut (Fig. 1). Both approaches, either periodic or open along x1

direction, give equivalent results, but since the former (peri-
odic) approach has two cuts rather than one cut for the latter
(open), the entanglement spectrum is doubled in the former
approach. In the approach we take here, which is to apply
the open-boundary condition along x1 direction, the resulting
entanglement spectrum has contributions solely from one cut,
which we find to be more convenient.

The single-particle entanglement spectrum for the finite
lattice system with open-boundary condition is calculated
by the following process. First, let the Hamiltonian of the
open-boundary condition in the x1 direction be H (k⊥), where

FIG. 1. Conceptual figure of finite lattice systems and en-
tanglement cuts, featuring (a) periodic boundary condition and
(b) open-boundary condition along x1 direction. Each circle repre-
sents a site, square boxes denote unit cells, and red-dashed lines
indicate entanglement cuts. Since there are two entanglement cuts
in (a), approximately twice as many states contribute to the entangle-
ment spectrum compared to (b). Thus, in a sense, the entanglement
spectrum of (a) can be seen as “double” of that of (b).

k⊥ is the wave vector perpendicular to the x1 direction, and
find its eigenvalues and eigenstates. Now, take eigenstates
whose eigenvalues are less than the Fermi energy (which is
set to zero), and construct the projection Pocc(k⊥) onto the
eigenspace spanned by these eigenstates. Then, we define the
flattened Hamiltonian Hflat (k⊥) by

Hflat (k⊥) ≡ 1
2I − Pocc(k⊥). (26)

We assume that, as schematically shown in Fig. 1(b), the
lattice is divided into two parts with the equal length; part
“A” for 1 � x1 � L1/2 and part “B” for 1 + L1/2 � x1 � L1,
where L1, the number of unit cells in x1 direction, is assumed
to be an even integer. Here, the two parts are made the same
length to preserve PT and PC symmetry, as will be discussed
in the following subsection. We express Hflat (k⊥) in the fol-
lowing form:

Hflat (k⊥) =
(

Hflat,A(k⊥) Hflat,AB(k⊥)

Hflat,BA(k⊥) Hflat,B(k⊥)

)
, (27)

where, for instance, Hflat,AB(k⊥) is a matrix formed by restrict-
ing [Hflat (k⊥)]x1α,x′

1β
to 1 � x1 � L1/2 and 1 + L1/2 � x′

1 �
L1. The eigenvalues of Hflat,A(k⊥) provide the single-particle
entanglement spectrum of the region A.

As we show in the Appendix C, an operator �BA defined
below provides an important antisymmetry,

�BA ≡
∑

n for εn �=±1/2

|φn〉〈ψn|, (28)

|φn〉 ≡ −Hflat,BA(k⊥)√
1/4 − ε2

n

|ψn〉, (29)

where |ψn〉 are the normalized eigenstates of Hflat,A(k⊥)
with the eigenvalues εn �= ±1/2. This operator defines
an “emergent antisymmetry” because the relation
Hflat,B(k⊥)�BA|ψn〉 = −εn�BA|ψn〉 holds. We note that
|φn〉 = �BA|ψn〉 is a normalized eigenstate of Hflat,B(k⊥).
Thus, the operator �BA acting on an eigenstate of Hflat,A(k⊥)
gives an eigenstate of Hflat,B(k⊥) with the opposite eigenvalue.
It is useful to define an operator �, which acts on the entire
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Hilbert space of both regions A and B by

� ≡
(

0 �AB

�BA 0

)
, (30)

where �AB ≡ �
†
BA is an operator, which transforms an eigen-

state of Hflat,B(k⊥) into that of Hflat,A(k⊥) with the opposite
eigenvalue. As we show in the next subsection, the compo-
sition of the PT and PC symmetries and the operator �BA

gives the emergent symmetry of Hflat,A, which determines the
effective AZ + I class of the entanglement spectrum.

E. Effective AZ + I class of the entanglement spectrum

In this subsection, we discuss symmetry properties of
Hflat,A(k⊥). Since we will be interested in eigenvalues εn �=
±1/2, in this subsection we restrict the domain of Hflat,A(k⊥)
to its eigenspace with eigenvalues εn �= ±1/2 [47]. We first
note that PT and PC symmetries present in the original
Hamiltonian, with the entanglement cut at the center of in-
version, swap subsystems A and B. The PT and PC operators
can then be written in the following block-diagonal forms:

PT =
(

0 (PT )AB

(PT )BA 0

)
, PC =

(
0 (PC)AB

(PC)BA 0

)
.

(31)

The off-diagonal parts (PT )BA and (PC)BA transform the
eigenstates of Hflat,A(k⊥) into those of Hflat,B(k⊥) (for more
details, see Appendix D). The properties of PT and � imply
that their composite operations PT � and PC�, restricted to
region A (B), transfer eigenstates of Hflat,A(B)(k⊥) into the
eigenstates of itself. Since PT commutes and � anticommutes
with the Hamiltonian, the product PT � restricted to region A
(B) is the antisymmetry of Hflat,A(B)(k⊥). Similarly, PC� is
the symmetry of Hflat,A(B)(k⊥). Furthermore, since P and �

are linear operators, and T and C are antilinear operators, the
composite operations PT � and PC� are antilinear operators.
In summary, PT � behave in a PC-like manner, and PC�

behave in a PT -like manner, respectively.
As detailed in Appendix D, � commutes and anticom-

mutes with PT and PC respectively, satisfying [PT, �] = 0
and {PC, �} = 0. Given that �2 behaves as an identity matrix
for the states with εn( �= ±1/2), it follows that (PT �)2 =
(PT )2 and (PC�)2 = −(PC)2. As a result, the AZ + I class
of Hflat,A(k⊥) is uniquely determined from the AZ + I class
of the original Hamiltonian. By calculating the squared values
of PT � and PC� for each class, we find how the AZ + I
symmetry class of Hflat,A(k⊥) shifts from that of the original
Hamiltonian, as summarized in Table III. In summary, when
the AZ + I class of the original bulk Hamiltonian is repre-
sented by s (mod 8), that of Hflat,A(k⊥) is (s + 2) (mod 8).

F. Bulk-boundary correspondence
in the entanglement spectrum

Finally, we show a variant of bulk-boundary correspon-
dence, which holds between the bulk topology and the
entanglement spectrum. There exists a relation between
the d-dimensional class s gapped Hamiltonians in AZ + I
classification and (d − 1)-dimensional class s + 2 gapless
Hamiltonians in AZ + I classification as derived in Eq. (13),

TABLE III. AZ + I symmetry classes of bulk and effective edge
Hamiltonian of the entanglement spectrum. The order of the third and
fourth columns is based on the fact that PC� and PT � are symmetric
and antisymmetric, respectively, and behave in a PT -like and PC-like
manner, respectively.

PT PC PC� PT � � Bulk class ES class

+ 0 0 + 0 AI′ → D′

+ + – + 1 BDI′ → DIII′

0 + – 0 0 D′ → AII′

– + – – 1 DIII′ → CII′

– 0 0 – 0 AII′ → C′

– – + – 1 CII′ → CI′

0 – + 0 0 C′ → AI′

+ – + + 1 CI′ → BDI′

which we rewrite here,

KAZ+I
TI (s, d ) = KAZ+I

FS (s + 2, d − 1). (32)

As shown in the previous subsection, within the framework of
the AZ + I classification, for a bulk Hamiltonian belonging
to a d-dimensional class s, the single-particle entanglement
Hamiltonian Hflat,A(k⊥) belongs to (d − 1)-dimensional class
(s + 2). Therefore, KAZ+I

FS (s + 2, d − 1) can be considered as
a classification of gapless single-particle entanglement spec-
trum for the d-dimensional bulk insulator of class s. Then, the
above relation means that the classification of the bulk gapped
topological phases and the classification of the gapless single
particle entanglement spectra are described by the same K
group. We can thus say that there is a “bulk-edge correspon-
dence” between the bulk Hamiltonian and the entanglement
spectrum for the real AZ + I symmetry classes; we call this
variant of the bulk-edge correspondence as bulk-entanglement
spectrum correspondence .

In the next section, we explicitly construct models and
calculate their entanglement spectrum for spatial dimensions
up to three to demonstrate this bulk-entanglement spectrum
correspondence.

IV. MODELS

We now construct explicit examples of nontrivial topologi-
cal phases within the AZ + I classification and calculate their
entanglement spectra. We first note that, when the K group is
Z for some symmetry class, the topology of these phases are
described by the same topological invariants as in class A or
AIII, which do not involve PT or PC symmetry. This implies
that, even in AZ + I classification, if the topology is classified
by Z or 2Z, the ordinary edge spectrum is gapless, which
holds from the conventional bulk-edge correspondence. When
the ordinary edge spectrum is gapless, the edge spectrum of
the flattened Hamiltonian, which is nothing but the entangle-
ment spectrum, is also gapless and thus the bulk-entanglement
spectrum correspondence holds.

The difference between AZ and AZ + I classification is
thus manifest in symmetry classes where the topology is Z2.
We will now explicitly construct topologically nontrivial mod-
els within the AZ + I classification in each dimension where
the bulk topology is Z2.
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FIG. 2. Numerical calculations for the one-dimensional class AI′

model [see Eq. (33)]. The bulk-energy band of the standard SSH
model (a) and the energy spectrum under open-boundary conditions
(b) with parameters (t0, t1, t2) = ( 1

2 , 1, 0). The bulk-energy band (c),
energy spectrum under open-boundary condition (d), and entangle-
ment spectrum [(e),(f)] with parameters (t0, t1, t2) = ( 1

2 , 1, 2
3 ). In (e)

and (f), the case using the entanglement cut of Fig. 1(a) with PBC and
Fig. 1(b) with OBC are shown, respectively. Colors in (b), (d), (e) and
(f) represent the squared amplitudes of the states in the unit cells [(b),
(d)] at both ends, or [(e), (f)] at the ends of the entanglement cuts.

A. One-dimensional class AI′ system

One-dimensional class AI′ topological insulators are clas-
sified by the Z2-valued topological number. We denote the PT
symmetry as PT = UT K , where UT is a unitary matrix and K
is complex conjugation. If UT does not depend on k, the Berry
phase along the 1D Brillouin zone is quantized, and serves
as the topological invariant. If UT depends on k, quantized
topological invariant can be obtained by adding a correction
term to the Berry phase (see Appendix E for details). Here, we
consider the following model with the quantized Berry phase:

H1D-AI′ = (t0 + t1 cos k)σx + t1 sin kσy + t2 cos 2kI. (33)

Here, σi(i = x, y, z) are Pauli matrices, and PT symmetry is
represented by PT = σxK . This model is a modification of the
well known Su-Schrieffer-Heeger (SSH) model [48], achieved
by adding a term proportional to the identity matrix to distort
the energy bands.

When t2 = 0, this model is identical to the SSH model,
which belongs to class BDI in AZ classification. The bulk-
energy spectrum is shown in Fig. 2(a). Upon calculating the
energy spectrum under the open-boundary conditions, zero-
energy edge modes appear in the energy gap [see Fig. 2(b)].

When t2 becomes nonzero, the model is in the class AI
in the AZ classification, which is trivial. However, in AZ + I
classification, the model is in the class AI′, and can have Z2

topology. The energy band is distorted as shown in Fig. 2(c).
Generally, edge states present when t2 = 0 move away from
the zero energy and hybridize with the bulk band [Fig. 2(d)].
Therefore, conventional edge spectra may not have edge
modes. On the other hand, the entanglement spectrum has a
zero-energy edge mode if the Berry phase plus a correction
term is π [see Figs. 2(e) and 2(f)]. For reference, Figs. 2(e) and
2(f) show calculations for scenarios using the entanglement
cut illustrated in Fig. 1(a) under periodic boundary condi-
tions (PBC) and in Fig. 1(b) under open-boundary conditions
(OBC), respectively. In Fig. 2(e), which corresponds to two
entanglement cuts, two zero-energy edge modes are observed.
In contrast, Fig. 2(f), which corresponds to a single entan-
glement cut, exhibits only one zero-energy edge mode. These
edge modes are fixed at E = 0 thanks to PT �, which serves
as an effective PC symmetry of the entanglement spectrum.

B. One-dimensional class BDI′ system

Topological phases in class BDI′ are not classified by the
Berry phase or the conventional winding number. As detailed
in Ref. [16], the topological number is defined based on the
phase winding of the eigenvalues of an orthogonal matrix,
q(k), which is derived from the off-diagonal blocks of the
flattened Hamiltonian.

We use the following one-dimensional class BDI′ model:

H1D-BDI′ =
(

0 Q(k)

Q(k)T 0

)
= (1 + 2 cos k)τx + 2 sin k τyσy

− 2 + cos k

2
τxσz − sin k

2
τxσx, (34)

where

Q(k) = (1 + 2 cos k)I + 2 sin k(−iσy)

− 2 + cos k

2
σz − sin k

2
σx. (35)

This model has PT = K , and the chiral symmetry � = τz. The
band structure is shown in Fig. 3(a). The topological invariant
can be obtained by the following procedure. First, we flatten
the Hamiltonian H1D-BDI′ , which should keep the block an-
tidiagonal form. Calling the upper-right block of the flattened
Hamiltonian as q(k), the phases of the eigenvalues of q(k)
show winding of 1 as one changes k from −π to π , as shown
in Fig. 3(b) [49]. Here, the eigenvalues of q(k) appear in pairs
of e±iθ (k), where e+iθ (k) and e−iθ (k) have windings in opposite
directions. We count the winding number of the one with the
positive winding [depicted in red in Fig. 3(b)]. The energy
spectrum under open-boundary conditions generally has an
energy gap as shown in Fig. 3(c). On the other hand, as shown
in Fig. 3(d), the entanglement spectrum has zero-energy edge
modes. Note that the degeneracy of edge modes is a Kramers
degeneracy because of the effective time-reversal symmetry
PC�, which squares to −I.
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FIG. 3. Numerical calculations for the one-dimensional BDI
model [Eq. (34)]. (a) Bulk band structure. (b) Phase winding of the
eigenvalues of q(k). There are two eigenvalues of q(k); the phase of
the eigenvalue of q(k), which increases as k increases is depicted in
red, whereas the phase, which decreases as k increases is depicted in
blue. (c) Edge energy spectrum. (d) Entanglement spectrum. Colors
in (c) and (d) represent the squared amplitudes of the states in the
unit cells (c) at both ends, or (d) at the end of the entanglement cut.

C. 2D class CI′ and AI′ system

Two-dimensional class CI′ systems can be considered as a
special case of class AI′ systems, and thus, we will discuss
these two together in this subsection. First, we start from the
following two-dimensional class CI′ model:

H2D-CI′ = sin kxσx + sin kyσyτy

+ (1 − cos kx − cos ky)σz + σzτz

2
+ τx

4
. (36)

This Hamiltonian possesses PT = K , and was proposed as a
model for Stiefel-Whitney insulator [6,31]. This Hamiltonian
additionally has chiral symmetry � = σyτz, and belongs to
class CI′. By adding a perturbation that breaks chiral symme-
try � while maintaining PT symmetry, the class of the system
can be changed from CI′ to AI′,

H2D-AI′ = H2D-CI′ +
σxτz

2
+ σz

5
+ σxτx

5
. (37)

As shown in Figs. 4(a) and 4(c), when calculating the energy
spectra under open-boundary conditions for these models,
there is an energy gap in both cases. On the other hand,
both entanglement spectra exhibit gapless linear dispersion,
as shown in Figs. 4(b) and 4(d). The stability of these gapless
points is guaranteed by the sign change of the Pfaffian across
the gapless points, which is discussed in detail in our previous
paper [31].

D. 3D class C′ system

We use the following three-dimensional four-band model:

H3D-C′ = − (sin kxσxτx + sin kyσyτx + sin kzσzτx )

+ (2.5 − cos kx − cos ky − cos kz )τy

+ σxτz

5
+ σz

5
. (38)

FIG. 4. Numerical calculations for the two-dimensional (a)(b)
CI′ model [Eq. (36)], and (c), (d) AI′ model [Eq. (37)]. [(a),(c)]
Energy spectrum with open-boundary condition. [(b),(d)] Entangle-
ment spectrum. Colors represent the squared amplitudes of the states
in the unit cells (a), (c) at both ends, or (b), (d) at the end of the
entanglement cut.

This model belongs to class C′ and has PC = iσyK . As shown
in Fig. 5(a), the edge spectrum is gapped. On the other hand,
as shown in Figs. 5(b)–5(d), the entanglement spectrum has a
gapless linear dispersion consisting of two bands, called 2D
Weyl point. From the Table III, the entanglement spectrum
belongs to class AI′, and the 2D Weyl point is protected by
quantized “Berry phase,” which is modified by the correction
term discussed in Appendix F.

FIG. 5. Numerical calculations for the three-dimensional C′

model [Eq. (38)]. (a) Energy spectrum under open-boundary
conditions, with 16 unit cells in the z direction (Nz = 16). (b) En-
tanglement spectrum. (c) Entanglement spectrum along kx = 0.
(d) Position of the 2D Weyl point in the entanglement spectrum.
The 2D Weyl point is located at (kx, ky ) ≈ (0, −0.025). Colors in
(a)–(c) represent the squared amplitudes of the states in the unit cells
(a) at both ends, or (b),(c) at the end of the entanglement cut.
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FIG. 6. Numerical calculations for the three-dimensional CI′

model [Eq. (39)]. (a) Energy spectrum under open-boundary
conditions, with 16 unit cells in the z direction (Nz = 16). (b) En-
tanglement spectrum. (c) Entanglement spectrum along kx = 0.
(d) Position of the nodal line in the entanglement spectrum. Colors
in (a)–(c) represent the squared amplitudes of the states in the unit
cells (a) at both ends, or (b),(c) at the end of the entanglement cut.

E. 3D class CI′ system

We use the following three-dimensional eight-band model:

H3D-CI′ = − (sin kxσxτxμy + sin kyσzτxμy + sin kzμx )

+ (2.5 − cos kx − cos ky − cos kz )τzμy

+ τxμy

4
− τxμx

4
. (39)

Here, μi(i = 1, 2, 3) are Pauli matrices. This model belongs
to class CI′, and has PT = μxK and � = μz. As shown
in Fig. 6(a), the edge spectrum is gapped. On the other
hand, the entanglement spectrum has a gapless 2D nodal-
line boundary state as shown in Figs. 6(b)–6(d). From the
Table III, the entanglement spectrum belongs to class BDI′,
and thus the nodal-line state is protected by two Z2 invari-
ants, zero-dimensional Pfaffian invariant and one-dimensional
phase-winding invariant. The Pfaffian takes different signs
±1 inside and outside the nodal line, and the robustness of
the degeneracy is guaranteed by the nontrivial Z2 topological
invariant defined for a one-dimensional loop surrounding the
nodal line.

V. FRAGILE TOPOLOGY

In this section, we discuss the possibility that bulk-
entanglement spectrum correspondence also holds for so-
called fragile topological insulators. Fragile topological
insulators are topological insulators whose classification also
depends on the number of occupied bands [38]. (We note that
if the classification of fragile topological insulators also de-
pends on the number of unoccupied bands [39], they are called
delicate topological insulators.) In two-dimensional class AI′

systems, there exists a fragile topological insulator called
Euler insulator [7,8,10,11,16,50], which is characterized

by an integer called the Euler number. As we numerically
found in our previous paper [31], the Euler insulator with the
Euler number n has n modes crossing the zero energy in the
entanglement spectrum, including the multiplicity at the zero
energy. In conventional topological insulators characterized
by the Chern number, one does not need to count the mul-
tiplicity to find the edge topological invariant, and thus the
Euler insulator shows the bulk-edge (or bulk-entanglement
spectrum) correspondence, which is qualitatively different
from the conventional topological insulators.

In the AZ + I classification, for one- and two-dimensional
systems, previous research [16] has shown the classification
of fragile topological phases using homotopy groups. They
have found that, in classes AI′ and BDI′ in one dimension and
classes AI′ and CI′ in two dimensions, the bulk topological
invariant changes from Z2 to Z if the number of occupied
bands takes specific values.

Class AI′ in two dimensions is the case, which was treated
in our previous work [31]. Such systems are fragile topologi-
cal insulators when the number of occupied bands is two and
is described by the Euler number. In this previous study, we
have also confirmed fragile nature of the entanglement spec-
trum, namely the zero-energy crossing of the entanglement
spectrum opens a gap once trivial bands are added and mixed
with the occupied bands.

The situation of class CI′ in two dimensions with two
occupied band is essentially the same as class AI′ because they
are both described by the Euler number.

Next we discuss one-dimensional fragile and delicate topo-
logical insulators in AZ + I classification, which are classes
AI′ and BDI′.

A. 1D class AI′ system

Fragile topological insulators in one-dimensional class AI′

systems appear when there is exactly one occupied band
and one unoccupied band. In this scenario, the Hamiltonian
is described by three Pauli matrices, along with an identity
matrix. More precisely, because of the PT symmetry con-
straint, the total degrees of freedom for the Pauli matrices are
limited to two. For example, if PT = σxK , σz is prohibited,
allowing only the two Pauli matrices, σx and σy, to be used.
Subsequently, one can define a two-dimensional vector using
coefficients ax and ay of σx and σy, respectively. This two-
dimensional vector enables the determination of a Z-valued
topological number from the number of times the vector en-
circles the origin.

The following two-band model is an example of such frag-
ile topological insulators:

H1D-AI′,F = 1 + 3 cos 2k

2
σx + 3 sin 2k

2
σy + cos kI. (40)

This model has PT = σxK , and the winding number is two.
The band structure is shown in Fig. 7(a1). The edge spectrum
generally has no zero-energy state as shown in Fig. 7(a2), but
there are two zero-energy entanglement edge modes as shown
in Fig. 7(a3). We note that, from the stable bulk-entanglement
spectrum correspondence we have established in this pa-
per, one-dimensional class AI′ allows only Z2 topological
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FIG. 7. Numerical calculations for the one-dimensional fragile
topological insulator model with class AI′ symmetry in (a) Eq. (40)
and in (b) Eq. (41). (a1)(b1) Bulk band structure. (a2)(b2) Edge en-
ergy spectrum. (a3), (b3) Entanglement spectrum. The colors in (a2)
and (b2) [(a3) and (b3)] represent the sum of the squared amplitudes
of the wave function in two unit cells from both ends [from the
entanglement cut].

invariant and thus two zero modes should be unstable against
general perturbations.

The appearance of two zero modes here can be understood
in the following way. The last term in the Hamiltonian in
Eq. (40) can be removed without changing the eigenstates and
the flattened Hamiltonian. The Hamiltonian with the last term
removed has σz as a chiral symmetry, and thus belongs to class
CI′ where Z-topological invariant is allowed. The winding
number of the vector (ax, ay ) is exactly this Z-topological
invariant, and from the stable bulk-entanglement spectrum
correspondence of class CI′, the number of zero-energy entan-
glement spectrum edge modes should be equal to the winding
number. The fragile bulk-entanglement spectrum correspon-
dence for class AI′ systems can thus be understood through the
stable bulk-entanglement spectrum correspondence for class
CI′ systems.

Contrary to the zero-energy edge modes found in the en-
tanglement spectrum of stable topological insulators, those in
fragile topological insulators become unstable with changes in
the number of occupied bands. To illustrate this, we consider
the following model:

H1D-AI′,F ′ =
(
H1D-AI′,F �AI′

�
†
AI′ −1.5

)
, (41)

�
†
AI′ = (eik, e−ik ). (42)

FIG. 8. Numerical calculations for the one-dimensional fragile
topological insulator model with class BDI′ symmetry in Eq. (44).
(a) Bulk band structure. (b) Phase winding of the eigenvalues of q(k).
The phase of the eigenvalue of q(k), which increases as k increases
is depicted in red, whereas the phase, which decreases as k increases
is depicted in blue. (c) Edge energy spectrum. (d) Entanglement
spectrum. The colors in (c) [(d)] represent the sum of the squared
amplitudes of the wave function in the unit cells at both ends [in two
unit cells from the entanglement cut].

This model has PT = (σx

1 )K . The band structure is shown in
Fig. 7(b1). Since adding a trivial band changes the fragile
topological insulator into a trivial insulator, both the edge
spectrum and the entanglement spectrum open an energy
gap, as shown in Figs. 7(b2) and 7(b3). Thus, both the bulk
topology and the entanglement-spectrum are fragile against
addition of trivial bands.

B. 1D class BDI′ system

A fragile topological insulator in the one-dimensional class
BDI′ appears when there are exactly two occupied bands.
The topological number of this insulator is characterized by
the winding of the eigenvalues of a certain orthogonal matrix
q(k), similar to the case of stable topological insulator [16].
Here, we use the following four-band model:

QF = (1 + 2 cos 2k)σ0 + 2 sin 2k(−iσy)

−2 + cos k

4
σz − sin k

4
σx, (43)

H1D-BDI′,F =
(

0 QF

QT
F 0

)
= (1 + 2 cos 2k)τx + 2 sin 2k τyσy

−2 + cos k

4
τxσz − sin k

4
τxσx. (44)

Similar to the model in Eq. (34), this model also has PT = K ,
and the chiral symmetry � = τz. The band structure is shown
in Fig. 8(a). The topological invariant can be obtained by
flattening the Hamiltonian H1D-BDI′,F , in the same manner
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as described in Sec. IV B. Calling the upper-right block of
the flattened Hamiltonian as q(k), the phases of the eigenval-
ues of q(k) show winding of 2 as one changes k from −π

to π , as shown in Fig. 8(b). The edge spectrum generally
has no zero-energy state as shown in Fig. 8(c), but there
are four zero-energy entanglement edge modes as shown in
Fig. 8(d).

The appearance of four zero-energy entanglement edge
modes despite being in class BDI′ where stable topological
invariant is Z2 can be understood in terms of the stable
bulk-entanglement spectrum correspondence of class CI′ as
we describe now. Following the discussion of Ref. [16], the
upper-right block q(k) of the flattened Hamiltonian is an ele-
ment of O(2) and can be written in the form

q(k) = p1(k)σ0 + p2(k)(−iσy), (45)

where

p1(k) = 1 + 2 cos 2k√
(1 + 2 cos 2k)2 + (2 sin 2k)2

,

p2(k) = 2 sin 2k√
(1 + 2 cos 2k)2 + (2 sin 2k)2

. (46)

The flattened Hamiltonian itself can therefore be written as(
0 q(k)

q(k)† 0

)
= p1(k)τx + p2(k)τyσy. (47)

This flattened Hamiltonian has an additional unitary symme-
try given by U = τxσz. We can then block-diagonalize the
flattened Hamiltonian into sectors with opposite eigenvalues
of U . Concretely, going to a new basis through a unitary
matrix

M ≡ 1√
2

⎛⎜⎜⎝
1 0 1 0
0 1 0 1
1 0 −1 0
0 −1 0 1

⎞⎟⎟⎠, (48)

U is diagonalized as M†UM = τz and the flattened Hamilto-
nian becomes block-diagonalized as

M†

(
0 q(k)

q(k)† 0

)
M = τz(p1(k)σz + p2(k)σx ). (49)

The two blocks are opposite, guaranteed by the chiral sym-
metry of the system, which is M−1τzM = τx in the new basis.
Since the flattened Hamiltonian is block-diagonal and one is
given by the opposite of the other, we can analyze the topology
of one block, which is p1(k)σz + p2(k)σx. This block has an
additional chiral symmetry given by σy. Combined with the
PT symmetry K , we also obtain the particle-hole symmetry
Kσy, which squares to −I. Thus the block is in class CI′,
which admits Z-topological invariant. Therefore, from the
stable bulk-entanglement spectrum correspondence of one-
dimensional class CI′ systems, when the winding of the vector
[p1(k), p2(k)] of one block is Nq, it is expected that there
are 2Nq zero-energy entanglement edge modes, counting both
blocks. The winding of the vector [p1(k), p2(k)] is nothing
but the phase winding of the eigenvalues of q(k), which is the
fragile topological invariant of the original Hamiltonian.

FIG. 9. Numerical calculations for the one-dimensional fragile
topological insulator model with class BDI′ symmetry in Eq. (50).
(a) Bulk band structure. (b) Phase winding of the eigenvalues of q(k).
The phase of the eigenvalue of q(k), which increases as k increases
is depicted in red, whereas the phase which decreases as k increases
is depicted in blue. (c) Edge energy spectrum. (d) Entanglement
spectrum. The colors in (c) [(d)] represent the sum of the squared
amplitudes of the wave function in the unit cells at both ends [in two
unit cells from the entanglement cut].

To illustrate the instability of the entanglement edge
modes, we consider the following model:

H1D-BDI′,F ′ =
(

0 QF ′

QT
F ′ 0

)
, (50)

QF ′ =
(

QF �BDI′

0 2

)
, �T

BDI′ = (3 cos k, 2 sin k). (51)

This model is a variant of the one presented in Eq. (44),
augmented with a pair of occupied and unoccupied trivial
bands. Since the Hamiltonian is a real matrix, this model has
PT = K and the chiral symmetry � = diag[I,−I]. The band
structure is shown in Fig. 9(a). The eigenvalues of the upper
right block of the flattened Hamiltonian, q(k), shows no phase
winding as shown in Fig. 9(b), indicating that the system is
trivial. Then, both the edge spectrum and the entanglement
spectrum have an energy gap as shown in Figs. 9(c) and 9(d).

VI. NONINTERACTING MANY-BODY
ENTANGLEMENT SPECTRUM

In this section, we discuss the consequence of the
bulk-entanglement spectrum correspondence on the many-
body entanglement spectrum for systems with noninteracting
fermions. In the absence of interparticle interactions, the
many-body entanglement spectrum {λ{nl }} of fermions is
uniquely determined from the single-particle entanglement
spectrum {εl} from Eq. (25) in Sec. III C.

Let us start from one-dimensional cases. If the single-
particle entanglement spectrum possesses N0 zero modes,
its many-body entanglement spectrum exhibits a 2N0 -fold
degeneracy. This results from the fact that, when εl0 = 0,

033192-12



BULK-ENTANGLEMENT-SPECTRUM CORRESPONDENCE … PHYSICAL REVIEW RESEARCH 6, 033192 (2024)

the values of {λ{nl }} remain identical whether nl0 = 0 or
nl0 = 1. As demonstrated by several numerical examples,
the single-particle entanglement spectra of one-dimensional
nontrivial topological insulators and superconductors within
the AZ + I classification feature zero-energy modes. Con-
sequently, the many-body entanglement spectrum of these
insulators exhibits a degeneracy that is a power of two. The
bulk-entanglement spectrum correspondence thus implies that
the degeneracy of the many-body entanglement spectrum is
topologically protected by symmetries in the AZ + I classes.

In two or higher dimensions, according to Eq. (25), if
the single-particle entanglement spectrum is gapless, the
many-body entanglement spectrum is gapless. Given that the
single-particle entanglement spectra of d-dimensional topo-
logical insulators and superconductors within the AZ + I
classification are gapless for d � 2, it follows that their
many-body entanglement spectra are also gapless. The bulk-
entanglement spectrum correspondence thus implies that the
many-body entanglement spectrum cannot be gapped out as
long as the relevant symmetries in the AZ + I classes are kept.

The above statements on the many-body entanglement are
for noninteracting systems. Whether they still hold, or how
they should be modified, in the presence of interactions re-
mains a topic for future studies.

VII. CONCLUSIONS AND DISCUSSIONS

In this paper, we have shown a variant of the bulk-boundary
correspondence for PT - and PC-symmetric topological insu-
lators and superconductors: when the bulk is topologically
nontrivial, the entanglement spectrum shows gapless spec-
trum. We have also constructed concrete models, which
show this bulk-entanglement spectrum correspondence for all
nontrivial symmetry classes in AZ + I classification in dimen-
sions up to three.

The fate of the entanglement spectrum in the presence of
interparticle interactions is an outstanding question. We have
shown that, for noninteracting fermions, the many-body en-
tanglement spectrum is gapless as long as the bulk topology is
nontrivial in AZ + I classification. If any bulk-entanglement
spectrum correspondence remains upon adding inter-particle
interaction, i.e., if it is impossible to open a gap in the
many-body entanglement spectrum by adding interparticle
interactions, which do not close the bulk-energy gap, is an
interesting question, especially in relation to other works
on entanglement spectrum to characterize many-body phases
[20,21,25].

Finally, we point out that the experimental measurement
of the entanglement spectrum has recently been reported in
IBM quantum computers [51] and ultracold atomic gases
[52]. Reconstruction of the entanglement spectrum of an Eu-
ler insulator from its bulk eigenstates has also been realized
in trapped ions [11]. There are also proposals to measure
the entanglement spectrum in various platforms [53–55]. We
expect that study of entanglement spectrum opens avenue to-
ward understanding topology and bulk-edge correspondence
in systems, which were once considered to show no protected
edge physics.
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APPENDIX A: DIMENSIONAL-RAISING
MAP AND THE CLASS SHIFT

In this Appendix we discuss the shift of the real AZ or
real AZ + I class because of the dimensional-raising map,
following the formalism of Ref. [35].

1. Symmetry classes with odd s

First, consider the case where the original Hamiltonian
belongs to the chiral symmetric class, that is, the class la-
beled with an odd number s. We take a convention such that
the (parity-)time-reversal operator T (PT ) and the (parity-
)particle-hole operator C (PC) are commutative. We define the
chiral operator �, which is an operator that is proportional to
TC or (PT )(PC) and squares to +I, by

� =
{

TC or PT PC (s = 1, 5),

iTC or iPT PC (s = 3, 7).
(A1)

Then, the commutation relations between � and T (PT ), and
that between � and C (PC) are

T �T −1 = C�C−1 =
{

� (s = 1, 5),

−� (s = 3, 7),
(A2)

for real AZ classes and,

PT �(PT )−1 = PC�(PC)−1 =
{

� (s = 1, 5),

−� (s = 3, 7),
(A3)

for real AZ + I classes. Since the dimensional-raising map
breaks the chiral symmetry of the original Hamiltonian, the
mapped Hamiltonian cannot have both T and C (PT and PC).
[Note that if there are both T and C (PT and PC) symmetries,
the system possesses the chiral symmetry, which is a product
of T and C (PT and PC).]

a. Real AZ + I

In the original Hamiltonian, PT and PC do not change k ∈
Sd . Assuming that the same PT and PC do not change θ , the
question is whether they are commutative or anticommutative
with the mapped Hamiltonian H (d+1)

nc (k, θ ). The commutation
relation between PT and H (d+1)

nc , and that between PC and
H (d+1)

nc , can be calculated from Eq. (3) as

PT H (d+1)
nc (k, θ )(PT )−1 = sin θH (d )

c (k) + cos θPT �(PT )−1,

PCH (d+1)
nc (k, θ )(PC)−1 = − sin θH (d )

c (k)

+ cos θPC�(PC)−1. (A4)

Using Eq. (A3), it is shown that PT is conserved when s =
1, 5, and PC is conserved when s = 3, 7. When we check the
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class shift for each symmetry class s, we can confirm that the
shift is from s to s − 1 (mod 8).

b. Real AZ

As a comparison, we briefly summarize the case for real
AZ classes. In the original Hamiltonian, T and C move k ∈ Sd

to −k ∈ Sd . In the mapped Hamiltonian, T and C, if pre-
served, move (k, θ ) ∈ Sd+1 to the point (−k, π − θ ) ∈ Sd+1.
Then the commutation relation between T and H (d+1)

nc , and
that between C and H (d+1)

nc , can be calculated from Eq. (4) as

T H (d+1)
nc (k, θ )T −1 = sin(π − θ )H (d )

c (−k)

− cos(π − θ )T �T −1,

CH (d+1)
nc (k, θ )C−1 = − sin(π − θ )H (d )

c (−k)

− cos(π − θ )C�C−1. (A5)

Using Eq. (A2), we can see that C is conserved when s = 1, 5,
and T is conserved when s = 3, 7. Then, we can confirm that
the class shift is from s to s + 1 (mod 8).

2. Symmetry classes with even s

Next, consider symmetry classes without chiral symmetry,
that is, classes whose label s is an even number. These sym-
metry classes only have antiunitary symmetries of either T
(PT ) or C (PC), and the dimensional-raising map is chosen to
preserve these symmetries.

a. Real AZ + I

For the mapped Hamiltonian [Eq. (4)], the original sym-
metries PT and PC are extended to the forms PT ⊗ I and
PC ⊗ I, respectively. In order for these symmetries to be
preserved in the mapped Hamiltonian, it is sufficient that
PT ⊗ I and I ⊗ τa are commutative, and PC ⊗ I and I ⊗ τa

are anticommutative. That is, it is sufficient to set τa = τx for
PT and τa = τy for PC.

As mentioned in the main text, the mapped Hamilto-
nian has an additional chiral symmetry � = I ⊗ iτzτa, which
causes a shift in the symmetry class.

For example, if the original Hamiltonian only has the
PT symmetry, the mapped Hamiltonian has an additional
symmetry constructed by the product of PT and �, which
behaves as a PC symmetry: PC ∝ � · (PT ⊗ I). Since the
square of this newly defined PC operator does not depend
on the phase factor, (PC)2 = (PT ⊗ (−τy))2 = −(PT )2 ⊗ I.
Therefore, classes with s = 0 and 4 are mapped to classes with
s = 7 and 3, respectively.

On the other hand, if the original Hamiltonian only has
the PC symmetry, the mapped Hamiltonian has an additional
symmetry constructed by the product of PC and �, which
behaves as a PT symmetry: PT ∝ � · (PC ⊗ I). Its square
is (PT )2 = (PC ⊗ τx )2 = (PC)2 ⊗ I. Therefore, classes with
s = 2 and 6 are mapped to classes with s = 1 and 5,
respectively.

In summary, the symmetry class shifts from s to s − 1
(mod 8).

b. Real AZ

As a comparison, we also discuss the case for real AZ
classes. The extended symmetries T ⊗ I and C ⊗ I act on the
mapped Hamiltonian respectively as follows:

(T ⊗ I)H (d+1)
c (k, θ )(T ⊗ I)−1

= sin(π − θ )H (d )
nc (−k) ⊗ τz

− cos(π − θ )(T ⊗ I)(I ⊗ τa)(T ⊗ I)−1,

(C ⊗ I)H (d+1)
c (k, θ )(C ⊗ I)−1

= − sin(π − θ )H (d )
nc (−k) ⊗ τz

− cos(π − θ )(C ⊗ I)(I ⊗ τa)(C ⊗ I)−1. (A6)

Therefore, in order for T ⊗ I (C ⊗ I) to be the (anti)symmetry
of the mapped Hamiltonian, it is sufficient to set τa =
τy (τa = τx).

If the original Hamiltonian only has T , the mapped
Hamiltonian additionally has Cadd ∝ iτzτy · (T ⊗ I) = T ⊗
τx. Then, the square of Cadd is equal to T 2 ⊗ I, and the classes
with s = 0 and 4 are mapped to the classes with s = 1 and
5, respectively. On the other hand, if the original Hamilto-
nian only has C, the mapped Hamiltonian additionally has
Tadd ∝ iτzτx · (C ⊗ I) = C ⊗ (−τy). Then, the square value of
Tadd is equal to −C2 ⊗ I, and the classes with s = 2 and 6
are mapped to the classes with s = 3 and 7, respectively. In
summary, the symmetry class shift is from s to s + 1 (mod 8).

APPENDIX B: SCHMIDT DECOMPOSITION
OF THE GROUND STATE

Here we derive Eq. (21), which is the the Schmidt decom-
position of the ground state. For noninteracting fermions, the
ground-state |GS〉 of Ĥ is given by the Slater determinant of
the eigenstates of the correlation matrix Ccor with the eigen-
value 1. Here, following the discussion given in Appendix E
of the paper [30], we express the eigenstates of Ccor in terms
of the eigenstates of the submatrices CA and CB to derive the
desired expression.

First, since (Ccor)2 = Ccor, the following holds:

CBCBA = CBA(I − CA),

CABCBA = CA(I − CA). (B1)

Then, for eigenvalues and normalized eigenstates of CA,
CA| f A

l 〉 = ξ̃l | f A
l 〉, the following holds:

CBCBA

∣∣ f A
l

〉 = (1 − ξ̃l )CBA

∣∣ f A
l

〉
, (B2)

CABCBA

∣∣ f A
l

〉 = ξ̃l (1 − ξ̃l )
∣∣ f A

l

〉
. (B3)

where 0 � ξ̃l � 1. In particular, if we denote ξ̃l �= 0, 1 as ξl ,
one can show that the states

∣∣F (1)
l

〉 ≡
⎛⎝√

ξl

∣∣ f A
l

〉
CBA| f A

l 〉√
ξl

⎞⎠,
∣∣F (0)

l

〉 ≡
⎛⎝√

1 − ξl

∣∣ f A
l

〉
−CBA| f A

l 〉√
1−ξl

⎞⎠ (B4)

are the normalized eigenstates of Ccor with the eigen-
values 1 and 0, respectively. Since the state | f B

l 〉 ≡
CBA| f A

l 〉/√ξl (1 − ξl ) is a normalized eigenstate of CB with
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the eigenvalue 1 − ξl , we note that these eigenstates of Ccor

can also be written as∣∣F (1)
l

〉 ≡ ( √
ξl

∣∣ f A
l

〉
√

1 − ξl

∣∣ f B
l

〉),
∣∣F (0)

l

〉 ≡ (√
1 − ξl

∣∣ f A
l

〉
−√

ξl

∣∣ f B
l

〉 ). (B5)

Next, suppose |gA
l 〉 and |gB

l 〉 are the eigenstates correspond-
ing to the eigenvalue 1 of CA and CB, respectively. Then, the
states ∣∣G(A)

l

〉 ≡ (∣∣gA
l

〉
0

)
,

∣∣G(B)
l

〉 ≡ (
0∣∣gB
l

〉) (B6)

are the normalized eigenstates of Ccor with the eigenvalues 1.
Similarly, if |hA

l 〉 and |hB
l 〉 are the eigenstates corresponding

to the eigenvalue 0 of CA and CB, respectively, the states∣∣H (A)
l

〉 ≡ (∣∣hA
l

〉
0

)
,

∣∣H (B)
l

〉 ≡ (
0∣∣hB
l

〉) (B7)

are the normalized eigenstates of Ccor with the eigenvalue 0.
The six types of eigenstates of Ccor mentioned above are or-

thogonal to each other and form a basis for the space on which
the matrix Ccor acts. Therefore the eigenstates of Ccor with
an eigenvalue of 1 are exhausted by |F (1)

l 〉, |G(A)
l 〉 and |G(B)

l 〉.
Writing the ith component of | f A

l 〉, | f B
l 〉, |G(A)

l 〉 and |G(B)
l 〉

by ( f A
l )i, ( f B

l )i, (gA
l )i, and (gB

l )i respectively, the ground-state
|GS〉 is given by

|GS〉 =
∏
nA

(∑
i∈A

(
gA

nA

)
ic

†
i

)
×
∏
nB

⎛⎝∑
j∈B

(
gB

nB

)
jc

†
j

⎞⎠
×

N∏
l=1

⎛⎝√ξl

∑
i∈A

(
f A
l

)
ic

†
i +

√
1 − ξl

∑
j∈B

(
f B
l

)
jc

†
j

⎞⎠|0〉,

(B8)

where the products over nA and nB are taken over all the
eigenstates of Ccor with the eigenvalue 1. The product over
l is taken to cover all the eigenvalues ξl �= 0 or 1; we write the
number of such eigenvalues as N . Expanding the product over
l , the third factor in Eq. (B8) becomes as follows:

N∏
l=1

⎛⎝√ξl

∑
i∈A

(
f A
l

)
ic

†
i +

√
1 − ξl

∑
j∈B

(
f B
l

)
jc

†
j

⎞⎠
=
∑
{nl }

N∏
l=1

{
ξ

1
2

l

∑
i∈A

(
f A
l

)
ic

†
i

}nl
⎧⎨⎩(1 − ξl )

1
2

∑
j∈B

(
f B
l

)
jc

†
j

⎫⎬⎭
1−nl

,

(B9)

where nl ∈ {0, 1}; the set {nl} takes its value in {0, 1}N and
the summation over {nl} is for all possible values of {nl} ∈
{0, 1}N . As a result, Eq. (B8) can be rewritten as follows:

|GS〉 =
∑
{nl }

(−1)S({nl })
∏

l

ξ
nl
2

l (1 − ξl )
1−nl

2
∣∣αA

{nl }
〉 ⊗ |αB

{nl }
〉
,

(B10)∣∣αA
{nl }

〉 = ∏
nA

(∑
i∈A

(
gA

nA

)
ic

†
i

)∏
l

(∑
i∈A

(
f A
l

)
ic

†
i

)nl

|0A〉,

(B11)

∣∣αB
{nl }

〉 = ∏
nB

(∑
i∈B

(
gB

nB

)
ic

†
i

)∏
l

⎛⎝∑
j∈B

(
f B
l

)
jc

†
j

⎞⎠1−nl

|0B〉,

(B12)

where S({nl}) corresponds to the sign factor that can arise
from the commutation of creation operators. Here, Eq. (B10)
is exactly the Eq. (21) we intended to derive in this Appendix.

APPENDIX C: GENERAL PROPERTIES OF �

Here, we derive some important properties of �. We start
from the general flattened Hamiltonian of Eq. (24) written in
the following block form:

Hflat =
(

HA HAB

HBA HB

)
. (C1)

Since all the eigenvalues of Hflat are either ±1/2, it
follows that (Hflat)2 = I/4. Consequently, the following equa-
tions hold:

H2
A + HABHBA = IA

4
, (C2)

HBAHA + HBHBA = 0. (C3)

From Eq. (C3), if |ψn〉 is an eigenstate of HA with the eigen-
value εn, the following holds:

HBHBA|ψn〉 = −εnHBA|ψn〉. (C4)

The norm of HBA|ψn〉 is determined from Eq. (C2) as follows:

〈ψn|[HBA]†HBA|ψn〉 = 〈ψn|IA/4 − H2
A |ψn〉

= (
1
4 − ε2

n

)
. (C5)

Here, we used HAB = H†
BA, which comes from the Hermiticity

of Hflat. From Eqs. (C4) and (C5), the state |φn〉 defined as

|φn〉 ≡ − HBA√
1/4 − ε2

n

|ψn〉, (C6)

is a normalized eigenstate of HB with the eigenvalue −εn, as
long as εn �= ±1/2. Here, the negative sign is introduced to be
consistent with the definition used in a previous study [31]. It
is also possible to construct the eigenstates of HA by applying
HAB to the eigenstates of HB. In particular, from Eqs. (C2) and
(C6), the following holds:

|ψn〉 = − HAB√
1/4 − ε2

n

|φn〉. (C7)

Then, we can formally define the matrix � as follows:

� ≡
(

0 �AB

�BA 0

)

≡
∑

n(εn �=± 1
2 )

1√
1/4 − ε2

n

(
0 HAB|φn〉〈φn|

HBA|ψn〉〈ψn| 0

)

(C8)

=
∑

n(εn �=± 1
2 )

(
0 |ψn〉〈φn|

|φn〉〈ψn| 0

)
. (C9)

033192-15



RYO TAKAHASHI AND TOMOKI OZAWA PHYSICAL REVIEW RESEARCH 6, 033192 (2024)

The operation � defined here maps the eigenstate |ψn〉 of
HA, which is in A (� [|ψn〉T , 0T

B ]T ), to the eigenstate |φn〉 =
�BA|ψn〉 of HB, which is in B (� [0T

A , |φn〉T ]T ).
The square of � is

�2 =
∑

n(εn �=± 1
2 )

(
|ψn〉〈ψn| 0

0 |φn〉〈φn|

)
. (C10)

In each subspace A and B, �2 is a projection to the eigenspace
where the eigenvalues of HA and HB are ε �= ±1/2,
respectively.

APPENDIX D: COMMUTATION RELATIONS
BETWEEN THE ANTISYMMETRY �

AND OTHER THREE SYMMETRIES

In this Appendix, we discuss the commutation relations
between � and other three symmetries, PT , PC, and �. The
Hamiltonian Hflat (k⊥) possesses symmetries such as PT , PC,
and �, which are also present in the original system. The
symmetries PT and PC swap regions A and B, while the
chiral symmetry � does not swap the regions. Then, these
symmetries can be written in the following block diagonal or
antidiagonal form:

(PT ) =
(

0 UT

VT 0

)
K, (D1)

(PC) =
(

0 UC

VC 0

)
K, (D2)

� =
(

U� 0
0 V�

)
, (D3)

where UT , VT , UC , VC , U� , and V� are unitary matrices, and
K is the complex conjugation operation. From the commu-
tation relations [Hflat, PT ] = {Hflat, PC} = {Hflat, �} = 0, the
following relations hold:(

UT [HBA]∗ UT [HB]∗

VT [HA]∗ VT [HAB]∗

)
=
(

HABVT HAUT

HBVT HBAUT

)
, (D4)(

UC[HBA]∗ UC[HB]∗

VC[HA]∗ VC[HAB]∗

)
= −

(
HABVC HAUC

HBVC HBAUC

)
, (D5)(

U�HA U�HAB

V�HBA V�HB

)
= −

(
HAU� HABV�

HBAU� HBV�

)
. (D6)

Here, we abbreviate Hflat,α (k⊥) by Hα (α = A, B, AB, BA).
From these equations, it can be seen that the PT and PC
symmetries map the eigenstates of HA to those of HB, and
vice versa. For example, if |φn〉 is the eigenstate of HB with
the eigenvalue εn, UT |φ∗

n 〉 and UC |φ∗
n 〉 are the eigenstates

of HA,

HAUT |φ∗
n 〉 = UT [HB]∗|φ∗

n 〉 = εnUT |φ∗
n 〉,

HAUC |φ∗
n 〉 = −UC[HB]∗|φ∗

n 〉 = −εnUC |φ∗
n 〉. (D7)

Similarly, if |ψn〉 is the eigenstate of HA with the eigenvalue
εn, VT |ψ∗

n 〉 and VC |ψ∗
n 〉 are the eigenstates of HB.

Now we discuss the commutation relations between � and
the three symmetries PT , PC, and �.

1. Commutation relation between � and PT

From Eqs. (C8), (D1), and (D4),

PT � =
∑

n(εn �=± 1
2 )

1√
1
4 − ε2

n

(
UT H∗

BA|ψ∗
n 〉〈ψ∗

n | 0
0 VT H∗

AB|φ∗
n 〉〈φ∗

n |
)

K

=
∑

n(εn �=± 1
2 )

1√
1
4 − ε2

n

(
HABVT |ψ∗

n 〉〈ψ∗
n | 0

0 HBAUT |φ∗
n 〉〈φ∗

n |
)

K. (D8)

Here, for the eigenstate |ψn〉 of HA with eigenvalue εn from
Eq. (D4), the following hold:

HB(VT |ψ∗
n 〉) = VT H∗

A |ψ∗
n 〉 = εnVT |ψ∗

n 〉. (D9)

This means that VT |ψ∗
n 〉 is an eigenstate of HB. Since, VT K do

not change the absolute value of the inner product, {VT |ψ∗
n 〉}

forms another basis of the eigenspace of HB associated with
the eigenvalues εn �= ±1/2. Then, the following equation

between the two projectors holds:∑
n(εn �=± 1

2 )

VT |ψ∗
n 〉〈ψ∗

n |V †
T =

∑
n(εn �=± 1

2 )

|φn〉〈φn|. (D10)

Similarly, from Eq. (D4), UT |φ∗
n 〉 is an eigenstate of HA, and

the following holds:∑
n(εn �=± 1

2 )

UT |φ∗
n 〉〈φ∗

n |U †
T =

∑
n(εn �=± 1

2 )

|ψn〉〈ψn|. (D11)

By using Eqs. (D10) and (D11), Eq. (D8) can be rewritten as

PT � =
∑

n(εn �=± 1
2 )

1√
1
4 − ε2

n

(
HAB|φn〉〈φn|VT 0

0 HBA|ψn〉〈ψn|UT

)
K = �PT, (D12)

which shows that PT and � commute.
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2. Commutation relation between � and PC

From Eqs. (C8), (D2), and (D5),

PC� =
∑

n(εn �=± 1
2 )

1√
1
4 − ε2

n

(
UCH∗

BA|ψ∗
n 〉〈ψ∗

n | 0

0 VCH∗
AB|φ∗

n 〉〈φ∗
n |

)
K

=
∑

n(εn �=± 1
2 )

(−1)√
1
4 − ε2

n

(
HABVC |ψ∗

n 〉〈ψ∗
n | 0

0 HBAUC |φ∗
n 〉〈φ∗

n |

)
K. (D13)

Here, for the eigenstate |ψn〉 of HA with eigenvalue εn, from Eq. (D5), VC |ψ∗
n 〉 is an eigenstate of HB with the eigenvalue −εn.

Similarly, UC |φ∗
n 〉 is an eigenstate of HA. Therefore, similar to Eqs. (D10) and (D11), the following equations hold:∑

n(εn �=± 1
2 )

VC |ψ∗
n 〉〈ψ∗

n |V †
C =

∑
n(εn �=± 1

2 )

|φn〉〈φn|, (D14)

∑
n(εn �=± 1

2 )

UC |φ∗
n 〉〈φ∗

n |U †
C =

∑
n(εn �=± 1

2 )

|ψn〉〈ψn|. (D15)

Then, using Eqs. (D14) and (D15), Eq. (D13) can be rewritten as

PC� =
∑

n(εn �=± 1
2 )

(−1)√
1
4 − ε2

n

(
HAB|φn〉〈φn|VC 0

0 HBA|ψn〉〈ψn|UC

)
K = −�PC, (D16)

which shows that PC and � anticommutate.

3. Commutation relation between � and �

From Eqs. (C8), (D3), and (D6),

�� =
∑

n(εn �=± 1
2 )

1√
1
4 − ε2

n

(
0 U�HAB|φn〉〈φn|

V�HBA|ψn〉〈ψn| 0

)

=
∑

n(εn �=± 1
2 )

(−1)√
1
4 − ε2

n

(
0 HABV�|φn〉〈φn|

HBAU�|ψn〉〈ψn| 0

)
. (D17)

Here, from Eq. (D6), the states U�|ψn〉 and V�|φn〉 are eigenstates of HA and HB, respectively. Therefore, the following
equations hold: ∑

n(εn �=± 1
2 )

U�|ψn〉〈ψn|U †
� =

∑
n(εn �=± 1

2 )

|ψn〉〈ψn|, (D18)

∑
n(εn �=± 1

2 )

V�|φn〉〈φn|V †
� =

∑
n(εn �=± 1

2 )

|φn〉〈φn|. (D19)

Then, using Eqs. (D18) and (D19), Eq. (D17) can be rewritten as

�� =
∑

n(εn �=± 1
2 )

(−1)√
1
4 − ε2

n

(
0 HAB|φn〉〈φn|V�

HBA|ψn〉〈ψn|U� 0

)
= −��, (D20)

which shows that � and � anticommute.

APPENDIX E: BERRY PHASE IN CLASS AI′

The topological phases of one-dimensional class AI′ sys-
tems are classified by the Z2-valued topological number. If
the PT symmetry is represented by PT = K with the complex
conjugate operation K , then the Berry phase is quantized to
0 or π , and the Z2 topological number is equivalent to the

Berry phase. However, in general, PT symmetry is expressed
as PT = U (k)K with a unitary matrix U (k), and if U (k)
depends on the wave number, the Berry phase itself is not
quantized in general. Instead, a modified Berry phase with a
correction term is quantized, as we show below. It is worth
mentioning that there are several previous works on the k de-
pendence of inversion operations and the nonquantized Berry
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phase, specifically within the context of noncentered inversion
operations [56,57].

We consider a class AI′ Hamiltonian H (k), which has
PT symmetry [PT, H (k)] [i.e., UH∗(k) = H (k)U ]. We as-
sume that PT = U (k)K and (PT )2 = I. For simplicity, we
focus on one band without band degeneracy and consider the
Berry phase for that band. Then, for the normalized eigenstate
|un(k)〉 of H (k), the following holds:

PT |un(k)〉 = U |u∗
n(k)〉 = eiφn (k)|un(k)〉,

|un(k)〉 = e−iφn (k)U |u∗
n(k)〉,

〈un|∇kun〉 = (−i∇kφn) + 〈u∗
n|U †(∇kU )|u∗

n〉 + 〈u∗
n|∇ku∗

n〉.
(E1)

Here, the third term is rewritten as 〈u∗
n|∇ku∗

n〉 = −〈un|∇kun〉.
Then the Berry phase (times 2) along a path C in k space can
be written as

2i
∮

C
〈un|∇kun〉 · dk

=
∮

C
(∇kφn) · dk + i

∮
C
〈u∗

n|U †(∇kU )|u∗
n〉 · dk

= 2πm + i
∮

C
〈u∗

n|U †(∇kU )|u∗
n〉 · dk (m ∈ Z). (E2)

Therefore, instead of the Berry phase itself, the Berry phase
with the additional term is quantized,

θBerry − i

2

∮
C
〈u∗

n|U †(∇kU )|u∗
n〉 · dk = mπ (m ∈ Z). (E3)

Only if the second term of left-hand side is zero, the Berry
phase θBerry is quantized to 0 or π . For example, if U does not
depend on k, the Berry phase θBerry is quantized.

One can alternatively obtain the same topological number
as a quantized Berry phase by moving to a basis where the
PT symmetry is expressed as a simple complex conjugate
operation K . Below, we give one such unitary transformation
of the basis and calculate the Berry phases before and af-
ter the transformation. From (PT )2 = UU ∗ = I, the unitary
matrix U is symmetric matrix: U T = U . Then, U can be
decomposed as U = X + iY using real symmetric matrices X
and Y . Here, from UU ∗ = X 2 + Y 2 − i[X,Y ] = I, X and Y
commute. Therefore, X and Y are simultaneously diagonal-
ized by the real orthogonal matrix W . This means that U is
diagonalized by W ,

W T UW =

⎛⎜⎝eiθ1

. . .

eiθN

⎞⎟⎠ = ei�. (E4)

Therefore,

U = Wei�W T = V †V ∗, (E5)

where V = e−i�/2W †. Here, the sign when taking the
square root is determined appropriately. After the basis
transformation V , the PT symmetry can be represented

as

P̃T = V (PT )V † = V (UK )V †

= V (V †V ∗)V T K = K. (E6)

In fact, the transformed Hamiltonian satisfies the following
relation:

[˜H (k)]∗ = [V H (k)V †]∗ = V ∗(U †H (k)U )V T

= V ∗(V T V H (k)V †V ∗)V T

= V H (k)V † = ˜H (k). (E7)

The Berry phase in this basis, θ̃Berry, is calculated as follows
by using |̃un〉 = V |un〉:

θ̃Berry = i
∮

C
〈un|V †∇k(V |un〉) · dk

= θBerry + i
∮

C
〈un|V †(∇kV )|un〉 · dk. (E8)

On the other hand, by using Eq. (E5), the integrand of the cor-
rection term in Eq. (E3) is rewritten as the following simpler
expression:

〈u∗
n|U †(∇kU )|u∗

n〉
= 〈u∗

n|U †(∇kV †)V ∗|u∗
n〉 + 〈u∗

n|U †V †(∇kV ∗)|u∗
n〉

= (U |u∗
n〉)†(∇kV †)V (U |u∗

n〉) + 〈u∗
n|(V T V )V †(∇kV ∗)|u∗

n〉
= 〈un|(∇kV †)V |un〉 + (〈un|V †(∇kV )|un〉)∗

= −2〈un|V †(∇kV )|un〉. (E9)

Then, the l.h.s. of Eq. (E3) becomes as follows:

θBerry − i

2

∮
C
〈u∗

n|U †(∇kU )|un〉 · dk

= θBerry + i
∮

C
〈un|V †(∇kV )|un〉 · dk. (E10)

Therefore, from Eq. (E8), the l.h.s. of Eq. (E3) is equal to
θ̃Berry. Therefore, the quantization of the l.h.s. of Eq. (E3) is
nothing but the well-known Berry phase quantization in the
basis with P̃T = K .

APPENDIX F: BERRY PHASE IN THE 3D CLASS C′

ENTANGLEMENT SPECTRUM

In the 3D class C′ entanglement spectrum, PC� behaves
as effective PT symmetry. For the eigenstate |un〉, PC� is
represented as follows:

PC�|un〉 = 1√
1/4 − ε2

n

UCH∗
BA|u∗

n〉 = R|u∗
n〉. (F1)

Here, R is generally not a unitary matrix. (This is because,
for the eigenstate |un〉 of HA with the eigenvalue εn = ±1/2,
PC�|un〉 = R|u∗

n〉 = 0, and thus R does not preserve the
norm.) Therefore, the discussion in Appendix E cannot be
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applied directly. In this Appendix, we will discuss the quan-
tization of the modified Berry phase with a correction term
when R is not necessarily a unitary matrix.

For simplicity, we assume that |un〉 is not degenerate. Then,
PC�|un〉 is proportional to |un〉

R|u∗
n〉 = eiφn |un〉. (F2)

Then,

〈un|∇kun〉 = 〈u∗
n|R†eiφn∇k(e−iφn R|u∗

n〉) = (−i∇kφn) + 〈u∗
n|R†(∇kR)|u∗

n〉 + 〈u∗
n|R†R|∇ku∗

n〉. (F3)

Here, the third term can be rewritten as

〈u∗
n|R†R|∇ku∗

n〉 =〈u∗
n|HT

BAH∗
BA

1/4 − ε2
n

|∇ku∗
n〉 = 〈u∗

n|∇ku∗
n〉 = −〈un|∇kun〉. (F4)

Then, the following holds:

i
∮

C
〈un|∇kun〉 · dk − i

2

∮
C
〈u∗

n|R†(∇kR)|u∗
n〉 · dk = 1

2

∮
C

(∇kφn) · dk = mπ (m ∈ Z). (F5)

Therefore, we use the l.h.s. of Eq. (F5) as the edge topological invariant,

χ
(edge)
3D-C′ = exp

[
−
∮

C
〈un|∇kun〉 · dk + 1

2

∮
C
〈u∗

n|R†(∇kR)|u∗
n〉 · dk

]
= (−1)m (m ∈ Z). (F6)

If χ
(edge)
3D-C′ = (−1) along some path C, it means that a gapless entanglement edge mode exists inside the path C.

Finally, we derive a simpler expression for the case where UC does not depend on the wave number k. From Eq. (F2), the
integrand of the correction term in Eq. (F6) is rewritten as follows:

〈u∗
n|R†(∇kR)|u∗

n〉 = 〈un|(∇kR)R∗|un〉. (F7)

Next, using the assumption that UC is a constant matrix, (∇kR)R∗ can be rewritten as

(∇kR)R∗ = ∇k

(
UCH∗

BA√
1/4 − ε2

n

)
U ∗

C HBA√
1/4 − ε2

n

= ∇k

(
HAB√

1/4 − ε2
n

)
HBA√

1/4 − ε2
n

= (∇kHAB)HBA

1/4 − ε2
n

+ εn(∇kεn)HABHBA(
1/4 − ε2

n

)2 . (F8)

Therefore, right-hand side of Eq. (F7) is rewritten as follows:

〈un|(∇kR)R∗|un〉 =〈un|(∇kHAB)HBA|un〉
1/4 − ε2

n

+ εn(∇kεn)

1/4 − ε2
n

, (F9)

where we used 〈un|HABHBA|un〉 = 1
4 − ε2

n . The second term can be further rewritten as ∇k[− 1
2 ln( 1

4 − ε2
n )], making the circular

integral of the second term equal to zero. Therefore, the topological invariant in Eq. (F6) can be rewritten as

χ
(edge)
3D-C′ = exp

[
−
∮

C
〈un|∇kun〉 · dk + 1

2

∮
C

〈un|(∇kHAB)HBA|un〉
1/4 − ε2

n

· dk
]

= (−1)m (m ∈ Z). (F10)
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