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We explore thermal transport in a one-dimensional Fermi-Pasta-Ulam-Tsingou-type (FPUT-type) system with
long-range (LR) interactions. In such a system, the harmonic part of the potential is nearest-neighbor coupled,
while the strength of the quartic part of the potential between two lattice sites decays as a power σ of the inverse
of their distance, demonstrating the LR feature of the system. The relevant strong LR model (0 � σ � 1) has
been considered in detail in our recent study [Xiong and Wang, Phys. Rev. E 109, 044122 (2024)], and here, we
focus on the weak LR regime (1 � σ � 3). We show that the thermal transport behaviors in this regime are quite
unexpected. We discovered a subregime (1 � σ � 1.5) wherein the thermal transport behaviors are very close
to diffusive. This suggests that even a momentum-conserving system with appropriate LR interactions can still
exhibit normal heat conduction. By meticulously analyzing the space-time scaling properties of equilibrium heat
correlations, we also determine the center of this diffusive thermal transport at approximately σ � 1.25. These
discoveries, together with our prior results, provide a comprehensive understanding of thermal transport of this
kind of LR-FPUT-type model.

DOI: 10.1103/PhysRevResearch.6.033191

I. INTRODUCTION

In recent years, research has intensified on long-range (LR)
interactions, spanning from cosmic scales [1] to nanoscale
intricacies [2]. These systems are defined by interaction
potentials V (r) that decay as a power law:

V (r) ∝ 1

rσ
, (1)

where r is the distance between particles. These inter-
actions give rise to systems with intricate dynamics and
thermal properties, distinct from those with short-range
(SR) interactions. They often display unique phenomena
such as nonergodicity, weak chaos, ensemble inequivalence,
long-lived non-Gaussian states, one-dimensional (1D) phase
transitions, nonconcave entropy, and even negative specific
heat (see reviews [3–6]). These exceptional features challenge
the classical Boltzmann-Gibbs statistical mechanics frame-
work. The complexity of LR interacting systems makes them
an intriguing yet demanding field of study.

Despite widespread anticipation that interaction range
would significantly influence thermal transport, our main un-
derstandings have honed in on systems with nearest-neighbor
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(NN) couplings [7–9]. It is only in more recent times that the
thermal transport properties of systems with LR interactions
have begun to attract the interest of the community [10–12].
Within this burgeoning field, several paradigmatic models
have been introduced and studied, including the LR variants
of rotor, Fermi-Pasta-Ulam-Tsingou (FPUT), lattice φ4, and
harmonic models. Specific attention has been devoted to the
σ -dependent thermal transport within both nonlinear rotor and
FPUT-type models, both with features of conserved momen-
tum [13–26]. The LR-rotor model demonstrated a transition
between two phases: an insulating phase when the interaction
strength is strong (for 0 < σ < 1) and a conductive phase
for σ > 1 [13]. Intriguingly, in the strong LR regime, a flat
temperature profile is exhibited, reminiscent of the behavior
in integrable systems [13], implying its connection to integra-
bility. However, subsequent analysis [16] indicated that this
phenomenon is driven by an alternative mechanism of parallel
energy transport rather than the integrability. Moreover, the
subdiffusive energy transport mechanism witnessed in the in-
sulator phase under the mean-field case (σ = 0) was validated
numerically in Ref. [15].

In the exploration of LR-FPUT models, the LR interac-
tions can be added through two distinct forms including the
LR-quartic term only [14,18,20,21] or melding both quadratic
and quartic LR terms [16,17]. Viewing this difference, in the
following, we denote the former as the LR-quartic model and
the latter as the LR-quadratic-quartic model. With both kinds
of models, more complex and intriguing transport phenomena
than those observed in the LR-rotor model have been unveiled.
A particularly noteworthy finding [14] is the behavior exhib-
ited at a specific interaction range value of σ = 2, where the
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thermal conductivity κ of the system exhibits a near-linear
divergence with the system size N , accompanied by an al-
most flat temperature profile. Note that, for 1D anharmonic
momentum-conserving lattices with SR NN interactions only,
it has been believed that κ diverges with N in a power law:

κ ∼ Nα, (2)

with 0 < α � 1 the divergence exponent. Therefore, a lin-
ear dependence of κ vs N means α = 1. This ballistic-like
transport suggests the existence of an as-yet undiscovered
integrable limit of the model at σ = 2 [11,12]. However, it
is important to note that the LR-FPUT system under consid-
eration is inherently nonintegrable. Authors of a subsequent
investigation [18] meticulously examined the impacts of reser-
voir and boundary conditions on the transport of the system
and revealed a superdiffusive transport with a notably high di-
vergent exponent α � 0.7, which is substantially greater than
α � 0.3–0.5 typically observed in SR interacting systems
with NN couplings. This special superdiffusive transport at
σ = 2 was further characterized by a slower decay in energy
current correlations and was linked to a weaker nonintegra-
bility mechanism and the emergence of a unique class of
traveling discrete breathers (DBs) within the system, which
serve to enhance thermal transport [18]. While the validity of
this superdiffusive thermal transport was later questioned in
Ref. [20], the collective body of work [14,16,18,20] affirms
the unique features observed at σ = 2, irrelevant to the models
of LR-quadratic-quartic or LR-quartic type.

Beyond the intriguing behaviors observed at σ = 2, the
thermal transport generally exhibits distinct properties across
different σ regimes [10]. Specifically, three typical regimes
can be identified: (i) strong LR regime (0 � σ � 1), (ii) weak
LR regime (1 < σ � 3), and (iii) SR regime (σ > 3). For the
SR regime, two existing works for the LR-quartic model [14]
and the LR-quadratic-quartic model [16] have consistently in-
dicated anomalous superdiffusive transport, with the transport
exponent α ranging from 0.3 to 0.5. Authors of a notable
analysis [19], based on a linear LR-harmonic system involving
stochastic momentum exchange dynamics, corroborated this
trend, suggesting a value of α = 0.5.

For both strong and weak LR regimes, usually a prefactor
1
N̂

, denoted as

N̂ = 1

N

∑
i

∑
i �= j

1

|i − j|σ , (3)

with |i − j| being the (shortest) distance between the lat-
tice sites i and j, i.e., the Kac scaling factor, is employed
and added to the corresponding LR interactions to make
the Hamiltonian of the system extensive. Now if one turns
to the current achievements of thermal transport: For the
strong LR regime, the early numerical study for the LR-
quartic model with 1

N̂
included [14] suggested anomalous

superdiffusive transport as well but with an exponent α > 0.5.
Authors of a subsequent study of the LR-quadratic-quartic
model (including 1

N̂
as well) [16] suggested the same paral-

lel energy transport mechanism as the LR-rotor model, and
based on this mechanism, ballistic thermal transport in the
strong LR regime would be expected [10]. On the other
hand, the analytical findings [19] were unable to provide

conclusive results for this regime. Another result of ours fo-
cusing on a LR-quartic model without including 1

N̂
however

gave a significantly different scenario [21,22]. We have re-
vealed subdiffusive transport behaviors both in the mean-field
and beyond the mean-field cases of the model, akin to that
observed in the mean-field case of the LR-rotor system [15].
Remarkably, we have also found another special point of σ =
0.5 characterizing two distinct subdiffusive behaviors based
on the antipersist energy current correlations of the system
[22].

Lastly, in the weak LR regime, both the existing numerical
studies of the LR-quartic [14] and the LR-quadratic-quartic
[16] models, both with 1

N̂
included, consistently indi-

cated anomalous superdiffusive transport. When 1 � σ < 2,
Ref. [14] suggested that the exponent α hovers ∼0.3, while
Ref. [16] indicated α ∼ 0.6. For 2 < σ � 3, both gave the
value of α decreasing from α = 1 to a value range from ∼0.4
to 0.5. The analytical results [19] could not predict the behav-
ior 1 � σ < 2 but did offer insights for 2 < σ � 3, indicating
that α would decrease from α = 1 and stabilize at α = 0.5
once σ exceeds 3.

It is also worth noting that recent relevant progress also in-
cludes studies in the momentum-nonconserving LR-φ4 model
[23], the momentum-conserving LR-harmonic systems in the
mean-field limit [24,25], and LR-harmonic model within the
strong LR regime beyond the mean-field case [26].

In view of the above background, a comprehensive under-
standing of thermal transport in the LR-FPUT type models,
particularly for the weak LR regime, is still lacking. On one
hand, the analytical results [19] failed to predict the behavior
for 1 � σ < 2, leaving a theoretical gap in our understanding.
On the other hand, current numerical results in this regime
for different models predict different values of α, which are
somewhat a little confused [14,16]. In this respect, it is also
important to note that distinct simulation methods to derive
thermal conductivity κ were employed; Ref. [14] utilized
thermostats added to harmonic leads, whereas Ref. [16] em-
ployed Maxwellian heat baths, which does not need additional
harmonic leads. Furthermore, employing the LR-quartic and
LR-quadratic-quartic models with or without including the
Kac scaling factor seems to cause significant disparity re-
garding thermal transport in the strong LR regime. Two early
results yielded superdiffusive [14] and ballistic [16] trans-
port behaviors, for the LR-quartic and LR-quadratic-quartic
models, respectively, both including 1

N̂
. In contrast, based on

the energy current correlation and the spatiotemporal corre-
lation function of heat, our quite recent results [21,22] for
the LR-quartic model without including 1

N̂
provided com-

pelling evidence supporting subdiffusive behavior. Given the
significant role that LR interactions also play in the weak
LR regime, this paper is devoted to investigating in detail the
thermal transport of the LR-quartic model (without including
1
N̂

) within this weak LR regime, as the studies of the same
model within the strong LR regime have already revealed
quite rich transport and microscopic dynamics [21,22].

The remainder of this paper is structured as follows: In
Sec. II, we outline the specific LR-quartic model under exam-
ination within the weak LR regime, along with the specifics
of the numerical techniques employed. Section III presents
our findings on the σ -dependent energy current correlation
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within this regime, from which possible signatures of thermal
transport close to diffusive within the interval 1 � σ � 1.5
are given. Section IV is devoted to the results of σ -dependent
equilibrium heat correlations, with our particular focus on its
scaling behaviors. Here, the behaviors of thermal transport
close to diffusive have been confirmed with high precision.
Section V demonstrates the thermal transport phase diagram
for all σ > 0. Finally, we summarize our findings succinctly
in Sec. IV, followed by a discussion.

II. MODEL AND METHOD

We examine a 1D FPUT-type LR interacting system
composed of N particles with Born–von Kármán periodic
boundary conditions [27], where the dynamics is dictated by
the Hamiltonian:

H =
N∑

i=1

[
p2

i

2
+ 1

2
(xi+1 − xi )

2 + 1

4

(N/2)−1∑
r=1

(xi+r − xi )4

rσ

]
.

(4)

In this Hamiltonian, xi and pi represent two canonically
conjugated variables, with i denoting the particle index; all
other relevant quantities, such as the mass of the particle and
the lattice constant, are dimensionless and set to unity. The
periodic boundary conditions employed render our system
akin to a ring, which are used to facilitate our following
equilibrium simulations. The interparticle interaction com-
prises two distinct components, consistent with our previous
works [18,21,22]. As mentioned in the Introduction, this is
referred to as a LR-quartic model, i.e., the NN couplings
are incorporated into the quadratic potential term, while the
LR interactions are included in the quartic potential term. In
the LR potential term, r−σ signifies the interaction strength
between the ith particle and rth neighbor, with σ represent-
ing the LR exponent range value. This configuration of the
LR-FPUT model, featuring solely the LR-quartic potential
term, has been observed to exhibit more intriguing dynamic
phenomena than models incorporating both LR-quadratic and
quartic potential terms [28,29]. Hence, in this paper, we will
focus exclusively on this configuration.

Following our previous works [18,21,22], we do not in-
corporate the Kac scaling factor 1

N̂
into the LR potential

term. By doing so, we are not here to say the factor 1
N̂

is
unimportant, while our choice is predicated on the following
observations, i.e., while 1

N̂
was intended to restore the exten-

sivity of the system as the system size increases, it does not
enhance the nonadditivity of the system [4]. Rather, it merely
constructs an artificial extensive system yet at the expense
of necessitating that both the group velocity of the phonon
and the strength of nonlinearity depend on N , an undesirable
outcome for thermal transport studies [18]. Furthermore, the
dynamical time required to achieve equilibrium is extended
by a factor of

√
N̂ when the Kac scaling factor is included

[30]. Notably, a system characterized by the Hamiltonian in
Eq. (4) at σ = 2 without including the Kac scaling factor has
been demonstrated to possess a unique symmetric character-
istic and supports a distinctive class of free-tail traveling DBs
[18,31]. Such results serve as some justifications for excluding
the Kac scaling factor from the model.

As previously outlined in the Introduction, in this investi-
gation, we will focus on the thermal transport in the weak LR
regime. Since in a previous work [22] we have found that the
antipersistent energy current correlations for demonstrating
subdiffusive transport eventually vanish for σ > 0.7, here,
we will consider the regime beginning with σ = 0.8, i.e.,
0.8 � σ � 3. To capture the transport behavior of the system,
we will examine the following two main physical quantities:
(i) the equilibrium energy current time (t) autocorrelation of
the system, expressed as

CJJ (t ) = 〈Jtot (t )Jtot (0)〉, (5)

and (ii) the equilibrium spatiotemproal correlation function of
the local thermal energy, defined by [18,32]

ρQ(m, t ) = 〈�Ql+m(t )�Ql (0)〉
〈�Ql (0)�Ql (0)〉 . (6)

In Eq. (5), Jtot is the total heat current along the system,
defined by

Jtot =
N∑

i=1

pi

⎡⎣(xi+1 − xi ) +
(N/2)−1∑

r=1

(xi+r − xi )3

rσ

⎤⎦. (7)

It is noteworthy that this energy current includes both SR and
LR contributions, differing from the definition provided in
Ref. [14] by incorporating harmonic lead sites. Consequently,
the computation of our definition presents challenges. For sys-
tems exhibiting diffusive and superdiffusive transport, CJJ (t )
is linked to the thermal conductivity κ via the Green-Kubo
relation [19]:

κ = lim
τ→∞ lim

N→∞
1

kBNT 2

∫ τ

0
CJJ (t )dt, (8)

where kB denotes the Boltzmann constant and T represents
the system¡¯s equilibrium temperature. The diffusive thermal
transport is usually related to an exponential time decay of
CJJ (t ) faster than t−1, leading to a finite κ . However, in
systems that may exhibit subdiffusive transport, the energy
current correlation CJJ (t ) is ill defined [19]. Such systems
display an antipersistent correlation characterized by negative
correlation values [21,22].

In Eq. (6), 〈·〉 denotes the spatiotemporal average; l labels
the number of particles in a coarse-grained bin (in practice, we
set each bin of 8 particles); Ql (t ) = El (t ) − (〈E〉+〈F 〉)gl (t )

〈g〉 rep-
resents the local thermal energy, with gl (t ) the particle number
density, El (t ) = ∑

i Ei(t ) the energy density within the lth bin

[where Ei = p2
i

2 + 1
2 (xi+1 − xi )2 + 1

4

∑(N/2)−1
r=1

(xi+r−xi )4

rσ ], and
Fl (t )(〈F 〉 ≡ 0) the pressure density, respectively. We note
that, due to the translational invariance, ρQ(m, t ) solely de-
pends on the relative distance m. Hence, if the values of gl (t ),
El (t ) in the ith bin, and Fl (t ) exerted on the ith bin at each
time t are known, ρQ(m, t ) can be computed by an ensemble
average.

To compute CJJ (t ) and ρQ(m, t ) numerically, for each σ ,
we consider two total system sizes of N = 4096 and 8192
(some of the results for σ > 1.5 are under a larger system
size). We generate a fully thermalized system at the equi-
librium averaged temperature of T = 0.5, and during the
computations, the system then is isolated. The system evolves
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FIG. 1. CJJ (t ) vs t for several σ within 0.8 � σ � 3. Here, for
a better visualization, the correlation values have been rescaled
between 0 and 1 by dividing them with CJJ (0).

using the velocity-Verlet algorithm [33] with a minute time
step of 0.01, ensuring energy conservation with a relative
accuracy of O(10−5). To expedite our calculations, we employ
a fast Fourier transform algorithm [34]. This approach cir-
cumvents the need for O(N2) operations in computing forces
at each time step within our system. An ensemble of size
∼8 × 109 is utilized to determine the correlations.

III. ENERGY CURRENT CORRELATIONS

Now let us start with the results of energy current corre-
lations. Figure 1 depicts CJJ (t ) as a function of the time lag
t across various LR exponents σ , ranging from 0.8 � σ � 3,
within a relatively short time frame of t < 100. The purpose
of this plot is to clearly observe the absence of antipersistent
behavior in CJJ (t ), as previously indicated in Ref. [22], while
fortunately, it also uncovers findings. As can be seen, for σ =
0.8, we successfully replicate the antipersistent correlation
observed in Ref. [22], albeit with a small magnitude (|CJJ (t )|)
for the negative minimum value. As σ increases within the
range of 0.8 � σ � 3, an intriguing and nonmonotonic trend
emerges, wherein a crossover from antipersistent correlation
to fast exponential-like decay (centered around σ � 1.25)
appears for 0.8 � σ � 1.5. Beyond σ = 1.5, initially, CJJ (t )
exhibits an almost nonzero plateau with minimal decay at σ =
2. Subsequently, for values exceeding σ > 2 (e.g., see σ = 3),
the decay rate of CJJ (t ) becomes rapid but still remains lower
than the exponential-like decay observed in σ = 1.5. This
intriguing result not only further substantiates the uniqueness
associated with σ = 2, consistent with previous observations
[14,16,18] but also suggests possibilities regarding normal
diffusive thermal transport within the regime of 1 � σ � 1.5,
based on its exponential-like decay behavior. To investigate
the decay behavior of CJJ (t ) over a long time and determine
whether it follows an exponential or a power-law decay, it is
customary to present the results of CJJ (t ) vs t in a log-log plot,
as shown in Fig. 2. The data presented here are identical to
those in Fig. 1 but with longer time exhibited. As observed,
for σ = 2, we reproduce the slow decay of CJJ (t ) ∼ t−0.15

(indicated by one of the lines with short dash-dot), which is
consistent with our previous findings reported in Ref. [18],

FIG. 2. The same as Fig. 1 but depicted in a log-log plot to
identify the exponential and power-law decay behaviors.

demonstrating superdiffusive transport at this σ value. Con-
versely, all values of CJJ (t ) within 0.8 � σ � 1.5 exhibit
faster decay than that predicted by CJJ (t ) ∼ t−1, indicating
convergence toward a finite thermal conductivity via Green-
Kubo integral analysis described by Eq. (8). This observation
corroborates our earlier conclusion based on Fig. 1 regarding
diffusive thermal transport characteristics under these condi-
tions. Regarding σ = 3, we note that, although our current
data suggest faster decay rates for CJJ (t ) than those predicted
by CJJ (t ) ∼ t−1, this may be attributed to finite-sized effects
on correlation functions during simulations [35] since σ = 3
is close to SR cases. At present, for all σ values considered,
we are unable to provide more reliable data for evaluating the
behavior of CJJ (t ) in a longer time, as we are considering a
LR interacting system.

IV. EQUILIBRIUM SPATIOTEMPROAL CORRELATION
OF THERMAL ENERGY

Considering the challenges posed by CJJ (t ) in investigating
the long-term transport behavior here, we now present the
results of equilibrium spatiotemporal correlation analysis for
local thermal energy. Figure 3 illustrates ρQ(m, t ) at three
different long times within the range 0.9 � σ � 3. It is worth
noting that, for 0.9 � σ � 1.5, our analysis is based on a sys-
tem size of N = 4096 and allows us to explore a long time up
to t = 3000–4000. However, beyond σ = 1.5, the heat prop-
agation described by ρQ(m, t ) becomes faster, necessitating a
larger system size of N = 8192 but limiting us to a maximum
time of only t = 2000. Despite this challenge, it should be
emphasized that even reaching a time scale of t = 2000 is
considered relatively long if compared with previous studies
focused on SR systems with NN couplings [36–38], given that
we are dealing with a LR interacting system.

From Fig. 3, it is evident that the central regions of
ρQ(m, t ) at σ = 2 exhibit a flatter profile than the results
obtained for other σ ’s. This observation further supports the
distinctiveness of σ = 2. Additionally, apart from this no-
ticeable difference, for all other considered σ ’s, ρQ(m, t )
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FIG. 3. ρQ(m, t ) for 0.9 � σ � 3 for several typical long times,
wherein the results of 0.9 � σ � 1.5 are based on a system size of
N = 4096 with a time up to t = 3000–4000 (note that, for σ � 1.25,
the longest t is 4000, while in the case of σ = 1.5, the longest t =
3000); for σ > 1.5, we use a larger size of N = 8192 but with a
time only up to t = 2000. Under these setups, in (a)–(c), the three
long times are t = 1000 (dotted), t = 2000 (dashed), and t = 4000
(solid); in (d), they are t = 1000 (dotted), t = 2000 (dashed), and
t = 3000 (solid); while in (e) and (f), they are t = 500 (dotted), t =
1000 (dashed), and t = 2000 (solid), respectively.

displays a single broadening central peak with time. This
behavior is distinct from the three-peak profile (one central
and two side peaks) observed in superdiffusive regimes of
SR nonlinear momentum-conserving chains with NN cou-
plings only, as demonstrated by the Lévy walk model of the
single particle [39]. It also suggests that a real SR system
has not yet been achieved even with σ = 3 at hand. An-
other interesting and significant finding is that some of the
displayed behaviors in Figs. 3(a)–3(d), such as that shown
in σ = 1.25, resemble Gaussian peaks typically observed
in 1D momentum-nonconserving lattice systems [38]. This
Gaussian-like peak provides additional evidence for thermal
transport close to diffusive within the regime 1 � σ � 1.5.

To further verify the presence of diffusive thermal trans-
port, we proceed to analyze the heat diffusion property
represented by ρQ(m, t ). To achieve this, it is important to
note that, instead of studying the mean squared displacement
of ρQ(m, t ) against t , due to significant fluctuations observed
for large distances m, we focus on examining the space-time
scaling behavior exhibited by the central peak ρQ(0, t ) decay
of ρQ(m, t ). This approach has been previously employed in
deducing long-term asymptotic heat spread behaviors in SR
systems with NN couplings only [36–38] and LR-FPUT mod-
els [14,18,20], encompassing ballistic, superdiffusive, and
diffusive transport phenomena, respectively. Specifically, if
ρQ(0, t ) ∼ t−1/γ ( 1

2 � 1/γ � 1) holds true based on the scal-
ing formula derived from the Lévy walk model of the single
particle [39], then we have

t1/γ ρQ(m, t ) � ρQ

( m

t1/γ
, t

)
. (9)

FIG. 4. ρQ(0, t ) vs t in a log-log plot showing the detailed power-
law decay in long times for 1 � σ � 3. Here, note that, to highlight
the central point of σ = 1.25, we start with σ = 1. In addition,
the two dashed lines denote the best fittings of ρQ(0, t ) ∼ t0.80 and
ρQ(0, t ) ∼ t0.53 for σ = 2 and 1.25, respectively.

Consequently, 1/γ = 1, 1
2 < 1/γ < 1, and 1/γ = 1

2 corre-
spond to ballistic, superdiffusive, and diffusive transport,
respectively.

The log-log plot in Fig. 4 illustrates the variation of
ρQ(0, t ) with respect to t for several representative values
of σ ranging from 1 to 3. To emphasize the central point
at σ = 1.25 within the range of 1 � σ � 1.5, we start with
the lowest σ value of σ = 1. It is evident that, among all
considered values of σ , the decay is most rapid for σ = 2,
characterized by an exponent 1/γ � 0.80. This finding, in
light of the relationship derived from Lévy walks theory [39],
i.e., α = 2 − γ , suggests a value close to α � 2 − 1.25 =
0.75 (in our previous work [18], we yielded 1/γ � 0.78 and
thus α � 0.71 for a short time). Interestingly, Ref. [40] has
predicted a universality characterized by α = 1

4 , while our
results seem to imply another possible exponent of the uni-
versality described by α � 3

4 ; even this is only numeric.
Beyond σ = 2, a series of exponents 1/γ have been ob-

served in Fig. 4, based on the relatively long time considered.
Some of these exponents, such as those for σ = 1 and 3, ex-
hibit relatively larger values, while others are smaller. Before
discussing the specific values, it is worth emphasizing the spe-
cial case of σ = 1.25, where 1/γ � 0.53, which holds true for
both short and long times. This scaling closely approximates
diffusive behavior, considering the numerical error. Therefore,
we speculate that, within the range 1 < σ � 1.5, particularly
around σ = 1.25, the thermal transport very close to diffusive
seems to occur. This conjecture is reasonable since obtaining
an exact result of 1/γ = 1

2 numerically is challenging, as
1/γ � 0.53 was also observed in a similar study on a 1D
momentum-conserving lattice with a double-well potential
[41,42], wherein the thermal transport very close to normal
diffusive type has already been confirmed. Furthermore, ad-
ditional intriguing information supporting diffusive thermal
transport at σ = 1.25 seems evident from the data presented
for 1 < σ � 1.5: The result for σ = 1.25 just lies in the

033191-5



DAXING XIONG AND JIANJIN WANG PHYSICAL REVIEW RESEARCH 6, 033191 (2024)

FIG. 5. 1/γ vs σ for 0.9 � σ � 3, wherein the three dashed lines
denote 1/γ = 1

2 , 3
5 , and 4

5 , respectively.

middle between results obtained for other values of σ , indi-
cating its central position within this range.

Now let us examine the detailed dependence of the scaling
exponent 1/γ on σ within the range 0.9 � σ � 3, as shown
in Fig. 5. Some of the data are extracted from the best fittings
presented in Fig. 4, while others are additionally calculated
using the same methodology. We have to mention that all
the data are based on the longest simulation times that we
up to now can achieve. From Fig. 5, it is evident that, as σ

increases from σ = 0.9 to σ = 3, 1/γ undergoes two rounds
of decrease and one round of increase. In the first round
(0.9 � σ � 2), with the increase of σ , 1/γ initially decreases
from ∼ 4

5 , reaching its minimum value ∼ 1
2 . This minimum

value persists for a wide range of σ around σ = 1.25, be-
fore increasing again up to ∼ 4

5 at σ = 2. During the second
round (2 � σ � 3), 1/γ decreases from ∼ 4

5 , converging to-
ward a value ∼ 3

5 . These results suggest a crossover from
superdiffusive behavior ( 1

2 < 1/γ < 1) to normal transport
behavior (1/γ = 1

2 ) for 0.9 � σ � 2, likely occurring around
σ = 1.25. This observation aligns with our previous conjec-
ture based on Fig. 4. Furthermore, it indicates a crossover to a
value of ∼ 3

5 for σ > 2. This, if combined with the Lévy walk
theory [39], suggests α = 2 − 5

3 = 1
3 , which closely matches

the range α ∈ [0.3, 0.5] made for relevant SR systems with
NN couplings only [17].

We are particularly interested in the subregime (1 � σ �
1.5) wherein the thermal transport close to diffusive can occur.
Therefore, in Fig. 6, we further examine the result of rescaled
ρQ(m, t ) under the diffusive scaling (1/γ = 1

2 ) for several σ

values around σ = 1.25. As can be seen, even though in both
Figs. 4 and 5 the scaling exponents for σ = 1, 1.25, and 1.5,
obtained by the best fittings are all close to 1/γ = 1

2 , in Fig. 6,
only the σ = 1.25 case gives the most approximate collapse
for different times. This collapse further supports the observed
transport close to diffusive around σ = 1.25 and provides
strong evidence that σ = 1.25 appears to be the central point.
It is also worth noting that, for σ < 1.25, the deviations of
the collapse are more in short times [see Figs. 6(a) and 6(b)],

FIG. 6. The rescaled ρQ(m, t ) using the formula in Eq. (9) with
1/γ = 1

2 for (a) σ = 0.9, (b) σ = 1, (c) σ = 1.25, and (d) σ = 1.5.

whereas for σ > 1.25, the failure begins at a long time [see
Fig. 6(d)].

V. PHASE DIAGRAM OF THERMAL TRANSPORT

Considering the aforementioned understanding of the weak
LR regime and in conjunction with the findings of Ref. [22]
regarding the strong LR regime, we proceed to discuss the
thermal transport phase diagram for this kind of LR-quartic
FPUT-type system. Figure 7 presents a schematic representa-
tion of the inferred thermal transport phase diagram based on
our current knowledge. On one hand, there are two notable
points concerning σ : firstly, at σ = 2, the quasi-integrable or
weakly nonintegrable dynamics occur [14,16,18]; secondly,
at σ = 0.5, corresponding to the antipersistent energy current
correlation, subdiffusive thermal transport is observed with a
minimum negative value of CJJ (t ) [22]. On the other hand,
three distinct regimes, shaded, can be identified for transport
of subdiffusive, diffusive, and SR-superdiffusive (we use this
to distinguish it from the superdiffusive transport appearing
in a real LR system), respectively. Within the considered
long time range, subdiffusive transport is likely to occur for
0 � σ � 0.8 since, beyond σ � 0.8, the disappearance of an-
tipersistent energy current correlation has been reported [22].
The observed thermal transport close to diffusive is expected
around σ = 1.25, possibly within an interval 1 � σ � 1.5
as inferred from Fig. 5. The onset of SR-superdiffusion cor-
responds to the SR cases and begins slightly above σ = 2.
Apart from these three prominent regions, there exist addi-
tional regimes such as 0.8 < σ < 1 and those around σ = 2

FIG. 7. The thermal transport phase diagram with respect to σ

for the long-range (LR)-quartic Fermi-Pasta-Ulam-Tsingou (FPUT)-
type system, wherein the three shaded sections, from left to right,
correspond to the phases of subdiffusive, close to diffusive, and the
short-range (SR)-superdiffusive, respectively.
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represented by blanks that may potentially support superdiffu-
sive transport but with different exponents of the universality;
however, precise values of 1/γ in these regimes and their
underlying mechanisms remain unclear and warrant further
investigations.

VI. CONCLUSIONS

In summary, we have studied thermal transport in a 1D LR-
quartic FPUT-type system, with our main focus on its weak
LR regime (1 � σ � 3). In such a regime, authors of previous
numerical studies on a similar model [14] and another LR-
quadratic-quartic model [16], both with the Kac scaling factor
1
N̂

included, have suggested superdiffusive thermal transport
for all σ values, and the existing analytical results [19] can
only provide partial predictions for 2 � σ � 3. Remarkably
and unexpectedly, our results here indicate that there is a
subregime around σ = 1.25 wherein the thermal transport
behaviors can be very close to the diffusive type. This find-
ing is well supported, both by the fast exponential decay of
the energy current correlations and by the space-time scaling
close to Gaussian of the equilibrium heat correlations, with
the long time range considered.

Combining our prior results on thermal transport in the
strong LR regime in the same model [22], we have further
provided a complete phase diagram for thermal transport in
this LR-quartic model. This phase diagram indicates that, on
one hand, for a large value σ > 2, even the thermal transport
seems close to the predictions of the relevant SR systems, the
exact exponent [α = 2

5 (γ = 8
5 ) or α = 1

2 (γ = 3
2 )] in the SR

limit (i.e., the systems with symmetric interparticle potentials)
is still hard to reach, which then raises open problems in
the future; on the other hand, for small σ within both the
strong and weak LR regimes, the intermediate process of
transport can be quite rich since both subdiffusive and normal
diffusive thermal transports seem to occur. In addition, from
this phase diagram, there are two previously found interesting
special points of σ = 2 and 0.5, which give intriguing trans-
port features, largely enriching the thermal transport in the
system.

Turning to the recently identified normal thermal transport
around σ = 1.25, its discovery is quite unexpected. It suggests
that, by introducing appropriate LR interactions, even the
momentum-conserving systems can still exhibit diffusive heat
conduction satisfying Fourier’s law. It thus implies that the
possible physics of the underlying mechanism for Fourier’s
law in LR systems could be more complicated, if compared
with the relevant SR systems with NN couplings only. In
this respect, we would like to note that it has been recently
revealed, with appropriate LR interactions, even a fully nonin-
tegrable system with moving DBs as its primary microscopic
excitations can still support ballistic thermal transport that
previously occurred only in integrable systems [43]. There-
fore, one would conjecture that possibly it is the emergence
of moving DBs, together with various excitations and their
scattering dynamics, leading to the observed thermal transport
close to diffusive here. Viewing this, in Fig. 8, we present an
additional evidence of phonon-DBs scattering dynamics for
the three special points of σ = 0.5, 1.25, and 2, as indicated in

FIG. 8. Snapshots of momentum pi and displacement xi of the
particle vs i at a given long time t = 7000, after initially applying two
kicks at i = 1 and 2205 with momenta p1 = −0.7 and p2205 = 0.7
(corresponding to an averaged temperature of T = 0.5), respectively,
for the three special points (a) and (b) σ = 0.5, (c) and (d) σ = 1.25,
and (e) and (f) σ = 2.

Fig. 7. This evidence is obtained by performing the following
numerical experiment like those in Refs. [22,43], i.e., at time
t = 0 when all particles are at their equilibrium positions (the
system is not yet thermalized), we first apply two kicks at the
locations of i = 1 and 2205 with momenta p1 = −0.7 and
p2205 = 0.7, respectively (it may correspond to an averaged
temperature close to T = 0.5). We then carefully observe the
evolution of the dynamics of the system. The snapshots of
momentum pi and displacement xi of the particle versus i at
a relatively long time t = 7000 are then depicted in Fig. 8.
As can be seen, the case of σ = 0.5 indicates strong standing
DBs [see Figs. 8(a) and 8(b)] with only few moving exci-
tations presented, and so the subdiffusive transport has been
observed, whereas both σ = 1.25 and 2 support moving DBs
[see Figs. 8(c)–8(f)], which can interact with phonons, thus
resulting in the transport either close to diffusive or superdif-
fusive. The strength of phonon-DB scattering of σ = 1.25
is obviously stronger than that in the case of σ = 2, which
can be easily inferred by comparing the results of Figs. 8(d)
and 8(f). This distinction is in accordance with the observed
transport close to diffusive at σ = 1.25. We hope that this final
evidence could provide some further insights, even though
detailed studies of the phonon-DB scattering in this system
are still required.

Overall, in this paper, we have systematically explored
the thermal transport behavior in a LR-quartic model with-
out including the Kac scaling factor 1

N̂
, within the weak LR

regime. This result, together with our prior results within the
strong LR regime [22] in the same model, then provides a
comprehensive understanding of thermal transport in this kind
of LR interacting FPUT-type model. It should be noted that,
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as already mentioned in the Introduction, there are two other
kinds of similar models of the LR-quadratic-quartic [16] and
LR-quartic [14] systems both with 1

N̂
presented, which seem

to show distinct thermal transport behavior within both the
strong and weak LR regimes. It thus raises questions on the
roles of both the LR-quadratic term and the Kac scaling factor
in thermal transport of 1D LR interacting FPUT-type models.
We believe that these issues, inspired by this paper, are surely
worth further exploration in upcoming research endeavors.
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