
PHYSICAL REVIEW RESEARCH 6, 033189 (2024)

Crossover from anomalous to normal diffusion: Ising model with stochastic resetting
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In this paper, we investigate the dynamics of the two-dimensional Ising model with stochastic resetting,
utilizing a constant resetting rate procedure with zero-strength initial magnetization. Our results reveal the
presence of a characteristic rate rc ∼ L−z, where L represents the system size and z denotes the dynamical
exponent. Below rc, both the equilibrium and dynamical properties remain unchanged. At the same time, for
r > rc, the resetting process induces a transition in the probability distribution of the magnetization from a
double-peak distribution to a three-peak distribution, ultimately culminating in a single-peak exponential decay.
Furthermore, we also find that at the critical points, as r increases, the diffusion of the magnetization changes
from anomalous to normal, and the correlation time shifts from being dependent on L to being r-dependent only.
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I. INTRODUCTION

Stochastic resetting, a stochastic process that returns to
its initial state, has garnered significant attention in the past
decade [1–3]. One of its key characteristics in systems with
stochastic resetting is the emergence of resetting-induced
nonequilibrium stationary states (NESS), as first reported by
Evans and Majumdar [4] in the context of one-dimensional
Brownian motion. They demonstrated that by repeatedly
returning the Brownian particle to its initial position at a con-
stant resetting rate, a nonequilibrium stationary state would
arise. Subsequently, this resetting-induced NESS has been
observed in other diffusion processes, including multidi-
mensional diffusion [5], coagulation-diffusion processes [6],
underdamped Brownian motion [7], active particle systems
[8–10], and quantum many-body systems [11,12].

Moreover, the interplay between diffusion under reset-
ting and critical phenomena has been investigated [13–15].
However, the impact of stochastic resetting on the critical
behavior of a system remains unclear. Recently, Magoni, Ma-
jumdar, and Schehr [16] discussed the Glauber Ising model
with stochastic resetting under a constant resetting rate and
observed a NESS regime in the r-T phase diagram, where r
represents the resetting rate and T denotes the temperature.
Notably, at the critical point, the influence of stochastic reset-
ting on the dynamics of the system was not addressed.

In a recent paper [17], it was reported that at the crit-
ical point of the Ising model, the magnetization undergoes
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anomalous diffusion, a phenomenon that can be described by
fractal Brownian motion (fBm) [18]. Anomalous diffusion,
characterized by a nonlinear mean-square deviation over time,
has been observed in diverse systems such as financial markets
[19], bacterial systems [20], and other disordered media [21].
More recently, several research groups have demonstrated that
stochastic resetting can alter the diffusion regimes for cer-
tain types of anomalous diffusion, including continuous-time
random walk (CTRW) [22–24] and scaled Brownian motion
(SBM) [25,26], within comblike structures [27,28], and for
systems exhibiting anomalous diffusion of the fBm type [29].
Hence, it is natural to inquire whether stochastic resetting can
similarly modify the diffusion regime in the context of the
Ising model.

In this paper, we investigate the two-dimensional Ising
model on an L × L square lattice at the critical point with
stochastic resetting. We employ a constant resetting rate pro-
tocol, whereby the system can reset to its initial state (with the
initial magnetization set to be 0) at each step with a fixed rate
r. Initially, we compute the probability distribution of the or-
der parameter P(m) for various resetting rates. Subsequently,
we explore the impact of stochastic resetting on the system’s
dynamics by measuring the mean-square deviation and the
correlation length of the order parameter.

Our findings reveal a characteristic rate rc ∼ L−z, where z
represents the dynamical exponent. Below rc, the probability
distribution P(m) does not deviate from the pure Ising model,
displaying double-peak distributions, and stochastic resetting
does not alter the system’s dynamics, with the correlation
length continuing to scale as ∼Lz. Conversely, for r > rc, as r
increases, P(m) transitions from a double-peak distribution to
a three-peak distribution, ultimately culminating in a single-
peak exponential decay. Additionally, we observe a crossover
from anomalous to normal diffusion in the mean-square devi-
ation of the order parameter as r increases and the correlation
time shifts from being dependent on L to solely dependent on
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r. These results serve as a valuable reference for investigating
how stochastic resetting can impact systems with subdiffusion
characteristics of the fractal Brownian motion type.

The paper is structured as follows: In Sec. II, we present
the Ising model with stochastic resetting, providing a detailed
explanation of the constant resetting rate protocol. Then, in
Sec. III, we examine how the stochastic resetting process
influences the diffusion of the order parameter at the critical
points. Finally, the paper concludes in Sec. IV.

II. STOCHASTIC RESETTING ON THE ISING MODEL

We first briefly introduce the two-dimensional (2D) Ising
model. Its Hamiltonian is described as

H = −J
∑
〈i j〉

sis j, (1)

where the coupling strength J is set to be 1, and the system
lies upon an L × L square lattice with periodic boundary
conditions. At each site i, the spin value can be si = ±1. 〈i j〉
denotes the summation runs over all nearest neighbors.

The system is simulated with the Metropolis algorithm,
i.e., at each time step, a single spin is selected to do the
flip attempt. The possible energy change �E is measured. If
�E � 0, the flip is accepted with unit probability; otherwise,
the flip is accepted via the Metropolis probability e−�E/(kBT ),
where kB is the Boltzmann constant and T is the temperature.
A sweep (or a unit of time) refers to one flip attempt per spin.

Throughout the simulation, we employ stochastic resetting
in the system. In the literature, various protocols of stochastic
resetting have been discussed. One of the simplest proto-
cols is the constant resetting rate protocol, where the system
is reset to its initial state with a consistent resetting rate.
However, this method is unsuitable for memoryless resetting
processes [25]. Therefore, several alternative protocols have
been proposed, including position-dependent resetting rates
[30], time-dependent resetting rates [31,32], and resetting
rates distributed as a power law in waiting times [33].

For our study, we utilize the constant resetting rate protocol
(as depicted in Fig. 1). This means that at each time step
(Monte Carlo sweep), a random number within the range
[0, 1) is generated. If the random number is less than our
chosen resetting rate r, then the system resets to its initial
state with m → m0, where we choose m0 = 0; otherwise, the
system continues to evolve using the Metropolis algorithm.
Note that the probability of the resetting event to occur at a
given time is rdt , where dt is the time step. In our simulations,
dt = 1 is employed, and then r becomes the probability of the
resetting event occurring at a given time.

III. CROSSOVER FROM ANOMALOUS TO
NORMAL DIFFUSION

For a system that evolves with a constant stochastic
resetting rate r, typically, the resetting event disrupts the de-
terministic progression of a system. As a result, the system’s
state at time t depends solely on the time τ elapsed since the
last resetting event [4,16].

Specifically, in the context of a Poisson process with a rate
r, the probability of no reset occurring in the time interval
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FIG. 1. The stochastic resetting process in the Ising model for
L = 64 and T = 2.0. The magnetization resets to its initial value
m0 = 0.0 with a constant resetting rate r = 0.001. The red vertical
lines represent the resetting cases observed within t � 5000.

[t − τ, t] is denoted by e−rτ , while the probability of a reset
occurring in the infinitesimal time interval dτ is denoted by
rdτ . Consequently, the probability distribution of the time
elapsed since the last resetting event being τ is succinctly
described by p(τ )dτ = re−rτ .

Naturally, there is the possibility that the system progresses
until time t without any reset, associated with the probability
e−rt . This probability signifies the likelihood of no reset hap-
pening throughout the whole time interval [0, t]. Therefore,
the distribution of a random variable O under stochastic reset-
ting goes as [4,16]

Pr (O, t ) = r
∫ t

0
dτe−rτ P(O, τ ) + e−rt P(O, t ), (2)

where the first term on the right-hand side (RHS) represents
the probability distribution contributed by the occurrence of a
reset process at time t − τ for any possible τ ∈ (0, t ), where τ

denotes the time duration between the last resetting event and
t . The second term on the RHS is the contribution from those
events when no resetting occurs within the time interval [0, t].
When t is large, e−rt approaches 0. Therefore, we simplify
Eq. (2) as

Pr (O, t ) = r
∫ t

0
dτe−rτ P(O, τ ). (3)

which means to obtain the probability distribution of the ran-
dom variable O, we only need to know the information of
P0(O, τ ).

A. Probability distribution of the order parameter
at the critical temperature

For the Ising model, we select the order parameter m =
1
N

∑N
i=0 si as the target random variable. Magoni and col-

leagues [16] have explored the probability distribution of the
order parameter for 1D and 2D Ising models. They argued that
the critical temperature Tc remains unchanged for different
resetting rates r. Furthermore, the resetting process gives rise
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FIG. 2. (a) The probability distributions of the magnetization P(m) for L = 64 with different resetting rate at the critical temperature. It
shows that when the resetting rate r grows from 0 to 1, P(m) varies from a double-peak distribution to a third-peak one. When r � 1/L, the
probability distribution function reduces to the exponential distribution. (b)–(d) The probability distributions of the magnetization for L = 64
with resetting rate r = 0.000 005, 0.001 28 and 0.010 24, respectively. The red solid lines denote the plot fit via (b) Eq. (4), (d) Eq. (7), and
(c) their combinations.

to a “pseudoferro” phase, i.e., a resetting-induced nonequi-
librium stationary state (NESS), for r > r�(T ) and T > Tc,
where r�(T ) represents a threshold value of the resetting rate.
However, at the critical point, the analytical description of
P(m) is lacking.

Without resetting, Binder suggested that P(m) should have
a double-peak behavior as follows [34],

P(m) = Ld/2

2πkBT χL

1

2
exp

(
(m − mL )2Ld

2kBT χL

)

+ Ld/2

2πkBT χL

1

2
exp

(
(m + mL )2Ld

2kBT χL

)
, (4)

where d , χL, and mL represent the space dimension of the
system, the susceptibility, and the peak value of the magne-
tization, respectively. As an example, in Fig. 2(b), we obtain
the best fit of Eq. (4) to the simulation results for L = 64 at
the critical point with a tiny resetting rate.

We also know that for a time sequence of the order param-
eter, the correlation time behaves as τ ∼ ξ z, where ξ is the
correlation length and z ≈ 2.1665 [35] is the dynamical expo-
nent. Therefore, with the introduction of stochastic resetting

to the system, to maintain the critical behavior of the Ising
model, we can postulate that the inverse value of the resetting
rate should exceed the correlation time, i.e., 1/r � τ , and
τ ∼ ξ z. At Tc, the correlation length ξ approaches L, thus we
have r � L−z. In this range of resetting rates, the probability
distribution of the order parameter resembles P(m) at r = 0.

For a large resetting rate r � 1/L, the resetting is so potent
that it ensnares the system in a profound nonequilibrium state,
and the long-time memory of the magnetization is elapsed.
Then, the distribution P(m, τ ) behaves as a Gaussian distribu-
tion

P(m, τ ) ∼ e−(m−m0 )2/(4Dτ )/
√

4πDτ , (5)

with D representing a diffusion constant.
Substituting Eq. (5) into Eq. (3), we have

Pr (m) ∼ r
∫ t

0
dτe−rτ e−(m−m0 )2/(4Dτ )/

√
4πDτ , (6)

which leads to

Pr (m) ∼
√

r/De−√
r/D|m−m0|, (7)
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resulting in a probability distribution with exponential decay
as shown in Fig. 2(d).

Between those two extremes (small and large resetting
rate), the interplay between fluctuation and resetting leads to
an intermediate three-peak distribution with the formula being
a combination of Eqs. (4) and (7). The simulation results de-
picted in Fig. 2 validate these processes. It is important to note
that the alterations in the shapes of the distribution functions
signify the breakdown of symmetries. This indicates that the
dynamics of the system, particularly the diffusion behavior,
could be altered [21].

It has already been discussed that the stochastic reset-
ting process can modify the diffusion process, resulting in
changing the diffusion type from anomalous to normal, or
subdiffusion to superdiffusion in different systems [24,25,28].
In addition, recent studies [17,36] imply that the Ising model
at the critical point provides a good reference to explore
anomalous diffusion that belongs to fractal Brownian mo-
tion (fBm). Therefore, in the next section, we focus on
the diffusion of the order parameter in the Ising model
at Tc.

B. Diffusion of the order parameter

To quantitatively depict the diffusion of the order parame-
ter, we define the mean-square deviation (MSD) as

〈�m2〉 = 〈[m(t ) − m(0)]2〉. (8)

Reference [17] showed that at Tc, the MSD of the order
parameter, without the resetting process, behaves as

〈�m2〉 = Ldtα, (9)

where d = 2 is the spatial dimension, and the anomalous ex-
ponent α = (D − d + γ /ν)/z, with d is the spatial dimension
of the system and D is the tagged dimension. For example, if
we focus on a tagged line, then D = 1. γ = 1.75 and ν = 1
are two equilibrium exponents.

For the 2D Ising model, when we focus on the bulk
magnetization of the system, we have D = d = 1, then α =
γ /(νz) ≈ 0.81. It means that the magnetization of the 2D
Ising model experiences subdiffusion at the critical point.

Further, Ref. [17] reported that anomalous diffusion is
popular in Ising-like systems at the critical point. By an-
alyzing the autocorrelation function of the restoring force,
which is the force that resists the change of the magnetiza-
tion, Ref. [17] confirmed that the observed subdiffusion of
the magnetization probability belongs to the fractal Brownian
motion type [18]. We also measure the force autocorrelation
in the Appendix and our results support the argument of
Ref. [17].

For an Ising model with stochastic resetting, Fig. 3(a) ver-
ifies that at a small resetting rate, the behavior of 〈�m2〉 is
identical to the situation without resetting. When r increases,
the anomalous diffusion of m is still observed. However, the
anomalous exponent increases. For very large r � 1/L, α ≈ 1
is obtained. These results reveal that the stochastic resetting
induces a crossover behavior, i.e., the order parameter expe-
riences a crossover from anomalous to normal diffusion with
increasing r.
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FIG. 3. (a) The MSD of the magnetization for the Ising model
with different resetting rates r. The system size is set to be L = 256.
The figure shows that the magnetization experiences subdiffusion
with a low resetting rate, and normal diffusion with a high reset-
ting rate. Especially, when r � L−z, the MSD of the magnetization
behaviors as ∼tγ /(νz), with γ = 1.75, ν = 1.0 are equilibrium expo-
nents, and z ≈ 2.1665 is the dynamical exponent. (b) The anomalous
exponents α(r, L) of the magnetization for different system sizes
and resetting rates. The solid line represents rc ∼ L−z. Below this
solid line, the stochastic resetting does not affect the dynamics of the
system, i.e., α(r, L) ≈ αc.

Note that for large times, the MSD of the magnetization
will saturate to a value dependent on the system sizes and
resetting rates. However, we only consider the power-law
region in our paper, therefore, in Fig. 3(a), we only plot the
results without very large times.

To further characterize the crossover behavior, the diffu-
sion exponent is calculated as

α(r, L) ≡
〈
∂〈�M2〉

∂t

〉
, (10)

where the large brackets 〈 〉 outside ∂〈�M2〉
∂t represent the aver-

ages over multiple independent samples.
In Fig. 3(b), the solid line denotes rc ∼ L−z. It means that

for an Ising model with a specific system size, if r � L−z,
then the stochastic resetting will not change the critical dy-
namical behavior of the order parameter. Similar results were
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FIG. 4. (a) The autocorrelation function of the magnetization
C(t ) for L = 256 with different resetting rates. The solid lines rep-
resent the best fit of the expression of Eq. (12), which provides the
values of correlation time τ . (b) The correlation time for different
system sizes and resetting rates. The data collapse indicates that for
r � L−z, we have τ ∼ Lz. However, if r is large, then the correlation
time approaches a constant value of 1/r.

also found for the probability distribution as explained in
Sec. III A.

In addition, for those black dots shown in Fig. 3(b), most
of them denote the values of the diffusion exponents α(r, L)
that are smaller than γ /(νz). It is because we study finite-size
systems (L � 256), and γ /(νz) is only expected for system
sizes approaching infinity [17].

C. Measurement of the correlation time

To further understand the crossover behavior of the MSD
of m, we calculate the autocorrelation function of m as

C(t ) = 〈m(t )m(0)〉, (11)

from which we measure the correlation time by fitting the data
of C(t ) as

C(t ) ∼ exp(−t/τ ). (12)

As an example shown in Fig. 4(a), for different resetting
rates, Eq. (12) (the solid lines) fits the simulation results of

the autocorrelation function C(t ) well, which provide us the
values of the correlation time τ for different resetting rates.

Next, we plot the correlation time in Fig. 4(b). It explains
that when Lr1/z � 1, i.e., r � L−z, then τ ∼ Lz. When r be-
comes larger, the correlation time saturates and it is no longer
L dependent. It is only dependent on the resetting rate as
τ ∼ r−1.

In summary, our observations with the 2D Ising model
at the critical point reveal the presence of a characteristic
resetting rate rc ∼ L−z. Below rc, stochastic resetting does
not alter the system’s dynamical properties. Additionally, as
L → ∞, rc → 0, indicating that in the thermodynamic limit,
stochastic resetting does not impact the system’s dynamics.

IV. CONCLUSION

We study the 2D Ising model with stochastic resetting
at its critical point. Our results identify a threshold value
of the stochastic resetting rate rc ∼ L−z. Below this thresh-
old, stochastic resetting does not influence critical dynamical
properties of the order parameter. Notably, when r > rc, we
observe a crossover in the order parameter’s behavior from
anomalous to normal diffusion as the resetting rate increases.
Since we have recognized that the subdiffusion of the order
parameter in the Ising model likely follows the fBm type
[17], the results in this paper offer valuable insights into how
stochastic resetting affects systems with anomalous diffusion
of the fBm type.
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APPENDIX: AUTOCORRELATION FUNCTION
OF THE “RESTORING FORCE”

In Ref. [17], it was argued that in Ising-like systems, the
observed anomalous diffusion of the order parameter at Tc

probability belongs to the fractal Brownian motion type. To
confirm this argument, we calculate the autocorrelation func-
tion of the “restoring force” f (t ), which is the force that resists
the change of the target magnetization.

Following the procedure suggested by Ref. [17], assuming
the system is thermalized, then we begin to fix the value of the
magnetization. Note that when we say fixiing the magnetiza-
tion does not mean the whole system is frozen, the spins can
still evolve via the nonlocal Kawasaki spin-exchange dynam-
ics [37], i.e., at each time step, we randomly select two spins i
and j and we try to exchange the spin values by the Metropolis
flip rule. Then at each regular time interval, the restoring force
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FIG. 5. The autocorrelation function of the “restoring force” for
different resetting rates and L = 256. The solid lines are the power-
law fit via Eq. (A2).

is measured as

f (t ) =
∑

i∈tagged

(−2si) min
(
1, e�Ei/(kBTc )

)
. (A1)

Finally, we calculate the autocorrelation of the restoring
force by 〈 f (t ) f (0)〉. As suggested by Ref. [17], we should
have

〈 f (t ) f (0)〉 ∼ t−α(r,L), (A2)

where α(r, L) is the diffusion exponent, and its value is
adopted from Sec. III B.

The numerical results shown in Fig. 5 demonstrate that the
force autocorrelation function indeed follows the behavior of
Eq. (A2). It indicates that although the stochastic resetting
changes the diffusion behavior with increasing diffusion expo-
nents when r increases, the anomalous diffusion for different
resetting rates still belongs to the fBm type.
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