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Quantum phase transitions and cat states in cavity-coupled quantum dots
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We study double quantum dots coupled to a quasistatic cavity mode with high mode-volume compression
allowing for strong light-matter coupling. Besides the cavity-mediated interaction, electrons in different double
quantum dots interact with each other via dipole-dipole (Coulomb) interaction. There is a first-order cavity-
induced ferroelectric quantum phase transition when the attractive dipolar interaction is smaller than the critical
value defined by the energy splitting in DQDs and a smooth transition, otherwise. We show that, in the smooth
transition region, both the ground and the first excited states of an array of double quantum dots are cat states.
Such states are actively discussed as high-fidelity qubits for quantum computing, and thus our proposal provides
a platform for semiconductor implementation of such qubits. We also calculate gauge-invariant observables
such as the net dipole moment, the optical conductivity, and the absorption spectrum beyond the semiclassical
approximation. The results are robust against cavity losses and variations of system parameters.
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I. INTRODUCTION

Placing condensed matter systems in an optical cavity
is a promising way of engineering new correlated states of
matter via the interaction with quantum fluctuations of the
cavity field [1]. The main experimental challenge is to achieve
the ultrastrong light-matter coupling regime [2,3] that can
be reached by external driving [4–12], by tuning the cavity
in a plasmon or an exciton-polariton resonance [13–16], or
by compressing the mode volume in specially designed res-
onators [17,18] that can be viewed as LC circuits [19,20]
with a single discrete quasistatic mode, whose frequency ω0 =
1/

√
LC is not constrained by the resonator dimensions. When

the light-matter coupling is strong enough, then even in the
ground state the vacuum fluctuations can radically modify
electron systems [21–24]. This phenomenon fosters a qualita-
tively new class of condensed-matter platforms with strongly
correlated light-matter excitations.

Superradiance, initially described by R. H. Dicke [25,26],
has garnered significant attention to coupled light-matter
systems ever since. There exist various effective models de-
scribing cavity-coupled electron systems, known as extended
and generalized Dicke models, see, e.g., Refs. [27–30]. An
important restriction to such effective models is gauge invari-
ance that must be preserved [31–33]. Originally, the main
signature of the superradiant Dicke phase transition was a
photon condensate, the macroscopic occupation of the cav-
ity mode that is not gauge-invariant [34]. Nevertheless, the
quantum phase transition (QPT) is present and equivalent to
the ferroelectric phase transition (FPT), resulting in ordered
electric dipole moments, see Refs. [35,36]. Important, the
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FPT is only possible if the Coulomb interaction between the
dipoles is included [28,35,37–39].

In this work, we consider a few cavity-coupled double
quantum dots (DQDs) with a Coulomb interaction between
them, the only non-trivial part of which is the electric dipole-
dipole interaction. Choosing a geometry where the dipolar
interaction between DQDs is attractive, we find either a
first-order QPT or a smooth transition depending on the rel-
ative strength of the Coulomb and light-matter interactions,
leading to ordered phases of the electric dipole moments.
The ground and the first excited states are cat states in the
smooth transition region. In particular, this is true already
for two cavity-coupled DQDs with attractive dipole-dipole
(Coulomb) interaction. We suggest such systems as possi-
ble semiconductor candidates for a self-correcting cat qubit
[40,41] and a realistic platform to study cavity-induced QPTs.
Here we calculate the net dipole moment, the optical con-
ductivity, and the absorption spectrum all of which are
gauge-invariant.

II. THEORETICAL MODEL

A few identical singly occupied DQDs are oriented along
the line connecting the capacitor plates as shown in Fig. 1.
Due to the Coulomb repulsion, DQDs interact with each other
directly via the electric dipole-dipole interaction. The double-
well shape of the confining potential of each DQD allows us
to truncate electron energy levels by the lowest two as long as
the higher states are far detuned [42,43]. Such an electronic
system is described by the following Hamiltonian,

Hel = −�

2

N∑
i=1

(c†
i,Lci,R + H.c.)

+
N∑

i> j

Ui j

2
di,zd j,z − Vb

2

N∑
i=1

di,z, (1)
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(a)

(b)

FIG. 1. (a) Sketch of the system: Two DQDs embedded in a split-
ring resonator. The cavity mode is polarized along the arrow, E0 =
(0, 0, E0). (b) Two double-well potentials for each DQD. The two
lowest energy levels are shown. The two minima of each DQD are
marked with L (left) and R (right), respectively. The DQD axes are
aligned along the z axis.

where c†
i,L/R (ci,L/R) are the electron creation (annihilation)

operators for the two sites (L/R) of the ith DQD, N is the
number of DQDs, Vb is the bias in each DQD, � is the DQD
level hybridization, and di,z = c†

i,Rci,R − c†
i,Lci,L is the electric

dipole operator. Spin indices are suppressed. The Coulomb
interaction is reduced to the dipole-dipole interaction here due
to the two-level truncation of each singly-occupied DQD. The
dipolar interaction strength between two DQDs is derived in
Appendix A

Ui j ≈ e2b2

2ε

|ri j |2 − 3(ri j · ez )2

|ri j |5 , (2)

where ri j = ri jez is the distance vector between two DQD cen-
ters, ε the dielectric constant, e < 0 the elementary charge, b
the DQD length, and eb/2 the dipole matrix element between
the lowest two levels of a DQD. If DQDs are assembled along
the capacitor axis z, the dipole-dipole interaction is attractive,
Ui j = −(eb)2/(εr3

i j ) < 0. Screening of Ui j due to proximity
to the capacitor plates does not affect the sign of Ui j but
only slightly modifies its absolute value. In what follows, we
mostly focus on two (N = 2) DQDs. In this case, only the
U12 ≡ U matrix element of the dipole-dipole interaction is
important. Throughout the paper, we use cgs-units and also
set the Planck and Boltzmann constants to unity, h̄ = kB = 1.

All DQDs are coupled to a single quantized quasistatic
LC-cavity mode [44–49]. The electric field of the cavity
mode is almost completely localized in the capacitor and
polarized along the DQDs, see Fig. 1. The corresponding
vector-potential operator Az is given by

Az = i
E0

ω0
(a† − a) ≡ i

√
2π

εVeff ω0
(a† − a), (3)

where a (a†) is the annihilation (creation) operator of the cav-
ity mode with frequency ω0, E0 the amplitude of the electric
field fluctuations, and Veff the effective mode volume.
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FIG. 2. Numerically exact six lowest energy levels of H ,
Eq. (5), are shown for ω0/� = 0.1 and attractive dipolar interac-
tion (a) U/ω0 = −5, (b) U/ω0 = −1.5 as a function of light-matter
coupling g. (a) Energy levels merge pairwise, indicating the smooth
transition to the ordered state. The inset shows the second derivative
of the ground state energy with respect to the light-matter coupling
g, where the dotted line is obtained by exact diagonalization (ED),
the solid line corresponds to the semiclassical (SM) approximation.
(b) shows the level crossing corresponding to a first-order ferroelec-
tric QPT, indicated by the vertical dashed red line. The left inset in
(b) shows the zoomed-in level crossing region (where we introduced
a small ratio Vb/ω0 = 0.5 × 10−3 to identify the two otherwise de-
generate levels). The right inset in (b) shows the first derivative of the
ground state energy ∂EGS(g)/∂g obtained by ED that is discontinuous
at the QPT.

We describe the coupling of the DQDs to the cavity via the
Peierls substitution,

H0 = ω0a†a − VbSz + US2
z , (4)

H = H0 − �

2
(eg(a−a† )S+ + e−g(a−a† )S−), (5)

g =
√

W

ω0
, W = 2πe2b2

εVeff
, (6)

where Sβ = 1/2
∑N

i=1 σi,β is the orbital pseudospin of the
system, σi,β is the Pauli matrix corresponding to the ith DQD,
β ∈ {x, y, z}, g is the dimensionless light-matter coupling con-
stant, Ui j = U . The operators Sz and S± = Sx ± iSy satisfy the
standard spin algebra: [S±, Sz] = ∓S±, [S+, S−] = 2Sz. The
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FIG. 3. (a) Phase diagram of the numerically exact net dipole
moment 〈Sz〉 for N = 2 DQDs at ω0/� = 1/q2 = 0.1 and zero
temperature as a function of the dipole interaction strength and light-
matter coupling constant. An infinitesimal symmetry-breaking field
−VbSz with Vb/

√
ω0� = 10−3 is introduced. (b) Phase diagram of

〈S2
z 〉 at finite temperature T/ω0 = 0.1.

pseudospin S describes the collective orbital degree of free-
dom in the DQD array. For example, the total dipole moment
operator maps onto Sz:

∑N
i=1 di,z → 2Sz.

First, we diagonalize the Hamiltonian H , see Eq. (5), nu-
merically for N = 2 cavity-coupled DQDs at zero bias Vb = 0,
truncating the photon Hilbert space at 200 photons to ensure
convergence. First six energy levels are shown in Fig. 2. The
spectrum demonstrates either continuous coalescence of the
energy levels corresponding to a smooth transition to the
ferroelectric phase, Fig. 2(a), or a level crossing indicating the
first-order ferroelectric QPT, Fig. 2(b).

The zero-temperature phase diagram represented by a
2D plot of the net dipole moment 〈Sz〉 as a function of
the dipole interaction strength and light-matter coupling
constant at ω0/� = 0.1 [see Fig. 3(a)] shows the first-
order QPT at |U/

√
ω0�| < Uc/

√
ω0� ≈ 0.2

√
�/ω0, g >

gc ≈ 1.5
√

�/ω0 and the smooth transition otherwise, sep-
arated by the critical point (gc,Uc) marked by the star.
It’s position remains fixed if plotted in the coordinates
(g/q,U/

√
ω0�), where q = √

�/ω0, in agreement with the
mean-field analysis shown in Appendix B. At finite tempera-
ture, the QPT turns into a smooth transition, see the density
plot of 〈S2

z 〉 in Fig. 3(b). Here, we used that 〈S2
z 〉 does not

require a small symmetry breaking field Vb, which is useful for
the finite-temperature analysis. We point out that 〈S2

z 〉 is mean-

ingful for N � 2 DQDs. We also stress that there is no QPT at
g = 0 implying that this is a cavity-induced phenomenon.

III. SEMICLASSICAL DECOUPLING

In order to gain physical insight into our numerical results,
we analyze the system in the quasithermodynamic limit ω0 

� (the limit of the classical oscillator), see Refs. [50–53]
for details. Our results remain qualitatively the same even
when � ∼ ω0, see Appendix C. The photonic semiclassical
decoupling is reminiscent of the length-gauge formulation of
the problem [54–57],

HD = UHU† = Hsm + δV, (7)

Hsm = ω0a†a − VbSz − �Sx + US2
z + g2ω0(δSz )2, (8)

δV = −gω0 δSz(a + a†), (9)

where H is given by Eq. (5), U = exp [gδSz(a† − a)], δSz =
Sz − 〈Sz〉, 〈Sz〉 is the average of orbital pseudospin Sz over
the ground state of the semiclassical Hamiltonian Hsm. The
perturbation δV accounts for quantum corrections beyond
the semiclassical approximation. In contrast to conventional
mean-field treatment where both, the photons and the pseu-
dospin, are treated as classical objects, see, e.g., Ref. [50], the
orbital pseudospin S in our work remains quantum because
we apply our results to a small number of DQDs.

The Hamiltonian HD commutes with S2, so we consider
states with definite orbital pseudospin S. Single DQD cor-
responds to N = 1 and S = 1/2, this case is known as the
quantum Rabi model [52,58]. In case of N = 2 DQDs, see
Fig. 1, S can be either 0 or 1. The S = 0 state does not
couple to the antenna. If S = 1, the semiclassical Hamiltonian
[Eq. (8)] can be diagonalized analytically, see Appendix B.
Here, we show the semiclassical ground-state energy, Esm, of
two cavity-coupled DQDs at Vb = 0 (symmetric DQDs):

Esm = − 2

3

√
P cos[arccos(Q/P3/2)/3]

+ 2

3
(U + g2ω0) + ω0α

2, (10)

where P and Q are defined as follows:

P = (U + g2ω0)2 + 3
(
�2 + 4g2α2ω2

0

)
,

Q = (U + g2ω0)
[
(U + g2ω0)2 − 36α2g2ω2

0 + 9�2/2
]
.

(11)

Here, we introduced the parameter α = g〈Sz〉. If α = 0, the
phase is trivial. If α �= 0, the ground state is ferroelectric, i.e.,
it has a net dipole moment 〈Sz〉 �= 0. The ferroelectric QPT
is first-order and 〈Sz〉 has a finite jump at the transition, see
Fig. 3(a), whereas the second-order QPT predicted by the
mean field turns into a smooth transition in the ED due the
tunneling effect.

As Esm is an even function of α at Vb = 0 [Eq. (10)], the
ground state of Hsm is two-fold degenerate at α �= 0. This
degeneracy is best seen from the symmetry P = exp(iπa†a +
iπSx ) of the transformed Hamiltonian HT = T (α)HDT †(α)
at Vb = 0, where T (α) = eα(a†−a). Note that T (α) is the
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FIG. 4. Fidelities |〈GS|�G〉| and |〈E1|�E1〉| in the smooth transi-
tion region as a function of light-matter coupling g, where |GS〉 and
|E1〉 are the exact ground and the first excited states (in the length
gauge), |�G〉 and |�E1〉 are the semiclassical cat states, see Eqs. (12)
and (13). The semiclassical approximation is valid if the fidelities are
close to one. The following parameters are used: the dipole-dipole
interaction strength is U/ω0 = −5 and ω0/� = 0.1. The inset shows
the “cat size” α2.

optical displacement operator that creates the coherent state
|α〉 = T (α)|0〉, where |0〉 is the photonic vacuum of Hsm, see
Eq. (8). While the symmetry breaking in this problem occurs
only in the limit ω0/� → 0, we expect very small lifting of
the degeneracy at any finite ω0/� 
 1 such that the parity
symmetry P of the Hamiltonian HT is restored. In particular,
the ground state, |�G〉, and the first excited state, |�E1〉, of
the Hamiltonian HT in the semiclassical approximation corre-
spond to P = +1 and P = −1, respectively,

|�G〉 = N [χ (α)|α〉 + χ (−α)| − α〉], (12)

|�E1〉 = N [χ (α)|α〉 − χ (−α)| − α〉], (13)

where α > 0 corresponds to positive dipole moment 〈Sz〉 > 0,
χ (±α) are the two lowest-energy eigenstates of Hsm, and
N is the normalization factor. Indeed, we observe a finite
splitting in the ferroelectric phase, see Fig. 2(a). Restoration
of the parity symmetry P is due to the tunneling (instantons)
between two semiclassical ground states [59].

The fidelities |〈GS|�G〉| and |〈E1|�E1〉| plotted in Fig. 4
as a function of g justify the semiclassical treatment in the
ferroelectric phase, where |GS〉 and |E1〉 are exact (numerical)
ground and first excited states, |�G〉 and |�E1〉 are corre-
sponding semiclassical cat states, see Eqs. (12) and (13).
This confirms the semiclassical result that the ground and
the first excited states are two-component cat states. The pa-
rameter α2, being an increasing function of g (see the inset
in Fig. 4), plays the role of the “cat size.” The comparison
between the semiclassically calculated phase diagram for the
order parameter 〈Ŝ2

z 〉 and the ED is shown in Appendix D.
Two lowest energy levels become degenerate in the strong
coupling limit g → +∞, see Fig. 2, when the Schrödinger
cats become truly classical. In order to use such a system as
a cat qubit, a finite energy splitting is required which corre-
sponds to the smooth transition region and restricts the cat

size α2. On the bright side, the cat states appearing at strong
coupling (recently observed in circuit QED [58,60]) are robust
to decoherence and can be harnessed to implement quantum
gates with high fidelity [61,62]. We propose the cavity-
coupled DQDs as a new solid-state platform for cat qubits
(without driving [63]), as promising candidates for quantum
computing [64–66]. In contrast to atomic systems (e.g., see
Refs. [67–69]), solid-state platforms are scalable and require
much less stringent experimental conditions. As shown in
Appendix C, the results are resilient to variations of the DQD
parameters. Also, when the cavity losses are included within
the Lindblad formalism, the phase transition is shown to re-
main first-order as shown in Appendix E. The behavior of
the cat states is analyzed within the quantum jump (Monte
Carlo) method revealing switching between the two cat states
which gives rise to a finite coherence time of the cat qubit (see
Appendix F).

IV. OPTICAL CONDUCTIVITY AND ABSORPTION
SPECTRUM

Two gauge invariant response functions that can be rou-
tinely measured are the optical conductivity σ (ω) and the
absorption spectrum. The latter is defined [70] as the cav-
ity response to an AC voltage applied to the cavity and
is proportional to A(ω) = −2 Im GR

ph(ω), with GR
ph(t ) =

−iθ (t )〈[Az(t ), Az(0)]〉, θ (t ) being the Heaviside step func-
tion. The absorption spectrum was thoroughly studied before
[19,71,72] as a function of the driving frequency, showing two
standard polariton branches. We plot the absorption spectrum
in Fig. 5(b), revealing the softening of the lower polariton
mode to zero at the smooth transition.

The optical conductivity is calculated by standard means
[73]

Re [σ (ω)] = 1

2ω

∫ +∞

−∞
dteiωt 〈J (t )J〉, (14)

where the current operator J along the DQD axis is defined as
J = e dz/dt = i[HD, (eb/2)

∑
i di,z] because the z coordinate

operator is replaced by the dipole moment, and in the length
gauge [Eq.(7)] is given by J = i[HD, ebSz] = −eb�Sy.

Contrary to absorption, the optical conductivity retains
a strong frequency comb [74–76] deep in the ferroelectric
phase, see Fig. 5(a). We stress that such a frequency comb
is not present in the semiclassical approximation, see Eq. (8).
Here, we present an analytic result for Re[σ (ω)],

Re [σ (ω)] ≈ πS

2ω
(eb�)2

∞∑
n=0

pn(g2)δ(ω − En), (15)

where S is the pseudospin, pn(z) = e−zzn/n! is the Pois-
son distribution, and En = nω0 − U (2S − 1). Equation (15)
is valid in the ferroelectric phase at arbitrary g and near-full
semiclassical polarization |〈Sz〉| ≈ S, see Appendix H for de-
tails.

Our findings are relevant for state-of-the-art experiments,
providing key parameters: ω0, ranges from tens of GHz to
THz; the splitting in DQDs can vary between � ∼ 0.1 − 10
meV; the Coulomb interaction, |U |, may reach several meV
depending on the dot configuration. The light-matter coupling
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FIG. 5. Density plot of (a) the optical conductivity Re[σ (ω)]/σ0

and (b) the absorption spectrum (photon spectral function A(ω))
for N = 2 DQDs at U/ω0 = −5 and ω0/� = 0.1 corresponding
to the smooth transition region. The optical conductivity shows a
frequency comb at strong coupling. The normalization parameter
σ0 = (eb)2 and each delta peak is replaced by a Lorentzian with the
broadening �/ω0 = 0.1. The absorption spectrum shows the lower
polariton softening to zero in the smooth transition region alongside
a reduction in its spectral weight. In the case of the first-order QPT,
the photon spectral function shows a jump instead of softening to
zero (see Appendix G). At g = 0, the polariton frequencies are ω0

and the eigenvalues of −�Sx + US2
z .

g = √
W/ω0 is widely tunable and can significantly exceed

unity if the length of each DQD is large and the mode volume
is highly compressed [18].

V. CONCLUSION

We analyzed two DQDs coupled to a cavity mode and
found a ferroelectric QPT at strong light-matter coupling and
attractive dipole-dipole interaction between DQDs due to the
Coulomb force. There is a first-order QPT and a smooth tran-
sition separated by a critical point. We showed that the ground
and the first excited states of two cavity-coupled DQDs in the
smooth transition region are cat states protected by a finite
energy splitting. We argue that such cavity-coupled DQD sys-
tems can be used as cat qubits. The quantum phase transition
and the cat states are shown to persist against cavity losses
and variation of system parameters. Higher excited states are
studied via the optical conductivity which exhibits a frequency
comb at strong coupling.
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APPENDIX A: HAMILTONIAN OF THE ELECTRONIC
SYSTEM

Here we derive the dipole-dipole interaction term intro-
duced in the electronic Hamiltonian Hel in the main text. We
consider N singly occupied DQDs that interact with each
other via the Coulomb repulsion,

Hel = −
N−1∑
k=0

(
�

2
c†

2k+1c2k+2 + H.c.

)

+ 1

2

∑
k �=k′

Wkk′ (nk − nk,0)(nk′ − nk′,0)

− Vb

2

N−1∑
k=0

(n2k+2 − n2k+1), (A1)

where the 2N sites comprising N DQDs are located at the
positions zk (k = 1, . . . , 2N) and numbered continuously, i.e.,
c1 = c1,L, c2 = c1,R, c3 = c2,L, c4 = c2,R, . . . , where ci,L/R are
the electron annihilation operators introduced in the main
text, �/2 is the DQD level hybridization (the hopping am-
plitude), Vb the bias in each DQD, b the DQD length, i.e.,
z2 − z1 = z4 − z3 = . . . = b, nk,0 = 〈GS0|nk|GS0〉 is the av-
erage occupation of the kth site, |GS0〉 is the ground state
of the non-interacting Hamiltonian. The sum in the kinetic
energy is restricted to odd numbers only as there is no hopping
between the DQDs. The Coulomb interaction is described
by Wkk′ = e2/(ε|zk − zk′ |), ε is the dielectric constant. As we
assume that each DQD is singly occupied, there are no other
interaction terms.

If there are only N = 2 singly occupied DQDs, then
n1 + n2 = n3 + n4 = 1 and the inter-DQD Coulomb inter-
action can be represented in terms of the product n2n3

only. On the other hand, the dipole-dipole interaction
2U [(n1 − n2)/2][(n3 − n4)/2] from the main text can be sim-
plified to (U/2)(1 − 2n2)(2n3 − 1) = −2Un2n3 + U (n2 +
n3) − U/2. Comparing the coefficients of the bilinear term
n2n3 in the Coulomb term and in the dipole-dipole interaction
term, we find the dipole-dipole interaction strength,

U = −1

2
(−W13 + W14 + W23 − W24)

= − e2

2ε

(
− 1

l + b
+ 1

l + 2b
+ 1

l
− 1

l + b

)

= −e2

ε

b2

l (l + b)(l + 2b)
, (A2)
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where l = z3 − z2. The dipole-dipole interaction in case of
arbitrary N � 2 is derived in a similar fashion. Therefore, the
Hamiltonian in Eq. (A1) is equivalent to Hel in the main text
(up to a constant energy shift). The distance z3 − z2 = l is
related to the distance between the DQD centers r12 from the
main text: r12 = l + b. At l � b we restore the result from
the main text U = −(eb)2/[εr3

12]. The dipole-dipole approxi-
mation is exact due to the two-level truncation of DQD energy
levels.

APPENDIX B: SEMICLASSICAL ANALYSIS

The semiclassical Hamiltonian Hsm takes the following
form:

Hsm = ω0a†a − VbSz − �Sx + US2
z + g2ω0(δSz )2, (B1)

where δSz = Sz − 〈Sz〉, 〈Sz〉 is the average of Sz over the
ground state of Hsm. Within this approximation, photons are
decoupled from the orbital pseudospin, so the semiclassical
ground state wave function �sm = |0〉χsm, where |0〉 is the
photon vacuum, χsm is the lowest-energy spinor of 〈0|Hsm|0〉.
The semiclassical ground-state energy Esm follows from the
characteristic equation det(〈0|Hsm|0〉 − Esm) = 0. In case S =
1, the characteristic equation is a third-degree polynomial. We
introduced the notation α = g〈Sz〉, and we chose to measure
all energies in

√
ω0�. Then, all three roots of this charac-

teristic equation are real and can be conveniently expressed
via the dimensionless parameters (g/q,U/

√
ω0�) (with q =√

�/ω0) as follows:

Ek

q
√

ω0�
=

(
α

q

)2

+ 2

3

(
U√
ω0�

+
(

g

q

)2
)

− 2

3

√
P

q2ω0�
cos

[
1

3
arccos

(
Q

P3/2

)
+ 2πk

3

]
,

(B2)

where k ∈ {0,±1}, and P and Q are given by

P

q2ω0�
=

(
U√
ω0�

+
(

g

q

)2
)2

+ 12

(
α

q

)2( g

q

)2

+ 3,

(B3)

Q

(q2ω0�)3/2
=

(
U√
ω0�

+
(

g

q

)2
)

×
[(

U√
ω0�

+
(

g

q

)2
)2

− 36

(
α

q

)2( g

q

)2

+ 9

2

]
. (B4)

The ground state corresponds to k = 0, i.e.. Esm = Ek=0.
Considering α as a variational parameter, we analyze the

global minima of Esm(α) at all other parameters fixed. We
stress that α = g〈Sz〉 at extrema of Esm(α). In Fig. 6, we
display three different regions: one global minimum (blue),
two global minima located at ±α �= 0 with E ′′

sm(α = 0)<0

FIG. 6. Energy landscape of the semiclassical ground state at
ω0/� = 0.1. Blue region: the semiclassical lowest energy Esm(α)
has its minimum at α = 0. Yellow region: the semiclassical energy
Esm(α) has the two minima ±α �= 0, and E ′′

sm(α = 0) < 0. Orange
region: the semiclassical energy has the two minima at ±α �= 0, and
E ′′

sm(α = 0) > 0. The transition from blue to the yellow region is a
second-order quantum phase transition (QPT), whereas from blue
to orange it is a 1st-order QPT. The boundary between yellow and
orange regions does not correspond to a phase transition as in both
regions the global minima are at ±α �= 0 (ferroelectric phase). We
note here that the second order QPT predicted by the semiclassical
analysis turns into a smooth transition in the exact treatment of the
problem.

(yellow) or with E ′′
sm(α = 0) > 0 (orange). Notice that Esm(α)

contains two (three) local minima in the yellow (orange)
region. In other words, in the semiclassical analysis the
boundary between blue and yellow (blue and orange) regions
corresponds to the second- (first-) order ferroelectric quantum
phase transition (FPT, we use the terms FPT and QPT inter-
changeably in this work). The boundary between yellow and
orange regions does not correspond to a phase transition, it
only shows that the local extremum at α = 0 changes from
local maximum to local minimum, while the global minima
are located at ±α �= 0. The position of the critical point sepa-
rating the first-order QPT from the smooth transition remains
unchanged if plotted in coordinates (g/q, U/

√
ω0�) when the

quasithermodynamic limit q = √
�/ω0 → ∞ is considered.

APPENDIX C: NON-EQUIVALENT QUANTUM DOTS

If the DQDs are not equivalent, i.e., have different split-
tings �i, applied biases Vb,i, widths bi (and, hence, couplings
to the cavity gi), the model describing a set of N = 2 DQDs
placed in the cavity from the main text takes the following
form:

H0 = ω0a†a − 1

2

N=2∑
i=1

Vb,iσi,z + US2
z , (C1)

H̃ = H0 − 1

2

N=2∑
i=1

�i

2
(egi (a−a† )σi,+ + e−gi (a−a† )σi,−), (C2)
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FIG. 7. The map of the net dipole moment 〈Sz〉 of the non-ideal
system at g2/g1 = 0.8 (g1 = g), �2/�1 = 1.05 and Vb,1/

√
ω0� =

10−3, Vb,2/Vb,1 = 0.8. The star marks the critical point separating
the first- and second-order quantum phase transitions. (a) ω0/�1 =
1/q2 = 0.1. (b) ω0/�1 = 1/q2 = 1.

gi =
√

Wi

ω0
, W = 2πe2b2

i

εVeff
. (C3)

We note that in the present case the Coulomb term US2
z

retains its form and only the expression of U via micro-
scopic characteristics of the individual DQDs is altered. It is
clear from Fig. 7 that the first-order phase boundary remains
sharp both near the quasithermodynamic limit and away
from it.

APPENDIX D: PHASE DIAGRAMS: EXACT
DIAGONALIZATION VS SEMICLASSICS

In the case of a single DQD, the square of the dipole
moment S2

z is trivial (identity matrix). This is not the case
for N � 2 DQDs. In Figs. 8(a) and 8(b), we show the exact
(numerical) and the semiclassical color maps of 〈S2

z 〉 for two
DQDs at ω0/� = 0.1 and zero temperature, T = 0. Even
though at T = 0 the phase boundaries on the 〈Sz〉 and 〈S2

z 〉
color maps are the same, the situation is different at finite
temperature T � |Vb|. At these temperatures, 〈Sz〉 = 0 due
to the symmetry restoration effect, while 〈S2

z 〉 is not sensitive
to either weak symmetry breaking field Vb 
 ω0, or to the
symmetry restoration due to the quantum tunneling (instan-
ton) effect. This is why we plot the 〈S2

z 〉 color map at finite
temperature in Fig. 3(b) in the main text.
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0.8
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FIG. 8. (a) Color map of 〈S2
z 〉 obtained by the exact diagonaliza-

tion. (b) Color map of 〈S2
z 〉 obtained from the semiclassical solution,

see the main text. In both figures, ω0/� = 0.1. The phase boundary
predicted by the semiclassical approximation approaches the exact
one in the quasithermodynamic limit ω0/� → 0.

APPENDIX E: LOSSY CAVITY: THE LINDBLAD
EQUATION

In this section, we show the solution of the Lindblad equa-
tion describing single-photon cavity losses:

ρ̇ = −i[Hl.g., ρ] + γD[a](ρ), (E1)

where D[a](ρ) = aρa† − 1
2 (a†aρ + ρa†a). We use the

length-gauge description with the Hamiltonian

Hl.g. =UHU† = ω0a†a

− VbSz − Sx + US2
z + g2ω0(Sz )2 − gω0 Sz(a + a†),

(E2)

where H is given in the main text, and U = exp [gSz(a† − a)].
The only difference between Hl.g. and HD from the main
text is that here we just performed the gauge transformation
from the velocity to the length gauge without subtracting
〈Sz〉 in the unitary transformation. In Fig. 9, we see that in
the presence of single-photon losses in the cavity, the open
system exhibits a first-order quantum phase transition in the
steady state ρss = ρ(t → ∞) that is very similar to what the
closed-system analysis from the main text predicts. Given
that the numerical solution of the Lindblad equation requires
higher truncation of the photon Hilbert space, we decided to
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)b()a(

)d()c(

FIG. 9. [(a) and (b)] Steady state solutions (photon number and
the average value of the square of the net dipole operator, the
later is a gauge invariant quantity) of the Lindblad equation with
single-photon losses. [(c) and (d)] Exact diagonalization of the closed
system exhibiting a first-order quantum phase transition. The param-
eters are U/ω0 = −0.4, �/ω0 = 4, and Vb/ω0 ≈ 10−2.

choose �/ω0 = 4, U/ω0 = −0.4, a choice which also sup-
ports the 1st order QPT at a similar value of g as in the main
text.

APPENDIX F: QUANTUM JUMPS (MONTE CARLO)
ANALYSIS OF THE CAT STATES

Cat states are analyzed via the Wigner function defined as
follows:

W (q, p) = 2 Tr[ρD(q, p) exp (iπa†a)], (F1)

where ρ is the cavity density matrix (i.e., the density matrix
of the system with the electronic degrees of freedom traced
out), the displacement operator can be expressed in terms of
canonical coordinates q and p,

D(q, p) = exp (
√

2((q + ip)a† − (q − ip)a)). (F2)

The Wigner function calculated in the length gauge is plotted
in Fig. 10.

In order to demonstrate the stability of the cat states, we
plot the Wigner function calculated in the length gauge for
a lossy cavity with a symmetry-breaking field included. The
analysis is performed with the help of the quantum jump
method (Monte Carlo) [77], which boils down to solving
the Schrödinger equation with the following non-Hermitian

(a) (b)

(c)

(d)

FIG. 10. The Wigner function at the initial (a) and final (b) mo-
ments of the evolution of the lossy system initially prepared in the
ground state at g ≈ 2, U/ω0 = −4, �/ω0 = 4, and Vb/ω0 ≈ 10−2.
The Wigner function is calculated via the quantum Monte Carlo
solver in QUTIP [78,79] with γ = 0.05ω0 (1/γ 
 tfinal) and the trun-
cation of the photon Hilbert space is set to 150 photons. (c) The
overlap between the current state in the quantum trajectory and the
ground/first excited states as a function of time shows that the system
throughout its evolution jumps between the ground and first excited
states under the influence of the collapse operators. (d) The Wigner
function in the steady state (the initial state is set to the ground (cat)
state), calculated from the Lindblad master equation for the same
parameters as in (a). This result corresponds to averaging over many
quantum trajectories [with one particular realization given in (a)],
showing the finiteness of the coherence time of the cat qubit in the
presence of losses.

effective Hamiltonian

Heff = H −
∑

n

i

2
C†

nCn, (F3)

where Cn are collapse operators. In our case there is only one
collapse operator C = √

γ a describing single-photon losses
in the cavity. The main idea of the method is that one
choses a random number r ∈ [0, 1) and propagates the state
with the non-Hermitian Hamiltonian Heff until the moment
of time t = tjump when 〈ψ (tjump)|ψ (tjump)〉 = r. At this mo-
ment, the wave function undergoes a jump into a projected
state using the collapse operator Cn (Cn is chosen with a rel-
ative probability of 〈ψ (tjump)|C†

nCn|ψ (tjump)〉): |ψ (tjump)〉 →
Cn|ψ (tjump)〉/〈ψ (tjump)|C†

nCn|ψ (tjump)〉1/2, then a new random
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value of r ∈ [0, 1) is chosen and the propagation is continued.
An individual realization is called a trajectory and below
we show the numerically calculated trajectory in Fig. 10(a).
It shows random switchings between two cat states on the
typical time scale set by γ −1, determining the coherence time
of such a cat qubit. This behavior can be understood by not-
ing that a|�G〉 ∝ |�E1〉 and a|�E1〉 ∝ |�G〉, in other words
single-photon losses introduce bit-flip errors. Averaging of
many trajectories leads to agreement with the results obtained
by the Lindblad approach (corresponding to averaging over
an ensemble): from the behavior of the trajectory it’s clear that
beyond the coherence time the interference fringe will average
to zero (while the blobs remain) as shown in Fig. 10(b) due to
the overlay of the even and odd cat states, however within the
coherence time of such a cat qubit the system remains in the
cat state.

APPENDIX G: PHOTON SPECTRAL FUNCTION AT THE
1ST ORDER QPT

In this section, we show that the absorption spectrum (the
photon spectral function) demonstrates a sharp discontinuity
at the first order QPT, see Fig. 11. This discontinuity reflects
a sudden jump of the net dipole moment on two sides of the
first-order QPT.
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(a)
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0.8

1.0

1.2

(b)

FIG. 11. (a) Density plot of the absorption spectrum (photon
spectral function) for N = 2 DQDs at U/ω0 = −1.75 and ω0/� =
0.1. The absorption spectrum shows a discontinuity at the first-order
QPT. The panel (b) shows only the lower polariton branch at same
parameters, clearly demonstrating a discontinuity at g ≈ 5.3. Ob-
served anticrossing at g ≈ 4.5 is due to the replica polaritons.

APPENDIX H: OPTICAL CONDUCTIVITY IN THE
ORDERED PHASE

The optical conductivity σ (ω) is a gauge-invariant observ-
able. Here, we derive Re[σ (ω)] in the leading order in �. This
result is applicable deep in the ordered phase where 〈Sz〉 ≈ S,
〈Sz〉 is the ground-state average of the semiclassical Hamilto-
nian Hsm, and S is the value of orbital pseudospin. Here, we
assume S � 1, such that the dipole-dipole interaction US2

z is
non-trivial. Indeed, in this case, effects of the “depolarization”
field −�Sx are weak and therefore, they can be treated via
the perturbation theory. Note that the light-matter coupling
constant g can be of arbitrary value and the perturbation ex-
pansion is performed only in the small parameter �/|US|. It is
more convenient to present the derivation within the velocity
gauge, see Eq. (5) in the main text. The current operator J
along the DQD axis z follows from the fact that the coordinate
operator is given by z = bSz in the Peierls gauge, where b
is the separation between left and right minima within each
DQD:

J = e
dz

dt
= i[H, ebSz] = i

eb�

2
(eg(a−a† )S+ − e−g(a−a† )S−).

(H1)

First, we calculate the current-current correlator �(g, t ),

�(g, t ) = −iθ (t )〈[JH (t ), J (0)]〉, (H2)

where JH (t ) = eiHt Je−iHt is the Heisenberg representation of
the current operator and θ (t ) the Heaviside step function.
Within leading order in �, �(g, t ) is given by the following
average:

�0(g, t ) = −iθ (t )〈[J (t ), J (0)]〉, (H3)

where J (t ) = eiH0t Je−iH0t is the interaction representation of
the current operator, H0 is given by Eq. (4) in the main text.
First we note that Sz(t ) = Sz as [H0, Sz] = 0. The interaction
representations of S+ and a are the following:

S+(t ) = e−iK (Sz )t S+ = S+e−iK (Sz+1)t , (H4)

a(t ) = e−iω0t a, (H5)

where K (Sz ) = H0(Sz − 1) − H0(Sz ) = Vb + U (1 − 2Sz ).
The statistical average of the exponential operators then
follows directly from the Campbell-Baker-Hausdorff formula,

F (g, t ) ≡ 〈eg(a(t )−a†(t ))e−g(a−a† )〉
= e−g2(2Nph+1) exp[2g2Nph cos(ω0t ) + g2e−iω0t ],

(H6)

where Nph = [eβω0 − 1]−1 is the average photon number at
finite temperature T = 1/β. As 〈S+(t )S+〉 = 〈S−(t )S−〉 = 0,
we find

�0(g, t ) = F (g, t )�0(g = 0, t ), (H7)

where �0(g = 0, t ) is the current-current correlator of the
electron system decoupled from photons. We emphasize that
the factorization in Eq. (H7) holds in the limit � 
 〈K (Sz )〉,
i.e., when the hopping � can be treated as a small pertur-
bation. In the limit � = 0, H = H0, see Eq. (4) in the main
text, and the ground state at U < 0 is the state with the max-
imal pseudospin projection (Sz = S at Vb > 0 and Sz = −S at
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Vb < 0),

�0(g = 0, t ) = −iθ (t )
S

2
(eb�)2e−itEopt , (H8)

where Eopt = |U |(2S − 1) + |Vb| corresponds to the energy
difference between the ground state and the first excited state
of 〈0|H0|0〉 at � → 0, |0〉 is the photon vacuum. In order to
see optical transitions between the ground state and the second
excited state of 〈0|H0|0〉, two virtual pseudospin flips are
required, such transitions emerge in order ∝ �4. We indeed
observe such transitions in exact diagonalization, they are
strongly suppressed compared to the leading harmonic, see
Fig. 5 in the main text. In order to find the Fourier transform
�0(g, ω), we use the Bessel function expansion,

ez cos(ω0t ) =
∞∑

−∞
Im(z)eimω0t , (H9)

where I−m(z) = Im(z) is the modified Bessel function of the
first kind. The real part of the optical conductivity then follows
from Eq. (H7),

Re[σ (ω)] ≈ − 1

ω
Im[�0(g, ω)] = πS

2ω
(eb�)2

∞∑
n=0

pn(g2)

×
∑
m∈Z

e−2g2Nph Im(2g2Nph)

× δ(ω−Eopt − (n − m)ω0), (H10)

where Z is the set of integers and pn(z) = e−zzn/n! the Pois-
son distribution. Notice that at T = 0 we get Nph = 0, so
only the m = 0 term in Eq. (H10) contributes, and we restore
Eq. (15) in the main text. The subleading ∝ �4 harmonics can
be calculated similarly via perturbative expansion with respect
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FIG. 12. Comparison between the numerics [exact diagonaliza-
tion, (a)] and analytics [Eq. (12) from the main text, (b)] for N = 2
DQDs at U/ω0 = −0.5 and ω0/� = 1.

to the terms ∝ � in H , see Eq. (5) in the main text. Here we
only present the brightest harmonics ∝ �2.

Interestingly, the Poissonian structure of the frequency
comb in Re[σ (ω)] is similar to the down-conversion in circuit
QED [74,75], and to the replica bands recently discussed
in the context of light-matter interaction [76]. In Fig. 12,
we show the comparison between the optical conductivity
Re[σ (ω)] calculated via exact numerical diagonalization and
the analytical result [Eq. (15) from the main text] in the
ordered phase.
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[23] Y. Ashida, A. İmamoğlu, J. Faist, D. Jaksch, A. Cavalleri,
and E. Demler, Quantum electrodynamic control of matter:
Cavity-enhanced ferroelectric phase transition, Phys. Rev. X 10,
041027 (2020).

[24] V. K. Kozin, E. Thingstad, D. Loss, and J. Klinovaja,
Cavity-enhanced superconductivity via band engineering,
arXiv:2405.08642.

[25] R. H. Dicke, Coherence in spontaneous radiation processes,
Phys. Rev. 93, 99 (1954).

[26] P. Kirton, M. M. Roses, J. Keeling, and E. G. D. Torre,
Introduction to the Dicke model: From equilibrium to nonequi-
librium, and vice versa, Adv. Quantum Technol. 2, 1800043
(2018).

[27] F. T. Hioe, Phase transitions in some generalized Dicke models
of superradiance, Phys. Rev. A 8, 1440 (1973).

[28] D. De Bernardis, T. Jaako, and P. Rabl, Cavity quantum elec-
trodynamics in the nonperturbative regime, Phys. Rev. A 97,
043820 (2018).

[29] F. M. D. Pellegrino, L. Chirolli, R. Fazio, V. Giovannetti, and M.
Polini, Theory of integer quantum Hall polaritons in graphene,
Phys. Rev. B 89, 165406 (2014).

[30] D. V. Kurlov, A. K. Fedorov, A. Garkun, and V. Gritsev, One
generalization of the Dicke-type models (2023), https://zenodo.
org/records/10034496.

[31] P. Nataf and C. Ciuti, No-go theorem for superradiant quantum
phase transitions in cavity QED and counter-example in circuit
QED, Nat. Commun. 1, 72 (2010).

[32] G. M. Andolina, F. M. D. Pellegrino, V. Giovannetti, A. H.
MacDonald, and M. Polini, Theory of photon condensation in
a spatially varying electromagnetic field, Phys. Rev. B 102,
125137 (2020).

[33] Z. Bacciconi, G. M. Andolina, T. Chanda, G. Chiriacò, M.
Schirò, and M. Dalmonte, First-order photon condensation in
magnetic cavities: A two-leg ladder model, SciPost Phys. 15,
113 (2023).

[34] A. Stokes and A. Nazir, Implications of gauge freedom for
nonrelativistic quantum electrodynamics, Rev. Mod. Phys. 94,
045003 (2022).

[35] A. Stokes and A. Nazir, Uniqueness of the phase transition in
many-dipole cavity quantum electrodynamical systems, Phys.
Rev. Lett. 125, 143603 (2020).

[36] A. Vukics, T. Grießer, and P. Domokos, Elimination of the a-
square problem from cavity QED, Phys. Rev. Lett. 112, 073601
(2014).

[37] J. Keeling, Coulomb interactions, gauge invariance, and phase
transitions of the Dicke model, J. Phys.: Condens. Matter 19,
295213 (2007).
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