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Boson stars are horizonless compact objects and they could possess novel geodesic orbits under the equi-
librium assumption, which differ from those in black hole backgrounds. However, unstable boson stars may
collapse into black holes or migrate to stable states, resulting in an inability to maintain the initially bound
geodesic orbits within the backgrounds of unstable boson stars. To elucidate the fate of initially bound geodesic
orbits in boson stars, we present a study of geodesics within the spherical space times of stable, collapsing, and
migrating boson stars. We focus on timelike geodesics that are initially circular or reciprocating. We verify that
orbits initially bound within a stable boson star persist in their bound states. For a collapsing boson star, we show
that orbits initially bound and reciprocating finally either become unbound or plunge into the newly formed black
hole, depending on their initial maximal radii. For initially circular geodesics, we have discovered the existence
of a critical radius. Orbits with radii below this critical value are found to plunge into the newly formed black
hole, whereas those with radii larger than the critical radius continue to orbit around the vicinity of the newly
formed black hole, exhibiting nonzero eccentricities. For the migrating case, a black hole does not form. In this
case, the reciprocating orbits span a wider radial range. For initially circular geodesics, orbits with small radii
become unbound, and orbits with large radii remain bound with nonvanishing eccentricities. This geodesic study

*

provides an approach to investigating the gravitational collapse and migration of boson stars.
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I. INTRODUCTION

Since the first detection of gravitational waves from the co-
alescence of a binary black hole [1], more than a hundred new
gravitational-wave events have been observed by LIGO and
VIRGO [2-4]. These observations, together with the shadow
observations of the black holes in M87* [5] and Sagittarius
A* [6], are giving us an outstanding opportunity to gain a
complete understanding of the nature of black holes, including
the dynamics of their horizons.

The evidence from gravitational-wave detections strongly
supports black holes and neutron stars as their sources, and
Einstein’s theory of general relativity as the correct theory
of gravity. There is, however, still room for considering al-
ternative theories of gravity and exotic compact objects that
mimic black holes. Boson stars are the well-known mimick-
ers of black holes and initially proposed in the 1960s [7-9].
They have been implicated as potential candidates [10] of the
GW190521 event [11]. Since the boson stars were proposed,
unraveling the nature of boson stars relies on figuring out
their formation mechanisms and assessing their dynamical
stabilities [12—19]. Nonlinear numerical evolutions of boson
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stars [14,16—19] have revealed three distinct outcomes: (i)
unstable boson stars collapsing into black holes, (ii) unstable
boson stars migrating to the stable configurations, and (iii)
stable boson stars.

It has been demonstrated that geodesics serve as a powerful
tool for studying both static and fully dynamical space times
by exploiting the corresponding incompleteness of geodesic
trajectories [20,21]. Null geodesics also play a crucial role
in identifying unexpected characteristics in the formation
of a common apparent horizon during the head-on collision
of binary black holes [22]. They can additionally provide
insight into the gravitational collapse of neutron stars [23]
and the collision of binary black holes [24] through numerical
relativity simulations. While neglecting the stability of boson
stars, geodesics have been utilized to explore the properties
of boson stars under the assumption of equilibrium. The
horizonless nature of boson stars ensures the existence of
novel orbits [25-29].

Focusing on the stability of boson stars, Cunha et al. [30]
have established a close correlation between the stable light
ring and the stabilities of rotating boson stars. Using nonlinear
numerical evolutions of ultracompact rotating boson stars,
Ref. [31] further explored the fate of the light-ring instability
of rotating boson stars and presented two potential outcomes:
migrating to nonultracompact configurations or collapsing
into black holes, resulting in the stable light-ring ultimately
disappearing. Therefore, the dynamical changes in space time
will inevitably affect the properties of geodesic orbits within
its background. Moreover, when unstable boson stars collapse
into black holes or migrate to stable states, the state of initially
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bound geodesic orbits in the unstable backgrounds cannot be
maintained.

Note that the analysis regarding the existence of the light
ring in terms of the effective potential under the adiabatic
approximation [31] cannot fully elucidate the process of how
an initially stable light ring disappears and whether it escapes
or plunges into the newly formed black hole. To determine
the possible fate of the initially bound geodesic orbits in
boson stars, it is necessary to conduct nonlinear simulations
of boson stars and investigate the dynamical behaviors of the
initially bound geodesics simultaneously. In this paper, we
will undertake fully nonlinear evolutions of boson stars and
compute the geodesics in the resulting dynamical space time
using the 3 + 1 formalism [23,24]. The dynamical geodesics
will enable us to map the space time of the boson star during
its gravitational collapse and migration. For simplicity, we
will focus on spherical boson stars and initially bound timelike
geodesics.

II. METHODOLOGY

The action used for the boson star is [19]

4 R 1
§= / d x‘/_g( 167 2
where @ is a complex scalar and the scalar potential is given
byV = %/L2|CI>|2 + %|<D|4. The units are suchthat G = ¢ =1,
and the mass parameter of the scalar field is set to © = 1. With
an appropriate choice of the coupling parameter A, one can
construct initial configurations of boson stars that are stable,
unstable collapsing into a black hole, and unstable migrating
into a stable boson star [19].

We assume that the boson star is initially stationary,
thus [19],

3, DI D* — V(|<I>|2)>, 6))

® = ¢(r)exp (iowt), 2)
and the metric is given by [19]
ds? = —e2f g2 4 ezfl(’)(drz +2dQY) 3)

with dQ? = d6* + sin® 0dg?. The field equations for this
gravity system become ordinary differential equations for the
radial functions fy(r) and f;(r), together with an equation for
¢(r). The only input needed to construct the initial boson star
configuration is the parameters A and w.

We consider three types of boson stars: (i) a stable boson
star, (ii) an unstable boson star that collapses into a black
hole, and (iii) an unstable boson star that migrates into another
boson star. The parameters A and w for each configuration are
provided in Table I. The Arnowitt-Deser-Misner mass M for
each boson star and the mass M) of the black hole for the
collapsing cases are also included in Table I. The correspond-
ing profiles for ¢(r) are depicted in Fig. 1.

Given the initial data for each boson star, the space-
time evolution is carried out with our spherical numerical
relativity code. The code solves the Baumgarte-Shapiro-
Shibata-Nakamura formalism in spherical coordinates [32] in
terms of the following metric:

ds* = (—a® + B"B,)dt* + 2B,dtdr

+ e (a(t, rydr?r + b, r)dQ?), 4)

TABLE 1. The coupling parameter A, frequency w, ADM mass
M, outcome, and mass M), for the unstable collapsing boson stars.
All quantities are given in units of My = u~'.

Case

)\Mg/(“-ﬂ) w M, M/M, Outcome My /My
BS_a 100 0.92 2.194 stable
BS_b 0 0.88 1.357 collapse 1.246
BS_c 0 0.92 1.284 collapse 1.254
BS_d 50 0.96 1.828 migration

where « is the lapse function and ﬁi = (87,0, 0) is the shift
vector. For gauge conditions, we use the nonadvective 1 + log
for the lapse function o« [33], and a variation of the gamma-
driver condition for the shift vector g” [34]. We impose
radiative boundary conditions [34] to reduce the unphysical
reflections at the outer boundary. We adopt the fourth-order
Kreiss-Oliger dissipation [35] for stability. Temporal updating
is done via method of lines with a second-order partially
implicit Runge-Kutta method [32].

Before presenting the results, we briefly discuss the con-
vergence of our code by evolving the unstable boson star case
BS_b with three resolutions:

hw = 0.05My,  hin = 0.04My,  hy = 0.03My.  (5)
In principle, the numerical results of a system should converge
according to the following rule:

¢h - ¢ & hn9 (6)
where ¢, and ¢ represent the numerical results and the exact
solution of the system, & corresponds to the resolution, and
n denotes the convergence order. Combining Eq. (6) with
Eq. (5), we have
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FIG. 1. Initial profiles of the scalar field ¢(r) for the models
listed in Table 1.
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FIG. 2. Plots of the convergence test in terms of the irreducible mass of the apparent horizon mass M,, for the case BS_b. The subfigure
(a) stands for M, as functions of time with three resolutions Ay, = 0.05My, hi, = 0.04M,, and hy; = 0.03M,; the subfigure (b) stands for the
corresponding differences in the coarse-medium resolution and medium-high resolution. We observe that the factor Q satisfies Q ~ 1.65.

We compare the values of the irreducible mass of the ap-
parent horizon My, with different resolutions and provide the
corresponding convergence plots in Fig. 2. It is observed that
the factor Q approximately equals 1.65. Substituting resolu-
tions (5) into Eq. (7), the value of Q yields

__(0.005)" — (0.004)"
= (0.004)" — (0.003)" |, _5°

0~ 1.65 (3)
This implies that the convergence order is about three.
Although the fourth-order derivative stencils have been em-
ployed in our code, the interpolation schemes used for
computing the irreducible mass of the apparent horizon
impact the corresponding convergences, indicating that the
convergence order of our code is approximately three.

In what follows, we let the computational grid extend
into a radius of 2000M, with a grid-spacing ér = 0.05M,
and a time-step &t = 0.002M,. Since this work focuses on
geodesics, we only show in Fig. 3 the evolution of the lapse
function for each of the models listed in Table I. The lapse
function remains constant for the stable case, BS_a. As ex-
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FIG. 3. Evolution of minimum value of the lapse function oy,
for the models listed in Table I.

pected, the lapse function collapses for cases BS_b and BS_c,
signaling the formation of a black hole. The oscillatory be-
havior is for the migrating case BS_d, where the boson star
transforms into the stable configuration.

Geodesic integration is calculated in situ. That is, the
geodesic equations are integrated in parallel with the space-
time integration by interpolating the metric from the numeri-
cal grid to the geodesic [23,24]. A fourth-order Runge-Kutta
temporal integration is used to solve the geodesic equations.
Regarding the initial conditions of the geodesics, for sim-
plicity, we only consider timelike geodesics initially bounded
and in the equatorial plane. Two types of initial conditions
are investigated: initially circular orbits and radial (recipro-
cating) orbits. Although the unstable boson star will either
collapse into a black hole or migrate to another state, it is
initially, to a good approximation, stationary and possesses
a timelike killing vector £# = (9;)" and a spacelike killing
vector n* = (9,)*. Thus, we can set the initial data of the
geodesics in terms of the initial energy E/m = —(9;)"u,,
the angular momentum J/m? = (9p)*u, (m is the mass of
the test particle), and the radial effective potentials based
on the decomposition of the radial velocity [27-29]. Because
we are only considering initially circular and reciprocating
orbits, the initial conditions of orbits are fully characterized
by their initial radii.

II1. RESULTS

We will first discuss the results for the case of initially
bounded geodesics in the stable space time of BS_a. We
consider geodesics with three different maximal radii r/My =
{3,9, 15} for both of the reciprocating and circular orbits.
Figure 4 shows the radial distance of the orbit as a function
of time. Solid lines are for the reciprocating orbits and dash
lines for circular orbits. Since the boson star is stable, i.e., the
space time is not dynamical, the orbits remain reciprocating
with the same maximum and minimum radial distance and
circular with the constant radius. That is, the initially bounded
geodesic orbits remain unchanged.
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FIG. 4. Evolution of the radial distance for circular and reciprocating geodesics in the space time of case BS_a. Panel (a) is for the initially
reciprocating orbits, and panel (b) is for the initially circular orbits, respectively. Here, we choose x = r cos(¢).

Next, we focus on the unstable boson stars: boson stars
collapsing into black holes or migrating into other states. For
unstable collapsing boson stars, we consider the cases BS_b
and BS_c, with the latter having a longer lifetime than the
former. As mentioned before, the orbits are initially bounded.
There are only three outcomes: (i) the orbit becomes unbound
from the final black hole; (ii) the orbit plunges into the black
hole; (iii) the orbit remains in a stable path around the black
hole. To be able to get a reasonable map of the space time, we
consider a family of geodesics, for both the circular and recip-
rocating cases, with initial radii in the range r /M, € [3, 21] at
intervals of Ar/My = 0.1.

The evolution of an unstable boson star collapsing into a
black hole has three phases. The first is a quasiequilibrium
phase in which the space time remains almost unchanged. In
the second phase, the boson star oscillates and eventually col-
lapses into a black hole. During the third phase, the black hole
grows from accreating the remnant scalar field. Figures 5 and

6 show the evolution of the radial coordinate of the geodesics
for the cases BS_b and BS_c, respectively. The shaded regions

are plotted as light blue for the quasiequilibrium phase, light
orange for the oscillating and collapsing phase, and light green
for the black hole accretion growth phase. Blue lines denote
geodesics that become unbound, red lines are geodesics that
plunge into the black hole, and orange lines are for orbits that
remain bounded but do not plunge. Panel (a) is for initially re-
ciprocating orbits, and panel (b) is for initially circular orbits.
As seen in panel (a) of Figs. 5 and 6, reciprocating orbits re-
main reciprocating, that is, oscillating back and forth through
the origin, during the quasiequilibrium and collapsing phases.
Once the black hole forms, some orbits plunge, and others
become unbound depending on the corresponding initial max-
imal radii. In the analysis of all reciprocating geodesic orbits,
our findings indicate that it is impossible for bound orbits
to persist around the newly formed black holes due to the
absence of orbital angular momenta. All such orbits will either
plunge into or escape from the newly formed black hole, a
fate determined by their initial maximum radii. Notably, there
exists no critical radius that distinguishes between orbits that
plunge and those that escape. Whether an orbit plunges or not

(a)
/‘\
4‘%%\‘ i/fw‘m‘u §
0 500 1000 1500 2000 500 1000 1500 2000 2500 3000
My /My

FIG. 5. Evolution of the radial distance for the case BS_b. The shaded regions are plotted in light blue for the quasiequilibrium phase, in
light orange for the oscillating and collapsing phase, and in light green for the black hole accretion growth phase. Blue lines denote geodesics
that become unbound; red lines are geodesics that plunge into the black hole; and orange lines are for orbits that remain bounded but do not
plunge. Panel (a) is for initially reciprocating orbits, and panel (b) is for initially circular orbits. Here, we choose x = r cos(¢).
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FIG. 6. Same as Fig. 5 but for the BS_c case.

depends on the radial distance the orbit has at the moment
the black hole forms. The formation of the black hole changes
the effective potential; thus, the radial position of the geodesic
relative to the new location of the potential barrier determines
the fate of the orbit, i.e., plunge or unbound.

For orbits initially circular, we observe from panel (b) in
Figs. 5 and 6 that they remain circular during the quasiequi-
librium and collapsing phases. When they enter the black hole
growth phase, the orbits will plunge if the initial radius satis-
fies r/My < 9.9 for BS_b and r/M, < 13.8 for BS_c. When
the initial radius satisfies /My > 9.9 for BS_b and r/M, >
13.9 for BS_c, the orbits will remain bound but become
eccentric. Here we observe a critical radius for separating
the finally unbound plunging orbits and the finally bound
eccentric orbits. The outcomes here have similar reasons to
the reciprocating case, namely the location of the potential
barrier and height relative to the position of the geodesic at
the time of black hole formation.

In summary, the qualitative behaviors of the orbits for
BS_b and BS_c are similar. The specific differences are due to
the duration of the phases in each case. Finally, we discuss the
results for the unstable migrating case BS_d, where the boson
star migrates to a new equilibrium state and a black hole does
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not form. Figure 7 shows the evolution of the geodesic radial
distance for this case. In this situation there are two distinct
boson star evolution phases. As the previous case, the first
phase is also the quasiequilibrium phase with the space time
almost unchanged. The second phase is the proper oscillating
and migrating phase, with the space time changing until it
settles down into a new equilibrium state. Nonetheless, ascer-
taining the very final state within a finite time is not feasible,
as referenced in [19]. Consequently, we can only present the
trajectories of the initially bound geodesics over an extensive
yet finite duration. To vividly illustrate the ultimate fates of
the initially bound reciprocating and circular orbits at later
stages, we employ six distinct colors to differentiate the orbits
based on their radii. For all the reciprocating geodesic orbits,
we do not observe a critical radius separating bound orbits
from unbound ones. As seen in panel (a) of Fig. 7, bound and
unbound orbits occur at both small and large radii. For all the
initial stable circular orbits, we observe similar behaviors to
that of the reciprocating orbits. Those that remain bound will
have nonzero eccentricities at late time. Such behaviors are
completely different from the collapsing case.

200
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S . S
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8000

FIG. 7. Same as Fig. 5 but for the BS_d case. Here the light blue background region is the quasiequilibrium phase, the light orange
background region is the oscillating and migrating phase. Here, we choose x = r cos(¢).
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IV. CONCLUSIONS

In this paper, we utilized numerical relativity combined
with the 3 4 1 formalism of geodesic equations to first present
the fate of initially bound timelike geodesic orbits under
spherical dynamical space times of boson stars. We focused
on initially bound circular and reciprocating orbits and investi-
gated their final fate and dynamical behavior within the stable,
unstable collapsing, and unstable migrating spherical boson
stars. The geodesic integration was carried out simultaneously
with the numerical evolution of the space times.

In the stable boson star case, we verified that the state
of the orbits remain unchanged. In the two unstable boson
stars that collapse into black holes, we discovered that initially
reciprocating orbits and initially circular orbits exhibit distinct
fates. For initially reciprocating orbits, all such orbits become
unbound, with their ultimate fate either plunging or escaping
that depending on their initial maximum radii. Notably, there
is no critical radius to distinguish between orbits that plunge
and those that escape. On the other hand, for initially circular
orbits, those with smaller initial radii are observed to plunge
into the newly formed black hole, while orbits with larger
radii continue to orbit the newly formed black hole, displaying
nonzero orbital eccentricities. For the migrating boson star,
there was no clear pattern; orbits either escape or remain
bound but become eccentric. The study has given us a picture
of the gravitational collapse and migration of boson stars in
terms of the dynamics of geodesics. As expected, the changes
in the space times of the boson stars reflect on the changes
in the effective potential that governs the dynamics of the
geodesics.

It should be noted that we only investigated the dynami-
cal changes of the initially bound timelike orbits within the
unstable spherical boson stars. When considering the rotating
boson stars or other multipole boson stars, the final states of
the initially bound orbits in the above process will inevitably

change. However, regardless of the symmetry of the boson
stars, the unstable boson stars will always either collapse into
black holes or migrate to other stable states. Therefore, com-
pared to the spherical background, the final state in these cases
may be accompanied by more details or nuances. The regions
with separating, bound, unbound, and plunging orbits could
potentially offer new insights into the behavior of matter in
the vicinity of these objects, which could, in turn, be reflected
in the emitted gravitational waves.

Apart from unstable boson stars, the phenomena such as
black hole superradiance instability and its dynamical scalar-
ization also depict the dynamic transition from hairless to
hairy black hole, corresponding to changes in space-time
during the transition of black holes from hairless to hairy
states. Consequently, the properties of initially bound orbits
in the background of initial hairless black holes are expected
to undergo changes during the dynamical formation processes
of hairy black holes. However, if we consider nonspherically
symmetric systems, conducting the above-mentioned research
would be technically extremely challenging. We will pursue
corresponding investigations in our future work.
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