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Rotating dipole and quadrupole quantum droplets in binary Bose-Einstein condensates
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Quantum droplets (QDs) are self-trapped modes stabilized by the Lee-Huang-Yang correction to the mean-
field Hamiltonian of binary atomic Bose-Einstein condensates. The existence and stability of quiescent and
rotating dipole-shaped and vortex QDs with vorticity S = 1 (DQDs and VQDs, respectively) are numerically
studied in the framework of the accordingly modified two-component system. The rotating DQDs trapped in
an annular potential are built of two crescentlike components, stretching along the azimuthal direction with
the increase of the rotation frequency. Rotating quadrupole QDs (QQDs) bifurcate from the VQDs with S = 2.
Above a certain rotation frequency, they transform back into VQDs with a flat-top shape. Rotating DQDs and
QQDs are stable in a broad interval of values of the chemical potential. The results provide the first example of
stable modes which are intermediate states between the rotating DQDs and QQDs on the one hand and VQDs
on the other.

DOI: 10.1103/PhysRevResearch.6.033186

I. INTRODUCTION

Droplets of ultradilute quantum liquids represent a new
quantum state of matter in the realm of Bose-Einstein con-
densates (BECs) [1,2]. The formation of the quantum droplets
(QDs) is provided by the balance between the effective
mean-field (MF) attraction, which, in turn, is a result of
the competition of interspecies attraction and intraspecies
repulsion, and beyond-MF self-repulsion in each compo-
nent, induced by quantum fluctuations around the MF states,
which is represented by the Lee-Huang-Yang (LHY) correc-
tions to the MF theory [3]. In terms of the two-dimensional
(2D) Gross-Pitaevskii equations (GPEs), the LHY effect
amounts to the logarithmic factor multiplying the usual cubic
term, while in the 3D and 1D settings the LHY corrections
are represented, respectively, by the additional self-repulsive
quartic and attractive quadratic terms in the respective GPEs.
QDs have been predicted theoretically [4,5] and created
experimentally in dipolar bosonic gases [6,7], as well as
in mixtures of two atomic states with contact interactions
[8–11]. Typically, QDs are composed of several thousands
of atoms. They are droplets of extremely dilute quantum
fluids, whose densities are more than 8 orders of magnitude
lower than in liquid helium, which is the “exemplary “quan-
tum fluid. Featuring robust inner coherence and being well
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controlled by experimental parameters, QDs offer unique ad-
vantages for the implementation of quantum simulations and
metrology [12–14].

Internal superfluidity of QDs suggests that they may
maintain vortex states, which are characterized by the re-
spective topological charge (winding number) and zero
density at the pivot [15]. The vorticity may be imprinted
onto QDs by an appropriate phase structure in the initial
state.

In the simplest case, which was adopted in a majority of
theoretical works on QDs, the balanced binary BEC, whose
components have identical shapes, can be described by a
single wave function, obeying the single GPE, provided that
scattering lengths of interatomic collisions are equal in the
two components. The latter condition can be readily main-
tained by the Feshbach resonance in the two hyperfine states.
The analysis has demonstrated that the single-component re-
duction of the full system of two coupled GPEs is stable
against small perturbations which break the equality of the
two components [16]. A special case is the two-component
state with hidden vorticity, when the two components assume
the vortical shape with identical amplitude profiles but op-
posite winding numbers (topological charges). In the latter
case, the full two-component system should be used, the re-
sult being that such two-component “hidden-vorticity” states
are chiefly unstable, but, nevertheless, they feature a small
stability region in the respective parameter manifold. In the
case of the effectively 2D QDs with imbalanced components
(carrying different numbers of atoms), trapped in a confining
potential, the full system should be used too [17]. The analysis
demonstrates that, in the limit of the balanced binary BEC
(which is the case addressed in the present work), the results
produced by the two-component system smoothly carry over
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FIG. 1. (a1)–(a3) The absolute value of the field in the dipole-shaped and vortex quantum droplets (DQDs and VQDs) at ω = 0, which
are marked in Fig. 2(a). DQDs shown in panels (a1) and (a2) belong to the lower and upper branches, respectively. (a3) A lower-branch VQD
with S = 1. (b1)–(b3) Lower-branch DQDs marked in Fig. 2(c), for ω = 0.02, ω = 0.08, and ω = 0.085, respectively. (c1)–(c3) Upper-branch
dipole droplets marked in Fig. 2(d) at ω = 0.02, ω = 0.04, and ω = 0.06, respectively. All panels pertain to μ = 0.21. This and similar
figures below display the solutions in the domain (x, y) ∈ [−25, +25].

into those predicted by the single GPE for identically equal
components.

Moreover, if the interatomic attraction is provided by
the long-range dipole-dipole interaction, a single-component
condensate composed of dipolar atoms is sufficient for the
creation of QDs [7,18].

Stable 2D and 3D vortex QDs (VQDs) have been pre-
dicted in the binary BEC with contact interatomic interactions
[16,19–22], while vortex states embedded in dipolar QDs
are unstable against spontaneous fragmentation [23,24].
Ring-shaped QDs may also support semidiscrete [25] and
higher-order vortex structures [26,27]. Vortex clusters can be
generated too, as the ground state of rotating trapped binary
BECs [28,29]. Experimental evidence of VQDs has not been
reported as yet, which suggests looking for new settings that
may be conducive to the existence of such stable topological
modes.

Other vortex species of stable QDs have been predicted
in the form of metastable necklace-shaped structures

carrying angular momentum [30,31], including two-
component necklace patterns [32,33]. Solutions for stable
rotating QDs with whispering-gallery-like shapes were found
under the action of broad 2D trapping potentials [34]. Bistable
multipole QDs were predicted in symmetric binary BECs
[35]. QD crystals were shown to exist in an axially symmetric
harmonic-oscillator (HO) trapping potential [36]. QDs with
heterosymmetric and heteromultipole structures may also be
stable [37].

Another possibility for trapping nonlinear modes is offered
by the use of optical-lattice (OL) potentials [38,39]. The
balance among the intercomponent attraction, the repulsive
LHY correction, and the OL trapping effect provides for the
existence of stable QDs under broad conditions [40–44]. In
this context, the dynamics of QDs with mutually symmetric
spinor components was studied in the presence of the OL po-
tential [45]. On-site- and intersite-centered semidiscrete QDs
were predicted in arrays of nearly 1D traps [25]. Further, 1D
multihumped QDs were explored under the action of spatially
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FIG. 2. Norm N versus μ for DQDs (blue) and VQDs (red) at
(a) ω = 0 and (b) ω = 0.05. (c) N vs ω for the lower-branch DQD
family (blue) and the VQD family (red) at μ = 0.21 and μ = 0.26.
(d) N (ω) curves for the upper-branch DQD family at μ = 0.16 and
μ = 0.21. In this panel, the red lines represent the VQDs emerging
from the DQD states. Dashed and stable segments represent unstable
and stable subfamilies, respectively. [(e), (f)] Anisotropy (10) of the
DQD density pattern vs norm N at (e) ω = 0 and (f) ω = 0.05.

periodic modulations of the nonlinearity [46]. These findings
reveal that OL potentials provide a versatile platform for the
study of QDs.

Although the creation of various QD configurations has
been predicted, intermediate states, which bridge rotating
dipole-shaped QDs (DQDs), that are built as a bound state of
two oppositely placed crescentlike fragments, and quadrupole
QDs (QQDs) to VQDs, were not addressed previously. This
is the subject of the present work. While rotating DQDs and
QQDs are obviously unstable in the free space, they may be
stabilized by a combined HO-Gaussian annular potential. In
particular, we demonstrate that, in the presence of the trapping
annular potential, DQDs and QQDs transform into VQDs
with the increase of the rotation velocity. The rotating DQDs
and QQDs, along with VQDs, are robust modes in a broad
interval of values of the corresponding chemical potential.

II. THEORETICAL MODEL

In the 2D setting, we consider the evolution of the two-
component MF wave function ψ±(x, y, t ) of the symmetric

(a) (b)

(c) (d)

FIG. 3. Instability growth rate λ versus μ, as obtained from
the numerical solution of the BdG equations (9) for (a) DQDs
and (b) lower-branch VQDs. The instability growth rate vs ω for
(c) lower-branch and (d) upper-branch DQDs at μ = 0.21. The re-
sults for the lower and upper branches are represented by the black
and magenta curves, respectively.

binary BEC, assuming, as said above, that the inter- and
intraspecies contact interactions are attractive and repulsive,
respectively. The respective scaled system of coupled GPEs
is [47]

i
∂ψ±
∂t

= −1

2

(
∂2ψ±
∂x2

+ ∂2ψ±
∂y2

)
+ 4π

g
(|ψ±|2 − |ψ∓|2)ψ±

+ (|ψ+|2 + |ψ−|2) ln(|ψ+|2 + |ψ−|2)ψ±, (1)

where the logarithmic factor represents the LHY modifica-
tion of the MF nonlinearity. Here, the wave functions ψ±,
coordinates (x, y), and time t are measured in units of

√
n0,

g/2
√

π , and g2/4π , respectively, where n0 is the equilib-
rium density [5] and g > 0 is the coupling constant. For
this system, we consider the most natural symmetric bound
states, with ψ+ = ψ− ≡ ψ/

√
2. To address rotating QDs,

we introduce the rotating coordinate frame with angular
velocity ω, x′ = x cos(ωt ) + y sin(ωt ), and y′ = y sin(ωt ) −
x cos(ωt ). Adding a confining axisymmetric potential V (r),
where r is the radial coordinate, the corresponding single GPE
is written, in the rotating coordinates, as

i
∂ψ

∂t
= −1

2
∇2ψ + |ψ |2 ln(|ψ |2)ψ + V (r)ψ − ωLzψ, (2)

where Lz = xpy − ypx is the angular-momentum operator.
The confining potential is taken here as

V (r) = 1
2�2r2 + V0 exp(−r2/a2), (3)

with V0 > 0. It is a combination of the HO trap and the Gaus-
sian potential hill at the center. Fixing frequency � = 0.1 for
the shallow HO trap, generic numerical simulations are pre-
sented below for the Gaussian amplitude and the width, V0 =
0.4 and a = 5, respectively (cf. Refs. [48,49]). Accordingly,
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FIG. 4. (a1) Stable evolution of a lower-branch DQD. (a2) and (a3) Unstable evolution of an upper-branch DQD and an upper-branch VQD,
respectively. (b) and (c) Stable evolution of lower- and upper-branch DQDs, respectively. The rotation frequency is ω = 0 in panels (a1)–(a3),
ω = 0.085 in panels (b1)–(b3), and ω = 0.04 in panels (c1)–(c3). The chemical potential is fixed as μ = 0.21 in all panels.

the first and second terms in potential (3) dominate at r > 5
and r < 5, respectively. Furthermore, for these parameters,
the second (Gaussian) term in Eq. (3) dominates over the other
repulsive potential, viz., the vorticity-induced one, S2/(2r2),
for vortex states with the integer winding number S, in the
interval of 1 < r < 10, for S = 1. This conclusion implies that
the results reported below are essentially determined by the
Gaussian term.

It is relevant to mention that the stability of VQDs with
high values of the winding number (at least, up to S = 12)
was recently investigated in a similar model, with the same
nonlinearity as in Eq. (2) and an annular potential which,
unlike Eq. (3), is a Gaussian-shaped trough, which does not
include the HO term [50].

In the case of VQDs, Eq. (2) can be rewritten, in the polar
coordinates (r, θ ), as

i
∂ψ

∂t
− iω

∂ψ

∂θ
= −1

2
∇2ψ + |ψ |2 ln(|ψ |2)ψ + V (r)ψ. (4)

Bound states produced by Eq. (2) are characterized by the
norm,

N =
∫∫

|ψ |2dxdy. (5)

Then stationary solutions to Eq. (4) for VQDs with integer
vorticity S are looked for as

ψ = exp (−iμt + iSθ )U (r), (6)

where the real function U (r) obeys the radial equation

(μ + ωS)U = −1

2

(
d2U

dr2
+ 1

r

dU

dr
− S2

r2
U

)

+ 2U 3 ln(U ) + V (r)U . (7)

Thus, for the rotating VQDs, the rotation effect amounts
to the shift of the chemical potential, μ → μ + ωS. In the
absence of the rotation, the stability of VQDs in the present
model was investigated in Ref. [16].

The stability of QDs is addressed below by considering
perturbed solutions,

ψ (x, y, z) = [U (x, y) + u(x, y) exp(λt )

+ v∗(x, y) exp(λ∗t )]exp(−i μt ), (8)

where u(x, y) and v(x, y) are eigenmodes of infinitesimal per-
turbations, λ is the corresponding growth rate, and ∗ stands for
the complex conjugate. The substitution of the perturbed wave
form (8) in Eq. (2) and linearization leads to the eigenvalue
problem for λ, based on the respective Bogoliubov–de Gennes
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FIG. 5. (a1)–(a3) Profiles of QQDs and VQD with S = 2 at ω = 0, which are marked in Fig. 6(a). The QQDs belong to the lower and upper
branches in panels (a1) and (a2), respectively. (b1)–(b3) The lower-branch QQDs which are marked in Fig. 6(c) at ω = 0.01, ω = 0.02, and
ω = 0.025, respectively. (c1)–(c3) The upper-branch QQDs and VQD with S = 2 which are marked in Fig. 6(d) at ω = 0.02, ω = 0.03, and
ω = 0.04, respectively. The chemical potential and the rotation velocity are μ = 0.16 and ω = 0 in panels (a1)–(a3), and the chemical potential
is μ = 0.26 in panels (b1)–(b3) and panels (c1)–(c3).

(BdG) equations:

i

(
F11 F12

−F ∗
12 −F ∗

11

)(
u
v

)
= λ

(
u
v

)
, (9)

with F11 ≡ − 1
2∇2 − μ + V + 2|U |2[ln(|U |2 + 1

2 )] − iω(x ∂
∂y

− y ∂
∂x ) and F12 = U 2[ln(|U |2 + 1)]. The stationary QD is sta-

ble if all eigenvalues λ are imaginary.
To produce stationary QDs solutions of Eq. (2), the New-

ton’s iterative method was used. Their stability was identified
as per the spectrum of eigenvalues λ, provided by the numer-
ical solution of BdG equations (9), which was performed by
means of the Fourier collocation method, and verified in sim-
ulations of the perturbed QD evolution, performed by means
of the split-step fast-Fourier-transformed method.

III. NUMERICAL RESULTS AND DISCUSSIONS

Typical profiles of the DQDs and VQDs with S = 1 are
plotted in Fig. 1, and families of such states are presented by
means of the respective N (μ) curves in Figs. 2(a) and 2(b).
In the absence of rotation, i.e., for ω = 0, there exist two
branches of the N (μ) dependencies with slopes of opposite
signs. DQDs belonging to the upper branch are broader, being

built of crescent-shaped lobes. It is seen in Figs. 1(b1)–1(b3)
that, as ω grows, the lobes gradually expand along the az-
imuthal direction and eventually fuse into a VQD with S = 1
at a critical angular velocity.

In Figs. 2(a) and 2(b), the lower and upper branches N (μ)
for DQDs with ω = 0 monotonously decreases and increases,
respectively, with the growth of μ. They merge at the lower
cutoff value of the chemical potential. When ω = 0.05, the
N (μ) curve of DQDs bifurcates from the VQD with S = 1 and
merges with the curve for the VQD family at a lower value
of N . In Fig. 2(c), at fixed μ the norm of the lower-branch
rotating DQD monotonously decreases with the increase of
the angular velocity ω. The families of the rotating DQDs
and VQDs merge at ω reaching its maximum value. In other
words, the DQDs originate from the vortex eigenmode of
the rotating linear system. Accordingly, the limit values of μ

and ω for N → 0 in Figs. 2(a)–2(c), respectively, correspond
to the eigenvalues of the solution of the linear Schrödinger
equation, which is the linear limit of Eq. (7). On the other
hand, in Fig. 2(d) the norm of the upper-branch DQDs is a
nonmonotonous function of ω. First, it increases and reaches
a maximum and then gradually decreases. In the course of this
evolution, the DQD carries over into the VQD.
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It is relevant to introduce a parameter characterizing the
azimuthal anisotropy of the density pattern, |ψ (r, θ )|2, of the
stationary DQD states:

Anisotropy =
∫ 2π

0 rdr
∫ 2π

0 cos (2θ )dθ |ψ (r, θ )|2∫ 2π

0 rdr
∫ 2π

0 dθ |ψ (r, θ )|2
. (10)

The dependence of anisotropy on norm N is displayed in
Figs. 2(e) and 2(f). At ω = 0, the anisotropy of DQDs has
inflexion points corresponding to the droplets expanding with
the growth of N . At ω = 0.05, the anisotropy starts from zero
at the point where the DQD bifurcates from the VQD, as
shown in Fig. 2(f).

The annular potential defined as per Eq. (3) is crucially
important for the stabilization of the rotating DQDs against
splitting into fragments, as well as against decay towards
r → ∞. Results of the stability analysis results are pre-
sented in Fig. 3 [note that the Vakhitov-Kolokolov criterion,
dN/dμ < 0 [51,52], cannot predict the stability in the present
case, as the nonlinearity in Eq. (2) changes its sign with the in-
crease of the density]. In particular, the instability growth rate
λre for DQDs at ω = 0, produced by the numerical solution
of the BdG equations (9), is displayed in Fig. 3(a). It is seen
that the DQDs are stable in a large domain in the presence
of the HO-Gaussian annular potential, similar to the case of a
weakly anharmonic trapping potential [35]. The lower-branch
VQDs are unstable in their almost whole existence domain
[Fig. 3(b)], while the upper-branch is completely stable. This
is different from the case of the lower-branch vortices with
S = 1 in the HO trapping potential, where there is a stability
domain [53]. The instability of the VQD may be considered
as the modulational instability (MI) against azimuthal pertur-
bations, which break the vortex’s axial symmetry (generally,
MI leads to self-induced breakup of initially homogenous
waves in nonlinear media) [54]. The rotating DQDs show a
large stability domain. We display the instability-growth-rate
curves for the DQDs with μ = 0.21 in Figs. 3(c) and 3(d). The
lower and upper branches of DQDs feature a bistability area
at ω ∈ [0.063,+0.086].

Predictions of the stability analysis based on the BdG equa-
tions (9) have been verified by systematically performed direct
simulations of the perturbed evolution of the droplets. Typical
examples of the evolution are exhibited in Fig. 4. First, we
test the DQDs and VQDs at ω = 0, as shown in Fig. 4(a). It
is observed that even unstable DQDs survive for a long time
[see Fig. 4(a2)]. Stable rotation of the DQDs is illustrated in
Figs. 4(b) and 4(c) by snapshots of the profiles of the absolute
value of the wave function at different moments of time, with
respect to the rotation period 2π/ω.

Next, we address the existence, stability, and evolution
dynamics of rotating QQDs and VQDs with S = 2. Represen-
tative shapes of these states are displayed in Fig. 5, including
the QQDs with smaller and larger norms [Figs. 5(a1) and
5(a2)]. Similar to the DQDs and VQDs with S = 1, the
droplets belonging to the upper branch are broader than those
on the lower branch. The trend for the transformation of the
QQDs into VQDs with the increase of the rotation frequency
ω is displayed in Figs. 5(b) and 5(c).

(a) (b)

(c) (d)

FIG. 6. N (μ) curves for QQDs (blue) and VQDs with S = 2
(red) at (a) ω = 0 and (b) ω = 0.03. (c) N (ω) for the lower-branch
QQDs (blue) and VQDs with S = 2 (red) at μ = 0.16 and μ = 0.26.
(d) N (ω) curves for the upper-branch QQDs at μ = 0.21 and μ =
0.26. In this panel, the red lines represent the VQDs emerging from
the QQD states. The solid and dashed segments designate unstable
and stable subfamilies, respectively.

The dependence of the norm of the QQDs and VQDs with
S = 2 on the chemical potential is displayed in Figs. 6(a) and
6(b). At ω = 0, the QQDs and VQDs with S = 2 originate
from similar linear eigenmodes at μ = 0.418. The rotating

(a) (b)

(c) (d)

FIG. 7. Instability growth rate λre vs μ for (a) the QQDs and
(b) the lower-branch VQDs with S = 2 at ω = 0. (c) and (d) λre vs ω

for the lower- and upper-branch QQDs, respectively, at μ = 0.26.
The lower and upper branches are represented by the black and
magenta curves, respectively.
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FIG. 8. The stable evolution of (a1) the lower-branch QQDs and (a3) the upper-branch vortices with S = 2. (a2) The unstable evolution
of the upper-branch QQDs. (b1)–(b3) The unstable evolution of the lower-branch QQDs at ω = 0.01, ω = 0.02, and ω = 0.025, respectively.
(c1)–(c3) The stable evolution of the upper-branch QQDs. The parameters are ω = 0 in panels (a1)–(a3) and ω = 0.03 in panels (c1)–(c3). The
chemical potential is μ = 0.16 in panels (a1)–(a3) and μ = 0.26 in panels (b1)–(b3) and panels (c1)–(c3).

QQDs bifurcate from the VQDs with S = 2 and merge with
them again, eventually. At the lower branch, the norm de-
creases with the increase of ω [Fig. 6(c)]. The norm of
the upper branch first increases and then decreases with the
growth of ω. This behavior of N (ω) for the QQDs is similar
to that for DQDs reported above [cf. Fig. 2(d)].

Compared to DQDs, the stability area of the lower-branch
QQDs considerably shrinks at ω = 0, while it remains nearly
the same for the upper-branch QQDs [see Fig. 7(a)]. For
the VQDs with S = 2, the stability is similar to that for
the vortices with S = 1: as seen in Fig. 7(b), the lower-
branch VQDs are completely unstable, and the upper-branch
ones are stable in the entire existence domain. Further, the
dependence of the instability growth rate on ω shows that
the lower-branch QQDs are completely unstable [Fig. 7(c)],
while the upper-branch ones are stable in a large domain [see
Fig. 7(d)].

The stable evolution and the unstable evolution of QQDs
and VQDs with S = 2, produced by direct simulations of
Eq. (2), are illustrated in Fig. 8. Since the instability growth
rate is small, the unstable QQDs survive for a long time at
ω = 0 [see Fig. 8(a2)], while the rotating unstable QQDs
break rapidly [see Figs. 8(b1)–8(b3)]. On the other hand, the
stable QQDs demonstrate persistent rotation over long times
in Figs. 8(c1)–8(c3).

IV. CONCLUSIONS

We have predicted a new type of rotating QDs (quantum
droplets) in binary BEC. These states connect the families
of DQDs, QQDs, and VQDs (dipole, quadrupole, and vortex
QDs, respectively). The interplay of the LHY-corrected non-
linearity and annular trapping potential allows the existence of
the stable rotating DQDs and QQDs, which bifurcate from the
stable VQDs with winding numbers S = 1 and 2, respectively.
With the increase of the rotation frequencies, they spread out
in the azimuthal direction and eventually fuse back into the
VQDs. It is relevant to note that, in addition to these features
predicted in BEC, similar ones are expected in models with
competing nonlinearities, which occur in nonlinear optics
[55]. Thus, our findings suggest a method for the creation
of rotating quantum droplets and similar optical modes in
the experiment. As an extension of the analysis, it may be
relevant to consider the existence and stability of quiescent
and rotating multipole necklace patterns (cf. Refs. [30,56]).
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