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Self-organized time crystal in driven-dissipative quantum system
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Continuous time crystals (CTCs) are characterized by sustained oscillations that break the time-translation
symmetry. Since the ruling out of equilibrium CTCs by no-go theorems, the emergence of such dynamical phases
has been observed in various driven-dissipative quantum platforms. The current understanding of CTCs is mainly
based on mean-field theories, which fail to address the problem of whether the continuous time-translation
symmetry can be broken in noisy, spatially extended systems absent in all-to-all couplings. Here, we propose a
CTC realized in a quantum contact model through self-organized bistability. The CTCs stem from the interplay
between collective dissipation induced by the first-order absorbing phase transitions and slow constant driving
provided by an incoherent pump. The stability of such oscillatory phases in finite dimensions under the action
of intrinsic quantum fluctuations is scrutinized by the functional renormalization group method and numerical
simulations. Occurring at the edge of many-body synchronization, the CTC phase exhibits an inherent period
and amplitude with a coherence time linearly diverging with system size, thus also constituting a boundary time
crystal. Our results serve as a solid route towards self-protected CTCs in strongly interacting open systems.
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I. INTRODUCTION

Time crystals are self-organized spatiotemporal structures,
first envisaged by Wilczek [1,2], that spontaneously break the
time-translation symmetry imposed by underlying Hamilto-
nians. Since the advent of the no-go theorems stating that it
is impossible to observe a spontaneously oscillating ground
state (in thermal equilibrium) [3,4], there have been sev-
eral efforts concentrating on time crystals in closed Floquet
systems [5–10]. Alternatively, coupling to an environment
leads to the dissipative version of time crystals that break the
discrete/continuous time-translation symmetry of the dynam-
ical generators [11–20].

By building up a limit cycle (LC), the rise of synchroniza-
tion in diverse physical platforms, such as optomechanical
oscillators [21], Rydberg gases [22–24], and hybrid atom-
cavity systems [25,26], has been observed and related to
the formation of continuous time crystals (CTCs). In open
systems, the dissipation often associates with the quan-
tum Langevin noise and it is probable that the fluctuations
would affect the robustness of CTCs, thereby destroying the
crystalline order. Notwithstanding the rapid advances in ex-
perimental studies, to what extend the CTCs remain intact
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under the action of intrinsic noise is an open question worthy
of theoretical endeavors.

Analogous to the famous notion of self-organized crit-
icality (SOC), which is related to self-organization to the
critical point of a continuous absorbing phase transition (APT)
[27–34], the mechanism for self-organized bistability (SOB)
consists in a separation of the timescale of the dynamics of
the order parameter from that of the corresponding control
parameter. It triggers a LC phase of the hysteresis loop of
a first-order APT [34,35]. In light of the common features
shared by LCs and CTCs, a new class of CTCs induced by
SOB can be envisioned.

In this work, we theoretically investigate the formation and
stability of CTCs beyond the mean-field (MF) approximation.
Concretely, we consider a dissipative variant of the contact
model characterized by the quantum and classical contact
interactions between quantum emitters [36]. In the classical
regime, the system undergoes continuous APTs. However,
the transitions become discontinuous in the quantum
regime. Upon addition of a slow loading mechanism, a
nonstationary phase arises from the SOB, where the number
of quantum emitters changes periodically [numerical results
for three-dimensional systems sketched in Figs. 1(c) and
1(d)]. Meanwhile, the system undergoes repeated phase
transitions and self-organizes to a CTC phase. Avalanches of
activation, like fires spreading in a forest, trigger collective
jumps from the absorbing to the active states, and terminate
upon the exhaustion of emitters (trees), which in turn bring the
system back into the absorbing state of slow recovery, waiting
for the next jump. The CTC here is analogous to the breathing
mode of a “forest-fires” model [37]. Through theoretical
analysis and numerical simulations, we find that the CTCs
are unstable in low-dimensional systems due to the reduced
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FIG. 1. (a) The effective four-level scheme. The quantum emitter
in inactive state |i〉 (gray sphere) in proximity to emitters in active
state |a〉 (red sphere) can become active via (in)coherent facilitated
activation, and active emitters can spontaneously decay into either
inactive or removed states |0〉 (blue sphere). Emitters in |p〉 state (pur-
ple sphere) are incoherently pumped to inactive state |i〉. (b) Sketch
of CTC, where the contact activation occurs on the facilitation shell
with a radius of Rfac and thickness of rfac of active emitters (inset).
The system typically consists of subcritical (I) and supercritical (II)
states of low active densities, and supercritical highly active states
(III). (c) Dynamical oscillations of the average total n and active ρ

densities, corresponding to three states in (b). (d) Snapshots of the
active density field from simulations.

effective barrier separating the active from the absorbing
states. In addition, our CTC suffers from phase noises caused
by the kinetic trapping in the absorbing state. Consequently,
the coherence time diverges linearly with system size, whereas
the degree of synchronization decreases in larger systems.

Overview. We begin with an introduction of the dissipa-
tive quantum contact model in Sec. II. We will start with a
quantum master equation and, after determining the quantum
noise operators, obtain the Heisenberg-Langevin equations.
We will then consider the continuum and semiclassical limit
and arrive at an effective field theory. In addition, we average
out fast degrees of freedom by use of path-integral techniques
(Sec. III). We then consider the thermodynamic limit and
discuss the discontinuous and continuous APTs and identify
the parameter regime for SOB-induced CTCs (Sec. IV). In
Sec. V, we will present a systematic survey of the effects of
dimensionality and system sizes on the CTCs by means of
the functional renormalization group approach and numerical
simulations.

II. DISSIPATIVE QUANTUM CONTACT PROCESS

A. Quantum contact model

Our model can be represented as an effective four-level
system [Fig. 1(a)], where quantum emitters in active state |a〉

can spontaneously decay into the inactive state |i〉 (with rate
�), and the inactive ones can be activated only in the vicinity
of active ones both incoherently and coherently (with rates κ

and �). Additionally, the loss of emitters due to the decaying
of active emitters into the removed states |0〉 (with rate b�)
and an incoherent coupling |p〉 → |i〉 that mimics injecting
inactive emitters (with rate λ) are included. In free space, we
can restrict the contact processes to pairs of emitters that are
separated by the facilitation radius Rfac [38], and refer to the
effective nearest neighbors (nn) of an active emitter as emitters
at the border of its facilitation sphere, as illustrated in the inset
of Fig. 1(b).

It follows that more precisely, a pair of nn’s are those
emitters whose relative distance lies within the range [Rfac −
rfac, Rfac + rfac] with a radius of Rfac and thickness of rfac [38].
To count the number of nn’s in free space, where we intro-
duce for later convenience the function f (a; R, r) ≡ θ (a −
R + r) − θ (a − R − r), with θ (x) being the Heaviside step
function, one can write

Ĉl =
∑

k

σ̂ aa
k f (|rlk|; Rfac, rfac), (1a)

N̂l =
∑

k

n̂k f (|rlk|; Rfac, rfac), (1b)

P̂l =
∑

k

σ̂ x
k f (|rlk|; Rfac, rfac), (1c)

where n̂k ≡ σ̂ aa
k + σ̂ ii

k with σ̂
αβ

l ≡ |αl〉〈βl | (α, β = a, i, p, 0),
where l, k are indices for each emitter, and rlk is the relative
distance between the kth and lth emitters. The operator σ̂ x

l =
σ̂−

l + σ̂+
l flips the quantum state with the ladder operators

σ̂+
l ≡ σ̂ ai

l and σ̂−
l ≡ σ̂ ia

l .
Under the Markovian noise, the effective dynamics of this

system permits a microscopic description for the density op-
erator ρ̂ via a Lindblad master equation, ∂t ρ̂ = −i[Ĥ , ρ̂] +∑

α Lαρ̂. The coherent activation is described by the effective
Hamiltonian (h̄ ≡ 1 henceforth),

Ĥ = �
∑

l

Ĉl σ̂
x
l . (2)

The dissipative dynamics is described by the Lindblad
terms Lαρ̂ = ∑

l [L̂α,l ρ̂L̂†
α,l − 1

2 {L̂†
α,l L̂α,l , ρ̂}]. The sponta-

neous inactivation of the active states is described by L̂d,l =√
�σ̂−

l , and L̂p,l = √
γdeσ̂

aa
l represents dephasing of quantum

coherence with rate γde. Meanwhile, the loss and reloading
of inactive emitters are accounted for by L̂e,l = √

b�σ̂ 0a
l and

L̂a,l = √
λσ̂

ip
l , respectively. The incoherent contact processes

are also included in Lindbladian, where the respective jump
operators for the activation and inactivation of emitters are
given by L̂b,l = √

κĈl σ̂
+
l and L̂c,l = √

κĈl σ̂
−
l .

B. Heisenberg-Langevin equation

The Heisenberg-Langevin equations of motion for the op-
erators σ̂

x/aa
l , σ̂

y
l = iσ̂−

l − iσ̂+
l , and n̂l = σ̂ aa

l + σ̂ ii
l read

∂t σ̂
aa
l = −�σ̂ aa

l + �Ĉl σ̂
y
l + κĈl

(
n̂l − 2σ̂ aa

l

) + ξ̂ aa
l , (3a)

∂t σ̂
x
l = −κN̂l + γ

2
σ̂ x

l − κĈl σ̂
x
l − �P̂l σ̂

y
l + ξ̂ x

l , (3b)
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∂t σ̂
y
l = −κN̂l + γ

2
σ̂

y
l − κĈl σ̂

y
l + �P̂l σ̂

x
l

+ 2�Ĉl
(
n̂l − 2σ̂ aa

l

) + ξ̂
y
l , (3c)

∂t n̂l = −b�σ̂ aa
l + λσ̂

pp
l + ξ̂ n

l , (3d)

where γ = � + γde. Thereafter, we set the time unit to
�−1 = 1. The Langevin noise operators ξ̂

x/y/aa/n
l appear be-

cause the dissipation is attributed to the coupling between
the system and a large reservoir [39,40]. The quantum noise
operators in accord with the jump operators then can be fixed
via solving the Heisenberg equations under the above Hamil-
tonians in the Born-Markov approximation. Using a vectorial
representation ξ̂(r, t ) = (ξ̂ x

l (r, t ) ξ̂
y
l (r, t ) ξ̂ aa

l (r, t )), one
can put the the noise correlations’ covariance in a matrix form
〈ξ̂(r, t )ξ̂(r′, t ′)〉 = δ(r − r′)δ(t − t ′)M̂, with M̂ of the follow-
ing form:⎛
⎜⎜⎝
κ (Ĉn̂ + N̂ σ̂ aa) + n̂ −in̂ σ̂− − i κ

2Ĉσ̂ y

in̂ κ (Ĉn̂ + N̂ σ̂ aa) + n̂ iσ̂− + i κ
2Ĉσ̂ x

σ̂+ + i κ
2Ĉσ̂ y −iσ̂+ − i κ

2Ĉσ̂ x κ
2Ĉn̂ + σ̂ aa

⎞
⎟⎟⎠.

(4)

We refer the readers to Appendix A for the detailed derivation.

III. CLASSICAL PATH INTEGRAL FOR
DENSITY FIELD

A. Coarse-grained Langevin equation

In the following, we consider the continuum limit and
perform coarse graining according to

ρ(r, t ) = V−1
fac

∑
l

θ (Rfac − |rl − r|)Tr
{
σ̂ rr

l ρ̂
}
, (5a)

n(r, t ) = V−1
fac

∑
l

θ (Rfac − |rl − r|)Tr{n̂l ρ̂}, (5b)

σ x(r, t ) = V−1
fac

∑
l

θ (Rfac − |rl − r|)Tr
{
σ̂ x

l ρ̂
}
, (5c)

σ y(r, t ) = V−1
fac

∑
l

θ (Rfac − |rl − r|)Tr
{
σ̂

y
l ρ̂

}
, (5d)

where Vfac = 4πR3
fac/3 is the volume of the facilitation sphere.

In the long-wavelength regime, we adopt the substitution∑
nn Ol,nn → Vshell(1 + R2

fac
2 ∇2)Ol with the volume of the fa-

cilitation shell Vshell = 8πR2
facrfac. We redefine the rates κ , �

as κ → κVshell, � → �Vshell.
We further omit the operator moments generated by the

two-body interactions, and arrive at a set of Langevin equa-
tions for stochastic fields ρ, n, σ x, σ y:

∂tρ = −ρ + �σ y(1 + Dρ∇2)ρ

+ κ (n − 2ρ)(1 + Dρ∇2)ρ + ξρ, (6a)

∂tσ
x = −σ x

2
κ (1 + Dρ∇2)n − κσ x(1 + Dρ∇2)ρ

− γ

2
σ x − �σ y(1 + Dρ∇2)σ x + ξ x, (6b)

∂tσ
y = −σ y

2
κ (1 + Dρ∇2)n − κσ y(1 + Dρ∇2)

− γ

2
σ y + �σ x(1 + Dρ∇2)σ xρ

+ 2�(n − 2ρ)(1 + Dρ∇2)ρ + ξ y, (6c)

∂t n = DT ∇2n − bρ + ξ n. (6d)

Here the diffusion coefficient Dρ = κR2
fac/2 + DT and DT

is the thermal diffusion coefficient of atoms. The classi-
cal noise covariance Mlm is constructed from the Hermitian
parts of the quantum noise covariance (4), i.e., Mlm =
〈M̂ml + M̂lm〉/2, where l, m ∈ {x, y, ρ} [36,41]. Since the
noise sources are Markovian, we drop the contributions of the
spatial gradients to the noise covariance; then the covariance
matrix M reads

M =

⎛
⎜⎝(1 + 2κρ)n 0 σ x

2

0 (1 + 2κρ)n σ y

2
σ x

2
σ y

2 (κn + 1)ρ

⎞
⎟⎠. (7)

With respect to the total density field n, there is

〈ξ n(r, t )ξ n(r′, t ′)〉 = bρ(r, t )δ(r − r′)δ(t − t ′). (8)

Given that the number of emitters in the p state is large enough
to be regarded constant throughout the dynamics of other
density fields, contribution of the loading process to (8) is
ignored.

B. Dynamic path integral

From the Langevin equations (6a)–(6c), one can con-
struct a functional integration representation in terms of the
Janssen–de Dominicis formalism [42], upon introducing an
auxiliary Martin-Siggia-Rose response field [43].

The dynamics of the fields σ x/y described by Eqs. (6b)
and (6c) relaxes over the timescale of (κn + γ )−1, which is
typically shorter than those of the two density fields. Treating
σ x/y as uniform fields and the slow variables ρ, n as external
parameters, a conditional transitional probability correspond-
ing to Eqs. (6b) and (6c) in Itō’s discretization can be written
following Refs. [44,45]. The resulting transition probability
can be recast into a Gaussian integral; upon introducing the
imaginary, response fields σ̃ x, σ̃ y conjugate to σ x, σ y (called
the Martin-Siggia-Rose auxiliary fields and related to the dy-
namic responses of σ x, σ y to perturbations), respectively, one
obtains

P
(
σ x

j+1, σ
y
j+1|σ x

j , σ
y
j

)
=

∏
l=x,y

∫ i∞

−i∞

d σ̃ l
j+1

2π i
exp

[
−σ̃ l

j+1

(
σ l

j+1 − σ l
j − dtFσ l , j

)

+ 1

2
dtMll, j

(
σ̃ l

j+1

)2
]
, (9)

where the subscripts j and j + 1 indicate the discrete time
steps, dt = t j+1 − t j is the time step, Mll, j = Var(ξ l

j ) is the
noise covariance, and Fσ l , j is the deterministic part of the
Langevin equations (6b) and (6c).

The transition probability during a finite time follows
from the summation of all trajectories with fixed initial and

033185-3



XIANG, LEI, BAI, AND MA PHYSICAL REVIEW RESEARCH 6, 033185 (2024)

ending points, which can be omitted for nonequilibrium
steady states [45]. By summing up all spatiotemporal configu-
rations instead of trajectories, we obtain a path integral in the
dt → 0 limit,

Z =
∫

D[σ x, σ̃ x, σ y, σ̃ y]J e−Sσ , (10)

in which the action Sσ = ∫ ∑
l=x,y σ̃ l (Fσ l − Mll

2 σ̃ l ) and the
Jacobian J = 1 upon a precise ordering of times such that
all the response fields appear at a time larger than or equal
to the times of their conjugate fields [45,46] (i.e., in Itō’s
discretization). Since the density fields ρ, n serve as external
parameters, we have excluded contributions of Mρx, Mρy and
introduced the shorthand notation

∫ = ∫
dtdr.

Likewise, we introduce a response field ρ̃ to rewrite the
Langevin equation (6a) into a path integral. The resultant
action functional consists of a bare, σ x/y-independent part Sρ ,

Sρ =
∫

ρ̃

[
(∂t − Dρ∇2)ρ + ρ − κ (n − 2ρ)ρ − 1 + κn

2
ρ

]
,

(11)

and a part Sρ,σ arising from the coupling between the slow and
fast variables,

Sρ,σ = −
∫

�ρ̃ρσ y. (12)

The total action functional related to the coherence fields
σ x, σ y is the sum Sσ + Sρ,σ . We then perturbatively integrate
out σ x, σ y to arrive at an effective action for the active density
field (see Appendix B for details),

S[ρ, ρ̃] =
∫

ρ̃

[
(∂t − Dρ∇2 + u2)ρ + u3ρ

2 + u4ρ
3 − μ

2
ρ̃

]
,

(13)

where u2 = 1 − nκ − 256n2�4/(nκ + γ )7, u3 = 2[κ −
2n�2/(nκ + γ )], u4 = 8�2/(nκ + γ ), and μ = (1 + nκ )ρ +
4n�2ρ2/(nκ + γ )2 are the coupling constants.

IV. DISSIPATIVE PHASE TRANSITION

Mean-field analysis

With the total density n conserved (b, λ = 0), the static
phases are determined by the solutions to the saddle-
point equations following variation of action (13) with
ρ̃, ñ = 0, DT → ∞. The corresponding phase boundaries are
shown in Fig. 2(a). In the classical regime, the bistable region
within the two boundaries vanishes, and in accord, as shown
in Fig. 2(b) the active density increases continuously with the
incoherent activation rate κ . The limiting case � = 0, κ �= 0
has been related to SOC in driven-dissipative Rydberg gases
[37,38,47], whereas in the quantum regime, the bistable region
within the two boundaries indicates that the systems undergo
discontinuous APTs when the total density n exceeds a critical
value [see Figs. 2(c) and 2(d)], which is an element of SOB-
induced CTCs to be discussed later.

Having identified the regime for first-order APTs, sus-
tained oscillations can arise from the interplay between
loss and reloading of emitters (b, λ �= 0). Our proposal for

FIG. 2. Phase diagrams with conserved total density (b, λ = 0)
for (b) n = 3, (c) κ = 0.3, and (d) � = 0.5. The system can undergo
a phase transition from a phase with zero active density to an active
phase with nonzero active density (dis)continuously upon crossing
the (dashed) solid lines from below. The two lines terminate at a
tricritical point (dots). (a) The two surfaces are the phase boundaries.
Discontinuous APTs ensue when the two surfaces are separated from
each other.

SOB-induced CTCs is encoded in the Langevin equations for
the density fields ρ, n as follows:

∂tρ = Dρ∇2ρ + τn − u2ρ − u3ρ
2 − u4ρ

3 + η, (14a)

∂t n = DT∇2n − bρ + λ + ξ n, (14b)

where η, ξ n are Markovian white noises with vanishing mean
and respective variance μ + τn and bρ. To prevent the system
from trapping in absorbing states, a small driving τn is added.
Throughout the paper, we fix τ = 10−7, b = 0.01, DT = 1,
np = 1, κ = 0, � = 0.5, and γ = 2, unless otherwise stated.

We proceed to determine the dynamic phases by employing
the relation between the poles of the correlation functions
and the dynamic criticality (instabilities at finite frequen-
cies) [17,48–50]. We start with an extended dynamic action
functional,

S =
∫

ñ

[
(∂t − DT∇2)n + bρ − λ − bρ

2
ñ

]

+
∫

ρ̃[∂t − Dρ∇2 + u2 + u3ρ + u4ρ
2

− (μ1 + μ2ρ)ρ̃]ρ, (15)

where μ1 = (1 + nκ )/2, μ2 = 2n�2/(nκ + γ )2. Let the sta-
tionary solutions (fixed points) in a saddle-point approxima-
tion (ñ0, ρ̃0 = 0) be ρfp = ρ0, nfp = n0. We expand the action
(15) around the fixed points ρ0, n0 in terms of the small devi-
ations from them. After performing the Fourier transform, we
arrive at

S = 1

2

∫
q,ω

(ρ̃q,ω ρq,ω ñq,ω nq,ω )A

⎛
⎜⎜⎝

ρ̃−q,−ω

ρ−q,−ω

ñ−q,−ω

n−q,−ω

⎞
⎟⎟⎠, (16)
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with the Hermitian coupling matrix of a homogeneous phase
A(q = 0, ω) given by⎛

⎜⎜⎝
−2ρ0(μ1 + μ2ρ0) −iω − Jρ 0 −Jn

iω − Jρ 0 b 0
0 b −bρ0 −iω

−Jn 0 iω 0

⎞
⎟⎟⎠, (17)

where Jx = −∂x(u2ρ + u3ρ
2 + u4ρ

3)ρ0,n0 , x = n, ρ. The
density-density correlation functions within the Gaussian
approximation are the inverse of the harmonic coupling
matrix G = A−1, namely,

〈ρωρ−ω〉 = −ρ0
[
bJ2

n + 2ω2(μ1 + μ2ρ0)
]

ω2
(
J2
ρ + ω2

) − 2bJnω2 + b2J2
n

. (18)

The unequal retarded time correlation is controlled by the
poles of Eq. (18),

ω = i
Jρ

2
±
√

bJn − J2
ρ

4
, (19)

of which the real parts are the energies of collective modes,
while the imaginary parts represent the relaxation rates of
these modes and must be negative; otherwise, the correlation
will diverge over time.

When Jρ ≈ 0, a pair of poles with energies ε± = ±√
bJn

touches the real axis whereupon the correlation function di-
verges like |Jρ |−1 at a finite frequency ε+, signaling the
breaking of time-translation invariance. Such an instability
in the frequency domain is related to a dynamic criticality,
and hence the dynamic critical point λc = argλ Jρ = 0, which
separates the stable and unstable fixed points nFP and ρFP

as displayed in Fig. 3(a). Also, in the presence of first-order
APTs, we can determine how the critical loading rate λc varies
with the classical and quantum contact activation rates κ,�,
which is shown in Fig. 3(b).

A lack of time-translation symmetry should suffice to indi-
cate an oscillatory phase. As a demonstration, we numerically
integrate Eqs. (14a) and (14b) in the noiseless limit for λ < λc.
The CTCs feature alternating sharp switching (jumps) be-
tween the states with low and high active densities [Fig. 3(d),
upper panel] with a period ∝ λ−1 [Fig. 3(d), lower panel].
The rather large timescale compared with the lifetime of an
individual emitter (λ−1 � 1) suggests that the jumps herein
are essentially classical and collective, reminiscent of the
jumpy transitions between distinct collective phases reported
in Refs. [51–53].

V. STABILITY OF SELF-ORGANIZED
OSCILLATION IN FINITE SYSTEMS

The remaining part is devoted to a systematic study of the
CTC in finite systems.

A. Renormalization group approach

We first discuss how dimensionality affects the stability of
the CTCs. In lower dimensions, the effective barrier between
the two states can be reduced. The jumps might occur at a
wider range of total densities, thus destroying the long-range
time crystalline order. To acquire a quantitative description,

FIG. 3. Phase diagrams for SOB. (a) Stable (solid lines) and
unstable (dashed lines) fixed points. (b) The surface represents the
critical rate λc (color coded) that separates a stationary phase from
a CTC phase, corresponding to stable and unstable fixed points.
(c) The CTC phase that consists of self-organized jumps (blue ar-
rows) between the active and the absorbing phases (orange surfaces)
for λ = 3.2 × 10−3. (d) Phase-space trajectories (upper) and periods
(lower) as a function of λ.

we adopt a functional renormalization group (fRG) approach
via the Wetterich equation [45,54,55],

∂k�k = 1

2
Tr
[(

�
(2)
k + Rk

)−1
∂kRk

]
, (20)

where �k is the nonequilibrium equivalent of the Gibbs free
energy in the presence of a masslike regulator Rk that decou-
ples short-wavelength modes from long-wavelength ones. By
suppressing the low-energy fluctuations, the regulated action
�k interpolates smoothly between the microscopic action �0

and the original MF one, �� = S , as the infrared cutoff k
varies within the range k ∈ [0,�]. Rather than evaluating the
exact equation (20) directly, which is numerically demanding,
we resort to the well-established local potential approximation
(LPA) ansatz [55], according to which the interaction part of
the action �k corresponds to an effective potential evaluated
with uniform background field. This allows us to obtain the
flows of the phase structure with decreasing cutoff momentum
k for various values of n in different dimensions. Details of
this procedure are presented in Appendix C.

The resulting effective potential � f (ρ) and the corre-
sponding phase diagram are shown in Fig. 4. In d = 1, as n
increases, the position of the local minimum shifts continu-
ously from the origin to a finite value, indicating a continuous
transition [Fig. 4(a)]. In d � 2, however, increasing n induces
the appearance of a second local minimum at the finite density,
apart from the local minimum at the origin, with a barrier
in between, indicating a first-order transition [Figs. 4(b) and
4(c)]. In addition, the barrier is higher in d = 3 than d = 2,
suggesting a weaker first-order transition in lower dimensions.
The phase diagram in accord is shown in Fig. 4(d), where
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FIG. 4. The effective potential � f as a function of the active
density field ρ for different n in (a) d = 1, (b) d = 2, (c) d = 3.
The active/absorbing phases are determined by the local minima
(dots). (d) The corresponding phase diagram in comparison with that
obtained via saddle-point approximation.

we can infer that discontinuous transitions are expected for
d � 2. Compared with the MF results, the coexistence re-
gion becomes narrower for a lower dimensionality. The fRG
results indicate that CTCs are possible in d � 2. The three-
dimensional CTC is protected by a higher barrier and is thus
more stable.

B. Numerical simulations

We then numerically simulate Eqs. (14a) and (14b), de-
ploying the operator-splitting scheme [56,57], and record
the time series of the average active and total densities. As
a measure of time crystallinity, we computed the two-time
correlation functions Gx(�t ) ≡ 〈x(t )〉−2

t 〈x(t )x(t + �t )〉t , for
x = n, ρ [23], and manifest constant periodic oscillations
for perfect time crystals [23]. Correspondingly, their Fourier
spectra Gx(ω) peak at the integer multiples of their respective
inherent frequencies ωm.

The simulation results for d = 1, 2 are shown in Fig. 5.
Within the parameter regime for CTC, the time series show
no sign of periodic oscillations in one-dimensional systems
[Fig. 5(a)]. This is consistent with the absence of the first-
order APTs therein. In contrast, in two dimensions, the
average densities oscillate over time [Fig. 5(b)], albeit at a
smaller scale compared with their three-dimensional coun-
terparts [Fig. 6(a)], in accordance with a weaker first-order
APT for d = 2 revealed by the fRG analysis. Furthermore,
the associated two-time correlation function Gρ (�t ) remains
periodic for a finite time, with its Fourier spectra Gρ (ω) peak-
ing at the inherent frequency ωm [see Figs. 5(c) and 5(d),
respectively]. These results suggest the rise of the CTC phase
for d � 2. Given the enhanced stability of CTCs in higher
dimensionalities, in what follows, we restrict our discussion
to d = 3.

As evinced in Fig. 6(a), the time series of the average
densities become progressively regular as we increase the
edge length L of the system. Meanwhile, we can infer from
Fig. 6(b) that in enlarged systems, the amplitude of Gn(�t )

FIG. 5. Time series of the total and active densities from simu-
lations in (a) one dimensions with edge length L = 104 and (b) two
dimensions with edge length L = 256. (c), (d) The two-time correla-
tion function and its Fourier spectra of (b), respectively. Parameters
are λ = 1.2 × 10−3.

varies more slowly, and the Fourier spectra are more sharply
peaked at ω/ωm = 1, 2, 3 . . ., both suggestive of the emer-
gence of more periodic structures in time. In addition, once the
time crystalline order is built, the period T ≡ 2π/ωm remains
invariant with diverging L [Fig. 7(a)] and is thus inherent to
CTCs. The existence of sustained oscillations with an intrinsic
amplitude and frequency suggests that our CTCs are also a
realization of boundary time crystals (BTCs) [15].

Stimulated and spontaneous sharp transitions between
multiple (meta)stable states in quantum and classical systems
are referred to as (collective) jumps [51–53,58]. The SOB-
induced CTCs thus also entail a succession of collective jumps
where the time series experience abrupt changes. We call the
jumps from the absorbing (active) and the active (absorbing)
states as upward (downward), and denote them with red (blue)

FIG. 6. (a) Time series of the densities with collective jumps
marked by red (blue) arrows in three-dimensional systems for L = 24
(left), L = 40 (middle), and L = 64 (right). (b) The autocorrelation
functions Gn(�t ) (upper) and their Fourier spectra Gn(ω) (lower),
where the first peak ωm dictates (e) the period T = 2π/ωm. We select
λ = 3.2 × 10−3 for (a) and (b).
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FIG. 7. (a) Rescaled period obtained from the inverse of the
location of the highest peak of the Fourier spectra. (b) Probability
distribution of the average total densities at which upward (upper)
and downward (lower) jumps occur for varying L. (c) The coherence
time τCTC defined as the ratio of the period to its standard deviation,
where N = L3 is the system volume. (d) The occurrence probability
of king avalanches. We choose d = 3, λ = 3.2 × 10−3 for (a)–(d).

arrows. Exemplary time series with detected jumps are shown
in Fig. 6(a), whence it is evinced that more regular jumps
occur in larger systems. As a measure of time crystalline order
encoded in jumps, we construct the distribution P(n) of the
average total density at which these jumps occur, and we find
that it converges as the system is enlarged [Fig. 7(b)].

Since upward jumps always lead to correlations among
distant emitters (avalanches), the enhanced time crystallinity
cannot be explained through the method of system-size expan-
sion [14,59–61]. The irregularity in the time series features
a significant increase in the total density, followed by an
abrupt decrease in the active and total densities [see Fig. 6(a),
left panel]. For low loading rates, such events have been at-
tributed to the system falling into the absorbing state, and the
consequent overloading in turn brings about system-spanning
activation avalanches [62,63]. For a three-dimensional CTC
with a volume of N = L3, the accumulated phase shift �θ

per cycle is approximately the probability of kinetic trapping
in the absorbing phase, ∼1/(T Nτ ), and CTC should remain
coherent over the timescale (rescaled by T ) τCTC ≈ 2πT/�θ .
We then estimate the coherence time from simulations by ex-
tracting the phase shifts via �θ = 2π〈�T 〉/T , where 〈�T 〉 is
the standard deviation of the period. The results are plotted in
Fig. 7(c), where the coherence time increases nearly linearly
with the volume with a prefactor of 1.5(4) × 10−4. It is easy to
reconcile the finite correlations and diverging coherence time
in the N → ∞ limit because the absorbing state is devoid of
fluctuations and has a lifetime inversely proportional to N .

Also, the next upward jump following the kinetic trapping
is likely to trigger huge avalanches. To test this idea, we count
space-time activation avalanches by connecting sites with ac-
tive densities larger than a threshold (τ ) as neighbors in the
time-forward direction and grouping them into clusters. The
occurrence probability of huge avalanches (king avalanches,

FIG. 8. The coherence time as a function of system size L and
loading rate λ for d = 3. The range of λ where CTC emerges widens
with L.

defined as those containing more than half the total number
of sites) decreases as the system becomes larger [Fig. 7(d)],
in line with the longer coherence time [Fig. 7(c)]. A compar-
ison of τCTC among various loading rates and system sizes
is displayed in Fig. 8; the regime for CTCs indicated by the
significantly increased coherence time lies between that for
the aperiodic oscillations and the fluctuating uniform ones,
and widens in larger systems.

Frequent huge avalanches induce coherent changes in ac-
tive and total densities among a great many sites and thus
reflect the underlying synchrony at its highest level. How-
ever, a lack of synchrony results in stationary states with
small fluctuations that conserve time-translation invariance.
Sustained periodic oscillations reside in between the above
two scenarios, where discontinuous phase transitions sponta-
neously generate finite-range correlations, which are enough
to trigger coherence among local sites and yet unable to
support a global synchronization in infinite systems. In other
words, SOB-induced CTCs arise at the edge of many-body
synchronization.

VI. CONCLUSION

In this work, we propose a mechanism to realize self-
protected CTCs with diffusive couplings. Our analysis is not
restricted to APTs and can be generalized to other systems
with bi-/multistability. Our CTCs can be interpreted as a BTC
[15], where the reservoir plays the role analogous to the bulk
Hamiltonian. The model here can be implemented with co-
herent laser-driven Rydberg atoms in the antiblockade regime,
where the electronic ground (Rydberg) states can be mapped
to the inactive (active) states [36,38,47]. The relative impor-
tance of the coherent and incoherent activation processes can
be controlled by driven lasers.

Revealing how temporal organization arises from the SOB-
induced bifurcation in quantum many-body systems, our
study extends the dynamical phase diagram for both SOB and
instability-related LCs [34,64,65]. Alongside the coherent-
state path integral formalism for reaction-diffusion systems
[66–68], the procedures facilitate the study of real-world
critical-like events [33,62,69–72] through controllable plat-
forms.

Finally, since our current analysis focused mainly on
the semiclassical limit, developing alternative methods such
as the Keldysh functional integral approach [73,74] that
preserves the structure of the Lindbladian and retains more
quantum signatures can be a future task.
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APPENDIX A: QUANTUM NOISE OPERATOR

We follow [36,41] to write the three local reservoir Hamil-
tonian, where Ĥd represents the spontaneous decay, and Ĥb

and Ĥc account for the incoherent contact activation and the
inverse process, respectively. For each emitter, the reservoir
Hamiltonians are written as

Ĥd =
∑

q

λd
q (σ̂+d̂q + d̂†

q σ̂−) +
∑

q

ωd
q d̂†

q d̂q, (A1a)

Ĥb =
∑
q,nn

λb
q

(
σ̂ aa

nn b̂†
qσ̂

+ + σ̂ aab̂†
q,nnσ̂

+
nn + H.c.

)

+
∑

q

ωc
q

(
b̂†

qb̂q +
∑

nn

b̂†
q,nnb̂q,nn

)
, (A1b)

Ĥc =
∑
q,nn

λb
q

(
σ̂ aa

nn σ̂+ĉq + σ̂ aaσ̂+
nnĉq,nn + H.c.

)

+
∑

q

ωc
q

(
ĉ†

qĉq +
∑

nn

ĉ†
q,nnĉq,nn

)
, (A1c)

where the operators d̂q, b̂q, ĉq are bosonic bath modes with
their respective frequencies ωd/b/c

q , and the coupling strength
λd/b/c

q . In addition, to keep the noise Markovian, we discard
the possible noise correlations between a pair of neighboring
sites, which arises from the Hamiltonians Ĥb/c acting on the
neighbors of a given site, and vice versa [41].

From now on, the indices for emitters within these Hamil-
tonians are dropped because the noise is Markovian, and the
operators d̂q, b̂q, ĉq are bosonic bath modes with their respec-
tive frequencies ωd/b/c

q and the coupling strength λd/b/c
q . In

addition, we discard the possible noise correlations between a
pair of neighboring sites, which arises from the Hamiltonians
Ĥb/c acting on the neighbors of a given site, and vice versa
[41]. The noise operators in accord with the jump opera-
tors in the main text are fixed via solving the Heisenberg
equations under the above Hamiltonians in the Born-Markov
approximation.

1. Spontaneous decay

To begin with, let us consider the spontaneous decay (in-
activation). The Heisenberg equations under the action of Ĥd

read

∂t σ̂
aa = i[Ĥd , σ̂

aa] = i
∑

q

λd
q (d̂†

q σ̂− − σ̂+d̂q ), (A2a)

∂t σ̂
+ = i[Ĥd , σ̂

+] = −i
∑

q

λd
q d̂†

q σ̂ z, (A2b)

∂t d̂q = i[Ĥd , d̂q] = −iλd
q σ̂

− − iωd
q d̂q. (A2c)

Formal integration of the last equation (A2c) leads to

d̂q(t ) = d̂q(0)e−iωd
q t − iλd

q

∫ t

0
dt ′σ̂−(t ′)e−iωd

q (t−t ′ ). (A3)

Then the remaining two equations become

∂t σ̂
aa = i

∑
q

λd
q

[
d̂†

q (0)σ̂−(t )eiωd
q t − H.c.

]

−
∑

q

(
λd

q

)2
∫ t

0
dt ′[σ̂+(t ′)σ̂−(t )eiωd

q (t−t ′ ) + H.c.
]
,

(A4a)

∂t σ̂
+ = −i

∑
q

λd
q d̂†

q (0)σ̂ z(t )eiωd
q t

+
∑

q

(
λd

q

)2
∫ t

0
dt ′σ̂+(t ′)σ̂ z(t )eiωd

q (t−t ′ ). (A4b)

The first addends on the right hand side of Eqs. (A4a) and
(A4b) are the noise operators corresponding to the sponta-
neous decay process,

ξ̂ aa
d (t ) = i

∑
q

λd
q

[
d̂†

q (0)σ̂−(t )eiωd
q t − H.c.

]
, (A5a)

ξ̂+(t ) = −i
∑

q

λd
q d̂†

q (0)σ̂ z(t )eiωd
q t , (A5b)

and the second addends represent the dissipation.
In the Born-Markov approximation, the summation over

all frequencies contributes to a delta function δ(t − t ′); then
the dissipation rate is related to the effective coupling con-
stant λd (0) = ∑

q δ(ωd
q )λd

q and the bath density of states at
zero frequency, D(0) = ∑

q δ(ωd
q ), via 2πD(0)[λd (0)]2 = 1.

It follows from 〈·〉 = Tr{(. . . )ρ̂0
d } and 〈d̂†

q d̂q〉 = nq = 0, that

〈ξ̂ aa/+
d 〉 = 0, and the nonvanishing covariance reads〈

ξ̂ aa
d (t )ξ̂ aa

d (t ′)
〉 = σ̂ aaδ(t − t ′), (A6a)〈

ξ̂ aa
d (t )ξ̂+

d (t ′)
〉 = σ̂+δ(t − t ′), (A6b)

〈ξ̂−
d (t )ξ̂+

d (t ′)〉 = n̂δ(t − t ′). (A6c)

Together with ξ̂ x
d = ξ̂+

d + ξ̂−
d , ξ̂

y
d = −iξ̂+

d + iξ̂−
d , one

arrives at 〈
ξ̂ aa

d (t )ξ̂ x
d (t ′)

〉 = σ̂+δ(t − t ′), (A7a)〈
ξ̂ aa

d (t )ξ̂ y
d (t ′)

〉 = −iσ̂+δ(t − t ′), (A7b)〈
ξ̂ x

d (t )ξ̂ y
d (t ′)

〉 = −in̂δ(t − t ′), (A7c)〈
ξ̂ x

d (t )ξ̂ x
d (t ′)

〉 = 〈
ξ̂

y
d (t )ξ̂ y

d (t ′)
〉 = n̂δ(t − t ′). (A7d)

2. Incoherent contact processes

Hereafter, we introduce λq = λb/c
q , ωq = ωb/c

q since the fre-
quencies and the coupling of the two baths are the same. In
the same spirit as in Sec. A 1, the Hamiltonian Ĥb yields the
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following equations:

∂t σ̂
+ = −i

∑
q,nn

λq
[
σ̂ aa

nn σ̂ zb̂q − (σ̂+σ̂−
nnb̂q,nn + H.c.)

]
,

(A8a)

∂t σ̂
aa = i

∑
q,nn

λq
(
σ̂ aa

nn σ̂−b̂q − H.c.
)
, (A8b)

∂t b̂q = −i
∑

nn

λqσ̂
aa
nn σ̂+ − iωqb̂q, (A8c)

∂t b̂q,nn = −iλqσ̂
aaσ̂+

nn − iωqb̂q,nn. (A8d)

The equations under the Hamiltonian Ĥc read

∂t σ̂
+ = −i

∑
q,nn

λq
[
σ̂ aa

nn ĉ†
qσ̂

z − (
σ̂+σ̂+

nnĉq,nn + H.c.
)]

, (A9a)

∂t σ̂
aa = i

∑
q,nn

λq
(
σ̂ aa

nn ĉ†
qσ̂

− − H.c.
)
, (A9b)

∂t ĉq = −i
∑

nn

λqσ̂
aa
nn σ̂− − iωqĉq, (A9c)

∂t ĉq,nn = −iλqσ̂
aaσ̂−

nn − iωqĉq,nn. (A9d)

Similar to the procedure in Sec. A 1, by solving Eqs. (A8)
and (A9), the spin operators σ̂ aa/+ yield the following noise
operators:

ξ̂+
b (t ) = −i

∑
q

λqĈ(t )σ̂ z(t )b̂q(0)e−iωqt

+ i
∑
q,nn

λq[σ̂+(t )σ̂−
nn(t )b̂q,nn(0)e−iωqt + H.c.],

(A10a)

ξ̂ aa
b (t ) = i

∑
q

λqĈ(t )[σ̂−(t )b̂q(0)e−iωqt − H.c.], (A10b)

ξ̂+
c (t ) = −i

∑
q

λqĈ(t )ĉ†
q(0)σ̂ z(t )eiωqt

+ i
∑
q,nn

λq[σ̂+(t )σ̂+
nn(t )ĉq,nn(0)e−iωqt + H.c.],

(A10c)

ξ̂ aa
c (t ) = i

∑
q

λqĈ(t )[ĉ†
q(0)σ̂−(t )eiωqt − H.c.]. (A10d)

One can compute the noise covariance in the Born-Markov
approximation 2πD(0)[λb/c(0)]2 = κ/2, of which the nonva-
nishing ones read

〈ξ̂+
b (t )ξ̂−

b (t ′)〉 = κ

2
[Ĉ(t )σ̂ ii(t ) + N̂ (t )σ̂ aa(t )]δ(t − t ′),

(A11a)

〈ξ̂−
b (t )ξ̂+

b (t ′)〉 = κ

2
[N̂ (t ) − Ĉ(t )]σ̂ aa(t )δ(t − t ′), (A11b)

〈
ξ̂+

b (t )ξ̂ aa
b (t ′)

〉 = −κ

2
Ĉ(t )σ̂+(t )δ(t − t ′), (A11c)

〈
ξ̂ aa

b (t )ξ̂−
b (t ′)

〉 = −κ

2
Ĉ(t )σ̂−(t )δ(t − t ′), (A11d)

〈
ξ̂ aa

b (t )ξ̂ aa
b (t ′)

〉 = κ

2
Ĉ(t )σ̂ ii(t )δ(t − t ′), (A11e)

for facilitated activation, and

〈ξ̂+
c (t )ξ̂−

c (t ′)〉 = κ

2
Ĉ(t )σ̂ aa(t )δ(t − t ′), (A12a)

〈ξ̂−
c (t )ξ̂+

c (t ′)〉 = κ

2
Ĉ(t )[σ̂ aa(t ) + n̂(t )]δ(t − t ′),

〈
ξ̂−

c (t )ξ̂ aa
c (t ′)

〉 = κ

2
Ĉ(t )σ̂−(t )δ(t − t ′), (A12b)

〈
ξ̂ aa

c (t )ξ̂+
c (t ′)

〉 = κ

2
Ĉ(t )σ̂+(t )δ(t − t ′), (A12c)

〈
ξ̂ aa

c (t )ξ̂ aa
c (t ′)

〉 = κ

2
Ĉ(t )σ̂ aa(t )δ(t − t ′), (A12d)

for the inverse process.
Then the covariance of the noise operators ξ̂

x/y/aa
f arising

from the above two processes can be obtained through the
combinations according to

ξ̂
+/aa
f = ξ̂

+/aa
b + ξ̂+/aa

c , (A13a)

ξ̂ x
f = ξ̂+

f + ξ̂−
f , (A13b)

ξ̂
y
f = −iξ̂+

f + iξ̂−
f . (A13c)

Then the nonvanishing covariance is〈
ξ̂ x

f (t )ξ̂ x
f (t ′)

〉 = κ[Ĉ(t )n̂(t ) + N̂ (t )σ̂ aa(t )]δ(t − t ′),

(A14a)〈
ξ̂

y
f (t )ξ̂ y

f (t ′)
〉 = κ[Ĉ(t )n̂(t ) + N̂ (t )σ̂ aa(t )]δ(t − t ′),

(A14b)〈
ξ̂ aa

f (t )ξ̂ aa
f (t ′)

〉 = κ

2
Ĉ(t )n̂(t )δ(t − t ′), (A14c)

〈
ξ̂ aa

f (t )ξ̂ x
f (t ′)

〉 = i
κ

2
Ĉ(t )σ̂ y(t )δ(t − t ′), (A14d)

〈
ξ̂ aa

f (t )ξ̂ y
f (t ′)

〉 = −i
κ

2
Ĉ(t )σ̂ x(t )δ(t − t ′). (A14e)

The overall noise covariance is obtained via summing up
those generated from the above three processes (i.e., sponta-
neous decay and incoherent contact activation/inactivation),
yielding the correlator (4) in the main text.

APPENDIX B: PERTURBATIVE INTEGRATION OF
COHERENCE FIELD

Our task is to evaluate

Z =
∫

D[σ x, σ̃ x, σ y, σ̃ y]e−Sσ −Sρ,σ , (B1)

with the action Sρ,σ given by Eq. (12) and

Sσ = −
∫ [

σ̃ x

(
Fσ x + Mxx

2
σ̃ x

)
+ σ̃ y

(
Fσ y + Myy

2
σ̃ y

)]
,

(B2)

in which

Fσ x = −nκ + γ

2
σ x − κσ xρ − �σ yσ x, (B3a)

Fσ y = −nκ + γ

2
σ y + �(σ x )2 + [2�(n − 2ρ) − κσ y]ρ.

(B3b)
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We decompose the action Sσ = Sσ,0 + Sσ,int, in which the
former represents the respective relaxation of the σ x/y with

Sσ,0 =
∫

σ̃ x

(
nκ + γ

2
σ x − n

2
σ̃ x

)

+
∫

σ̃ y

(
nκ + γ

2
σ y − n

2
σ̃ y

)
,

(B4)

and the latter represents interactions between them.
The coarse-grained action 〈Sρ,σ 〉 follows from

〈Sρ,σ 〉 = − ln

(∫ ∏
i=x,y D[σ i, σ̃ i]e−Sρ,σ −Sσ∫ ∏

i=x,y D[σ i, σ̃ i]e−Sσ,0

)
. (B5)

We start with integrating out σ x, σ̃ x, via averaging
exp [− ∫

1
2σxX 1(σx )T] over exp [− ∫

1
2σxX 0(σx )T], where the

vectorial representation σx = (σ x σ̃ x ), and

X 0 =
(

0 nκ+γ

2
nκ+γ

2 −n

)
, (B6a)

X 1 =
(

−2�σ̃ y κρ + �σ y

κρ + �σ y −2κρn

)
. (B6b)

The action S now reduces to

〈S〉X 0 =
∫ {[

nκ + γ

2
+ 16�2n

(κn + γ )3 + κρ

]
σ̃ yσ y − 1 + 2κρ

2
n(σ̃ y)2 − 2�2(σ y)2

(nκ + γ )2

}

−
∫ [

2�ρ(n − 2ρ) + 4�n

(κn + γ )2

(
1 + 2κρ − 4κρ

nκ + γ

)]
σ̃ y −

∫ [
�ρ̃ρ − 2�

κn + γ

(
1 − 2κρ

nκ + γ

)]
σ y. (B7)

We proceed to compute the average of Eq. (B7) over the
σ y, σ̃ y fields. This will lead to an action,

〈S〉X 0,Y 0 = − ln
〈
e
∫

[− 1
2 σyY 1(σy )T+b(σy )T]〉

X0,Y 0
, (B8)

where the vectorial notation σy = (σ y σ̃ y), and the matrices
Y 0,Y 1, and b are given by

Y 0 =
(

0 nκ+γ

2
nκ+γ

2 −n

)
, (B9a)

Y 1 =
⎛
⎝ − 4�2

(nκ+γ )2 κρ + 16�2n
(nκ+γ )3

κρ + 16�2n
(nκ+γ )3 −2κnρ

⎞
⎠, (B9b)

bT =

⎛
⎜⎝ �ρρ̃ − 2�

nκ+γ

(
1 − 2κρ

nκ+γ

)
2�ρ(n − 2ρ) + 4n�

(nκ+γ )2

(
1 + 2κρ − 4κρ

nκ+γ

)
⎞
⎟⎠(B9c)

The leading and subleading order corrections S1, S2 arise
from bY −1

0 b and bY −1
0 Y 1Y −1

0 b, where

S1 = −2n�2ρ2ρ̃2

(nκ + γ )2 − 4�2ρ̃

nκ + γ
(nρ2 − 2ρ3)

− 16n�2κρ̃ρ2

(nκ + γ )3

(
1 − 1

nκ + γ

)
, (B10a)

S2 = −256n2�4ρ̃ρ

(nκ + γ )7 + 96n2�4ρ̃2ρ2

(nκ + γ )6 + 8n�2κρ̃ρ3

(nκ + γ )2

+ 16n�2κρ̃ρ2

(nκ + γ )3 + · · · , (B10b)

where we retain the leading-order corrections to each coupling
constant. The effective density field action in the main text is
the sum of Eqs. (11), (B10a), and (B10b).

Before leaving this section, we provide the MF approach
to eliminating σ x/y as a comparison. After adiabatically elim-
inating the coherence fields, the equation of motion for the

active field with a conserved total density reads

∂tρ =Dρ∇2ρ + (κn − 1)ρ + 2

(
2�2n

nκ + γ
− κ

)
ρ2

− 8�2ρ3

nκ + γ
+ ξρ.

(B11)

Compare Eq. (B11) with the one associated with the effective
action (13), the dynamic path integral approach provides with
us the important piece of information that in the quantum
region, the additive noises of the coherence fields with a co-
variance increases with the total density and makes the system
more susceptible to fluctuations near the absorbing phase at
high total densities.

APPENDIX C: FUNCTIONAL RENORMALIZATION
GROUP ANALYSIS

In this Appendix, we provide details of the nonperturba-
tive renormalization group (NPRG) approach to discontinuous
APTs based on the Wetterich equation [54],

∂k�k = 1

2
Tr
[(

�
(2)
k + Rk

)−1
∂kRk

]
. (C1)

Here, in out-of-equilibrium settings, �k is the nonequilib-
rium equivalent of the Gibbs free energy in the presence
of a masslike regulator Rk [45,55], defined as the Legendre
transform of the generating functional of connected functions
Wk = lnZk[ j, j̃], viz.,

�k[ρ, ρ̃] =
∫

( jρ + j̃ρ̃) − Wk[ j, j̃], (C2)

where the scale-dependent partition function Zk is built from
adding a momentum-dependent term �Sk to the bare action
S evaluated with a uniform field,

Zk[ j, j̃] =
∫

D[ρ, ρ̃] exp

[
−S − �Sk +

∫
( jρ + j̃ρ̃ )

]
(C3)
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and

�Sk = 1

2

∫
ρTRkρ, (C4)

where ρT = (ρ ρ̃), and Rk is a 2 × 2 matrix of quadratic
functions, where the cutoff momentum k varies within the
range k ∈ [0,�].

We apply the local potential approximation (LPA) ansatz
[55], according to which the bare interaction part of the action
�k is evaluated with a uniform background field,

V −1 ln �0,k = Uk (δ j lnZ0,k| j, j̃, δ j̃ lnZ0,k| j, j̃ ), (C5)

where V is the space volume and the running local action
(analogous to the local potential in the equilibrium cases)
Uk (ρ, ρ̃ ) is given by

Uk = ρ̃[u2,kρ + u3,kρ
2 + u4,kρ

3] − μ1,k ρ̃ρ − μ2,k ρ̃ρ2.

(C6)

The two (running) noiseless saddle-point solutions {ρ̃ =
0, ρ = αk} and {ρ̃ = 0, ρ = 0} to the action Uk correspond
to the densities of the absorbing and active phases, respec-
tively, which are also the running local minima of the effective

potential,

�k (ρ) = u2,k

2
ρ2 + u3,k

3
ρ3 + u4,k

4
ρ4. (C7)

With a convenient choice of the θ regulator [55],

Rk (q) =
(

0 Rk (q)
Rk (q) 0

)
, (C8)

where Rk (q) = k2(1 − q2/k2)θ (1 − q2/k2), the flow equa-
tion for the dimensionless potential U → k−(d+2)U in terms
of the dimensionless fields ρ → k−dρ, ρ̃ → ρ̃ and the RG
time s = ln (k/�) with vanishing anomalous dimension fol-
lows from integrating over frequencies and momenta,

∂sU = −(d + 2)U + dρU (1,0) + Vd√
1 − U (2,0)U (0,2)

(U (1,1)+1)2

, (C9)

where Vd = [2d−1dπd/2�(d/2)]−1 and we have introduced
the notation U (n,m) = ∂n

ρ∂m
ρ̃ U and scaled away the k-

independent diffusivity Dρ . Hereafter, we omit the explicit
dependence on s of the running parameters.

We evaluate the flow equation (C9) at the running uniform,
noiseless saddle-point solution with finite active densities and
arrive at

∂su2 = −2u2 − Vd (c2 − αc3)μ1

(1 + c1)2 − Vd c2α[μ1c2 − 3c3α(μ1 + αμ2)]

(1 + c1)3 + O[(1 + c1)−4], (C10a)

∂su3 = −(2 − d )u3 − Vd [c3(μ1 − αμ2) + c2μ2]

(1 + c1)2
+ 2Vd c2[μ1(c2 − 6αc3) − αc2μ2]

(1 + c1)3
+ O[(1 + c1)−4], (C10b)

∂su4 = −2(1 − d )u4 − Vd c3μ2

(1 + c1)2
+ Vd

{
c2

3α(μ1 + αμ2) + c2[3c3(μ1 + 2αμ2) + 2c2μ2]
}

(1 + c1)3
+ O[(1 + c1)−4], (C10c)

∂sμ1 = −2μ1 − 2Vdμ1μ2

(1 + c1)2
− 4Vd

{
αμ1μ2(c2 + 10αc3) + [

α2μ2
2(9c2 + 11αc3) + μ2

1(αc3 − c2)
]}

(1 + c1)3
+ O[(1 + c1)−4], (C10d)

∂sμ2 = −(2 − d )μ2 − 2Vdμ
2
2

(1 + c1)2
+ 2Vd

[
8c2μ2(μ1 + 2αμ2) + c3

(
2μ2

1 + 13αμ1μ2 + 13α2μ2
2

)]
(1 + c1)3

+ O[(1 + c1)−4], (C10e)

where α is the running minimum related to the active phase,
and we have introduced c1 = u2 + 2u3α + 3u4α

2, c2 = 2u3 +
6u4α, and c3 = 6u4 to obtain a friendlier expression.

Starting with the MF values as the initial conditions, we
numerically integrate the flow equations until either the two
minima become degenerate or the values of the dimension-
ful counterparts of the running coefficients no longer evolve
with decreasing s. Plugging the renormalized coefficients into
(C7) and determining the phases accordingly yield the results
shown in the main text.

APPENDIX D: NUMERICAL INTEGRATION SCHEME

Numerical integration of the Langevin equations with mul-
tiplicative noise is performed by an operator-splitting scheme
[56,57], which consists in integrating the stochastic part first,
by sampling the time-dependent solution of the corresponding
Fokker-Planck equation (FPE), and then using the generated
value to evolve the deterministic part of the equation by any
standard numerical integration method.

The Langevin equation for the active density field reads

∂tρ = α + βρ + f (ρ) + σ
√

ρξ, (D1)

where

α = τn + Dρ

(dx)2

2d∑
i=1

ρ(r + ei, t ), (D2)

arising from discretizing the Laplacian ∇2ρ of site ri on a d-
dimensional square lattice of mesh size dx, and

β = −u2 − 2d
Dρ

(dx)2 , (D3a)

f (ρ) = −u3ρ
2 − u4ρ

3, (D3b)

σ 2 = 1 + κn + 4�2nρ

(nκ + γ )2 . (D3c)

The stochastic value ρ∗ is generated according to the
conditional transition probability density function P(ρ, t ) =
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P(ρ(t ) = ρ|ρ(0) = ρ0), which reads

P(ρ, t ) = λe−λ(ρ0eβt +ρ)

[
ρ

ρ0eβt

]μ/2

Iμ
(

2λ
√

ρ0ρeβt
)
, (D4)

where Iμ is a Bessel function of the order of μ, and

λ = 2β

σ 2(eβt − 1)
, μ = −1 + 2α

σ 2
. (D5)

Using the Taylor-series expansion of the Bessel function,
we can sample the value ρ∗ according to the following

mixture:

ρ∗ ∼ Gamma[μ + 1 + Poisson[λρ0eβt ]]/λ, (D6)

and then we use ρ∗ as the initial condition for the remaining
part of the equation,

ρ(r, t + dt ) = ρ∗ + f (ρ∗)dt . (D7)

The equation for the total density is integrated via the
Euler’s method. For the simulations, we fix γ=2, DT =Dn=1,

τ = 10−7, b = 0.01.
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